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Abstract The effect of ethynylene spacers on the bandgap of alternating polymers, comprising 4,

7-linked benzothiadiazole units and 2,7-linked fluorene, 2,7-linked carbazole or 2,6-linked anthra-

cene repeat units has been investigated. The three novel polymers PFDEBT, PCDEBT and PPA-

DEBT were prepared via the Sonogashira coupling reaction. The optical, electrochemical and

thermal properties of the resulting polymers were compared and analysed. All polymers displayed

low solubility in common organic solvents and have moderate molecular weights. Optical studies

revealed that all the new ethynylene based-polymers displayed large bandgaps in excess of

2.1 eV. Results highlighted that incorporation of acetylene units between the benzothiadiazole elec-

tron accepting units and the other electron donor units over polymer chains leads to wide bandgaps

as a result of the electron accepting properties of the acetylene units. The HOMO levels of the

resulting polymers are unaffected by the different donor moieties used. However, varying the elec-

tron donor units can perturb the electron accepting ability of the main chain of polymers in this
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series and their LUMO levels. Anthracene-based polymer (PPADEBT) displayed the lowest

LUMO level, while the fluorene-based polymer (PFDEBT) displayed the highest LUMO level.

All polymers showed good stability to thermal degradation. The amorphous nature of these poly-

mers was confirmed with powder X-ray diffraction studies.

� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Solar cell technology is one of the potential methods to solve

global energy needs. Progress in plastic electronics technology,

such as organic semiconducting materials used in bulk hetero-

junction (BHJ) solar cells, would assist to reduce the cost of

manufacture of such devices (Hsu et al., 2021; Get et al.,

2020; Venkateswararao et al., 2018; Li et al., 2019). Over the

past decades, solution processed BHJ polymer solar cells

(PSCs) have received increasing attention in the research com-

munity in view of its potential advantages such as light weight,

high flexibility, low manufacturing costs and ease of synthesis

of the polymers (Chen et al., 2020; Arabpour Roghabadi et al.,

2018).

Recently, significant progress has been achieved in PSC

devices with efficiencies exceeding 16% reported (Chang

et al., 2020). It is imperative for the conjugated polymers used

in this area to absorb a broad part of the solar spectrum, in

order to obtain high power conversion efficiencies (PCE). Con-

sequently, a variety of conjugated polymers have been devel-

oped which have low energy bandgaps in order to efficiently

harvest energy from sunlight (Du et al., 2013; Sardar et al.,

2015). At the molecular level, the bandgap (Eg) and the

HOMO and LUMO energy levels can be effectively tuned to

achieve high performance in such organic polymer solar cells

(OPSC) (Roncali, 1997; Yang et al., 2015). One of the effective

approaches in designing conjugated polymers with suitable

energy bandgaps is to prepare polymers with alternating

electron-releasing units and electron-withdrawing units over

the same conjugated polymeric chain (Du et al., 2013; Cheng

et al., 2009). It is well established that benzothiadiazole (BT)

is one of the most commonly used electron acceptor units

for the construction of low bandgap polymers as a result of

its strong electron withdrawing ability in D-A systems (Zhou

et al., 2012). In previous reports, BT-based conjugated poly-

mers have exhibited high PCEs in solar cells when fabricated

with fullerene derivatives as acceptors in OPSC devices. A ser-

ies of D-A polymers were explored with alternating 2,7-linked

carbazole, 2,7-linked fluorene or 2,6-linked anthracene units

flanked by thiophene as electron donor units and BT units as

electron acceptors. These polymers displayed good efficiencies

ranging from 3.3 to 6.2 % when used with fullerene derivatives

in BHJ solar cells (Almeataq et al., 2013; Watters et al., 2013;

Kuznetsov et al., 2015). Another study investigated the effect

of incorporation an indoline organic dye as an interfacial mod-

ifier in OPSC device using a heptazole: PC60BM as BHJ device,

this showed an enhanced overall PCE from 1.26% to 2.51%.

The researchers found that heptazole polymer showed excel-

lent charge mobility via compatibility its LUMO levels when

fabricated with PC60BM in photovoltaic devices (Lim et al.,

2016). Previous report investigated the effect of molecular

weight of polymer on photovoltaic performance of device.

One of the most effective approaches towards an increase of

the PCE in BHJ solar cells is to optimise the molecular weight

of donor segment in OPSC devices. The results revealed that

the charge carrier mobility in OPSC based on high and low

molecular weight polymer was similar. However, light intensity

dependence of current–voltage characteristics of low molecular

weight device displayed poor device performance as a result of

strong bimolecular recombination in the low Mn polymer

which limited its Jsc value. It was found that OPSC device

based on high Mn polymer processes lower bulk resistance that

improved the performance of device due to supressing

bimolecular recombination to reach the highest PCE of device.

(Xianqiang et al., 2016).

Large twist angles between BT units and their adjacent

units on the conjugated polymer, can lead to decreased pack-

ing and conjugation lengths in the resulting D-A systems. This

effect remains a challenge to improve the efficiency of D-A

conjugated polymers (Anant et al., 2008). In order to enhance

the packing and rigidity of polymer chains, a linker is often

employed between the electron donor and acceptor units along

the conjugated polymer backbone. Previous reports have

shown that the incorporation of an ethynylene unit (weak elec-

tron withdrawing unit) into the main chain of conjugated poly-

mers generally enlarges their electronic bandgaps and lowers

their HOMO energy levels (Liu et al., 2001; Zhang et al.,

2009), Qin and his group (Qin et al., 2012) highlighted the

impact of ethynylene linkages on the p-conjugated polymers

made of 5,7-dithien-2-yl-thieno (Venkateswararao et al.,

2018; Li et al., 2019) pyrazine and phenylene with the achieved

bandgaps of 1.55 and 1.36 eV, respectively. Furthermore, the

outcomes revealed the improved solar cell performance such

as higher short circuit current and open circuit voltage with

better device performance. Another study reported the intro-

duction of ethynylene units in a thiophene-based polymer

and found that ethynylene units lead to a polymer with a dee-

per HOMO level (~0.3 eV) but a slightly higher bandgap

(~0.15 eV) than poly (3-hexylthiophene) (P3HT). The

ethynylene-based polymer showed a higher Voc value than

P3HT (1.01 V vs. 0.62 V) in BHJ devices, however, it had a

lower PCE than P3HT (Cremer et al., 2006). This was

explained by low charge mobility in devices as a result of a

lower aggregation of polymer chains in blends with PCBM

for the ethynylene-based polymer, even though it showed good

aggregation of polymer chains in pristine films. Different stud-

ies reported the preparation of conjugated polymers via Sono-

gashira coupling reaction procedure, through which the

bandgap of the host matrix were tuned through employing

ethynylene spacer (Michinobu et al., 2008; Pu and Liu, 2010).

In this study, we present an investigation on the use of the

ethynylene linker in polymers comprising alternating electron

donor moieties such as carbazole, fluorene or anthracene units

and alternating benzothiadiazole electron accepting units. The

2 A.G.S. Al-Azzawi et al.



role of the ethynylene linker on the physical properties of the

resulting polymers including their energy bandgaps and energy

levels will be discussed. In addition, this study highlights the

possibility of tuning the optical and thermal properties of the

prepared polymers in a way to best meet the requirements

for the renewable energy device applications such as solar cell.

The three new conjugated polymers have been synthesised

using the Sonogashira coupling reaction. Their optical, electro-

chemical and thermal properties were investigated and com-

pared to analogous polymers with thiophene linkers instead

of ethynylene linkers.

1.1. Experimental

1.1.1. Materials

9,9-Dioctyl-2,7-diethynylfluorene (2) (Liu et al., 2013), 2,7-

dibromo-9-(heptadecan-9-yl)-9H-carbazole (Saeki et al.,

2012) and 2,6-dibromo-9,10-bis(4-(dodecyloxy)phenyl)anthra

cene (Almeataq et al., 2013), were prepared according to liter-

ature procedures. 4;7 -Dibromobenzo[c]-1,2,5-thiadiazole (1)

was purchased from Sigma Aldrich and used as received. All

chemicals and solvents, with the exception of those stated

below, were of reagent grade quality, purchased commercially

and used without further purification unless otherwise stated.

Tetrahydrofuran (THF) was distilled and dried over sodium

benzophenone under an inert nitrogen atmosphere. Toluene

was dried and distilled over sodium under an inert atmosphere.

Acetonitrile was dried and distilled over phosphorus pentoxide

under an inert argon atmosphere, then stored over molecular

sieves (3 Å).

1.1.2. Measurements
1H and 13C nuclear magnetic resonance (NMR) spectra were

recorded using on Bruker Avance 400 (MHz) NMR spectrom-

eter at ambient temperature using chloroform-d (CDCl3) with

tetramethylsilane (TMS) as an internal standard. The NMR

shifts are described by using the following abbreviations: sin-

glet (s), doublet (d), double doublet (dd), triplet (t), multiple

(m) and broad (br). Moreover, coupling constants (J) are cal-

culated in Hertz (Hz) and chemical shifts in part per million

(ppm). CHN analyses were performed on the Perkin Elmer

2400 CHN Elemental Analyzer. In addition, the flask combus-

tion method was used for the analysis of halides and sulfur.

Mass spectra of monomers were recorded on a Perkin Elmer

Turbomass Mass Spectrometer equipped with auto system

XL GC. It has the ability to operate in both chemical ioniza-

tion (CI) and electron ionization (EI) modes. GPC measure-

ments were conducted on polymer solutions using

chloroform or 1,2,4-trichlorobenzene (TCB) as eluents at a

flow rate of 1 cm3 mintue�1. The system was calibrated against

a series of narrow polystyrene standards (polymer laborato-

ries) using a 1037 Differential Refractive Detector. UV–visible

absorption spectra were performed using a Hitachi U-2010

Double Beam UV/Visible Spectrophotometer. Solution sam-

ples of polymers in CHCl3 were measured by using rectangular

quartz cuvettes (light path = 10 mm). Thin films of the

polymers were prepared for UV–visible absorption spectra

measurements by dip coating quartz plates into approximately

1 mg cm�3 solutions in chloroform, then drying at room

temperature. Measurements were performed under ordinary

laboratory condition. The measurements of CV were obtained

from a Princeton Applied Research Model 263A Potentiostat/

Galvanostat. Measurements were carried out at room temper-

ature using tetrabutylammonium perchlorate (TBAClO4) solu-

tion in acetonitrile (0.1 mol dm�3) as the electrolyte solution.

A three-electrode system was used consisting of an Ag/

Ag + reference electrode (silver wire in 0.01 mol dm�3 silver

nitrate solution in the electrolyte solution), a platinum working

electrode (2 mm-diameter smooth platinum disc, area = 3.14

� 10�2 cm2), and a platinum counter electrode (platinum

wire). Polymer thin films were formed by drop casting

1.0 mm3 of polymer solutions in chloroform (HPLC grade)

(1 mg cm�3) onto the working electrode (Pt disk), then dried

in air. Ferrocene was employed as a reference redox system

according to IUPAC’s recommendation. (Terao et al., 2013)

Thermogravimetric analyses (TGAs) were recorded using a

Perkin Elmer TGA-1 Thermogravimetric analyzer at a scan

rate of 10 �C min�1 under inert conditions. Powder X-ray

diffraction profiles of polymers were obtained using a Bruker

D8 advance diffractometer with a CuK-a radiation source

(1.5418 Å, rated as 1.6 kW). The scanning angle was per-

formed over the range (2–40�).

1.1.3. Preparation of monomers and polymers

1.1.3.1. 9,9-Dioctyl-2,7-[bis(20-trimethysilyl) ethynyl)] fluo-

rine. A tow-neck 100 ml round bottom flask containing a solu-

tion of 2,7-dibromo-9,9-dioctylfluorene (S3) (1.10 g,

2.01 mmol) in dry toluene (20 ml) and diisopropylamine

(6 ml, degassed) was stirred and placed under an inert atmo-

sphere. Copper (II) iodide (CuI) (0.016 g, 5%) and bis(triph-

enylphosphine) palladium(II) dichloride Pd(PPh3)2Cl2

(0.052 g, 4%) were added to the solution reaction then the sys-

tem was degassed. After stirring for 0.5 h, a solution of

trimethylsilyl acetylene (0.43 g, 0.62 ml, 4.40 mmol, d = 0.6

95 g/ml) in disopropylamine (4.0 ml, degassed) was added

via syringe to the suspension. Purging of the inert gas was con-

tinued during and after the addition. The mixture was

degassed and then heated to reflux overnight to give a

reddish-brown suspension. The reaction was monitored by

spot TLC to verify the completion of the reaction. After cool-

ing the mixture to room temperature, the solvent was removed

in vacuo to produce a crude product. The material was purified

via chromatography over silica gel using petroleum ether as

eluent to give a pure product as white crystals (1.10 g,

1.88 mmol, 94 %). The purity of the product was confirmed

by TLC (single spot Rf = 0.5) in petroleum ether. 1H NMR

(400 MHz, CDCl3) (d/ppm): 7.61 (d, J = 8.0 Hz, 2H), 7.47

(dd, J = 8.0 and J = 2.0 Hz, 2H), 7.43 (s, 2H), 1.94 (m,

4H), 1.27–1.0 (m, 20H), 0.84 (t, J = 7.0 Hz, 6H), 0.57–0.48

(br, 4H), 0.30 (s, 18H). 13C NMR (400 MHz, CDCl3)

(d/ppm): 150.93, 140.85, 131.22, 126.21, 121.73, 119.83,

106.07, 94.25, 55.23, 40.34, 31.79, 29.89, 29.24, 23.59, 22.60,

14.10, �0.06. Mass (EI + ): (m/z) (M�+) 582, 583, 584.

Elemental analysis calculated for C39H58Si2: C, 80.34; H,

10.03 found; C, 79.83; H, 9.82.

1.1.3.2. 9,9-Dioctyl �2,7-diethynylfluorene (2). A solution of

compound (4) (1.00 g, 1.71 mmol) in dry THF (15 ml) was stir-

red under degassed conditions. KOH aqueous solution (2.5 ml,

25% wt) in methanol (10 ml) was slowly added to the above

reaction mixture under an inert atmosphere. The reaction

was left at room temperature for 2 h. The mixture reaction

Impact of ethynylene linkers on the optical and electrochemical properties 3



was extracted with DCM (3 � 200 ml), washed with brine

(2 � 200 ml) and dried over (MgSO4). The solvent was evap-

orated in vacuo to obtain white-yellow crystals as pure product

(0.72 g, 1.64 mmol, 96 %). The product gave a single spot on

TLC (Rf = 0.36) in 100% hexane. 1H NMR (400 MHz,

CDCl3) (d/ppm): 7.65 (d, J = 8.0 Hz, 2H) 7.50 (dd, J = 8.0

and J = 2.0 Hz, 2H), 7.48 (s, 2H), 3.17 (s, 2H), 1.97–1.93

(m, 4H), 1.27–1.05 (m, 20H), 0.84(t, J = 7.0, 6H), 0.60–0.53

(br, 4H).13C NMR (400 MHz, CDCl3) (d/ppm): 151.05,

141.01, 131.25, 126.55, 120.84, 119.98, 84.53, 55.22, 40.21,

31.77, 29.94, 29.20, 23.65, 22.59, 14.08. Mass (EI + ): (m/z)

(M�+). 438, 439, 440. Elemental analysis calculated for

C33H42; C, 90.35; H, 9.65, found; C, 89.23; H, 9.59.

1.1.3.3. 9-(Heptadecan-9-yl)-2,7-bis((trimethylsilyl)ethynyl)-

9H-carbazole. To a mixture of2,7-dibromo-9-(heptadecan-9-

yl)-9H-carbazole (0.5 g, 0.88 mmol), CuI (0.008 g, 0.042 mmol)

and Pd(PPh3)2Cl2 (0.031 g, 0.035 mmol) in dry toluene (10 ml),

was added diisopropylamine (6 ml) and placed under an inert

atmosphere. To this mixture was slowly added via syringe, a

solution of trimethylsilyl acetylene (0.191 g, 0.27 ml,

1.95 mmol) in disopropylamine (4.0 ml, degassed). The mix-

ture was then degassed again and heated to 70 �C overnight.

The reaction was monitored by TLC to verify the completion

of the reaction. Upon completion, the mixture was cooled to

room temperature and the solvent removed in vacuo to afford

the crude product. Purification by column chromatography on

silica gel using petroleum ether as the eluent afforded the pro-

duct as a yellow powder (0.49 g, 94.2%). The product gave a

single spot on TLC (Rf = 0.40) in petroleum ether.1H NMR

(400 MHz, CDCl3) (d/ppm): 7.98 (br, 2H); 7.67 (s, 1H); 7.53

(s, 1H), 7.34 (br, 2H)., 4.51 (m, 1H); 2.31–2.20 (br, 2H),

1.98–1.87 (m, 2H); 1.30–1.08 (m, 20H); 1.04–0.93 (br, 4H);

0.85 (t, J = 7.0 Hz, 6H); 0.32 (s, 18H).13C NMR (400 MHz,

CDCl3) (d/ppm): 142.08, 138.64, 123.69, 123.18, 122.99,

122.25, 120.32, 120.09, 119.82, 115.04, 112.62, 106.63, 93.55,

56.85, 33.67, 31.72, 29.37, 29.30, 29.12, 26.84, 22.57, 14.03,

�0.08.Mass (EI+): (m/z) (M�+). 597.4, 598.4, 599.4. Elemen-

tal analysis calculated for C33H43NSi2, C, 78.32; H, 9.94; N,

2.34; found; C, 78.30; H, 10.14; N, 2.09.

1.1.3.4. 2,7-Diethynyl-9-(heptadecan-9-yl)-9H-carbazole (3).

An aqueous solution of KOH (2.5 ml, 25.0%) in methanol

(4 ml) was added dropwise to a single neck 100 ml flask con-

taining 9-(heptadecan-9-yl)-2,7-bis((trimethylsilyl)ethynyl)-

9H-carbazole (0.44 g, 0.73 mmol) in THF (10 ml) under argon

atmosphere. The reaction system was degassed and stirred at

ambient temperature for 3 h. The progress of the reaction

was monitored by TLC. Upon completion, the mixture was

extracted with dichloromethane (3 � 200 ml). The organic

extracts were washed with water (2 � 200 ml) then dried over

MgSO4. The solvent was removed in vacuo to yield pure pro-

duct 3 as a yellow viscous oil (0.18 g, 92%). The product gave

a single spot on TLC (Rf = 0.45) in petroleum ether.1H NMR

(400 MHz, CDCl3) (d/ppm): 8.02 (br, 2H); 7.74 (s, 1H); 7.58 (s,

1H), 7.38 (br, 2H)., 4.51 (m, 1H); 3.19 (s, 2H); 2.31–2.20 (m,

2H), 1.98–1.89 (m, 2H); 1.29–1.09 (m, 20H); 1.04–0.93 (br,

4H); 0.85 (t, J = 7.0 Hz, 6H).13C NMR (400 MHz, CDCl3)

(d/ppm): 142.31, 138.62, 123.88, 123.05, 122.98, 122.44,

120.59, 120.31, 119.93, 118.84, 115.46, 112.97, 85.07, 56.85,

33.63, 31.74, 29.32, 29.28, 29.13, 26.80, 22.60, 14.07.Mass (EI

+): (m/z) (M�+)0.453.3, 455.3, 454.3.Elemental analysis

calculated for C33H43N, C, 87.36; H, 9.55; N, 3.09; found; C,

87.31; H, 9.62.; N, 3.05.

1.1.3.5. 2, 6- bis ((trimethylsilyl)ethynyl)-9,10-bis(4-(dodecy-

loxy)phenyl)-anthracene. A round bottom flask was charged

with 2,6-dibromo-9,10-bis(4-(dodecyloxy)phenyl)-anthracene

(0.44 g, 0.513 mmol), CuI (0.005 g, 0.026 mmol) and Pd

(PPh3)2Cl2 (0.018 g, 0.02 mmol) in dry toluene (20 ml), fol-

lowed by diisopropylamine (6 ml, degassed). The mixture

was degassed and placed under an inert atmosphere. To this

solution was added, trimethylsilyl acetylene (0.099 g, 0.14 ml,

1.0 mmol) in disopropylamine (4.0 ml, degassed). The system

was degassed again and then refluxed at 70 �C for 48 h. The

reaction was monitored by TLC to follow its progress. Upon

completion, the solvent was removed from in vacuo to obtain

the crude product. The product was purified via silica gel col-

umn chromatography using petroleum ether: toluene (80:

20%) as eluent to yield the pure product as a yellow solid

(0.39 g, 95%). The product gave a single spot on TLC

(Rf = 0.5) in petroleum ether: toluene (80: 20%).1H NMR

(400 MHz, CDCl3) (d/ppm): 7.89 (br, 2H), 7.64 (d,

J = 9.0 Hz, 2H), 7.35 (d, J = 9.0 Hz, 4H), 7.31 (dd,J = 9.0

and J = 2.0 Hz, 2H), 7.16 (d, J = 9.0 Hz, 4H), 4.14 (t,

J = 7.0 Hz, 4H), 1.92 (m, 4H); 1.62–1.25 (br, 36H); 0.91 (t,

J = 7.0 Hz, 6H), 0.26 (s, 18H).13C NMR (400 MHz, CDCl3)

(d/ppm): 158.79, 137.01, 132.42, 131.13, 130.22, 129.96, 129.86,

127.69, 127.25, 119.84, 114.53, 105.85, 95.47, 88.94, 68.20,

31.95, 29.71, 29.66, 29.51, 92.45, 29.39, 26.20, 22.72, 14.15,

�0.05.Mass (EI+): (m/z) (M�+) 890.8, 891.8, 892.8. Elemental

analysis calculated for C60H82O2Si2, C, 80.84; H, 9.27, found;

C, 77.15; H, 8.76%.

1.1.3.6. 2,6-Diethynyl-9,10-bis(4-(dodecyloxy)phenyl)-anthra-

cene (4). To a solution of 2,6-bis((trimethylsilyl)ethynyl)-9,10

-bis(4-(dodecyloxy)phenyl)-anthracene (0.34 g, 0.38 mmol) in

dry THF (15 ml) under an inert atmosphere, was slowly added

a solution of KOH (2.5 ml, 25.0% aqueous solution) in metha-

nol (4 ml) under vigorous stirring. The resulting mixture was

stirred at ambient temperature for 4 h. The mixture was then

extracted with dichloromethane (3 � 200 ml), then the organic

extracts were washed with water (2 � 200 ml) then dried over

MgSO4. The solvent was removed in vacuo to obtain the crude

product. The material was purified via silica gel column chro-

matography using petroleum ether: toluene (80:20 %) as eluent

to afford pure product 4as yellow crystals (0.22 g, 85.2%). The

product provided a single spot on TLC (Rf = 0.45) in petro-

leum ether: toluene (80: 20 %).1H NMR (400 MHz, CDCl3)

(d/ppm): 7.94 (s, 2H), 7.69 (d, J = 9.0 Hz, 2H), 7.36–7.32

(br, 6H), 7.15 (d, J = 9.0 Hz, 4H), 4.13 (t, J = 7.0 Hz, 4H),

3.13 (s, 2H), 1.91 (m, 4H); 1.62–1.25 (br, 36H); 0.91 (t,

J = 7.0 Hz, 6H).13C NMR (400 MHz, CDCl3) (d/ppm):

158.89, 137.18, 132.29, 131.85, 130.25, 129.95, 129.72, 127.50,

127.41, 118.84, 114.57, 84.43, 78.14, 68.18, 31.95, 29.72,

29.66, 29.50, 92.43, 29.39, 26.19, 22.72, 14.15.Mass (EI+):

(m/z) (M�+) 746.4, 747.4, 748.4.Elemental analysis calculated

for C54H66O2, C, 86.81; H, 8.90, found; C, 85.81; H, 8.78%.

1.1.3.7. Poly[2,7-diethynyl-9,9-dioctylfluorene-alt-4,7-benzo[c]

(Hsu et al., 2021; Get et al., 2020; Chen et al., 2020)

thiadiazole] PFDEBT. A mixture of 4,7-dibromobenzo[c]-1,2,

5-thiadiazole (1) (0.058 g, 0.20 mmol), 2,7-diethynyl-9,9-dioc

tylfluorene(2) (0.087 g, 0.20 mmol), Pd(PPh3)2Cl2 (0.019 g,
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0.027 mmol) and CuI (0.009 g, 0.046 mmol) were added to a

flask containing anhydrous THF (2 ml), toluene (4 ml) and

diisopropylamine (3 ml, degassed) under inert conditions.

The solution was stirred at reflux temperature (75 �C) for

6 h. The reaction was stopped and the mixture allowed to cool

to room temperature, then it was slowly added into degassed

methanol (300 ml) before being stirred overnight to give a pre-

cipitate. The solid precipitate was collected through a mem-

brane filter. Then it was cleaned using Soxhlet extraction

with different organic solvents in the following order: metha-

nol, acetone, hexane, toluene, chloroform and chlorobenzene.

The toluene fraction was obtained and concentrated to 10 ml

in vacuo then poured into degassed methanol (300 ml). The

resulting solution was stirred overnight then the precipitate

collected through membrane filtration to afford the final poly-

mer as a dark orange solid. 1H NMR (400 MHz, CDCl3)

(d/ppm): 7.89 (s, 2H), 7.80–7.66 (br, 4H), 7.59–7.54 (br, 2H),

2.13–1.97 (br, 4H), 1.28–1.03 (br, 20H), 0.87–0.80 (br, 6H),

0.70–0.58 (br, 4H). Toluene fraction (17.5% yield) GPC in

TCB at 140 �C, Mn = 11600, Mw = 29300, PDI = 2.5. Ele-

mental Analysis calculated for C39H43N3S: C, 79.96; H, 7.40;

N, 7.17; S, 5.47%. Found: C, 76.85; H, 8.52; N, 4.23; S, 3.02%.

1.1.3.8. Poly[2,7-diethynyl-9-(heptadecan-9-yl)carbazole-alt-

4,7-benzo[c] (Hsu et al., 2021; Get et al., 2020; Chen et al.,

2020)thiadiazole] PCDEBT. 7-Dibromobenzo[c]-1,2,5-thiadia

zole (1) (0.058 g, 0.20 mmol) and 2,7-diethynyl-9-

(heptadecan-9-yl)-9H-carbazole (3) (0.090 g, 0.20 mmol) were

added to a round bottom flask and placed under argon. Dry

toluene (4 ml) and THF (2 ml), were added followed by diiso-

propylamine (3 ml, degassed) and the solution was degassed

again. Then Pd(PPh3)2Cl2 (0.019 g, 0.027 mmol) and CuI

(0.009 g, 0.046 mmol, 23%) were added to the degassed solu-

tion and heated to 75 �C for 4 h. Upon completion, the reac-

tion was cooled to room temperature; then the mixture was

added drop wise into degassed methanol (300 ml) and stirred

overnight to give a precipitate. The precipitate was collected

through a membrane filter. Then it was cleaned using Soxhlet

extraction with different organic solvents in the following

order: methanol, acetone, hexane, toluene, chloroform and

chlorobenzene. The toluene fraction was obtained and concen-

trated to 10 ml in vacuo then poured into degassed methanol

(300 ml). The resulting mixture was stirred overnight and the

polymer collected by filtration as an orange powder. 1H

NMR (400 MHz, CDCl3) (d/ppm): 8.20–8.06 (br, 2H),

7.96–7.75 (br, 4H), 7.65–7.40 (br, 2H), 4.70–4.53 (br, 1H),

2.42–2.26 (br, 2H), 2.09–1.94 (br, 2H) 1.36–0.98 (br, 24H),

0.84 (t, J = 7.0, 6H). Toluene fraction (8.5% yield) GPC in

TCBat 140 �CMn = 25000,Mw = 80400, PDI = 3.2. Elemen-

tal Analysis calculated for C39H43N3S: C, 79.96; H, 7.40; N,

7.17; S, 5.47%. Found: C, 76.85; H, 8.52; N, 4.23; S, 3.02%.

1.1.3.9. Poly[2,6-diethynyl-9,10-bis(4-(dodecyloxy)phenyl)-

anthracene-alt-4,7-benzo[c] (Hsu et al., 2021; Get et al.,

2020; Chen et al., 2020)thiadiazole] PPADEBT. A round bot-

tom flask was charged with 4,7-dibromobenzo[c]-1,2,5-thiadia

zole (1) (0.058 g, 0.20 mmol) and 2,6-diethynyl-9,10-bis(4-(do

decyloxy)phenyl) anthracene (4) (0182 g, 0.20 mmol) under

argon. Dry toluene (4 ml) and THF (2 ml) were then added,

followed by diisopropylamine (3 ml, degassed) and the result-

ing solution degassed. To this mixture, Pd(PPh3)2Cl2 (0.019 g,

0.027 mmol) and CuI (0.009 g, 0.046 mmol) were added. After

addition, the solution was stirred at reflux temperature (75 �C)

for 3 h. The reaction was stopped then the mixture allowed to

cool to room temperature, then it was slowly added into

degassed methanol (300 ml) before being stirred overnight to

give a precipitate. The precipitate was collected through a

membrane filter. Then it was cleaned using Soxhlet extraction

with different organic solvents in the following order: metha-

nol, acetone, hexane, toluene, chloroform and chlorobenzene.

The toluene fraction was obtained and concentrated to 10 ml

in vacuo then poured into degassed methanol (300 ml). The

resulting mixture was stirred overnight and the solid was col-

lected by filtration through a membrane filter. The final poly-

mer was obtained as a dark red powder after drying in 21.0 %

yield. 1H NMR (400 MHz, CDCl3) (d/ppm): 8.14–7.96 (br,

2H), 7.85–7.34 (br, 10H), 7.20 (t, J = 8.0, 4H), 4.20–4.10

(br, 4H), 1.97–1.87 (br, 4H) 1.50–1.19 (br, 36H), 0.93–0.86

(br, 6H). Toluene fraction GPC in TCB at 140 �C,

Mn = 8700, Mw = 21800, PDI = 2.5.Elemental Analysis cal-

culated for C60H66N2O2S: C, 81.96; H, 7.57; N, 3.19; S,

3.657%. Found: C, 70.80; H, 7.22; N, 2.14; S, 2.17%.

2. Result and discussion

2.1. Synthesis and characterisation

The synthetic route for the preparation of the three conjugated

polymers is outlined in Scheme 1. 4,7-Dibromobenzo[c]-1,2,5-

thiadiazole (BT) (1) was reacted with respectively 2, 3 and 4 in

Sonogashira coupling reactions to produce polymers PFDEBT

(yield = 17.5%), PCDEBT (yield = 8.5%) and PPADEBT

(yield = 21%). The polymerisations were carried out using

Pd(PPh3)2Cl2 as the catalyst and CuI as co-catalyst along with

diisopropylamine as the base in a mixture of anhydrous THF/-

toluene solvent under inert atmosphere. All polymerisations

were conducted until precipitates of the polymers were

observed. The time of polymerisation reactions varied between

3 and 12 h. The obtained crude products formed were sepa-

rated by precipitation in methanol then cleaned and fraction-

ated with different organic solvents using Soxhlet extractions

in order to remove catalyst impurities, unreacted monomers

and low molecular weight oligomers. It was observed that

the polymers displayed limited solubilities in the Soxhlet thim-

bles with different organic solvents such as methanol, acetone,

hexane, toluene, chloroform and chlorobenzene at high tem-

peratures during the extraction process, only their toluene frac-

tions were separated and used for further analysis with large

fractions of the products remaining behind in the thimbles of

Soxhlet apparatus. This explains the low yields observed from

these polymerisations. The products obtained from the Soxhlet

(toluene fractions after drying) were soluble in common

organic solvents such as chloroform, dichloromethane and

dichlorobenzene due to low molecular weights of polymers

which were obtained from Soxhlet. So only toluene fractions

of these polymers can be separated and characterised which

probably reflect the main properties of ethynylene-based poly-

mers. The chemical structures of these polymers were con-

firmed by 1H NMR and elemental analysis. Details of the

synthesis of the polymers and their characterisation are given

in the experimental section.

Gel permeation chromatography (GPC) data of all poly-

mers is summarised in Table 1 with their number–average
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molecular weights (Mn), weight–average molecular weights

(Mw) and polydispersity indexes. Measurements were con-

ducted against polystyrene standards using 1,2,4-

trichlorobenzene (TCB) as the eluent at 140 �C. These

ethynylene-based polymers were separated in low yields (8.5

– 21%) from their toluene fractions. These fractions are the

portions of polymers that are soluble but at the limit of their

processability. Incorporation of ethynylene units along the

polymer chains results in their aggregation as a consequence

of much planar polymer conformations. (Terao et al., 2013)

This leads to polymers to display poor solubility in Soxhlet

thimble with other organic solvents at high temperature which

extracted only low molecular weights of polymers from Soxh-

let thimble (toluene fractions) and could not dissolve any of

the left over polymers inside the thimble. The number average

molecular weight Mn of the anthracene-based polymer PPA-

DEBT was estimated to be 8700 Da with a polydispersity of

2.5. These values are lower compared to those of the fluorene

or carbazole-based polymers (PFDEBT and PCDEBT) respec-

tively owing to the effect of a more extended conjugation and

also the planarity of the anthracene repeat units. PFEBTs has

been synthesised by Kan and Liu via Sonogashira coupling

reaction, the ethynylene-based polymer exhibited remarkable

aggregation and charge transfer character. (Pu and Liu,

2010) PFDEBT display similar aggregation attitude relative

to its counterpart (PFEBTs) due to planarity of polymer

chains.

2.2. Optical properties

The optical properties of all polymers were measured by UV–

vis absorption spectroscopy in dilute chloroform solutions and

in thin solid films (drop cast from chloroform solution). The

optical spectra are shown in Fig. 1. All the optical data of

the polymers are summarised in Table 2.

All polymers revealed absorption bands in chloroform solu-

tions, in the range of 300–450 nm and 450–600 nm. The shorter

wavelength absorption bands can be attributed to p-p* transi-

tions, whereas the longer wavelength bands can be ascribed to

the intramolecular charge transfer (ICT) bands between donor

and acceptor moieties along the D-A polymer backbones. The

thin films displayed red-shifted absorption bands relative to

those observed in solutions. This phenomenon is caused by

stronger p-p interactions and increased polymer chain aggrega-

tion in the solid state which increases their planarity. Interest-

ingly, the small bathochromic shift (~20 nm) from dilute

solution to solid state indicates that these polymers adopt rel-

atively similar conformations whether in solutions or as films.

Polymer PPADEBT displays an absorption maximum at

479 nm in solution and at 501 nm in films in addition to a

Table 1 GPC data of PFDEBT, PCDEBT and PPADEBT.

Polymer a Yield % Mn (Da) Mw(Da) PDI

PFDEBT 17.5 11,600 29,300 2.5

PCDEBT 8.5 25,000 80,400 3.2

PPADEBT 21.0 8700 21,800 2.5

a Measurements conducted on toluene fractions of the polymers.

Scheme 1 The synthetic route toward polymers PFDEBT, PCDEBT and PPADEBT.
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shoulder absorption at 543 nm. The shoulder absorption is

related to arise from a pronounced stacking and aggregation

of polymer chains in films formed by the anthracene-based

polymer (Murad et al., 2021). The optical bandgaps, as deter-

mined from the onset of absorption in films, are 2.31, 2.22 and

2.14 eV for PFDEBT, PCDEBT and PPADEBT respectively.

In comparison, the values of the absorption maxima of PPA-

DEBT especially in thin films are red-shifted compared to

those of PFDEBT and PCDEBT. The lower bandgap of PPA-

DEBT in comparison to those of PFDEBT and PCDEBT is

probably due to its ability to adopt more planar conformations

in films and a more extended electronic delocalisation. The

wider bandgap of the fluorene-based polymer PFDEBT in

comparison to the carbazole-based polymer PCDEBT is

attributed to the more electron donating nature of carbazole

units in comparison to fluorene units; which leads to higher

ICT along polymer chains of PCDEBT when compared to

those of PFDEBT.

It is interesting to compare the optical properties of the pre-

sent class of ethynylene-based polymers which incorporate

Table 2 Optical and electrochemical data for PFDEBT, PCDEBT and PPADEBT.

Polymer kmax solution

(nm)

kmax film

(nm)

kmax shoulder

peak in film

(nm)

e
a (M�1 cm�1) Eg opt

b (eV) EOx onset c (V) HOMO d (eV) ERed onset e

(V)

LUMO f

(eV)

Eg elec
g

(eV)

PFDEBT 356–466 345–481 – 28,260 2.31 1.0 �5.72 �1.51 �3.21 2.51

PCDEBT 358–479 361–492 – 31,183 2.22 0.94 �5.66 �1.41 �3.31 2.35

PPADEBT 327–479 328–501 543 15,708 2.14 0.96 �5.68 �1.38 �3.34 2.34

a Absorption coefficient measured (e) at kmax = 466 nm for PFDEBT,479 nm for PCDEBT, and 479 nm for PPADEBT in chloroform

solutions.
b Optical energy bandgap determined from the onset of absorption band in thin film.
c EOx onset t is the onset oxidation potential determined by CV.
d HOMO position (vs. vacuum) determined from the onset of oxidation.
e ERed onset is the onset reduction potential determined by CV.
f LUMO position (vs. vacuum) determined from the onset of reduction.
g Electrochemical bandgap. HOMO and LUMO levels were determined, with respect of to ferrocene (as internal standard = � 4.8 eV below

the vacuum level), via empirical relations: HOMO = -[(EOx-0.08) + 4.8] eV, LUMO = -[(ERed-0.08) + 4.8] eV.

Fig. 1 (a) Normalized absorption spectra of polymers in chloroform solution, (b) Absorption spectra of polymers as thin films.
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ethynylene units as linkers to those of analogous polymers

which incorporate thiophene linkers. This will help to ascertain

the effect of ethynylene units on the properties of these poly-

mers. Polymers which have thiophene linkers rather than ethy-

nylene linkers such as PFDTBT, PCDTBT and PPADTBT

have been described in the literature (Almeataq et al., 2013;

Alghamdi et al., 2013; Yi et al., 2011). These polymers exhibit

remarkable hypochromic shifts in comparison with the

ethynylene-based polymers. As an example, ethynylene-based

polymer, PFDEBT displays a significant blue shift at

kmax = 481 nm in films while its thiophene counterpart,

PFDTBT has a kmax = 592 nm in drop cast films. Conse-

quently, the optical bandgap of 2.31 eV for PFDEBT is wider

than that of its thiophene analogue (1.86 eV). The same pat-

tern is observed with PCDEBT and PPADEBT in comparison

with their thiophene equivalent polymers. We attribute the

blue shift in the absorption of the resulting polymers in this

series of polymers is due to employing the acetylene linkers

in alternating D-A polymers, which adopt more favoured

and planar structures upon strong p-p interchain interactions

(Terao et al., 2013). However, the planarity of these polymers

decreased the molecular weights and solubilities of the poly-

mers synthesised. In addition, the optical bandgaps were rela-

tively large as a result of incorporating ethynylene spacers as

weak electron-withdrawing units. These results indicate that

the acetylene p-spacers between alternating units have a pro-

found effect on the backbone of conjugated polymers and their

properties. The ethynylene unit has slightly p-accepting prop-

erties as a result of the sp hybridization of its carbon centres

which reduce the overall ICT between the strong p-accepting

benzothiadiazole repeat units and the arylene units flanked

by the ethynylene spacers along the polymer chains in these

polymers. The synthesis of alternating copolymer based on

3,6-carbazoles as electron donor units with benzothiadiazole

(BT) as electron acceptor units using ethynylene spacers has

been reported (Michinobu et al., 2008). In comparison with

2, 7- PCDEBT and its counterpart, the change of ethylene

positions between carbazole donor and BT acceptors over

the polymer chains did not show main differences in the optical

properties of these polymers. The absorption maxima of 2, 7-

PCDEBT in CHCl3 solution exhibits little red-shifted

compared to 3, 6- PCDEBT in CH2Cl2. This is probably due

to solvatochromic effect. Consequently, the optical bandgap

of 2.26 eV for 2, 7- PCDEBT is smaller than that of its ana-

logue (2.30 eV).

2.3. Electrochemical properties

Cyclic voltammetry (CV) studies were used to investigate the

electrochemical properties of the polymers. The CV measure-

ments were conducted on the polymers using drop-cast films

in acetonitrile with tetrabutylammonium perchlorate as the

electrolyte at scan rate of 100 mV/s under inert conditions.

The cyclic voltammograms are shown in Fig. 2 and the

HOMO and LUMO energy levels (vs vacuum) of the polymers

as calculated from their first onsets of oxidation or reduction

waves are summarised in Table 2. PPADEBT displayed a

HOMO energy level of �5.68 eV which is comparable in value

to that of PCDEBT, suggesting comparable electron donating

ability of the 2,6-linked anthracene units and the 2,7-linked

carbazole repeat units. PFDEBT displays a slightly lower lying

HOMO energy level relative to the other two polymers at

�5.72 eV due to the reduced electron donating properties of

the fluorene repeat units. However, the variation in the posi-

tion of the HOMO levels of this series of polymers is not

majorly affected by the nature of their electron donating moi-

eties. It can be seen from Table 2 that the change of donor

moieties affects the LUMO energy levels of the polymers to

a greater extent. Incorporation of acetylene units between

the BT units and the other electron donor units over polymer

chains reduce the donating ability of donor moieties over poly-

meric chains as a result of the slight electron accepting proper-

ties of the acetylene units therefore the HOMO levels of the

resulting polymers are unaffected by the different donor moi-

eties. The LUMO level of PFDEBT (-3.21 eV) is about

0.1 eV closer to the vacuum level than the other two polymers

in this series of polymers, PCDEBT and PPADEBT which dis-

play similar LUMO levels at �3.31 and �3.34 eV respectively.

These results indicate that varying the electron donor units in

these polymers perturb more the electron accepting ability of

the main chain of polymers in these materials.

A comparison of the electrochemical properties of the

resulting polymers, PFDEBT, PCDEBT and PPADEBT with

their thiophene analogues reveals considerable lowering of

the HOMO energy levels for the ethynylene-based polymers,

resulting in wider bandgap polymers when compared to their

thiophene counterparts. Indeed a series of thiophene ana-

logues, PFDTBT, PCDTBT and PPADTBT reported in the

literature (Almeataq et al., 2013; Alghamdi et al., 2013; Yi

et al., 2011), display deeper HOMO energy levels and smaller

bandgap polymers relative to the new synthesised ethynylene

polymers in this series. Incorporation of ethynylene units as

weak electron-withdrawing units in the main chain of conju-

gated polymers instead of the electron donating thiophene

units is responsible for lowering the HOMO energy levels of

the resulting polymers upon decreasing the electron donating

ability of the donor segments on the polymer chains (Li

Fig. 2 Cyclic voltammograms of the polymer films.
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et al., 2011), resulting in an enlarged bandgap. As an example,

the HOMO level of the ethynylene polymer PFDEBT is

�5.72 eV while the HOMO level of its thiophene analogue

PFDTBT at �5.34 eV. A similar comparison indicates that

the HOMO level of PPADEBT is at �5.68 eV while that of

its corresponding thiophene analogue PPADTBT has a

HOMO level at �5.44 eV. These findings indicate how the

ethynylene units could increase the planarity of polymer chains

while at the same time changing the electronic properties of the

resulting polymers and increasing their energy bandgaps.

Comparison of the electrochemical properties of polymers

without acetylene units with those that have acetylene units

should ascertain the effects of incorporating acetylene linkers

over the main chains of the polymers. The is properties of

ethynylene-based polymer (PCDEBT) displayed better electro-

chemical properties compared to its analogue without ethyny-

lene spacers which was synthesised by Squeo and co-workers

(Squeo et al., 2019), this comparison indicated that PCDEBT

has shallower lying HOMO energy levels (�5.66 eV) relative

to its counterpart at � 5.80. The LUMO level of PCDEBT

counterpart (�3.01 eV) is about 0.3 eV closer to the vacuum

level than the ethylene-based polymers at – 3.31 eV although

these polymers possess same donor (carbazole) and acceptor

(BT) units except linker units. The introduction of ethynylene

units over the main polymeric chains results in lower bandgap

compared to its counterpart due to adopt of more planar struc-

tures which improves the interaction packing of the polymer.

2.4. Thermal properties and XRD studies

Thermogravimetric analysis (TGA) studies were performed on

the polymers under a nitrogen atmosphere at a heating rate of

10 �C/min. The TGA plots (Fig. 3) suggest that these polymers

possess good thermal stability with decomposition tempera-

ture (Td) (5% weight loss) over 240 �C except PFDEBT which

showed low thermal stability. The TGA curves reveal that the

5% weight loss temperature (Td) for PFDEBT, PCDEBT and

PPADEBT were found to be respectively at 240 �C, 249 �C and

330 �C. For all polymers, the first step in the degradation can

be ascribed to loss of alkyl and alkoxy chains from the donor

moieties of the polymers. Above 500 �C, degradation of the

polymer chains follows with a total weight loss of about

92%, 89% and 93% respectively for PFDEBT, PCDEBT

and PPADEBT that is observed when the temperature is above

600 �C. The sufficient thermal stability of these polymers is

related to the good thermal stability of BT units in the result-

ing polymers. For the purpose of comparison, PPADEBT

exhibited a higher thermal stability with two step degradations,

while PFDEBT and PCDEBT showed an apparent three step

degradation process. The outcomes revealed that different

thermal behaviours of these polymers come from varying elec-

tron donor moieties of these polymers. Generally, the thermal

stabilities of these polymers are adequate for their applications

in solar cells and other electronic devices.

Powder X-ray diffraction profiles of polymers PFDEBT,

PCDEBT and PPADEBT were recorded (Fig. 4). A more pro-

nounced diffraction peak appeared at 2h value of 20.6� for

PPADEBT, suggesting the polymer adopt a relatively more

ordered structure in the solid state compared to the other

two polymers. This corresponds to a p-p distance of 4.30 Å

between polymer chains. PFDEBT and PCDEBT display weak

and broad peaks in the wide-angle region at 2h values of 20.7�

and 20.8�, respectively. Clearly the low intensity of these

diffraction peaks indicate that these two polymers adopt more

amorphous structures with a distance of 4.29 and 4.27 Å

between polymer chains for PFDEBT, PCDEBT, respectively.

Interestingly, all polymers do not display any apparent peaks

in the low-angle region. It can be seen that introduction of

the anthracene-donor moiety in this series of polymers leads

to more p-p stacking in the polymer backbones by increasing

intermolecular interactions thus increasing the planarity of

polymer chains and reducing the bandgap of polymers.

Improved molecular packing of polymer chains is required

for efficient charge carriers in BHJ devices. Thus, we believe

that device fabricated from PPADEBT should provide

improved charge carrier mobilities and Jsc values; as a result

of the enhanced p-p stacking of polymer chains.

3. Conclusion

In this study, a series of new D-A conjugated polymers

PFDEBT, PCDEBT and PPADEBT containing acetylene p-

spacers in the main backbone of conjugated polymers were

synthesised based on 2,7-linked fluorene, 2,7-linked carbazoleFig. 3 TGA plots of the resulting polymers with a heating rate

of 10 �C/min under N2.

Fig. 4 Powder XRD profiles of the target polymers.
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or 2,6-linked anthracene repeat units as donor moieties and

2,1,3-benzothiadiazile (BT) alternate repeat units as acceptor

moieties. The polymers were successfully prepared by the

Sonogashira cross-coupling reactions. Moreover, their optical,

electrochemical, thermal and structural properties were sys-

tematically investigated. The resulting polymers were obtained

in low yields in view of their low solubilities. The introduction

of ethynylene linkers over the main chains of polymers will

adopt more planar conformations, resulting in the reduced sol-

ubilities and molecular weights of polymers. Compared with

the thiophene-based polymers, the ethynylene-based polymers

displayed more pronounced blue-shifted absorption spectra

and larger bandgaps owing to the incorporation of acetylene

units into the alternate D-A polymers. This phenomenon is

arisen from the electronic effects, since the ethynylene units

can be considered as weak electron acceptors. PPADEBT exhi-

bits a lower bandgap relative to the other two ethynylene-

based polymers. It also exhibits wider absorption bands and

absorption shoulders than the other two polymers owing to

its extended conjugated system. Incorporation of ethynylene

linkers in this series of polymers leads to deep HOMO energy

levels relative to other analogous donor–acceptor polymers.

Further investigations into the use of this new class of poly-

mers in BHJs are currently underway.
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