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Abstract: There exist many uncertain factors in wind power forecasting, often resulting in large 

prediction errors. Various prediction technologies have been developed to reduce errors and 

improve the dispatch-ability of grid-connected wind power. To install energy storage systems is an 

effective approach to reduce the scheduling deviation in dispatching the grid-connected wind 

power. This paper considers the optimal capacity allocation, a key issue in smoothing the grid 

wind power generation and integration. Based on the analysis of wind power prediction 

technologies and the resultant prediction deviations, the relationship between the distribution 

characteristics of wind power prediction errors and energy storage capacity demand is first 

investigated. Then, an optimization method is proposed, considering the stability of grid operation 

and the relationship between compensation necessity and load changes. Further, load fitness factor 

is introduced in processing the deviation data samples, and an economic dispatch model is 

introduced for the deviation compensation, considering the operation costs. Finally, based on the 

analysis of various factors, the technical route to achieve energy storage capacity allocation for 

scheduling deviation compensation is developed. Case studies are presented to demonstrate the 

effectiveness of the proposed approach. 

Keywords: wind power dispatching; deviation compensation; prediction error distribution 

characteristics; storage capacity 

1 Introduction  

Wind power generation and integration has been intensively researched and rolled out worldwide in the 

last decade. The power generated from a fixed wind turbine mainly depends on the local wind 

speed, direction, wind pressure and other weather conditions, as well as geographical 

environmental factors. The performance of wind turbine models are often limited by the 

uncertainties imposed on both the model inputs and outputs while the conventional numerical 

weather forecasting methods also have low accuracy on localized regions. It is therefore difficult 

to accurately predict the actual wind power generation. 

However, the power system dispatch always relies on the predicted data, it is therefore vital to 

improve the wind power prediction techniques. The early wind power prediction models often use 

wind speed information and experimental curves, which sometimes are also referred to as the 

physical methods. The second category is statistical methods, most of which rely on historical data 

[1-2]. The third category is intelligent algorithms, where machine learning rules are used to 

establish the relationship between input and output, such as SVM and ELM, etc. [3-5]. Now, kinds 

of intelligent combination algorithms are emerged [6-7]. 

All the existing literatures demonstrated that the prediction accuracy has improved with the 



development of technology, but the demand for data processing speed and memory has also been 

increased simultaneously. Although the prediction error has been decreased to a certain extent, the 

absolute error is still on the rise inevitably with the significantly increased installed capacity of 

wind power. Consequently, the increased un-schedulable wind power deviation greatly affects the 

balance of supply and demand of the power grid, bringing unstable factors to the grid. The 

increased reserve capacity must be installed to suppress the unpredictable deviations originated 

from the wind power integrated in the grid, which increases the cost of grid operation. On the 

other hand, the inefficient use of standby units is either a waste, especially, the thermal power 

generation units that consume coal resources has exacerbated the depletion of limited 

nonrenewable energy resources and their environment impact. As a countermeasure, national 

system operators such as the National Energy Administration in China issue  functional 

specifications on the wind power prediction systems [8]. 

As an effective measure to tackle the problem of wind power scheduling deviations, energy 

storage technologies have drawn much attention in recent years due to their great potential of 

flexible throughput characteristics. However, due to the sheer demand for a significantly huge 

amount of storage capacity for deviation compensation, it is practically challenging to adopt 

energy storage to reduce the scheduling deviation of wind power and turn un-schedulable into 

schedulable. The concept was proposed for about 20 years, and a number of results have been 

presented for scheduling deviation compensation. As shown in Table 1, under the consideration of 

different factors for scheduling deviation compensation, the capacity allocation of energy storage 

accounts from 19.8% to 60% of the wind power capacity.  

Table 1 Energy storage configuration for deviation compensation 

Scheduling compensation 

technology 

Wind power 

capacity / MW 

Statistical 

span 

/ h 

Storage 

configuration / 

MAh 

Compensation target Actual results 

Kernel density estimation 

followed by GA-ANFIS 

prediction error statistics [9] 

148.5 48 
89, confidence 

level 80% 

Small prediction 

error, 

MAE and RMSE 

6.70%, 9.15% 

Based on feature extraction and 
LSSVM MPC [10] 

49.5 1/4, 1/3, 1/2 9.8 

Grid-connected 

operation 
cost-effectively 

Full compensation 

Exceeding error frequency 

weight (EEFW) combined with 

three-dimensional optimization 

method [11] 

148.5 24 35.3 

Degree of wind power 

compensation, energy 

storage life, economic 

ratio of hybrid storage 

capacity 

Prediction error ≤15%, 

wind power fluctuation 

≤ 20% 

Two-stage stochastic 

optimization framework [12] 

3.6, 2 × 170 kW 

diesel generators 

at minimum load 

24 1.81 

wind speed and the load 

growth rate, load 

balancing and 

frequency control 

Life cycle cost varies 

very slightly with the 

number of scenarios 

(less than 1%) 

Based on comprehensive 

cost-benefit model [13] 
200 24 60.5 

Ease the peaking 

burden, smooth load 

curve, and reduce the 

thermal power coal 

consumption. 

Adapting to 

presupposed 

dispatching schedule 

The dynamic throughput of energy storage depends on the positive and negative offset of the 

scheduling deviation, not only the polarity of the bias, but also the magnitude, so the cumulative 

amount of deviation directly impacts on the overcharge and over-discharge characteristics of the 

energy storage system. In the case that the predicted wind power is in the power dispatch, the 

input and output throughput of energy storage not only depends on the prediction technology, but 

also the uncertainties of the key factors such as the wind speed, the superimposed effect arisen 

from these important factors directly determines the energy storage capacity allocation. It is 

therefore necessary to investigate the deviation distribution characteristics. 



2. The impact of scheduling deviation distribution characteristics on energy

storage capacity allocation

Energy storage capacity is used to deliver the throughput of the entire charging and discharging 

cycle. Due to the irregular and continuous alternation of positive and negative deviations, it is 

quite challenging to determine the desired energy storage capacity. Grid scheduling performance is 

heavily affected by the prediction technique. Positive and negative polarity changes of scheduling 

deviations imply the dynamic requirements on energy storage charging and discharging. Therefore, 

it is necessary to investigate the relationship between deviation distribution characteristics and 

energy storage capacity demand. 

2.1 Error distribution analysis 

The capacity analysis of the energy storage system is obviously a key prerequisite for the 

realization of schedulable wind power. Positive or negative deviation fluctuation within a 

sampling period renders the fluctuation of the capacity amplitude, while continuous positive or 

negative deviations implies that the energy storage system needs to absorb or release the 

accumulated energy continuously. Obviously, if the wind power prediction is directly used in the 

grid power dispatch, the distribution characteristics of the prediction errors determine the demand 

for energy storage capacity. Continuous positive or negative errors will inevitably increase the 

energy storage capacity for deviation compensation. Several error compensation distribution 

characteristics are shown in Fig. 1, such as ARIM（Autoregressive Integrated Moving Average 

model）  [14], BPNN（Back-propagation Neural Network）  [15], PSO（Particle Swarm 

Optimization） [16], SVM（Support Vector Machines） [17], EEMD（Ensemble Empirical Mode 

Decomposition） [18], ELM（Extreme Learning Machine） [19], WNN（Wavelet-based Neural 

Network） [20], RBPNN（Radial Basis Function Neural Network） [21], RBF（Radial Basis 

Function） [22], LSSVM（Least Squares Support Vector Machines） [23], GM （Gray Forecast 

Model) [24], MCC（Matthews Correlation Coefficient) [25]. As shown in Fig.1, the error 

distribution characteristics varies in different time periods, and some continuous intervals have the 

same polarity, which implies that the energy storage system needs to be charged or discharged 

continuously, leading to a large cumulative value, and thus the energy storage system needs to 

have a larger rechargeable or re-dischargeable capacity requirement. While for some intervals, the 

polarity of the deviations alternate frequently, which implies that the energy storage system is 

subject to alternating charge and discharge. The energy storage capacity is determined by the 

maximal cumulative value of the positive and negative deviations. If the positive and negative 

deviations are symmetric, the capacity of the energy storage system only needs to accommodate 

the maximal cumulative energy of a single charge or discharge phase, and thus the capacity 

requirement is relative small. However, in practice it is difficult to develop a wind power 

prediction technology which exhibits a symmetric error distribution characteristics, and in most 

cases the prediction error distribution is asymmetrical. If the overall error amplitude is small, the 

prediction technology still has lower requirements for the energy storage capacity for deviation 

compensation. On the other hand, frequent positive and negative changing in prediction errors 

implies that the energy storage system has to be charged and discharged frequently, which will 

affect the service life of energy storage. Overall, a general conclusion can be drawn that storage 

capacity demand for error compensation largely depends on the error distribution characteristics. 



Fig.1 Sampling time prediction deviation compensation demand distribution 



while large errors requires large storage capacity, while small errors do not necessarily imply 

small capacity as their cumulative values can still be very large. 

Symmetrical error distribution but with frequent polarity alternations is not necessarily a good 

prediction technique from the energy storage configuration prospective. Take 24 hours statistics of 

4 algorithms as an example, the cumulative capacities are shown in Fig. 2. A desired error 

distribution for energy storage configuration could be the case where polarity of the prediction 

errors alternate at certain interval, symmetrically, and the amplitude should not be too large as 

well. 

Fig.2 Cumulative power prediction error 

2.2 The energy storage capacity demand for deviation compensation 

The statistics of the actual cumulative power prediction errors of typical day, typical month, and a 

year have been analyzed for a 1.5 MW wind turbine using different wind power prediction 

methods. As shown in Table 2, it is evident that the prediction error variations are uncertain for 

different time intervals, but the cumulative errors increase with the time scales. It is also evident 

that different prediction algorithms and different time scales require different energy storage 

configurations. 

Table 2 Capacity demand for power deviation compensation of all periods (kWh/kW) 

Statistical span 

Predictive technology 

BPNN 
MCC- 

BPNN 

PSO- 

BPNN 
RBFNN 

PSO- 

RBFNN 
W-NN LS-SVM ARIMA 

EEMD-

ELM 
Grey  

PSO- 

LSSVM 

Typical day 191/74 219/67 429/78 1393/111 1233/78 1052/62 1097/99 2130/125 948/65 
2357/

134 

1242/ 

112 

48 hours 1558/77 1822/95 1087/72 1752/80 1499/70 1751/65 1139/96 3047/124 1247/64 
3558/

135 
891/99 

Typical month 
6381/ 

136 

27314/ 

141 

12060/ 

126 
5057/121 9508/112 

11463/ 

134 
5315/113 11440/95 

6778/

142 

14646/ 

100 

7618/ 

123 

Year 
436918/ 

142 

260867/ 

141 

232675/ 

138 
41789/121 12756/123 

206406/1

45 

117619 

/126 
171510/97 

22799/ 

142 

245293/ 

100 

99510/ 

123 

3. Optimal energy storage capacity allocation considering load variation and

operating costs in power system dispatch

Since the integration of energy storage can support the scheduling of wind power integrated into 

the grid and smooth the variation characteristics of the prediction deviations, it is possible to 



holistically consider the changes in grid load, the expected income of wind power operators, and 

the operation characteristics of energy storage to achieve optimal scheduling. As shown in Fig.3, 

the scheduling deviation compensation can be considered together with the load demand, peak 

shaving, economy profit, SOC (state of charge), and energy storage operation cost. 

Fig 3. Energy storage capacity configuration considering different scheduling methods 

3.1 Scheduling optimization considering load variations 

If the distribution characteristics of the deviations of the schedule wind power coincide with the 

characteristics of the load variations, this power deviation can help the grid with peak shaving. 

However, if the scheduled power is higher than the actual peak power consumption, this difference 

needs to be eliminated. Therefore, in order to calculate the energy storage capacity allocation, load 

variations must be considered. In addition to the peak period, the deviation correction needs to 

consider the trend of load variations and make appropriate adjustments by using the energy 

storage, while reducing the number of charging and discharging switching times, thus increase the 

service life of the energy storage system. Further, the dispatching results and revenue costs are 

also affected by load variations to some certain extent. Wind power prediction deviations and 

dispatching behavior therefore need to can be considered holistically to determine the energy 

storage capacity. The deviation compensation method considering the load variations is given as 

follows. The value of the load fitness factor is given shown in Table 3. 

( )s s

s ,t c ,t n

s s

c ,t a ,t

P P 1 r P

P P P

 = + − ⋅∆

∆ = −

(1) 

Table 3 Load fitness factor value rn 

Load period 

distribution 

Scheduling deviation (∆P) and grid load change trend (K) 

∆P＞0 
and K≥1 

∆P＞0 and 

0＜K＜1 
∆P≠0 

and K=0 

∆P＞0 and 

-1＜K＜0 
∆P＞0 and 
K≤-1 

∆P＜0 
and K≥1 

∆P＜0 and 
0＜K＜1 

∆P＜0 and 
--1＜K＜0 

∆P＜0 
and K≤-1 

Valley periods 1/3 1/4 1/8 0 0 1/4 1/2 3/4 1 

Transition periods 1 2/3 ¾ 1/4 1/8 1/2 3/4 1/2 1 

Peak periods 1 1 1 1/2 1/4 0 0 1/4 1/2 



where 
,

s

s tP is the compensated scheduling power after considering the load variations, 
c,

s

tP is 

the initial scheduled power, ,
s
a tP  is the actual wind power output during the period (refer to 

historical data), rn is the load fitness factor considering the deviations. The value in the table not 

only considers the load change trend in different periods, but also considers the polarity of the 

deviation. 

3.2 Scheduling optimizing considering operating costs 

From the electricity market operation perspective, in addition to the grid-side load variations, 

the energy storage configuration must also consider the economic benefits of wind power 

operators. Therefore, it is necessary to study the energy storage operating costs and grid-connected 

power generation benefits of the deviation compensation scheme, and optimize the energy storage 

configuration to achieve high-accuracy schedule implementation. Aimed at maximizing the profit 

Z of the wind power system, and the following formula (2) is arrived. 

( ), a,t bq,t se,t loss,t , tz,t ,

1

max , max
T

s s s s s s s

d t qs t st t

t T t

Z f s P Z Z Z Z Z Z Z
∈ =

   = − + − − − +    
∑ ∑ (2) 

where, s represents the uncertain scenario of the scheduling scheme, T is the number of time 

segments in a day, 
a,t

s
Z is the daily benefit of a scheduling output, 

bq,t

s
Z  is the penalty cost of 

daily scheduling of wind energy, 
se,t

s
Z is the exchange cost of energy storage power, 

loss,t

s
Z  is the 

loss cost of energy storage exchange power, 
,

s

qs t
Z is the frequent switching cost of energy storage, 

tz,t

s
Z is the upfront investment cost of energy storage, and 

,

s

st t
Z is the incentive premium. 

4. A case study

The historical operation data of a wind farm are used in the case study, and the initial storage 

capacity is 148.5 kW. The rated voltage of the battery and the super capacitor are 180V and 160V 

respectively. One year data are selected to train and test energy storage capacity required to 

compensate for the deviations of different grid-accessed schedule, including the direct scheduling 

for stabilizing the grid after prediction, primary optimization combined with grid load sequence 

distribution, and the re- optimization under joint consideration of economic dispatch costs. Several 

scheduled power curves and actual power curves, the original predicted power curve, and the 

wind/storage power curve are illustrated in Fig. 4. The change curve of energy storage SOC used 

for scheduled power deviation compensation of one day is as shown in Fig. 5, where the number 

of 10~11h sampling points is around 1.25-1.375 (105), while the number of 14~15h sampling 

points is around 1.75-1.875 (105), for 21~22h it is about 2.75-2875 (105). 

As shown in Fig. 4, the power prediction curve exhibits dramatic fluctuations. If the load variation 

is considered, the compensation is increased during peak hours (10~11h, 14~15h, 21~22h), while 

the volatility of the scheduled curve is slightly higher than that of the initial scheduling, the 

maximum volatility, which has increased by about 3%. After increasing the compensation, the 

overall tendency is the discharge behavior, as shown in Fig. 5(b). This reveals that the degree of 

compensation increases significantly after the load fitness factor is added into the cost function. 

This implies that it is insufficient to just consider the load factor and it is also necessary to 

consider various economic factors in the objective function. After the model is optimized, charge 

and discharge behavior can maintain the SOC of the energy storage system at about 50%, as 



shown in Fig. 5(c). 

Fig.4 Power curves of scheduling and actual output 

(a)Initial scheduling deviation compensation  (b) Schedule optimization deviation compensation

(c) Schedule re-optimization deviation compensation  (d) Actual deviation compensation

Fig.5 Hybrid energy storage SOC changes corresponding to several scheduling strategies

Among three different compensation schemes, the variations in the SOC curves due to the 

scheduling amendment are the smoothest, thus significantly reduced the energy storage capacity 

requirement. The deviation index is also decreased, and MAE and RMSE under the re-optimized 

scheduling is reduced by around 1.6% and 0.22%, leading to the reduction in energy storage 

capacity allocation, as shown in Table 4.  

Table.4 Power scheduling indexes 

Technology 

Capacity Accuracy Volatility Reported pass rate 

Battery 

/kWh 

Super 

capacitor 

/kWh 

MAE 

/% 

RMSE 

/% 

Maximum 

volatility 

/% 

Average 

volatility 

/% 

r1 /% r2 /% 

Stabilization  followed 

by prediction 
3.78 2.24 9.4624 1.1689 2.0349 0.1031 81.36 97.68 

Consider load fitness 3.52 1.6 8.7692 1.1085 4.9724 0.0634 95.48 100 

Consider economic 

dispatch 
1.26 2.0 6.9959 0.8488 3.6459 0.0622 98.97 100 



Table 4 reveals that the energy storage capacity requirement of optimized scheduling deviation 

compensation is lower than the capacity requirement before optimization, total actual capacity be 

reduced by about 15% and 36% respectively. Meanwhile, the proportion of super-capacitors in the 

total capacity has also increased. This can effectively utilize the characteristics of super-capacitors 

and have certain economic benefits. At the same time, the MAE and the RMSE after the 

re-optimization are reduced by about 1% and 0.12% than that of the initial schedule, respectively, 

and more than 0.7% and 0.04% of the primary optimized scheduling. The re-optimization is better 

from the aspect of accuracy. However, from the point of view of volatility, the initial schedule is 

the largest, while the maximum volatility and average volatility are reduced by 0.7% and 0.01% 

respectively after model re-optimized. In regards to the accuracy and pass rate, the accuracy of the 

schedule has been steadily increased after consideration of the load adaptability and model 

re-optimization. 

5. Discussions and conclusions

Due to the cumulative effect of the throughput characteristics of energy storage operation and the 

wind power scheduling deviation distribution, the capacity allocation technology used for 

scheduling deviation compensation mainly depends on the scheduling method. Different 

scheduling methods will lead to different distribution characteristics of the power deviations. 

Therefore, the demand for energy storage capacity is also different due to the following specific 

influencing factors. 

1) The distribution characteristics of scheduling deviations corresponding to different prediction

technologies, including changes in amplitude and polarity.

2) The scheduling technology, which leads to different distribution characteristics of the scheduled

deviations.

3) The intervals of the wind power dispatch.

4) The initial value setting of the SOC of energy storage according to different scheduling

strategies.

It should be noted that other factors also need to be considered, such as the feasibility of capacity

configuration which directly depends on the operation mode and energy management method of

the subsequent energy storage. Inappropriate operation control may directly deteriorate the

efficiency of existing energy storage system. To achieve economic operations, effective energy

management system combined with on-site wind power operation must be put in place.
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