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Abstract. Manufacturing chain of lithium-ion batteries belongs to a significant-
ly complex process with many coupled product parameters and intermediate
products. To well monitor and optimize battery manufacturing process, it is vi-
tal to design a data-driven approach for effectively modelling and classifying
the product properties within this complicated production chain. In this paper, a
support vector machine (SVM)-based framework, through using four various
and powerful kernels including linear kernel, quadratic kernel, cubic kernel and
Gaussian kernel, is proposed to well classify the electrode mass loading proper-
ty of battery. The effects of four crucial variables including three product fea-
tures from mixing step and one product parameter from coating step on the
electrode property classification are also investigated. Comparative results illus-
trate that electrode mass loading can be effectively classified by the designed
SVM framework while Gaussian kernel-based SVM achieves the best classifi-
cation for all labelled classes. This is the first time to systematically evaluate
and compare the performance of different kernel-based SVMs on the battery
electrode property classification. Due to data-driven nature, the proposed SVM-
based framework can be easily extended to classify other product properties and
analyze other variables in battery production domain.

Keywords: Lithium-ion battery, Battery production chain, Support vector ma-
chine, Kernel functions, Electrode property classifications.

1 Introduction

Lithium-ion (Li-ion) batteries have been widely utilized as main power source for
sustainable energy applications such as smart grids, electrical vehicles and electrical
trains, owing to their competitive properties such as high energy density and low self-
discharge rate [1]. Due to the battery performance would be highly and directly af-
fected by the related manufacturing processes, an effective production chain that can
monitor and analyze battery intermediate product properties is thus vital for boosting
the development of Li-ion batteries [2].

However, due to the complexity of containing lots of intermediate processes, nu-
merous variables would be generated in battery production chain. These variables



would highly affect the properties of intermediate products, further playing a key role
in determining the final battery performance. Therefore, it is crucial to design suitable
solutions for better investigating the effects of intermediate product variables (IPVs)
on the classification performance of battery product properties.

With the rapid developments of machine learning (ML) algorithms, data-driven
approaches are becoming the powerful tools for handling lots of issues within battery
managements [3]. To date, numerous data-driven methods have been effectively
adopted to estimate dynamics states [4,5], forecast service lifetime [6,7], achieve
charging managements [8,9] and energy managements [10,11] of batteries. Overall,
reliable analyses can be done by well designing data-driven solutions in battery man-
agement domain. However, the analyses of battery manufacturing are still mainly
obtained by expert knowledge as well as trial and error methods. It should be known
that battery production will also generate a large number of related data, deriving
suitable data-driven models to analyze these data should be also considered as a
promising way to achieve battery smarter manufacturing.

In comparison with battery managements, fewer attempts have been done so far to
derive advanced machine-learning strategies in battery production chain [12]. Among
many corresponding themes (process monitoring and adjustments) of battery manu-
facturing, deriving suitable data-driven model to predict or classify the properties of
battery intermediate products is a hot research topic. For examples, a data-driven
approach was proposed in [13] to determine the internal parameters for quality con-
trols in battery production. Based upon the cross-industry standard process, Schnell et
al. [14] designed linear and neural network (NN) models to forest the product proper-
ties of battery manufacturing. Turetskyy et al. [15] proposed the decision tree based
models to conduct feature selections and predict the maximal capacity of battery pro-
duction. In [16], the dependencies of three parameters from mixing step within battery
production chain are mainly analyzed by the 2D graphs from a SVM and experi-
mental data. For the aforementioned researches, some common ML algorithms such
as SVM has presented powerful potentials to derive suitable models for classifying
the properties of battery production. However, many works mainly focus on simply
using a common ML algorithm without in-depth investigating its performance in bat-
tery production domain. It should be known that the kernel function plays an im-
portant role in SVM and also needs to be carefully selected for solving battery manu-
facturing issues. Therefore, how to design a suitable kernel within SVM to not only
achieve acceptable classification accuracy but also present high generalization ability
of battery production is still a key but challenging issue.

According to the above discussions, driven by the purpose to effectively classify
the product properties of battery production chain, a kernel-based SVM framework is
designed in this study. Specifically, after well labelling electrode mass loading into
four classes, four crucial variables including three product features from mixing step
and one product parameter from coating step are selected as the inputs of SVM to
investigate their effects on the classifications of battery electrode mass loading. In-
stead of simply using a linear kernel, other three powerful kernels including quadratic
kernel, cubic kernel and Gaussian kernel are also coupled within SVM for achieving
better classification performance. This is the first time to systematically evaluate and



compare the classifications of various kernel-based SVMs on the battery electrode
property. Experimental results from confusion matrix and ROC curve illustrate the
effectiveness of this SVM-based framework, paving a promising way to better ana-
lyze and classify other product properties of battery production domain.

2 Key steps in battery electrode manufacturing

The electrode manufacturing of Li-ion batteries belongs to a highly complicated chain
which involves many disciplines such as electrical, chemical, and mechanical engi-
neering. Fig. 1 systematically illustrates several key steps in electrode manufacturing.
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Fig. 1. Key steps in battery electrode manufacturing.

According to Fig. 1, the battery electrode manufacturing chain mainly contains
mixing, coating, drying and calendaring steps. In the mixing step, the slurries of both
anode and cathode would be produced through mixing the active materials (graphite
and Li-NCM-Oxide), the conductive additives (carbon black), the solvent (NMP) and
the binder (PVDF) within a soft blender. Then the well-mixed slurries will be coated
into a mental foil (generally copper for anode and aluminium for cathode) by the coat-
ing machine, followed by a drying process to dry the coating product through using
built-in ovens. Finally, the electrodes can be obtained after the calendaring process. It
should be known that a large number of variables and parameters can be generated
during such complex electrode production chain. The product features and parameters
from key steps such as mixing and coating are significantly important for the elec-
trode properties, which would further affect the final performance of battery products
and must be carefully analyzed.

In light of this, some representative product features from mixing as well as coat-
ing steps are selected to develop suitable kernel-based SVM for classifying the elec-
trode properties in this study. To be specific, four product features or parameters in-
cluding the active material mass content (AMMS), solid-to-liquid ratio (STOLR),
viscosity and comma gap (CG) are utilized to build the SVM models for investigating
their effects on the classification results of one battery electrode property named elec-
trode mass loading (electrode mass per unit area). In theory, STOLR is the mass ratio
between slurry solid (active material, conductive carbon as well as binder) and mass



(solid component as well as solvent). Viscosity impacts the shear rate within coating
step. CG is the gap between comma roll and coating roll within a coater. According to
these selected product variables and electrode property, the original manufacturing
data from Laboratoire de Reactivite et Chimie des Solides (LRCS) are explored. The
effectiveness of these data has been proven in [16], which would not be repeated here
due to space limitation. For these data, because eight same samples of product fea-
tures are utilized to obtain one mass loading of battery electrode, the original data
would be first compressed to 82 samples through averaging them with the same ob-
servations. Then the electrode mass loading would be classified into four grades with
the labels as Grade 1, Grade 2, Grade 3 and Grade 4, respectively. The detailed rules
of setting these labels are described in Table 1.

Table 1. Detailed rules of setting labels for battery electrode mass loading.

Label setting Electrode mass loading (EML)[mg/cm?’]
Grade 1 EML <18

Grade 2 18 < EML <30

Grade 3 30< EML <42

Grade 4 42 < EML

Based upon these selected product variables and predefined class labels, the SVM
model could be built to evaluate and quantify the effects of various kernels on the
classification performance of battery electrode mass loading.

3 Technology

In this section, the fundamental of SVM classification is first presented, followed by
the descriptions of four various kernel functions. Then the indicators to evaluate the
classification performance are also described.

3.1  Support Vector Machine Classification

SVM belongs to a powerful ML tool for both classification and regression [17]. To
achieve reasonable classification, the best classification hyper-plane would be
searched in training process of SVM. The hyper-plane is determined by an orthogonal
weight vector @ that could give the wider margin of separations. Supposing the train-
ing dataset is noted as 7D :(XnYi)’i =1,2,....1,X e R" , while hyper-plane is

(w-X,+b)=0-. To ensure all observations can be classified correctly by the hyper-

plane, following constraints should be satisfied as:
Y(o-X,+b)21,i=12,...,1 (D

Then the process to maximize the classification margin is defined by:
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After constructing Lagrange function, this process can be expressed by the La-
grange multiplier ¢, as:
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Based upon equation (3), SVM is capable of not only guaranteeing the accuracy of
classification, but also maximizing the blank ranges on all sides of hyper-plane [18].

In order to improve the nonlinear classification performance of SVM, kernel func-
tions should be coupled within SVM. Specifically, through using proper kernel func-
tions, raw data from the original space could be effectively transferred to a high-
dimensional space, then the SVM-based classification model could be trained through
using the data from this high-dimensional space with the linear classification ap-
proach. Supposing ¢(e) is a function to map the input space to a new feature space,
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the kernel function can be expressed by:
K (e.2) = 4(e) 4(2) @

According to equation (3), the cost function to maximize the classification margin

through involving the kernel functions becomes:
I o~ —w N
W(a)ZEZi:I j:laianinK(Xi .Xj)_ i:lai ®)

Based upon the above discussions, kernel functions play the key important roles in
determining the classification performance of SVM. It should be known that for dif-
ferent applications, various kernel functions would present different performance,
which should be carefully selected. In our study, to well classify the battery electrode
property of mass loading, the SVM classification model with four typical and power-
ful kernel functions are designed and compared.

The first one is the linear kernel with the following form as:

K (x,z)zal-xT-z+b1 (6)

linear
Next, two polynomial kernels contain the quadratic kernel and cubic kernel are al-
so utilized in this study as:

Kquadmc (x, z) = (a2 X'z +b2 )2
)
K, .. (x, z) = (a3 x ez +b, )3

The last one is the Gaussian kernel with the following form as:
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3.2  Performance Indicators

To quantify and investigate the classification performance of proposed SVM with
various kernels, some typical performance indicators including the positive predictive
value (PPV), false discovery rate (FDR), confusion matrix, true positive rate (TPR),
false positive rate (FPR), area under curve (AUC) and receiver operating characteris-
tic (ROC) curve [19] are adopted in this study.

For a multiple classification application, let positive corresponds to an interested
class while negative corresponds to other classes, four elements contain true positive
(TP), false positive (FP), true negative (TN) and false negative (FN) could be derived
for each class. Then for the class C, (here k =1:4), its PPV to quantify the correct

rate of class can be calculated by:

TP
PPV = —— ©)
TP+ FP
FDR to quantify the rate of all false discovery of this class can be obtained by:
F
= —N (10)
TP+ FN

Based upon these two performance indicators, a ( N + 1) x ( N + 1) confusion matrix

(CM) to reflect the accuracy of each classification within multi-class problem can be
generated. All terms on the primary diagonal of CM represent the correctly-classified
results while other terms stand for the incorrect cases of SVM classification.

Next, to further investigate the classification performance of battery multi-class
electrode mass loading, the ROC curves of all classes through using different kernel-
based SVM is also utilized in this study. It should be known that the ROC curve is
generated by plotting TPR against FPR for different threshold settings. Specifically,
TPR is used to reflect the number of correct positive classifications happen among all
positive observations. FPR provides the amount of incorrect positive classifications
happen among all negative observations. The equations of calculating TPR and FPR
are expressed as follows:

P
R=——— (11)
TP+ FN
FPR=—1T (12)
FP+TN

After adopting the normalized unit, the AUC of ROC curve can be utilized to re-
flect the probability that a SVM would rank a randomly-selected positive case higher
than a randomly-selected negative case. Better classification approach would generate
a classifier point closer to the left-upper corner with a larger AUC value.



4 Result and Discussion

To investigate and quantify the performance of SVMs and the effects of kernel func-
tions on the classification of battery electrode property, the SVM-based framework
with various kernels are built and compared for the classification of electrode mass
loading in this section.

Linear SVM Quadratic SVM
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Fig. 2. Confusion matrix for SVM-based classifications with various kernels. a) Line-
ar SVM, b) Quadratic SVM, ¢) Cubic SVM and d) Gaussian SVM.

Specifically, four product variables consist of the AMMS, STOLR, viscosity and
CG are selected as the inputs while the electrode mass loading of battery is utilized as
output for all SVM models. After preparing the suitable inputs-output pairs, five folds
cross-validation is conducted to train and validate the accuracy and generalization
ability of derived SVM models. Fig. 2 illustrates the confusion matrices of all kernel-
based SVM classifications. It can be seen that all SVMs present the reliable classifica-
tion results of all four classes (the PPVs of four SVMs are all larger than 70%), indi-
cating that SVM is capable of effectively classifying the electrode mass loading.
Quantitatively, Gaussian kernel-based SVM provides a best classification result with
lowest PPV of 80%, indicating the strong nonlinear capture ability of Gaussian ker-
nel. Both cubic kernel-based SVM and quadratic kernel-based SVM present the slight
worse classification performance with 74% lowest PPV (7.5% decrease) and 75%
lowest PPV (6.3% decrease), respectively. Table 2 illustrates the macro-precision



(Mac-P) and micro-F1 score (Mic-F1) of all SVM classification results. It can be seen
that the Mac-P of Gaussian kernel-based SVM reaches 93.0%, which is 1.9%, 4.1%
and 4.8% more than that of cubic, quadratic and linear kernel-based SVMs, respec-
tively. The similar trend can be also observed for the Mic-F1I values of all SVMs.
Here the Gaussian kernel-based SVM achieves the best Mic-F1 with 93.0%, while the
Mic-F1 of linear kernel-based SVM is 86.6% (7.4% decrease). All these facts signify
that among these kernel-based SVMs, nonlinear kernel-based SVMs including Gauss-
ian SVM, cubic SVM and quadratic SVM are preferable to achieve better accuracy
and generalization ability of battery electrode mass loading classification.

Table 2. Macro precision and micro F1-score of all SVMs with various kernels.

Kernel types Mac-P Mic-F1
Linear kernel 88.8% 86.6%
Quadratic kernel 89.3% 87.8%
Cubic kernel 91.3% 89.1%
Gaussian kernel 93.0% 91.5%
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Fig. 3. ROC curves of linear kernel-based SVM classification.
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Fig. 4. ROC curves of quadratic kernel-based SVM classification.
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Fig. 6. ROC curves of Gaussian kernel-based SVM classification.

Next, to further investigate the effects of various kernels on each class result, the
ROC curves with AUC values and current classifier positions for all four kernel-based
SVMs are illustrated in Fig. 3 to Fig. 6, respectively. According to Fig. 3 regarding
the linear SVM, grade 1 as the positive class could achieve the best result with 1.00
AUC. Grade 2 and grade 4 achieve the same AUC values of 0.98, indicating the simi-
lar classification results for these two class labels. In contrast, grade 3 as the positive
class leads to the worst ROC curve with 0.95 AUC. This is mainly caused by several
observations from grade 3 are incorrectly classified as the grade 2 (nearly 7%) or
grade 4 (nearly 19%) through using linear kernel. For the nonlinear kernel cases, the
ROC curves have been effectively improved with larger AUCs. Quantitatively, from
Fig. 4 to Fig. 6, the AUCs of grade 4 become 0.99, implying the nonlinear kernels can
benefit the classification of grade 4. For the cubic and Gaussian based SVMs, the
AUC of grade 3 both become 0.97, which is 2.2% and 3.2% more than that of linear
and quadratic cases, respectively. Interestingly, all AUCs of grade 1 are 1.00, which
means that grade 1 can be exactly classified through using SVMs. In summary, all
kernel-based SVMs can well classify grade 1, while all other grades prefer the nonlin-
ear kernels. Gaussian-based kernel can achieve best classification results for all
grades, which is recommended for designing the corresponding SVM framework for
electrode mass loading classification.

5 Conclusions

Electrode property plays an important role in determining the final battery perfor-
mance, which should be carefully classified and analyzed. In this study, an effective
data-driven classification method, based on the SVM with various kernels, is pro-
posed to well classify the battery electrode mass loading and analyze the effects of
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four product features (AMMC, STOLR, viscosity, CG) from mixing and coating
steps. The classification performance of linear, quadratic, cubic and Gaussian kernel-
based SVMs are all systematically investigated and compared through using different
performance indicators and ROC curves. Illustrative results demonstrate that Gaussi-
an kernel based SVM is capable of achieving the best classification results among
four kernels (here is 93.0% Mac-P and 91.5% Mic-F1). Besides, the labelled grade 1
of electrode mass loading can be exactly classified by SVM with all kernels. The
labelled grade 3 presents the worst classification results (here the worst AUC is 0.94)
of all kernel cases, which should be reset to further improve the classification perfor-
mance. This proposed kernel-based SVM framework actually belongs to a data-driven
approach, which can be conveniently extended to classify other product properties
and analyze other variables in battery production domain.
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