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Abstract

One of the approaches to exploit temporal redundancy in

compressive sensing reconstruction of spatio-temporal signals

is the Running Gaussian-based Referenced Compressive

Sensing. It uses the weighted-average of all prior reconstructed

instances as a reference to reconstruct the next instance with

high accuracy. The performance of this approach depends

on the weight called learning parameter. This work studies

the relationship between the learning parameter and the

reconstruction accuracy. We show that the small value of the

learning parameter is more suitable for natural signals with

dynamic sparse supports. We also propose a dynamic optimal

learning parameter that provides good reconstruction accuracy

for all signals. Out experimental results show that the proposed

optimal learning parameter outperforms all fixed values of

learning parameter in natural video sequences reconstruction.

1 Introduction

Compressive sensing (CS) is an acquisition framework which

enables the reconstruction of a full-length signal from its under-

sampled measurements. Compressive sensing, introduced in

[1, 2], has become of interest in various fields of research

because of its ability to perform sub-Nyquist sampling.

There are two major components for a successful compressive

sensing. The first component is the sensing operation. Given

an n-dimensional signal x ∈ R
n, compressive measurements

y ∈ R
m, m ≪ n, is obtained using a sensing operator:

y = ΦΨx, (1)

where Ψ is a sparse basis for x and Φ is an under-

sample operator. Together, they form a sensing matrix

A ∈ R
m×n,A = ΦΨ.

The second component of compressive sensing is the

reconstruction operation that reconstructs a full-length signal

x̂ ∈ R
n from the compressive measurements y. The linear

system in Eq. (1) is undersampled, to solve for x̂, the

reconstruction is done using a convex optimisation. If the

signal Ψx is sparse, the best approximation x̂ is the sparsest

solution in the feasible set of solution. Given that the sensing

matrix A satisfy the incoherence property [3] and that Ψx is

sufficiently sparse, we can obtain x̂ ≈ x with high probability.

The optimal solution to the optimisation problem

min
x̂

‖Ψx̂‖1 subject to Ax̂ = y (2)

is the sparsest solution x̂.

However, in practice, reconstruction of signals by purely

maximising their sparsity has limitations. Most real-world

signals are not sufficiently sparse as they contain many

small non-zero elements. Maximising of sparsity alone

does not work well with these small non-zero elements

and tends to result in reconstruction error. To improve

the reconstruction accuracy, a priori information has been

exploited in reconstruction operator. To date, several

reconstruction methods using side-information have been

proposed. They exploit the fact that many characteristics of a

signal are shared between its neighbours. This is true in most

natural signals, particularly in video sequences [4], multi-view

imaging [5], and clinical imaging such as the magnetic

resonance imaging (MRI) [6, 7]. The use of side-information

generally improve the accuracy of the reconstruction results

as well as reducing the number of measurements required.

Several methods incorporate side-information successfully

including sparse support estimation [8], model-based CS

[9], Kalman-filtered CS[10] and group reconstruction[5].

The video sequences, in particular, are of special interest,

because they contain high level of temporal redundancy that

can be used easily as side-information. This redundancy

is successfully exploited in Distributed Compressive Video

Sensing (DCVS) [11].

In our previous works [12, 13], we have proposed the

generalised approach to exploit the temporal redundancy.

This method, which we refer to as Referenced Compressive

Sensing, tries to minimise the error between a signal of

interest to a reference, an arbitrary signal that is known to

be close to the signal of interest. Also, we have shown that

the reconstruction error is limited by the distance from the

reference to the signal. We also proposed a running Gaussian-

based reference estimation that improves the performance

of the Referenced CS. This estimator works by using the

weighted average of all reconstructed frames as a reference.

The weight, which is referred to as the learning parameter

0 ≤ α ≤ 1, governs to characteristic of the estimated

reference.

To date, however, there is no study on the relationship between



the learning rate α and the reconstruction accuracy. The main

contribution of this work is to study such relationship, as well

as establish the optimal learning parameter. Our main result

finds that the learning parameter impacts the reconstruction

differently depending on the changes of the locations of

sparse supports (the positions of non-zero coefficients). Also

the dynamic optimal learning parameter, which provides an

optimal performance regardless of supports’ changes, is shown

to work best in natural video sequence reconstruction.

2 Running Gaussian-based Referenced Compressive

Sensing – Revisited

As introduced in our previous works [12], the accuracy of

compressive sensing reconstruction can be improved greatly

by exploiting the redundancy between signals. This is done

by minimising the error between a signal and its correlated

reference, which is an arbitrary signal very close to the signal of

interest. We refer to this reconstruction approach as Referenced

Compressive Sensing (Referenced CS).

Consider a large signal, such as an image or a video sequence,

that can be viewed as a collection, denoted C, of several

smaller signals. There are k signals xi ∈ C,xi ∈ R
n, i =

1, 2, ..., k, where n is the length of each signal xi. Here we

define the correlated reference r.

Definition 1. For any signal x, a correlated reference r of x is

a signal such that r ∈ R
n and

‖r− x‖2 ≤ ǫ, (3)

for a small 0 < ǫ ≪ ‖x‖.

The distance between the reference r and x is denoted δ = ‖r−
x‖2. The pair of x and r can be anything, e.g., images of the

same scene, different rows of the same image, for examples. In

this work, however, our focus is on the spatio-temporal signals

such as video sequences. In this type of signal, the pair of x

and r can be different instances of the same sequence.

In [12], we shows that the reconstructed signal x̂ of x has a

guaranteed bound described by the reference distance δ.

Proposition 1. Given a sensing operator A ∈ R
m×n, a

compressed measurement y ∈ R
m,y = Ax, and a correlated

reference r, the least l1-norm reconstruction x̂1, which is the

solution of

min
x̂

‖x̂− r‖1 subject to Ax̂ = y, (4)

satisfies

‖x̂1 − x‖2 ≤ 2δ. (5)

The proof of the Proposition 1 can be found in [12].

Donoho’s Lemma 3.1 in [1] holds that for any x̂ ∈ X̂A,y,

‖x̂− x‖2 ≤ 2En(X̂A,y), (6)

where En(X̂A,y) denotes the optimal solution in the feasible

set X̂A,y. This implies that the Referenced CS solution in

Proposition 1 is at worst equivalent to the optimal solution of

l1-minimisation. The best performance, however, depends on

the reference distance δ. Therefore it is essential to choose the

reference in that fashion that minimise δ.

One easy way to exploit the redundancy between frames in a

video sequence is to use a reconstructed frame as the reference

for reconstructing the next frame, i.e., set rt = x̂t−1 at instance

t. The problem with this approach is that by doing so, the

reconstruction error are propagated from frame to frame. This

results in the accumulated amount of error in the reconstructed

sequence. In [13], we proposed the Running Gaussian-based

reference estimator to cope with this error propagation issue.

This estimator, inspired by Running Gaussian Average and

Gaussian Mixture techniques, uses the combination of all

the reconstructed frames of the same sequence to estimate

the references. Running Gaussian estimator models the

reference r as a vector of random variables drawn from normal

distribution, i.e.,

r = {rj : rj = N (µ, σ2)}, (7)

where µ and σ2 are the mean and the variance of the

distribution. We defined the update rule of rt, the reference at

instance t, as

rt = αx̂t−1 + (1− α)rt−1. (8)

The parameter α is called a learning parameter. It governs the

update rate of the estimation. The α → 1 gives the system that

is more sensitive to the changes of signal’s contents, making

the reference more resemble to the latest reconstruction. The

low α → 0, however, makes the system more robust to

reconstruction error propagation. However, currently there is

no study on the relationship between the learning parameter

and the reconstruction performance. The learning parameter,

so far, is fixed empirically to a scalar, and there is no optimal

learning parameter for any arbitrary signal.

3 Learning Parameter for Referenced Compressive

Sensing

This section presents our main results. Here, we study

the relationship between the learning parameter and

the reconstruction accuracy. Also, the optimal learning

parameter will be defined such that it negates the propagated

reconstruction error from the estimated reference.

To study the relationship between the learning parameter and

the accuracy, we employ Monte Carlo method. Here we



compute the reconstruction error in term of Peak Signal-

to-Noise Ratio (PSNR) from the sets of constructed sparse

sequences X. Each sequence x ∈ X is a sparse signal with

k non-zero elements,i.e., k-sparse, for a small k. Both the

locations and magnitudes of the sparse supports of x1, the first

instance of X, are drawn from uniformly random process. To

generate other instances xi ∈ X, i > 1, while maintaining their

likeliness with x1, we employ the following procedure:

1. A new support is randomly added to the supports set of

xi. Its magnitude is drawn randomly.

2. An existing support of xi is randomly removed. Its

magnitude is reset to zero.

3. Each element of xi is multiplied by a random gain 0.9 ≤
γ ≤ 1.1.

4. Each support, along with its magnitude, of xi is randomly

shifted.

Each sparse set X is then compressively sampled and

reconstructed using Referenced CS in Eq. (4). The reference

used for the reconstruction is estimated using the Running

Gaussian estimator in Eq. (8) using varying value of the

learning parameter α. Two groups of X, each contains the

total of 1000 sets of X, are employed in Monte Carlo. The first

group of X is created without using the last procedure, i.e., no

shift in the locations of the sparse supports. Figure 1 shows the

scatter plot between the PSNR and the learning parameter α
of this group. It can be seen using a regression line that, when

the sparse supports are stationary, the large value of α provides

the results with highest PSNR with highest probability. The

use of the naive reference (α = 1) also provides a very good

accuracy, thus the use of Running Gaussian estimator is trivial.

The second group of X is created with the random support

shift procedure. In can be seen in Figure 2 that the situation

is reverse when the sparse supports are no longer stationary.

In this case, the use of small values of α gives better

reconstruction accuracy than the large values. The middle

range of α provides a middle ground for both signals with

stationary and non-stationary supports.

Instead of using a fixed learning parameter α, it is possible

to use a dynamic rate. Given a collection of spatio-temporal

signal C, we can express the reconstructed signal x̂t of xt ∈ C
as

x̂t = xt + et, (9)

where et is the reconstruction error. We assume that et is

a vector of random variable drawn from a random process

E of some unspecified distribution. Suppose we require the

reference rt+1 to be an average of the first t instances of x̂, i.e.,

rt+1 =
1

t

t∑

i=1

x̂i. (10)

Figure 1: Relationship between the learning rate α and

reconstruction accuracy when sparse supports are stationary

Figure 2: Relationship between the learning rate α and

reconstruction accuracy when sparse supports are dynamic

Since

rt =
1

t− 1

t−1∑

i=1

x̂i, (11)

we can derive that

rt+1 =
1

t
x̂t +

t− 1

t
rt. (12)

Thus, by setting α = 1

t
for any value of t makes rt to be the

average of the first t− 1 instances of x̂.

The learning parameter α = 1/t is optimal. By expressing

Eq. (11) in terms of Eq. (9), we can see that

rt =
1

t− 1
[(x1 + e1) + (x2 + e2) + · · ·+ (xt−1 + et−1)]

(13)

=
1

t− 1
[(x1 + · · ·+ xt−1) + (e1 + · · ·+ et−1)]. (14)



Since each e term is drawn from a random process, by

Central Limit Theorem, when t is large, the distribution of

the summation of e becomes a normal distribution. Thus, we

obtain

rt ≡

∑t−1

t=1
xi

t− 1
+

(t− 1)N (0, σ2)

t− 1
(15)

≡ x̄t−1 +N (0, σ2), (16)

where x̄t−1 is the average of the first t − 1 instances. By

using Monte Carlo, the average PSNR when using this optimal

learning parameter is 28.23 dB for the stationary supports

group and 29.72 dB for the dynamic group.

4 Experimental Results

In this section, the proposed reconstruction method is

employed to reconstruct real video sequences. The dataset

used in this experiment consists of 14 video sequences.

These sequences are grouped into 3 categories: low activity

sequences, medium activity sequences, and high activity

sequences. Low activity sequences contains very low amount

of motion and are virtually static. In high activity sequences,

on the other hand, the amount of motion is significant and is

the dominant feature of the sequences. The medium activity

sequences have the natural amount of motion between these

two extremes.

The sequences are compressively sampled and reconstructed.

The reconstruction is done by solving the optimisation

problem in Eq. (4). Several strategies for choosing the

correlated reference r are compared between each other in

this experiment. The most simplest reference is the naive

reference that uses the immediate reconstructed frame as a

reference for the next frame, i.e., rnaivet = x̂t−1, at time t.
The Running Gaussian references are estimated using fixed

learning parameter α = 0.1, α = 0.3, and α = 0.5, as

well as the proposed adaptive optimal learning parameter

α = 1/t at time t. The reconstructed results using these

references are also compared with the reconstruction using

lossless references. The lossless reference is the controlled

benchmark, obtained directly from the full-length data without

compressive sensing, i.e., rlosslesst = xt−1. Such reference is

of course unavailable in practice and is shown here only for

comparison purpose.

Figure 3 shows the examples of the reconstructed sequences.

Each row in Figure 3 shows the results obtained using a

different kind of references. The sequences in the first and

second columns are the examples of low activity sequence.

The third and forth columns are the examples of medium

activity sequences, while the last column shows the examples

of high activity sequences. It is clear that, in all sequences,

the reconstructions using references with optimal learning

parameter have much better visual quality than the results

using other references. It also shows that the results obtained

from α = 0.1 references are better than those obtained

from α = 0.5 references, and that the results using naive

references demonstrate the lowest visual quality. This follows

the discussion in Section 3 that when the locations of signal’s

supports are not stationary, the small value of α provides

the most robust reconstruction results. Most supports of

natural sequences are not stationary, particularly the supports

of high frequency components, thus the small α provides the

results with more accuracy than the larger ones and the naive

reference (which is α = 1). This observation is verified by

Table 1, which shows the peak signal-to-noise ratio (PSNR)

of each reconstructed sequence using each reference. This

table confirms that the optimal parameter outperforms all fixed

learning parameters in natural sequences reconstruction. It also

confirms that the small α outperforms larger values of α. Also,

it shows that these effects of the learning parameter are more

prominent when the activity level in the sequence is higher. As

such, the difference in reconstruction quality using different

learning parameter for references can be observe more easily

in high activity sequences than in low activity sequences.

Table 1: Peak Signal-to-Noise Ratio of reconstructed video

sequences using various types of references

Lossless Naive α = 0.5 α = 0.3 α = 0.1 optimal

Low activity sequences

1 46.16 34.79 34.96 35.20 35.43 35.59

2 47.76 35.17 35.48 36.69 36.94 36.94

3 44.64 25.75 25.78 25.78 25.89 32.87

4 40.13 34.06 34.58 35.19 35.93 37.16

5 46.05 37.18 37.42 38.05 38.87 39.24

Medium activity sequences

6 37.53 31.53 31.36 32.37 32.50 33.56

7 35.37 29.66 29.96 30.62 31.24 32.11

8 41.08 32.20 32.70 32.81 33.08 33.56

9 44.78 34.63 34.73 35.75 35.79 36.09

10 42.89 32.31 32.45 32.55 33.06 33.11

11 41.98 31.55 31.84 32.57 32.74 33.17

High activity sequences

12 35.88 29.54 29.73 30.55 31.05 32.04

13 36.56 29.60 29.76 30.36 30.82 32.61

14 41.30 31.85 32.06 32.76 32.83 33.18

5 Conclusions

In this paper, we have discussed the relationship between

the reconstruction accuracy and the learning parameter in the

running Gaussian-based Referenced Compressive Sensing. We

have shown that the effect of the learning parameter depends

on the changes of the locations of sparse supports. That is, the

large value of learning parameter is suitable for the signals with

stationary supports, whereas the smaller values work better

with the signals with dynamic supports. As most natural

signals have dynamic supports, the small learning parameters



Low activity Low activity Medium activity Medium activity high activity

(a) Lossless reference

(b) Optimal reference

(c) Reference with α = 0.1

(d) Reference with α = 0.3

(e) Reference with α = 0.5

(f) Naive reference

Figure 3: Examples of reconstructed sequences using various types of references

work better with such natural signals. We also defined the

optimal learning parameter with the aim to eliminate the

propagation of reconstruction error in the reference. This

optimal learning parameter is shown to outperform any fixed

values of parameter in natural video sequences reconstruction.
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