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Abstract—Lithium-ion batteries have become one of the 
most promising sources for accelerating the development of 
sustainable energy, where effective cell manufacturing plays a 
direct role in determining battery qualities. Due to the highly 
complicated process and strongly coupled interdependencies of 
battery manufacturing, a data-driven approach that can 
evaluate the sensitivity of manufacturing parameters and 
provide the effective classification is urgently required. This 
paper proposes a boosting tree-based ensemble machine 
learning framework to analyze and predict how the battery 
electrode porosity varies with respect to the key parameters of 
both mixing and coating stages for the first time. Three 
boosting models including the AdaBoost, LPBoost, and 
TotalBoost are established and compared. Illustrative results 
demonstrate that the proposed ensemble machine learning 
framework is able to not only give effective quantification of 
both importance and correlations of parameters of interest but 
also provide satisfactory early-stage prediction. These kinds of 
information could benefit the monitoring and analysis of 
battery manufacturing chain, further help to produce high 
quality batteries for wider sustainable energy applications.  

Keywords—Sustainable energy, Li-ion battery, Battery 
manufacturing, Data analysis, Ensemble machine learning 

I. INTRODUCTION  
Environmental challenges including the global warming 

and the reduced sources of fossil fuels have increased the 
requirements for sustainable energy and transportation 
applications. Lithium-ion (Li-ion) batteries become one of 
the most promising energy storage sources not only for 
mobility electrification but many other sustainable 
applications, which leads to the significantly increased 
demand for them in recent years. However, the performance 
of Li-ion batteries such as capacity, service life, energy or 
power density, and thermal conductivity are directly and 
highly affected by their related production process. To 
optimize battery quality and consequently production costs, 
it is vital to understand the correlations between various 
production parameters and battery quality variables [1].   

Unfortunately, battery production is complex with many 
inter-mediate stages and numerous strong-coupled process 
parameters. Due to the multiple disciplinary information 
including electrical,  mechanical, and chemical operations 
are involved in the whole battery manufacturing chain, the 
analyses of importance and correlations among various 
intermediate parameters and battery variables still often rely 
on the experiment experiences, expert advice, trial and error 
method [2]. These methods lead to huge laborious and time 
consumptions, slow battery product development, inaccurate 
quality control and difficulty in distinguishing the products 

with different quality levels at earlier stages. In this context, 
designing an effective data analysis strategy to conduct the 
reliable sensitivity analyses including the importance as well 
as correlation quantifications of battery manufacturing 
parameters is urgently needed. 

With the rapid development of machine learning and 
artificial intelligence techniques, data-driven solutions have 
been popular tools for battery managements. A good deal of 
works are designed for battery internal states estimation [3], 
lifetime prognostics [4][5], faults diagnostics [6], cells 
equalization [7], charging control [8][9], market arbitrage 
[10], electric vehicle sizing [11] as well as energy 
management [12]. Overall, after designing suitable data-
driven models, more effective battery management 
performance could be obtained. However, these works 
mainly focus on the final manufactured battery performance 
with the fact that relatively little has been done on technical 
improvement of their related manufacturing process [13]. As 
battery manufacturing would play a more direct and 
significant role in determining battery performance [14], 
which is also worth being well monitored and analyzed.  

In comparison with the field of battery management, 
fewer existing works have been done so far on designing 
data-driven solutions to benefit battery manufacturing [15]. 
For example, according to the cross-industry standard 
process (CRISP), the linear as well as neural network-based 
data-driven models are proposed in [16] to predict battery 
properties and identify the dependency of battery 
manufacturing chain. Turetskyy et al. [17] adopted the tree-
based techniques to analyze variable importance and predict 
the maximum capacity of manufactured battery. After 
designing statistical data-driven solution to analyze battery 
manufacturing fluctuations, their effects on the capacity of 
manufactured battery are evaluated in [18]. For the 
aforementioned relevant research works,  reasonable data 
analyses of battery manufacturing can be achieved, but most 
researches simply adopt the conventional methodologies to 
predict the properties of battery production. Besides, little 
has been done so far by designing data-driven solutions, 
especially using ensemble framework, to in-depth analyze 
the effects of manufacturing parameters within the key stages 
such as mixing and coating. It should be known that battery 
mixing and coating are crucial to determine the qualities of 
manufactured battery electrode [19]. In order to achieve 
battery smarter manufacturing and optimize mixing as well 
as coating stages, it is vital to carry out the efficient 
sensitivity analyses of the battery electrode properties with 
respect to its mixing and coating specifications.  



Given the aforementioned considerations, a boosting-tree 
based ensemble machine learning framework is proposed in 
this paper to conduct sensitivity analysis of key 
manufacturing parameters and predict battery electrode 
porosity qualities. The focus of this study is on the effects of 
mixing and coating key parameters on final battery electrode 
products. Some key objectives could be summarized as: 1) to 
quantify importance as well as correlations of four key 
manufacturing parameters from both mixing and coating via 
a well-designed ensemble machine learning framework; 2) to 
classify and predict battery electrode porosity at early 
production stages via effective data-driven models; 3) to 
evaluate and compare performance of typical AdaBoost 
model and two other improved boosting-based tree models 
(LPBoost and TotalBoost) for battery electrode classification 
case. All these efforts could help manufacturer to produce 
more efficient and high performance batteries, further 
benefitting battery smarter manufacturing for wider 
sustainable energy applications.  

II. LI-ION BATTERY PRODUCTION 
Li-ion battery production is a complex process that 

generally contains three parts including battery electrode 
manufacturing, battery assembly, and battery formation. As 
illustrated in Fig. 1, electrode production starts from mixing 
stage, in which the prepared material components will be 
mixed within a soft blender to generate slurries. After that, 
the slurries will be coated on the surface of collector foil 
which is made of copper/aluminium in general. Then the 
coating product will be dried by the oven. After calendering 
and cutting steps,  battery anode and cathode electrodes will 
be generated. The whole electrode production process 
involves electrical, mechanical, as well as chemical 
operations. All stages within it need to be conducted through 
using the specific equipment. As two key stages in the 
battery electrode production, mixing and coating are 
complicated with many strong-coupled parameters, and these 
manufacturing parameters would highly affect some battery 
electrode quality indicators such as porosity. Therefore, a 
reliable solution that can analyze the sensitivity of interested 
parameters and predict the manufactured electrode porosity 
is necessary for improving battery manufacturing. 

 Mixing Coating

Drying and Calendering
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Electrode Batteries
Sustainable 

Energy
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Fig. 1. Typical processes of battery manufacturing particular for electrode 

production. 

 To achieve this, a boosting-based ensemble machine 
learning framework is designed to classify battery electrode 
porosity and analyze both importance as well as correlations 
of some key manufacturing parameters in this study. 

Specifically, three mixing parameters including the mass 
content (MC) of active material, solid-to-liquid ratio (StLR), 
and viscosity (Vis), as well as one coating parameters: 
comma gap (CG) are investigated. Here StLR means the 
mass ratio between slurry solid and mass. Vis affects the 
shear rate of coating stage. CG is the gap between coating 
comma and coating roll. Without the loss of generality, 
battery manufacturing experimental dataset from Franco 
Laboratoire-de-Reactivite-et-Chimie-des-Solides is adopted. 
Detailed experimental information and data explanation are 
referred to [20] for readers of interest. To fully investigate 
the classification performance of designed ensemble machine 
learning models, battery electrode porosity with the unit of % 
is labelled with five classes (very low, low, medium, high 
and very high). Specifically, very low refers to the range of 
(0, 47.5], low refers to the range of (47.5, 50], medium 
reflects the range of (50, 52.5], while high and very high 
refer to the ranges of (52.5, 55], and (55, 70], respectively. 
After predefining the class labels of electrode porosity, the 
boosting-based ensemble machine learning framework for 
both porosity quality classification and parameter sensitivity 
analyses can be designed. 

III. TECHNOLOGIES 
In this section, the fundamental of AdaBoost is first 

given, followed by the descriptions of another two improved 
boosting techniques including LPBoost and TotalBoost. 
Then the tree-based ensemble machine learning framework 
to analyze battery electrode production is designed. To 
evaluate their performance, some performance indicators are 
also given. 

A. AdaBoost, LPBoost and TotalBoost 
Boosting is one of most effective and widely-used 

solutions to derive ensemble machine learning framework. 
The key idea of boosting is to sequentially train various 
weak hypothesis, while the training dataset’s distribution 
would be also changed dynamically based on the 
performance of previous trained weak learner.  

 Adaptive boosting (AdaBoost) is a typical and effective 
boosting solution for real classification applications [21]. 
Let training dataset TD includes K observations as: 
TD={(x1, y1), (x2, y2), …, (xK, yK)}. Here xk (k=1:K) reflects 
the input vector of the interested manufacturing parameters, 
yk (k=1:K) stands for the preset classification labels with a 
total number of C, L(x) means a weak learner that would 
output a classification result related to x, then the detailed 
process to establish AdaBoost-based ensemble machine 
learning model for classification is summarized in 
Workflow 1. 

 
 
Workflow 1: Process to establish AdaBoost-based ensemble 
classification model 
1. Initialize the training observations’ weights as: 

1 , 1,2,..., .kw K k K   
2. Suppose J is the number of all weak learners L(j)(x). For 
j=1 to J: 
       a) Fit L(j)(x) to TD based on the weight wk. 



       b) Compute the error er(j) as: 
( ) ( )

1 1
( ( ) )K Kj j

k k k kk k
er w I L x y w

 
     

       where I(.) means a zero-one judgement with a rule as:  
( )( ( ) ) 1j

k kI L x y   

       c). Compute the update factor  jf of weights as: 

 ( ) ( ) ( )log[ 1 / ] log( 1)j j jf er er K     
       d). For k=1,2…,K, update weight wk as: 

  ( )exp ( ( ) )j j
k k k kw w f I L x y       

       e). Renormalize wk. 
3. Output the predicted class result ( )y x  as: 

  ( )
1

( ) arg max ( ( ) )J j j
k cjc

y x f I L x y


    

where cy is the preset classification label (c=1:C). I(.) here 
represents another zero-one judgement with a rule of 

( )( ( ) ) 1j
k cI L x y  , arg max

c
would output the class that 

has the largest counted number from results of all trained 
weak learners.  
       
       Apart from AdaBoost, another two improved boosting-
based solutions including the LPBoost and TotalBoost are 
also utilized in this study. Specifically, LPBoost uses the 
weighted linear combination of learners, so that a weak 
learner can be added in each iteration with the adjustment of 
previous weak learners’ weights [22]. TotalBoost realizes the 
classification by maximizing the minimal margin [23]. More 
detailed information of  these two boosting solutions can be 
found in [24]. It should be known that both LPBoost and 
TotalBoost have the same general workflow as AdaBoost, 
but these two improved solutions are self-terminating and 
produce ensembles with small weights [24]. 

B. Framework for analyzing battery electrode production 
In this study, to effectively analyze the sensitivity of 

mixing and coating parameters of interest and well classify 
the qualities of manufactured battery electrode porosity, a 
novel boosting-based ensemble machine learning framework 
with a model structure shown in Fig. 2 is proposed. To be 
specific, three mixing parameters (MC, StLR, and Vis) and 
one coating parameter (CG) of interest are utilized as the 
inputs to the model, while the relevant manufactured battery 
electrode porosity is used as the output. The detailed 
framework through using the boosting tree-based technique 
to carry out the sensitivity analysis and classify the qualities 
of manufactured electrode porosity can be summarized with 
four key parts as follows:  
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Fig. 2. Model structure of boosting-based ensemble machine learning to 
classify battery electrode porosity and carry out sensitivity analysis.  

Part 1: Data preprocess: In this part, the raw battery 
electrode manufacturing data will be preprocessed to remove 
its outliers and set the classification labels. Following the 
predefined rules in Section II, five classification labels 
including very low, low, medium, high, and very high are set 
to reflect the qualities of battery electrode porosity.  

Part 2: Ensemble machine learning model construction: 
to establish effective boosting-based model, the hyper-
parameters of AdaBoost, LPBoost, and TotalBoost methods 
need to be determined.  It should be known that for all these 
three methods, decision tree is usually adopted as their weak 
learner. Two main hyper-parameters require to be preset: the 
number of ensembled decision tree (N) and their learning 
rates (r). In theory, large N leads to the improved accuracy of 
classification, but too many trees will also cause the overfit 
issue and increase the computational effort. In order to 
determine a suitable N, an iteration way through comparing 
learner weights via various numbers of utilized weak learners 
is adopted. For learning rate, it would reflect a decay rate of 
each learner’s weight, further affecting the performance of 
each decision tree. As suggested by [18], r could be set as 0.1 
for the general classification applications. After setting these 
two hyper-parameters, all boosting-based models can be well 
trained with the process as illustrated in Workflow 1. 

Part 3: Importance and correlation analyses: to quantify 
the importance of interested manufacturing parameters, Gini 
index which represents the impurity change due to the splits 
of each parameter is utilized. In the tree-based classification, 
impurity could stand for how well a potential split is for 
decision tree’s nodes. The larger Gini index value a 
manufacturing parameter can obtain, the more important 
effect this parameter can give. Besides, to carry out the 
correlation analysis of each manufacturing parameter pair, 
predictive-measure-of-association (PMOA) value is utilized. 
Supposing two parameters of interest are Pa and Pb, the 
PMOA value to reflect their correlation is calculated by: 

    
 

, ,
,

min , 1
min ,

l r a b a b
a b

l r

OB OB OBl OBr
PMOA

OB OB
  

     (1) 

where l and r represent the left child and right child of 
nodes; OBl and OBr mean the observation proportions of 

aP y  and 
aP y , respectively; 

,a bOBl is the observation 
proportion under condition of Pa<y and Pb<z, while OBra,b 
reflects the observation proportion under condition of 

aP y and 
bP z . The solution of obtaining PMOA is to 

investigate all the potential splits with the best case that is 
obtained during decision tree’s training stage. In this context, 
PMOA has the ability to quantify the similarity between 
different rules for splitting observation. After using Eq. (1), 
the PMOA values of all parameter pairs can be obtained and 
shown by a 4×4 heat map. 

C. Performance indicators 
In this study, to quantify and investigate the classification 

performance, confusion matrix (CM) is adopted as a key 
performance indicator. Supposing positive stands for an 
interested class while negative relates to other classes, four 
basic elements including the true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN) could be 



obtained. Afterwards, the precision rate Pra(Ci) as well as 
recall rate Rra(Ci) of interested class can be obtained as:  

            
 

i i i i

i i i i

r ( ) ( ) / ( ) ( )
r ( ) ( ) / ( ) ( )

P a C TP C TP C FP C
R a C TP C TP C FN C

  
  

            (2) 

Then a popular performance indicator to illustrate the 
accuracy of classification results called micro F1 score 
( 1microF ) can be calculated as:   

                      1 /all all obmicroF TP TN N                 (3) 

where TPall and TNall represent all correct classifications, 
obN means the total amount of observations. 

Besides, the receiver operating characteristic (ROC) 
curve as well as its area under curve (AUC) value are also 
adopted to evaluate the performance of classification results 
in this study. It should be known that ROC curve is a 
statistical plot to reflect the diagnostic ability of a 
classification model under the case of varying its 
discrimination threshold. The AUC could give the degree or 
measure of separability of the classes. 

IV. RESULTS AND DISCUSSIONS 
In this section, through using all steps within the parts 

from subsection III-B, the experimental tests by designing 
proper tree-based ensemble machine learning models can be  
carried out to quantify the importance and correlations of 
four input manufacturing parameters of interest, while the 
battery electrode porosity qualities will be also classified. In 
this study, all mentioned boosting-based models (AdaBoost, 
TotalBoost, and LPBoost) are evaluated based on the five 
fold cross-validation. 

A. Boosting-based model trainning 

 
Fig. 3. Training error via the number of tree stumps. 

      First, to evaluate if the training process of all three 
boosting-based models would converge and to avoid training 
overfitting, a training case through using tree stumps with 
only 1 maximum split as weak learner is carried out. As 
illustrated in Fig. 3, the training errors of both TotalBoost 
and LPBoost cases could converge to 0 after using over 20 
tree stumps, while the error of AdaBoost case can also 
converge to around 0.06 after using 40 tree stumps. In light 
of this,  all these three ensemble machine learning models are 
able to achieve reliable convergence results for classifying 
the qualities of battery electrode porosity in this study. 

      Then, to determine the hyper-parameter N of both 
LPBoost and TotalBoost cases, their learner weights after 
compacting the corresponding weak learners (decision tree) 
are shown in Fig. 4. Obviously, both LPBoost as well as 
TotalBoost models present clear decrease trajectories via the 
increase of number of ensembled trees. Here the weights of 

LPBoost become negligible after using 32 decision trees, 
while the weights of TotalBoost become negligible after 
using 12 decision trees, indicating that a satisfactory 
convergence of model training can be achieved. Therefore, 
the N of LPBoost model and TotalBoost model are set as 32 
and 12 for the battery electrode porosity classification, 
respectively. 

 
Fig. 4. Weights of LPBoost and TotalBoost via the number of ensembled 

trees. 

B. Parameter importance and correlations quantification 
     After presetting the hyper-parameters of all boosting-
based models, the sensitivity analyses of manufacturing 
parameters of interest can be carried out. Through calculating 
the Gini index values of MC, StLR, CG, and Vis, their 
importance ranking can be quantified, as illustrated in Fig. 5.  
Quantitatively, the quantified values of StLR and Vis are 
higher than those of other parameters, indicating that they are 
the two most important parameters to determine the battery 
electrode porosity. In contrast, MC shows the minimum Gini 
index, which means that it presents the lowest effects on the 
battery electrode porosity classification.  

 
Fig. 5. Importance ranking of battery manufacturing parameters of 

interest. 

 
Fig. 6. PMOA-based correlations of interested battery manfuacturing 

parameter pairs. 

      To quantify the correlations of each manufacturing 
parameter pair, the PMOAs of all pairs derived from 4 



manufacturing parameters of interest are calculated and 
illustrated in a heat map matrix, as illustrated in Fig. 6. 
Obviously, the PMOA of MC and StLR pair gives the largest 
value around 0.9, indicating that there exists relatively strong 
correlations between these two manufacturing parameters. 
This result is expected as the mass ratio between slurry solid 
and mass actually present strong relations with the active 
material qualities in theory. For other parameter pairs, their 
PMOAs are all lower than 0.6, indicating that none strong 
correlations of these parameter pairs are existed in 
determining the battery electrode porosity.  

C. Classification performance evaluation 
     This subsection details the classification performance of 
all mentioned boosting-based ensemble machine learning 
models. After using the well-trained AdaBoost model, 
LPBoost model, as well as TotalBoost model to classify the 
qualities of battery electrode porosity, their relevant 
confusion matrices and microF1 results are illustrated in Fig. 
7 and Table 1, respectively. Quantitatively, AdaBoost 
presents the worst classification result with 71.2% microF1, 
while TotalBoost model achieves the best result of 74.1% 
microF1, which is 2.1%  better than that of LPBoost.  

Table 1.  Performance indicator of all these three boosting-based ensemble 
machine learning models 

Boosting-based models microF1 values 
AdaBoost 71.2% 
LPBoost 72.6% 

TotalBoost 74.1% 

 

(a) (b)

(c)  
Fig. 7. Confusion matrix of battery electrode porosity classification under 

different tree-based approaches: a) AdaBoost, b) LPBoost, and c) 
TotalBoost. 

Fig. 8 illustrate the ROC curves of battery electrode porosity 
classification results through using various tree-based 
approaches. It can be noticed that the AUC values of all 
approaches are higher than 0.9. Quantitatively, AUC of 
TotalBoost case presents the largest one with 0.94, which is 
2.2% and 3.3% larger than that from LPBoost case and 
AdaBoost case, respectively. Therefore, our proposed 
boosting-based ensemble machine learning framework is 
able to classify the battery electrode porosity with 
satisfactory AUC values at the early mixing and coating 
stages, while TotalBoost-based ensemble machine learning 
model shows more competent performance among these 
three adopted boosting techniques. 

 
Fig. 8. Receiver operating characteristic curves of battery electrode 

porosity classification under different tree-based approaches: a) 
AdaBoost, b) LPBoost, and c) TotalBoost. 

CONCLUSION 
Battery manufacturing is crucial for determining the 

performance of battery and related sustainable energy 
applications. In this study, an effective boosting tree-based 
ensemble machine learning framework is designed to carry 
out effective sensitivity analysis of manufacturing 
parameters and classify the battery electrode porosity for the 
first time. Some conclusions can be obtained as follows: 1) 
StLR and Vis are two important parameters to determine the 
quality of battery electrode porosity; 2) with the largest 
PMOA value of 0.9, there is a relatively strong correlation 
between MC and StLR pair; 3) more other manufacturing 
parameters should be considered to improve the quality 
classification of battery electrode porosity. Due to the 
superiority of sensitivity analysis ability, the designed 
boosting-based ensemble machine learning framework can 
be utilized to analyze other manufacturing parameters when 
the related data are available, further benefitting battery 
smarter manufacturing and wider applications of battery-
based sustainable energy system. 
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