
This is a repository copy of Generation and Verification of Executable Assurance Case by 
Model-based Engineering.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179470/

Version: Accepted Version

Proceedings Paper:
Yan, Fang (Accepted: 2021) Generation and Verification of Executable Assurance Case by
Model-based Engineering. In: 2021 IEEE International Symposium on Software Reliability 
Engineering Workshops (ISSREW). (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Generation and Verification of Executable

Assurance Case by Model-based Engineering

Fang Yan

Department of Computer Science

University of York

York, UK

email: fang.yan@york.ac.uk

Abstract—Assurance Cases (ACs) are used for justifying sys-
tem confidence in important properties including safety, reliabil-
ity, etc. Their manual generation is time-consuming and prone to
errors. Also, AC update calls for more labour. However, there is
not an automatic solution to guide the whole engineering process
of AC generation and verification process. An executable AC
is machine readable and checkable, and brings the benefit of
efficiency and confidence of AC evolution. Thus, in this PhD, the
Model-based Engineering (MBE) techniques are exploited for an
automatic process for executable ACs. The first aim is to gen-
erate AC models automatically from system artefacts. Currently
available approaches are usually constrained to specific modelling
environments, or address only system model artefacts, or do not
cover informal and unstructured artefacts. The second aim is to
automate the evidence generation using formal verification. FM
provides a rigorously mathematical proof. But current solutions
to create formal assertions are manual and expertise-requiring.
The paper discusses on the technical problem, and the proposed
approach.

Index Terms—Assurance Case, generation, SACM, model
query, formal verification, assertion

I. INTRODUCTION

The properties of reliability, safety, maintainability, etc. are

critical for complex systems. The Assurance Case (AC) is a

systematic way to argue that the system exhibits some of these

properties supported by relevant evidences [1], and is required

by ISO26262 [2] for safety-critical systems. AC generation

involves large amounts of system lifecycle data and various

types of verification methods; and is labour-intensive and

error-prone if processed manually. As system design changes

and evolves frequently during development and operational

phase, ACs needs to be updated correspondingly to keep the

validity of the argued property. For instance, when a system

function is added, a new AC claim must be created and

substantiated by argument; when the detailed design has been

modified, the evidence to support the claim needs to be re-

verified. It is important to provide an automatic approach and

tool for AC creation. The problem we face is a missing of an

automatic solution to guide the whole engineering process of

AC generation and formal verification process [3].

The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 812.788 (MSCA-ETN SAS).
This publication reflects only the author’s view, exempting the European
Union from any liability. Project website: http://etn-sas.eu/.

An executable AC is machine readable and checkable, and

brings benefits of efficiency and confidence of AC generation

and evolution. This PhD is to provide an automatic solution

for assurance engineers to generate executable AC models

by Model-based Engineering (MBE) with formal verification

support. We implement the approach using RoboChart [4], a

UML-tailored language tailored for development of robotic

controllers, which provides block-based architectural and state

machine modelling notations. Since its development environ-

ment RoboTool is Eclipse-based, our method is generalizable

to other Eclipse-based modelling environment. We collaborate

with D-RisQ1 to gather engineering requirements for develop-

ing AC process and verify our approach using their robot.

The research questions are: (1) For systems developed

with RoboChart, what MBE techniques can be used for

automatic AC generation supporting various system modelling

languages? (2) For the AC claims that can be verified by

Formal Methods (FM), what phases can be automated within

RoboTool? And how do we realize the automation?

For question one, much work has addressed AC fragment

generation from system data with different levels of automa-

tion. Thanks to the maturity of MBE application in system

development process, it’s possible to generate AC models with

system models as inputs. For the purpose of automation of

traceability establishment between AC elements and system

data, model query techniques have been explored. However,

the approaches in the literature on the traceability establish-

ment either do not cover system design models [5]; or address

design models (e.g., a component design model) with a limited

applicability to different system development environments

[6]. Moreover, unstructured system data, such as spreadsheet,

is not covered. Thus, one challenge for the first research

question is the automatic establishment of traceability between

AC models and different formats of system data. This PhD first

proposes to unify the formats of system data (including system

models and unstructured data) using predefined metamodels,

automate the provenance by model query, then generate AC

structure automatically. Some AC evidence can also be created

from model query results. The approach is independent of

system data formats and modelling languages.

The AC evidence is generated from AC claim verification.

1D-RisQ Software Systems. http://www.drisq.com/.



Besides model query mentioned above, other techniques for

AC verification exist including simulation, testing, review, FM,

etc. FM provides a rigorously mathematical proof and has

been applied on AC verification at various levels. But one

challenge for the second question is that the formal assertions

are usually created manually from AC claims and require FM

expertise, which hinders the executable AC realization due to

this automation gap in FM verification. This PhD proposes to

realize an automatically checkable AC by first deriving formal

assertions from claims using Controlled Natural Languages

(CNL) and model transformation techniques, then deriving

AC evidence from assertion checking results using MBE

techniques. Other AC claim verification methods may also be

processed automatically, but is out of my research scope.

We implement the approach using Epsilon [7] for model

query, transformation, etc. The generated AC models can

further be managed with MBE capabilities, such as review

by query, comparison for update. These will be addressed in

future work. System data is input of AC generation, but data

collection from system development process is not addressed

in my approach, and will be considered in future work.

We organize the rest of paper as follows. §II discusses

related work. §III presents the approach, progress and plan.

§IV discusses possible threats to validity. §V concludes.

II. RELATED WORKS

Hawkins et al. [8] used the model weaving technique [9] to

build the relationship between system models and AC elements

at the metamodel level. The AC is generated by the pattern

instantiation. Its advantage is that the system models can

be extracted automatically. Our approach is inspired by and

expands this work to cover not only system design models but

also the unstructured data such as hazard analysis result. Gacek

et al. [6] generate AC models by querying AADL system

models. The query environment is integrated with AADL

modelling platform. We refer the model query concept in [6]

at design model level. The difference is that our approach has

no constraint on system modelling languages and is capable of

assembling with AC structure generated from other sources.

Šljivo et al. [10] derive ACs from system design pattern by

MBE which is different from generating AC directly from

system models in our work. Gallina and Nyberg [5] also utilize

model query technique to generate AC. The objective models

to be queried are the system data (e.g., test plan) compliant

with OSLC (Open Services for Lifecycle Collaboration) [11]

standard. However, OSLC does not support system design

models, e.g., AADL models. The unstructured textual data is

not addressed in the work either. Our approach complements

this work. Denney and Pai [12] construct a complete AC by

automatic pattern instantiation. But the system design data are

not required to be models thus the method does not support

the generation from system design models using model query.

For FM verification of AC claims, Diskin et al. [13] and

Gleirscher et al. [14] both propose to formalize claims as as-

sertions on system formal models, but the process automation

is not addressed. Cârlan et al. [15] focuse on the consistency

checking between system data and AC elements, and exploits

model checking as one of the claim verification methods.

III. RESEARCH APPROACH AND PROGRESS

Our approach exploits MBE techniques to facilitate the

assembly and verification of AC models in an automatic

manner, as shown in Fig. 1. AC models will be compliant

with the Structured Assurance Case Metamodel (SACM) [16].

SACM is a unifying standard for assurance cases to express

argumentation, artifact traceability, and terminology [17].

The system data produced from system development process

can be in any format, including models (e.g., EMF models),

and unstructured data (such as spreadsheet, text, etc.). For

the data used as AC inputs, we first process and convert the

unstructured data to models with predesigned metamodels;

then create AC models by querying different system models

(hazard analysis, system models, etc.) respectively. The query

rules are to be predefined for different scenarios, and kept in

a library for reuse. The AC models then shall be integrated

as a whole module. Further, the approach tackles the AC

formal verification. For the claims to be verified by FM, the

safety requirement used to generate these claims are further

used to create formal assertions. The textual requirements will

be rewritten with a CNL in its tool environment, then be

exported in a structured format, such as XML. The assertion

templates shall be defined to the target FM verification tools.

Then, based on the templates, the formal assertions will

be generated automatically by model-to-text transformation.

The FM verification results from running these assertions are

used to create the AC evidence models. The last step is to

integrate the evidence models in to the AC module, or for re-

verification, to replace the old evidence models with the newly

created ones.

Fig. 1: Automating Generation and FM Verification of ACs

A. AC generation by model query

To create an AC module, many kinds of system data are

needed, such as hazard analysis, system specification, system

architecture, verification plan and results, most of which

are unstructured. We first convert the unstructured data into

2



structured models with metamodels and query rules. Each

type of document shall have its own metamodel and query

rules. The metamodels can be designed following industrial

standards such as OSLC or company internal standards.

With all relevant data converted into EMF models, we

generate AC models based on SACM metamodel, as shown

in Fig. 2. For each type of system data (e.g., hazard log, test

plan), a set of query rules is designed to create relevant AC

elements. Then, these AC models will be integrated into one

module according to their built-in relationships.

Fig. 2: SACM AC generation by model query

For system design model query, we use RoboChart for

system modelling, then obtain EMF models from RoboChart

models for model query. Consider a scenario as follows,
Claim: All states that satisfy Condition 1 shall have a transi-

tion that satisfies Condition 2.
Evidence: The transition exists for each state.

The query rules of this scenario search all the states in

RoboChart models meeting Condition 1, and create claims for

each of these states. Then, transitions of each state are checked

to identify the ones meeting Condition 2, an evidence and a

link to the claim are built for the right transitions. In between,

a strategy and a claim for verification are inserted. An AC

structure is automatically generated as follows,

Claim 1: {State S.1} that satisfies Condition 1 shall have a

transition that satisfies Condition 2.

Inference Strategy 1: Argue over verification and validation

methods of {Claim 1}.

Claim 1.1: {Claim 1} is verified by model query

result.

Evidence 1.1: {Transition T.X} exists for {State S.1}.

...

Claim N: {State S.N} that satisfies Condition 1 shall have a

transition that satisfies Condition 2.

Strategy N: Argue over verification and validation methods of

{Claim N}.

Claim N.1: {Claim N} is verified by model query

result.

Evidence N.1: {Transition T.Z} exists for {State

S.N}.

The name of states and transitions “State S.i” and “Tran-

sition T.X. . . Z” will be instantiated with concrete RoboChart

models. The numbers “N” is the exact number of states that

satisfy Condition 1. In this example, the evidence to the

claims is also generated by model query which substitutes the

manual model review. This again improves the efficiency and

avoids errors. The content to be instantiated is presented with

{}. Whenever the RoboChart models are modified, e.g., new

states added, transitions deleted, AC models can be updated

directly from system models automatically. It is noted that it

is unrealistic to have a complete set of query rules for design

models. We’ve preliminarily implemented the approach of this

section to a D-RisQ robot performing underwater maintenance

tasks. An example metamodel of a hazard log spreadsheet for

this robot with its query rules are provided online2.

B. Claim verification by FM

After generating AC structure from system data, this section

discusses the automation of claim FM verification within

RoboTool. The automation covers not only formal assertions

generation for different FM methods, but evidence model

generation from FM verification results, as shown in Fig. 3.

Fig. 3: FM Verification of AC claims within RoboTool

To implement FM verification, taking refinement checking

as an example, we need a formal specification, a formal

implementation model, and the assertion itself. RoboChart has

a formal semantics in the process algebra CSP [18] , and

RoboTool can generate their CSP formal models automatically

for verification. RoboChart is also supported by an assertion

Domain Specific Language (DSL) developed atop Machine-

Readable CSP (CSPM). The sophisticated assertions can be

translated into CSPM assertions to be run in FDR model

checker. With these advantages, we design the approach as

four phases. We first classify AC claims according to their

CSPM specification patterns, then design three types of tem-

plates for each class including CSPM specification model tem-

plate, CSPM implementation model template, and RoboChart

DSL assertion template. We identify the claims to be formally

verified in AC models, and rewrite the requirements (e.g.,

safety requirement, reliability requirement) which those claims

are derived from within a CNL tool, and further export them

in a structured format. This step will be a manual process.

2https://github.com/laila-fangyan/SACM-AC-generation-use-case.git

3



A software requirement management tool Kapture3 which is

based on CNL is exploited in the approach implementation,

and the requirements are exported in XML. The assertion gen-

eration starts from extracting information from exported XML

requirements, then with the transformation rules designed for

the corresponding type of assertion template, assertions are

generated. The FM assertion checking within RoboTool will

be triggered automatically by an Eclipse plug-in. The AC

evidence models then can be derived by querying verification

results. This evidence model needs to be integrated to the

AC module generated in Section III-A. Further, to ensure

the quality of AC modules, the syntactic checking will be

performed on AC models using Epsilon Validation Language

(EVL). In this PhD, the approach will be implemented on the

RoboTool supported FDR model checker and a probabilistic

model checker PRISM, and the theorem prover Isabelle/HOL.

C. Progress and plan

At this stage, the AC generation approach has been imple-

mented. The AC formal verification approach has been applied

on FDR model checker within RoboTool. Claim classification

is carried out, the templates are partially developed. For the

next stage, formal verification approach needs to be applied

to PRISM for probabilistic properties and to Isabelle/HOL

theorem prover. More templates need to be developed, so

as the system model query rules. The whole approach will

be evaluated with D-RisQ robot use case and be reviewed

by engineering practitioners to assess the effectiveness of the

proposed approach in practice and against the current available

methods discussed in §II.

IV. THREAT TO VALIDITY

AC models can be generated directly by querying design

models, but not all claims are suitable to this query method,

i.e. the query rules cannot cover all claims. For the claims not

covered, the manual process might be involved. The query

rules for the system design models are the basis for AC gen-

eration. However, it’s not realistic to provide a complete set of

rules. New claims may require new rules, but the approach is

still valid. Our approach of AC generation can be implemented

to the modelling languages backed by EMF metamodels; it can

also be applicable to languages backed by other metamodels.

For those other languages, we first transform the models to

EMF models, then can follow the same process hereafter.

Formal verification automation is proposed and implemented

for RoboTool, and is not fully generalizable because CSP

assertions are of a specific form. In future work, we’d like

to address its generalization to other platforms.

V. CONCLUSION

It’s at a medium stage of my PhD, and the paper covers

the technical problem and the proposed approach. This PhD

is to design a technical solution for automating AC process by

MBE to improve efficiency and reduce errors. The AC models

are directly derived from system data based on the traceability

3https://www.drisq.com/product-kapture

built in the model query rules. This traceability triggers the

automatic update of AC models when system data changes.

The formal assertion generation is addressed to automate the

formal verification process and avoid the need of FM expertise.

The approach extends the existing work, and will contribute

a whole AC automation process, a series of query rules and

model transformation rules for different process phases. The

tentative date of the thesis defense is in December 2022.

ACKNOWLEDGMENT

I would like to thank the supervisory team for this PhD:

Dr. Simon Foster and Dr. Ibrahim Habli from Department of

Computer Science at University of York.

REFERENCES

[1] Assurance Case Working Group, “GSN Community Standard. Version
2,” 2018.

[2] ISO, “ISO 26262 Road vehicles–Functional Safety, Version 1,” 2011.
[3] F. Yan, S. Foster, and I. Habli, “Safety case generation by model-based

engineering: State of the art and a proposal,” in The Eleventh Interna-

tional Conference on Performance, Safety and Robustness in Complex

Systems and Applications, proceedings. International Academy, Re-
search, and Industry Association, 2021.

[4] A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis, and J. Wood-
cock, “Robochart: modelling and verification of the functional behaviour
of robotic applications,” Software & Systems Modeling, vol. 18, no. 5,
pp. 3097–3149, 2019.

[5] B. Gallina and M. Nyberg, “Pioneering the creation of iso 26262-
compliant oslc-based safety cases,” in 2017 IEEE International Sympo-

sium on Software Reliability Engineering Workshops (ISSREW). IEEE,
2017, pp. 325–330.

[6] A. Gacek, J. Backes, D. Cofer, K. Slind, and M. Whalen, “Resolute: an
assurance case language for architecture models,” in ACM SIGAda Ada

Letters, vol. 34, no. 3. ACM, 2014, pp. 19–28.
[7] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The epsilon transformation

language,” in International Conference on Theory and Practice of Model

Transformations. Springer, 2008, pp. 46–60.
[8] R. Hawkins, I. Habli, D. Kolovos, R. Paige, and T. Kelly, “Weaving an

Assurance Case from Design: A Model-Based Approach,” in 2015 IEEE

16th International Symposium on High Assurance Systems Engineering.
IEEE, 2015, pp. 110–117.

[9] M. D. Del Fabro, J. Bézivin, and P. Valduriez, “Weaving models with the
eclipse amw plugin,” in Eclipse Modeling Symposium, Eclipse Summit

Europe, vol. 2006, 2006, pp. 37–44.
[10] I. Šljivo, G. J. Uriagereka, S. Puri, and B. Gallina, “Guiding assurance of

architectural design patterns for critical applications,” Journal of Systems

Architecture, vol. 110, p. 101765, 2020.
[11] “Open Services for Lifecycle Collaboration.” http://open-services.net/,

online; accessed 15th August, 2021.
[12] E. Denney and G. Pai, “Tool support for assurance case development,”

Automated Software Engineering, vol. 25, no. 3, pp. 435–499, 2018.
[13] Z. Diskin, T. Maibaum, A. Wassyng, S. Wynn-Williams, and M. Law-

ford, “Assurance via model transformations and their hierarchical refine-
ment,” in Proc. the 21th ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems, 2018, pp. 426–436.
[14] M. Gleirscher, S. Foster, and Y. Nemouchi, “Evolution of Formal Model-

Based Assurance Cases for Autonomous Robots,” Lecture Notes in

Computer Science, vol. 11724 LNCS, pp. 87–104, 2019.
[15] C. Cârlan, D. PetriŞor, B. Gallina, and H. Schoenhaar, “Checkable

safety cases: Enabling automated consistency checks between safety
work products,” in 2020 IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW). IEEE, 2020, pp. 295–
302.

[16] Object Management Group (OMG), “Structured Assurance Case Meta-
model (SACM), Version 2.1 beta,” 2020.

[17] R. Wei, T. P. Kelly, X. Dai, S. Zhao, and R. Hawkins, “Model
based system assurance using the structured assurance case metamodel,”
Journal of Systems and Software, vol. 154, pp. 211–233, aug 2019.

[18] A. W. Roscoe, Understanding concurrent systems. Springer Science &
Business Media, 2010.

4


	Introduction
	related works
	 research approach and progress
	AC generation by model query
	Claim verification by FM
	Progress and plan

	Threat to Validity
	Conclusion
	References

