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A B S T R A C T   

A large evidence base demonstrates that the outcomes of COVID-19 and national and local interventions are not 
distributed equally across different communities. The need to inform policies and mitigation measures aimed at 
reducing the spread of COVID-19 highlights the need to understand the complex links between our daily ac-
tivities and COVID-19 transmission that reflect the characteristics of British society. As a result of a partnership 
between academic and private sector researchers, we introduce a novel data driven modelling framework 
together with a computationally efficient approach to running complex simulation models of this type. We 
demonstrate the power and spatial flexibility of the framework to assess the effects of different interventions in a 
case study where the effects of the first UK national lockdown are estimated for the county of Devon. Here we 
find that an earlier lockdown is estimated to result in a lower peak in COVID-19 cases and 47% fewer infections 
overall during the initial COVID-19 outbreak. The framework we outline here will be crucial in gaining a greater 
understanding of the effects of policy interventions in different areas and within different populations.   

1. Introduction 

Across the world, governments have introduced non-pharmaceutical 
interventions (NPI) to try and control the spread of COVID-19 through a 
reduction in the number of contacts between susceptible members of the 
population and those with the disease (Desvars-Larrive et al., 2020). 
Those interventions include social distancing, isolation, wearing face 
masks and lockdowns at national, regional and local scales. In the UK, 
each policy has been underpinned by much speculation surrounding its 
timeliness, extent and subsequent effectiveness. However, what has 
become clear is that pre-existing systemic health inequalities (Daras 
et al., 2021; Kontopantelis et al., 2021; McNamara et al., 2020) have 
meant that regardless of NPI, certain communities have been 

disproportionately impacted in terms of COVID-19 cases, hospital-
isations and mortality outcomes. There is evidence of markedly different 
impacts on health across various domains, including: geographical re-
gion (Kontopantelis et al., 2021); level of deprivation (Cabinet Office, 
2017; Office for National Statistics, 2021); race and ethnicity (Mathur 
et al., 2020; Race Disparity Unit Cabinet Office, 2020). The causes 
behind these patterns are complex and interlinked (Bibby et al., 2020; 
Zhang et al., 2021). Such factors include economic circumstances 
whereby people in more disadvantaged communities are less able to 
comply with requirements to work from home due to their occupation. 
Additionally, some communities are less inclined to comply with re-
strictions due to mistrust of authorities (Daras et al., 2021; Harris, 2020; 
Zhang et al., 2021). 

* Corresponding author. School of Geography and Leeds Institute for Data Analytics, University of Leeds, Leeds, UK. 
E-mail address: m.h.birkin@leeds.ac.uk (M. Birkin).   

1 Joint first authors. 

Contents lists available at ScienceDirect 

Social Science & Medicine 

journal homepage: www.elsevier.com/locate/socscimed 

https://doi.org/10.1016/j.socscimed.2021.114461 
Received 19 May 2021; Received in revised form 25 August 2021; Accepted 5 October 2021   



Social Science & Medicine 291 (2021) 114461

2

The risk factors leading to COVID-19 cases, hospitalisation, and 
mortality exist not only at the individual level; neighbourhood-level 
factors and their interactions with individual-level factors are also 
responsible for the observed disparities (Daras et al., 2021; KC et al., 
2020). Lack of access to health care, unemployment, occupation type, 
level of education, and housing conditions significantly increase the risk 
of COVID-19 infection (Bilal et al., 2021; KC et al., 2020; Shah et al., 
2020). The varying levels of vulnerability between people and places has 
been increasingly shown to have important consequences for individual 
and community responses to the pandemic (Daras et al., 2021; Harris, 
2020). Given these complexities, it is increasingly clear that to under-
stand the effectiveness of government policies we require detailed data 
that reflects the everyday lives of the British population. 

Since the onset of the pandemic, researchers across a variety of 
disciplines have come together to understand the transmission of 
COVID-19 at the population level. Compartmental models, specifically 
the Susceptible – Exposed – Infection – Removed (SEIR; Rvachev and 
Longini (1985)) have formed the bedrock of this research. However, 
with the partial exception of a number of models that allow for the effect 
of population age structure (Keeling et al., 2020; van Leeuwen and 
Sandmann, 2020) or specific behaviour changes in response to public 
health interventions and seasonal change (Dureau et al., 2013; Ferguson 
et al., 2006; Kucharski et al., 2020) through stochastic model extensions, 
most of this work has largely failed to embed and replicate the complex 
space and time dynamics that underline the spread of COVID-19 across 
different populations and communities within their models. 

In this paper we outline an enhancement of the traditional SEIR 
model of infectious disease transmission through adoption of a spatial 
microsimulation modelling framework that brings together epidemio-
logical modelling, urban analytics, spatial analysis and data integration. 
Specifically, we combine the power of well-established methods within 
the social and behavioural sciences, namely spatial microsimulation and 
spatial interaction models, within a dynamic SEIR to offer the best 
approximation of (i) the daily, individual-level mobilities that charac-
terise many of the interactions which lead to COVID-19 transmission 
and (ii) the impact of different NPI based on the complex health, socio- 
economic and behavioural attributes of the British population. This 
framework provides the much-needed ability to assess the effects of past 
interventions and simulate the effects of future policy decisions on 
different population groups at a variety of spatial scales. 

The modelling framework proposed here is based on synthetic 
georeferenced population which has been enriched with additional 
socio-economic, demographic, activity and health attributes required to 
understand individuals’ typical mobility patterns and likelihood of 
being severely impacted by the disease. In each simulated day, the 
common daily behaviours of the synthetic individuals – currently 
shopping, schooling and working – are simulated and then, if they have 
the disease, the individuals impart a hazard to the locations that they 

visit. Disease-free individuals who also visit these locations receive some 
exposure which, when combined with their individual vulnerability, 
may lead to them contracting the disease themselves. The model runs for 
a user-defined number of simulated days and, on completion, outputs 
aggregate disease statistics. 

The remainder of this paper is organised as follows. Section 2 de-
scribes the risk modelling framework including how hazards and ex-
posures are estimated and integrated within a compartmental 
epidemiological risk model. This section also contains details on the 
generation of a synthetic population (Section 2.2), how health, socio- 
demographics, and activity information are incorporated into that 
population (Section 2.2.1) and how individuals are assigned to appro-
priate locations (e.g. school, home, work) for their activities (Section 
2.3). In Section 3 the result of a case study in Devon is presented, 
showing the effects of the lockdown that started on March 23, 2020 
compared to those predicted if the lockdown had started a week earlier. 
Finally, Section 4 provides a concluding discussion and ideas for future 
developments and applications. 

2. Methods and materials 

2.1. Disease modelling 

Compartmental models have been used widely in infectious disease 
epidemiology with many based on the Susceptible – Infection – 
Removed (SIR) model introduced by Kermack and McKendrick (1927) 
or the Susceptible – Exposed – Infection – Removed (SEIR) model 
introduced by Rvachev and Longini (1985). They have been used 
extensively for modelling COVID-19 with examples including Arcede 
et al. (2020), Dureau et al. (2013), Keeling et al. (2020), Kucharski et al. 
(2020), van Leeuwen and Sandmann (2020). 

As an important characteristic of COVID-19 is the possibility of 
transmission when individuals are unknowingly infectious, i.e. in the 
pre-symptomatic and asymptomatic phases (Arcede et al., 2020). The 
SEIR model used here has a further breakdown of the infectious and 
removed components (Fig. 1). The additional compartments provide 
enhanced additional resolution in the disease status of individuals that is 
important to determine individual behaviour and transmission proba-
bilities (He et al., 2020). 

Individuals within the model may progress between compartments 
based on a probabilistic approach to determine the progression from one 
compartment (phase of infection) to the next (See Section 2.1.3). SEIR 
models have been combined with high resolution social interaction 
networks to explore COVID-19 transmission pathways at local scales 
(Aleta et al., 2020; Firth et al., 2020) and metapopulation models have 
been used to capture broad scale COVID transmission dynamics with an 
SEIR model used within each electoral ward (Danon et al., 2020). Here, a 
dynamic microsimulation modelling framework is used to calculate the 

Fig. 1. Schematic showing the structural components of the SEIR model.  
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probabilities of transmission for each individual within a given popu-
lation, based on their movements across time and space according to 
their demographic and socioeconomic characteristics, and hence their 
exposure to the disease according to the different locations they regu-
larly visit, i.e. shops, schools and workplaces. 

The dynamic simulation framework consists of three, interlinked, 
components:  

1. Stage 1, Hazard allocation - individuals with the disease impart 
hazard to the locations they visit. See Section 2.2  

2. Stage 2, Risk estimation - as individuals without the disease visit 
different locations with increased hazards their risk of contracting 
the disease will increase. See Section 2.2.1  

3. Stage 3, Disease status - individuals that are exposed to the disease 
may contract the disease whilst those with the disease may recover. 
Each day, the disease status (Susceptible, Exposed, Infectious, or 
Removed) is updated probabilistically. See Section 2.2.2 

This daily update is illustrated in Fig. 2. Before simulating daily 
dynamics, the model estimates an initial disease status for each indi-
vidual. This initialization is only performed once and, in effect, seeds the 
disease into the population. After this initial step, in each iteration of the 
model synthetic individuals spend time at some locations; current lo-
cations are their homes, shops, schools, and workplaces. If an individual 
is infected then they impart some of this infection risk on to the location 
that will then form the basis of the risk of disease for others at those 
locations. 

2.2. Hazard allocation 

In each iteration the synthetic individuals spend time in four possible 
locations; these are currently homes, shops, schools, and workplaces. If 
an individual is infected then they impart some of this infection risk on 
to the location, denoted location hazard, H. The overall hazard, H, 
associated with a location, l is calculated by summing the individual 
hazards, h, imparted by each agent/individual, a, from a total popula-
tion of N agents, as they visit location, l: 

Hl =
∑N

a=0
ha,l (1) 

If an individual, a, does not visit location l, or if they are not infected, 
then ha,l = 0. If the individual is infected, then the individual hazard is 
proportional to the amount of time per day that the individual spends 
doing that activity, t, and the probability that the individual will visit 

that particular location l. Individuals have a probability of visiting a 
number of different school, work, and retail locations, so the time spent 
doing a particular activity is distributed among the possible locations 
that they might visit – denoted by p: 

ha,l =

⎧
⎨

⎩

0 if a is not infected
t⋅p if a is infected & symptomatic

t⋅p⋅μ if a is infected & asymptomatic
(2) 

Symptomatic individuals impart ‘full’ hazard on a location, while 
asymptomatic individuals will impart a reduced amount of hazard due 
to reduced transmission rates (Koh et al., 2020; Madewell et al., 2020; 
Qiu et al., 2021). We can scale the transmission asymptomatic in-
dividuals by using the μ parameter. If an infected, symptomatic indi-
vidual spends 18 h per day at home and 6 h per day shopping in two 
possible shops, each with a 50% probability of being visited, then the 
individual hazard assigned to those locations from that individual are: 

hshop1=hshop2= 0
proportionoftimespentshopping

.25* p0.5robabilityof visitingtheshop

=0.125  

and 

hhome= 0
proportionoftimespentathome

.75* p1.0robabilityof visitingthesinglehomelocation

=0.75 

The derivation of time spent performing an activity (t) and the 
possible locations of that activity (p) are outlined in Sections 2.3 and 2.4 
respectively. 

2.2.1. Exposure and risk estimation 
In the second stage of each iteration, individuals may receive some 

exposure to the disease based on the locations they visit. The exposure, ε, 
that an individual, a, receives per day, is the summation of the hazard, 
H, of all the locations that they visit, L, proportioned by the amount of 
time they spend there, t, and the proportion of visits to that particular 
location that they make, p: 

εa =
∑L

l=0
Hl

⏞⏟⏟⏞ total hazard at location l

tl⏟⏞⏞⏟
proportion of time spent at l

pl
⏞⏟⏟⏞ probability of ​ visiting l

(3) 

Hence if an individual spends 24 h per day in a location that has a 
hazard score of 1.0, then their exposure will be 1.0. 

An individual’s exposure is then combined with their vulnerability ( 

Fig. 2. The process of disease spread using the dynamic microsimulation model.  
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V ) to give the risk (probability) of infection on that day: 

ra = 1.0 − e− (Va∗εa)Δt, (4)  

where Δt = 1 day and, for the simulations reported here, V is set to 1 for 
all individuals. In future work this mechanism can be used to describe 
which individuals are more likely to be infected. 

2.2.2. Disease status 
As disease-free individuals are exposed to the disease through 

visiting locations with increased hazards. For any given day they will 
contract the disease with probability pa = ra from Equation (4) where a 
represents the effects of personal characteristics for each individual that 
determine their behaviour and where they spend their time - the key 
components of calculating their individual risk of contracting the dis-
ease. The Bernoulli distribution is used to assign each individual either a 
zero (doesn’t get exposed) or a one (does get exposed) based on the 
principle of a coin-flip with the weight of the coin (i.e. the chance of 
being exposed) being determined by the probability pa. The higher the 
probability, pa, the more likely the random number drawn from the 
Bernoulli distribution will be a one, and the more likely they are to 
transition from susceptible (S) to exposed (E). This process is repeated 
for every individual in the population at each (daily) time step. 

When an individual is exposed, they are assigned an exposed dura-
tion transition time and a pre-symptomatic duration and a symptom-
atic/asymptomatic duration. Following approaches commonly used in 
the literature (see for example, Li et al. (2020); Linton et al. (2020); Wei 
et al. (2020)), the first two of these are realisations of Weibull distri-
butions (i.e. non-negative, flexible and allow for long-tails/extended 
durations) and the latter from a log-normal distribution (non-negative 
and right-skewed). Details of parameters used for the different stages, 
together with references of their sources, can be found in Supplementary 
Information. 

Once in the Exposed (E) state an individual will next move into the 
Infectious (I) state. This can mean moving into the asymptomatic or the 
pre-symptomatic and then symptomatic stage. This will be influenced by 
an individual’s age and BMI, with older and overweight individuals less 
likely to be asymptomatically infected (Table 1) according to: 

(E→I)a =Bernoulli
(
θI,a

)
(5)  

where θI,a is determined by the symptomatic probabilities outlined in 
Table 1. 

Lastly, individuals will move from the Infectious (I) state to the 
Removed (R) state. All asymptomatically infected individuals will 
recover. Symptomatically infected individuals will either recover or die 
based upon their age and BMI (Table 1). Older and more overweight 
individuals are less likely to recover (Table 1). This transition is 
described by the following: 

(I→R)a =Bernoulli
(
γR,a

)
(6)  

where γR,a is determined by the mortality probabilities outlined in 
Table 1. 

2.3. Generating a synthetic population 

The underlying population used in the dynamic simulation model 
comes from a spatial microsimulation model, SPENSER (Synthetic 
Population Estimation and Scenario Projection Model), developed to 
provide timely georeferenced population forecasts at a high resolution 
(individual and household level) for scenario projections (Lomax and 
Smith, 2017; Smith and Russell, 2018). SPENSER uses Iterative Pro-
portional Fitting (IPF) techniques (Lovelace et al., 2015) to reweight 
microdata and area level counts from the 2011 Census of Population for 
England and Wales to create a micro-level synthetic dataset for the 
entire population. Spatial microsimulation has been widely employed in 
support of financial and economic policy analysis across Europe and 
North America (Tanton, 2018). Over the last two decades, spatial 
microsimulation techniques have been used increasingly to examine 
health and health inequalities (Morrissey et al., 2015). 

The SPENSER model comprises four steps: (1) estimate the individ-
ual population from 2011 Census Data; (2) estimate the household 
population from 2011 Census data; (3) simulate the baseline population 
and households forward to the jump off year 2020, needed for input to 
the dynamic model; and (4) assign individuals to households to provide 

Table 1 
The symptomatic and mortality rates of COVID-19 infections based on age and 
BMI (Brazeau et al., 2020; Popkin et al., 2020; Davies et al., 2020). The base 
symptomatic and mortality rates are taken from Davies et al. (2020) and Brazeau 
et al. (2020) respectively. We multiply the symptomatic rate by 1.46 for over-
weight individuals (BMI _ 25) and multiply the mortality rate by 1.48 for obese 
individuals (BMI _ 30) based on the findings by Popkin et al. (2020).  

Age 
Group 
(Years) 

Probability of 
Symptomatic 
Infection 

Probability of 
Symptomatic 
Infection if BMI _ 
25 

Probability of 
Mortality if 
Infected 

Probability of 
Mortality if 
Infected and 
BMI _ 30 

0–4 0.21 0.21 0.0000 0.0000 
5–9 0.21 0.21 0.0001 0.0001 
10–14 0.21 0.21 0.0001 0.0001 
15–19 0.21 0.21 0.0002 0.0002 
20–24 0.45 0.66 0.0003 0.0004 
25–29 0.45 0.66 0.0004 0.0006 
30–34 0.45 0.66 0.0006 0.0009 
35–39 0.45 0.66 0.0010 0.0015 
40–44 0.45 0.66 0.0010 0.0024 
45–49 0.45 0.66 0.0024 0.0036 
50–54 0.45 0.66 0.0038 0.0056 
55–59 0.45 0.66 0.0060 0.0089 
60–64 0.45 0.66 0.0094 0.0139 
65–69 0.45 0.66 0.0147 0.0218 
70–74 0.69 0.96 0.0231 0.0342 
75–79 0.69 0.96 0.0361 0.0534 
80–84 0.69 0.96 0.0566 0.0838 
85–89 0.69 0.96 0.0886 0.1311 
90+ 0.69 0.96 0.1737 0.2571  

Table 2 
Attributes for the synthetic population from SPENSER and propensity score 
matching.  

Variable SPENSER Time Use 
Survey 

Health Survey 
of England 

Individual 
Sex X X X 
Age X  X 
Ethnicity X X X 
National Statistics Socio-economic 

Status (NS-SEC) of household 
reference person 

X X X 

Number in household X   
Time use data (proportion of time 

doing different activities)  
X  

(CVD, high blood pressure, diabetes, 
COPD, BMI>40)    

X 

In-work status  X  
Standard Industrial Classification of 

economic activities (SIC)  
X  

Household 
Type of dwelling inhabited X   
(e.g. semi-detached house) X   
Tenure (e.g. rented, mortgaged) X   
Household Composition (e.g. 

cohabiting couple) 
X   

Number of occupants X   
Number of rooms X   
Presence of central heating X   
Type of dwelling X   
Number of cars in household X    
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consistency between files. Synthetic individuals are placed in house-
holds and are attributed demographic (age and sex for each individual), 
socioeconomic (based on the socioeconomic status of the household’s 
reference person) and housing condition variables according to the in-
dividual and household estimates from the 2011 Census. The individual 
and household characteristics of relevance to this work can be seen in 
Table 2, along with additional health and time-use variables that are 
included through the use of Propensity Score Matching (discussed 
below). 

In the output from SPENSER, each individual is assigned to a Middle 
Layer Super Output Area (MSOA) while in the household output, indi-
vidual households are assigned to a Lower Super Output Area (LSOA). 

This is due to differences in the constraint tables used to construct the 
synthetic population, where household constraints variables are avail-
able with higher levels of disaggregation for smaller areas than popu-
lation constraint variables. As individuals are assigned to a household, 
combining the two files means that information for individuals can ul-
timately be derived at LSOA scale. MSOA is a census geography in which 
each area represents a mean population in the order of 7,200 in-
dividuals, and LSOA is a finer geography in the order of 1,500 
individuals. 

2.3.1. Enriching the synthetic population 
Following work by Morrissey et al. (2015), propensity score match-

ing (PSM) using a kernel density algorithm was used to allow each in-
dividual simulated by the SPENSER model to be matched to an 
individual in two external datasets based on the similarity of their de-
mographic, socioeconomic and spatial characteristics. Using a kernel 
density algorithm, PSM was used to enrich the baseline SPENSER dataset 
to include data from the United Kingdom Time Use Survey, 2014/2015 
(UKTUS) and the Health Survey of England (2019) (HSE). UKTUS is a 
large-scale household survey that provides data on how people aged 
eight years and over in the UK spend their time. The survey instrument is 
a time diary instrument in which respondents record their daily activ-
ities over two weeks. The UKTUS provides the richest source data on 
how people spend their time, their location throughout the day, and who 
they spend their time with. The UKTUS also has detailed employment 
information as part of its core set of questions including information on 
employment status, and industrial sector and occupation category for 
those in employment or previously in employment (i.e. they are now 

Table 3 
Evaluation of propensity score matching: frequencies of a matching and non- 
matching variables (National Statistics Socio-economic Classification (NS-SEC) 
and health status) in the enriched SPENSER dataset and from the Office of Na-
tional Statistics and Health Survey for England.  

PSM Matching Status Validation Devon Census Enriched Dataset 

Matched variable NS-SEC 1 34% 37% 
NS-SEC 2 10% 11% 
NS-SEC 3 12% 17% 
NS-SEC 4 6% 8% 
NS-SEC 5 21% 24% 

Non-matching Variable Very good health 46% 45% 
Good health 35% 33% 
Fair health 14% 11% 
Bad health 4% 8% 
Very bad health 1% 3%  

Fig. 3. Example output from augmented SPENSER dataset proportion of time spent at home, proportion of time spent at work, the percentage of key workers and the 
percentage of individuals with underlying health conditions (doctor diagnosed CVD, high blood pressure, diabetes, COPD and a BMI greater than 40) for the MSOAs 
in the five Local Authority Districts that comprise Devon. 
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retired). Including employment data and the occupation and industrial 
sector in which individuals are employed in is important as it allows the 
identification of key workers in the dataset. The HSE is an annual survey 
that provides health and care information on adults aged 16 and over 
and children aged 0 to 15. The HSE survey is used to monitor the rate of 
obesity and to estimate the proportion of people in England who have 
certain health conditions and the prevalence of risk factors and health 
related behaviours, such as smoking and drinking alcohol. The addi-
tional variables matched to the outputs from SPENSER can be seen in 
Table 2. Following the approach used in Morrissey et al. (2015) vali-
dation of the matching process was performed to assess whether the 
resulting enriched dataset could be considered unbiased conditional on 
the observed characteristics (the conditional independence assump-
tion). Frequencies and distributions of both matching variables (used in 
the PSM) and non-matching variables were compared. One would 
expect the matching variable to show good agreement across the pop-
ulation as this variable was used in the PSM process. However, it is also 
important to understand if the distribution for key variables of 

subsequent interest not included in the PSM process are captured. 
Table 3 shows an example of this evaluation: the distributions of the 
National Statistics Socio-economic Classification (NS-SEC), one of the 
matching variables in the PSM, and health status, a non-matching var-
iable. The proportions in each category in the enriched SPENSER dataset 
are compared to corresponding Office of National Statistics data and 
HSE for Devon (Census, 2011) and both the matching and non-matching 
variables show good agreement. Fig. 3 presents a snapshot of the 
augmented SPENSER data, empirically demonstrating a number of key 
variables for the MSOAs in the five Local Authority Districts that 
comprise the case study area (see Fig. 4). 

2.4. Estimating interaction with locations of disease transmission 

Currently three activities, other than spending time at home, are 
simulated in the model: working, attending school and shopping. Having 
estimated the amount of time that individuals spend doing these activ-
ities (Section 2.2), this section outlines a general method for estimating 
the probabilities that individuals will visit particular sites of disease 
transmission. For example, given that an individual might spend an hour 
per day shopping, which shops are they most likely to visit? 

2.4.1. Supermarket and school probabilities 
The following provides an illustrative example based on trips to su-

permarkets and schools, but the principle is the same for sending in-
dividuals to any point destinations including those not explicitly 
considered currently such as pubs and restaurants. Workplaces are an 
exception, as discussed in Section 2.4.2. 

The probabilities of individuals visiting specific locations are calcu-
lated using spatial interaction models (SIMs; O’Kelly, 2009). SIMS es-
timate the aggregate flows of a population from origin zones 
(neighbourhoods where the synthetic populations live) to destination 
locations. SIMs are analogous to a Newtonian model of gravity where 
the strength of interaction (in our case the flows of people or the money 
they spend) is proportional to the mass of the origin and destination 
locations (represented by the size of the residential population or the 
attractiveness of the destination) and inversely proportional to the cost 
of this interaction (frequently represented by travel distance or time). 
Where information about aspects of the system is known such as the 
total number of residents at an origin or pupils on a school roll, con-
straints can be applied such that estimated interactions correspond to 
this known information. Where data on aspects of the interaction are 
available such as known flows or travel times, parameters of the model 
can be calibrated to improve the estimates produced. The locations of 
schools (both primary and secondary) and shops have been established 
from Department for Education (https://get-information-schools.servic 
e.gov.uk/) and the Geolytix retail point open data (https://www. 
geolytix.co.uk/#!geodata), respectively. The ‘attractiveness’ of each 
location is estimated using the school capacity and the approximate 
retail floorspace (augmented with retail turnover) respectively. 

A cost matrix is used to compute flows between origins and desti-
nations (i.e. trip probabilities) based on that used in the QUANT project 
(Batty and Milton, 2021). QUANT is a spatial analysis system which 
calculates shortest paths between every pair of zones in the model, using 
a network containing all roads in England, Scotland and Wales. As the 
model contains 8,436 MSOA and Intermediate Zones, this equates to 71 
million shortest paths on an 8 million node road network; it is compu-
tationally intensive. Hence, the pre-built QUANT costs matrix is used to 
calculate costs between 8,436 model zones and 14,227 retail point lo-
cations. This is achieved by taking the origin zone cost to the destination 
zone nearest to the retail point and then adding an additional term 
reflecting straight line distance from the destination zone to retail point 
term. These values are available in the files generated by the software. 
This process is repeated for the primary and secondary schools. 

Having assembled the data for the origin, destination and costs of 
travel between zones, a spatial interaction model is used to calculate trip 

Fig. 4. Geolytix retail point location coverage in the UK. The colours on the 
points represent one of four different floorspace bands. Flow lines connect 
origin MSOA zones to Geolytix retail points according to the modelled trip 
probabilities. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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probabilities. Details of these models can be found in the Supplementary 
Materials (Section 7). Fig. 5 shows the trip probabilities for South West 
England region using flow lines. 

2.4.2. Workplace probabilities 
Workplace flows would ideally be estimated through a spatial 

interaction model similar to that employed in the estimation of flows to 
schools and shops. However, the problem with journey to work is 
significantly more difficult because: (i) there are vastly more workplaces 
than shops or schools; (ii) there is no definitive list of workplace loca-
tions; (iii) even if workplace locations are known, there is no clear link 
between a synthetic individual’s employment category and equivalent 
workplace categories. 

To address this issue, we initially adopt a stylized approach con-
structing ‘virtual workplaces’ which rely on the 2011 UK Census 
commuting origin-destination tables at the MSOA level for individuals 
with a fixed workplace. The UKTUS data includes a Standard Industry 
Classification (SIC) code for everyone in the dataset. Matching data from 
the UKTUS to SPENSER baseline data via the PSM process and the 
UKTUS we were able to assign to each of our synthetic resident workers 
an employer industry among the 21 divisions from the Standard Industry 
Classification (SIC) 2007. We assume that all workers have an equal ex- 
ante probability to commute to all destinations independently from the 
SIC to which they belong. We build the set of possible destinations by 
multiplying the number of MSOAs in the study area, M = 107, to that of 

the SIC divisions, S = 21, obtaining 2,247 options. We then populate 
these virtual workplaces with synthetic workers based on their reference 
SIC and their Census relative probability to commute from Mi to any Mj, 
with j = 1…i…J, thus including the MSOA in which the worker resides. 

3. Case study: UK lockdown, March 2020 

The first confirmed case of the novel coronavirus in the UK was 
documented on 21st January 2020. This was followed by the first 
confirmed COVID death in the UK on 5th March. On 16th March the 
Prime Minister encouraged social distancing, telling people in the UK 
that they should stop all non-essential contact. Although they could 
remain open, people were asked not to visit pubs, clubs and theatres. 
Workers were asked to work from home if they could and households 
were asked to isolate for two weeks if any member had symptoms. On 
the day of the announcement of these measures the death toll of people 
in the UK with COVID-19 listed as the cause of death reached 55. One 
week later, on 23rd March 2020, the Prime Minister announced a UK 
wide lockdown in which he ordered people to only leave the house to 
shop for basic necessities “as infrequently as possible” and encouraged 
them to perform no more than one form of exercise a day. 

In the following, we provide a case study on the potential reduction 
in cases and subsequently deaths that implementation of the lockdown 
one week earlier may have had in Devon County, England. Devon is a 
county in the Southwest of England that extends from the Bristol 
Channel in the north to the English Channel in the south and is bounded 
by Cornwall to the west, Somerset to the north-east and Dorset to the 
east. Devon is a sparsely populated, predominantly rural county with a 
total population of about 700,000. 

3.1. Simulating the lockdown 

The simulation of cases during the first lockdown is based on the 
temporal distribution of cases recorded by Public Health England (PHE; 
coronavirus. data.gov.uk). During this period, the Royal Devon & Exeter 
NHS Foundation Trust and Northern Devon Healthcare Trust estimate 
that the prevalence of COVID-19 was 2% (personal communication). This 
equates to ca. 14,000 individuals compared with 790 cases recorded by 
PHE for the Unitary Authority of Devon over the first 70 days, due to 
limited testing at the beginning of the outbreak. We smoothed the PHE 
cases using a negative binomial generalised additive model (Wood et al., 
2016), s(casest), and applied a multiplying factor to give the expected 

number of cases on day t as ect =

(
population∗prevalence

s(casest)

)

. 

The model was ‘seeded’ by constraining the number of infections in 
the first 10 days to be equal to ect after which the number of new daily 
infections are generated by the model, unrestricted, for a further 60 

Fig. 5. Trip probabilities from MSOA origin zones to Geolytix retail points (black dots). The colour of the flow line represents the magnitude of the trip probability 
from <0.0094 (blue) to >0.0226 (red). The map on the left contains the Geolytix retail points, which are omitted for clarity in the map on the right. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Relative to a baseline of Jan 3-Feb 6, 2020 the proportion of time spent 
outside home (blue) and at home (orange). The official lockdown date March 
23, 2020 is shown with the dashed black line. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.) 
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days. In order to impose lockdown on the simulated population, the 
amount of time individuals spent outside their home was scaled ac-
cording to data from the Google Community Mobility Reports (Google, 
2020). As Google Community Mobility Reports are available at a 
regional scale, we used data specific to Devon. These data provide 
aggregated estimates for the proportion of time, on average, a popula-
tion spends in six types of locations relative to a baseline of the median 
value for the corresponding day of the week, during the 5-week period 3 
Jan–6 Feb 2020. The six locations are: retail & recreation, grocery & 
pharmacy, parks, transit stations, workplaces and residential. It is 
assumed that the residential component refers to individuals spending 
time in their own homes and therefore an individual’s baseline is 
equivalent to the estimated amount of time individuals spend at home 
from the UKTUS (as discussed in Section 2.2). 

The values from the Google Community Mobility data were 
smoothed for time spent in residential locations using a 14-day moving 
average ( gt ). Using this in conjunction with the average proportion of 
time spent at home (ph) and outside the home (po) from the individuals 
in the population, we created time-series of daily lockdown multipliers 
(lt, Fig. 6). As can be seen from Fig. 6, the values for proportion of time 
outside the home from March to June 2020 are all less than 1. For any 
given day, the amount of time that any individual spends at a location 
outside the home is reduced in proportion to the lockdown multiplier. 
Time no longer spent on activities outside the home will be added on to 
time spent at home for each individual. The only condition under which 
the lockdown multiplier does not apply is if an individual is in the 
symptomatic disease status. Here we assume they reduce their activities 
outside the home by 90% to reflect self-isolation behaviour. Lockdown 
restrictions are applied universally across the population so that, for 
example, there is no differentiation for enhanced mobility of key 
workers or to allow for variations between business sectors (Batty and 
Milton, 2021), which would be a possible avenue for future refinement 
of the model. 

lt = 1 − (gt∗ ph)

po
(7)  

3.2. Results: lockdown restrictions imposed one week earlier 

Other countries went into lockdown earlier than the UK and here the 
effects of implementation of a UK-wide lockdown one week earlier than 
it occurred are simulated. To explore the effect of official lockdown 
occurring earlier, the time-series of lockdown multipliers (Fig. 6) is 
shifted to be one week earlier. For the purpose of comparing scenarios 
the lockdown scenario as it happened is referred to as the ‘baseline’ 
scenario, while the scenario in which lockdown is imposed one week 
earlier will be called the ‘experimental’ scenario. 

The model simulation in the baseline scenario produced a good fit to 
the known daily cases of COVID-19 according to PHE data. The total 
infection count in Devon county at the end of the 70 day simulation is 
summarised by age group in Table 4. As expected, the model suggests 
that an earlier lockdown would have significantly reduced the spread of 
the disease. For the baseline scenario daily infections peaks at 763 
(266–1047, 95% CI) people per day, while the experimental (i.e. lock-
down one week earlier) scenario shows a peak of 556 (137–718, 95% CI) 

people per day (Fig. 7). 
Being able to explore heterogeneity in the transmission of the disease 

in different groups within the population and over different spatial ag-
gregations and periods of time is one of the key features of the micro-
simulation approach. The outputs of the model are at the individual 
level and it is straightforward to aggregate the results from the simu-
lations to any specified groupings. As an example, Table 4 shows the 
results by age groups and Fig. 7 the number of cases over time. Another 
feature of the model is being able to extract information for individuals 
within the population according to their disease status at any point in 
time and this information can be cross-tabulated with other variables to 
assess heterogeneity in disease status across different groups (over 
time). As an example, Fig. 8 shows the number of people with different 
disease status by age group, together with the reduction in cases asso-
ciated with lockdown being a week earlier. This shows a clear difference 
between age groups with a higher proportion of asymptomatic cases in 
younger age groups. 

The model is spatially explicit, allowing us to explore the 
geographical distribution of COVID-19 infections in our scenarios. Fig. 9 
shows that the baseline scenario leads to some distinct hot-spots located 
around more densely populated MSOAs, such as those in Exeter, which is 
one of the largest cities in Devon county. In the baseline scenario as 
much as 6% of the population of an MSOA becomes infected. In the 
experimental scenario, we see a similar spatial distribution as that seen 
in the baseline scenario, with hot-spots located around larger cities with 
denser populations. However, the maximum infection rate is reduced to 
under 4% in the experimental scenario. 

4. Discussion and conclusions 

This paper presents a novel, data-driven modelling framework that 
reflects the complexities of the British population to model the trans-
mission of COVID-19 within communities and to assess the effect of 
policy interventions. The framework brings together a wide variety of 
data driven approaches, including epidemiological disease modelling, 
urban analytics and spatial analysis, as well academic and private sector 

Table 4 
The number of infections (medians from 1000 simulations) in Devon county in 
each age-group between the baseline scenario and the experimental scenario 
under which lockdown started was a week earlier.  

Age Group Baseline Experimental Percentage Decrease 

0–18 4967 4076 18% 
19–30 2662 1045 61% 
31–65 8017 2190 73% 
66+ 1757 569 68% 
Total 17,221 7880 54%  

Fig. 7. Predicted daily number of COVID cases under a baseline scenario and a 
scenario where lockdown effects were a week earlier, by age group. Each of the 
scenarios were run 1,000 times to capture variation in the stochastic elements 
of the model. The daily number of cases from each of these runs is shown as a 
transparent line. The median value of all of the runs of each scenario is shown 
in bold. The dashed lines show the 95% uncertainty intervals for each scenario. 
For the baseline scenario Google Mobility data is used to invoke lockdown ef-
fects on reducing individuals time outside their home, for the experimental 
scenario where lockdown is a week earlier we shift the Google Mobility data a 
week earlier. 
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researchers to develop a computationally efficient framework for its 
implementation. This enables questions related to the geographical 
transmission, diffusion, acceleration and the regulation in the incidence 
of cases to be traced through physical interactions between the many 
components that determine the way entire populations move and 
interact with one another in their daily lives. The power and spatial 
flexibility of the framework to assess the effects of different in-
terventions is demonstrated within the case study where the effects of 
the first UK national lockdown are estimated for the county of Devon. 
Here we find that an earlier lockdown is estimated to result in a lower 
peak in daily infections and 47% fewer infections overall. 

As outlined in this paper, the framework is based on a spatial 
microsimulation model, SPENSER, that reproduces data on household 
and its constituent population across the whole of Great Britain. The 
data produced by the spatial microsimulation model replicates the 
structure and behaviour of the real population in terms of demographic, 
socioeconomic and health characteristics, along with detailed time use 
data. Spatial Interaction models ‘mobilise’ this data according to the 
profile of each individual via a series of spatial allocations for each in-
dividual into a series of real-world physical locations in which the 
transmission of coronavirus could take place. Data from a variety of 
third-party sources are introduced to allow calibration of the models to 

reproduce existing patterns of movement and spatial interaction. In the 
case study demonstration for Devon, shops, schools and hospitals are 
included as destination locations. These models are being extended to 
embrace the key activity of the journey to work which is an essential 
component of the balance between working from home and place of 
work. 

The model is calibrated against a variety of data sources including 
public health records, mobility data, measures of retail activity, 
employment and educational participation, and the socio-demographic 
composition of small areas. The benefits to wider exploitation and 
sharing of such sources has been widely noted (von Borzyskowski et al., 
2021; Science Academies of the Group of Seven, 2021). With such re-
sources at our disposal, the development of dynamic microsimulation 
models could provide a step change in the ability of national govern-
ments to prepare and respond to the threat of future pandemics. 

The flexibility of the modelling framework presented here allows the 
parameters and distributions within the individual components to be 
updated to reflect updated scientific understanding and factors such as 
increased levels of transmission associated with multiple variants. It 
offers a multitude of opportunities for future scenario development, 
including exploring the effects of alternative lockdown scenarios both at 
an aggregate level, but also across different sub-populations, and the 

Fig. 8. Predicted proportion of individuals in each age group, colours represent each disease status. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 9. Predicted percentage of each MSOA that was infected with COVID during the first 70 days of the outbreak under two scenarios, the baseline scenario and an 
experimental scenario where lockdown was shifted a week earlier. 
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ramifications of the vaccination roll-out. In the case of the former, it will 
be possible to consider variations in the timing of movements between 
different mitigation/adaptation strategies on the number and distribu-
tion of cases, and the capacity of local health services to meet the 
associated need. More refined options such as the restriction of specific 
types of employment type or activity, e.g. schools, restaurants or retail 
outlets, or the variation of controls across more disaggregate geogra-
phies than local authority areas can also be considered. For the latter, 
scenarios could be designed that explore the nature of long-term equi-
librium dynamics, e.g. in a progression towards herd immunity or sea-
sonal cycles of infection, with the model creating projections of future 
infections, by local area, for example, in relation to efficacy, uptake, 
compliance, and availability of the vaccines across social and de-
mographic groups. 

The dynamic simulation model was developed using a combination 
of R and Python. After the initial development, it was refactored using 
OpenCL, a framework for parallel programming. OpenCL allows the 
simulation to be executed on a CPU or GPU, depending on the available 
hardware, and leads to a significant speedup due to multi-threaded 
execution. The OpenCL implementation is able to run the simulation 
for 100 timesteps for the whole population of Devon in around a second, 
which is in the order of 10,000 times faster than the original imple-
mentation. This improved computational speed is crucial if models such 
as this are going to be used by policy-makers within real decision- 
making environments. In addition, an interactive Graphical User Inter-
face (GUI) was built (see Fig. 10). The GUI allows the user to explore 
scenarios while they are executing by interactively starting, stopping, 
stepping and resetting the model. The GUI also allows the values of 
model parameters to be modified and the model to be re-run with 
updated parameter values. This allows rapid exploration of the model 
output and how it changes with different parameter values. 

The importance of reflecting the real-life behaviours of individuals 
given their health, demographic and socioeconomic circumstances is 
reflected in the large evidence base that demonstrates that the outcomes 
of COVID-19 are not distributed equally across sub-populations and 
space. This is linked to a variety of factors including occupational pro-
file, housing circumstances and transportation options. To date, COVID- 
19 transmission models have failed to capture the necessary data to 

capture the inequality in outcomes across different sub-groups. This 
paper extends the growing number of COVID-19 transmission models by 
developing a dynamic SEIR model underpinned by a ‘digital twin’ 
British population. The digital twin underpinning the dynamic SEIR 
model represents the complex health, socio-economic and behavioural 
attributes, as well as mobility patterns required to understand the 
transmission of COVID-19 within the community and the impact of 
different interventions. Importantly, the synthetic modelling approach 
is reproducible in any country for which small area demographic counts 
are available, along with nationally representative health and time use 
data. 
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