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The residential reuse of greywater has attracted interest in recent years as a strategy to face 

water security problems. Nowadays, some cities such as Santiago de Chile are seeking to 

promote new laws that allow residential greywater reuse and make the incorporation of the 

necessary infrastructure (machinery and a parallel pipe system) mandatory for new buildings. 

The success of any such schemes, in terms of the amount of mains water that can be saved, is 

clearly influenced by the decision that individual consumers make on whether or not to use the 

parallel system,  as they will also be the ones to face the potential externalities produced by the 

system (e.g., odours, noise from technology). Understanding and anticipating the behaviour of 

individuals is not an easy task, especially in the context of systems not yet widely implemented, 

but the groundwork has been laid with the application of approaches that allow analysts to 

determine the heterogeneity in consumer preferences based on the qualities of the product or 

service. However, there has been a lack of focus on making predictions that quantify the impact 

of acceptability on the volume of water recovered, driven in part by methods that been applied. 

This paper presents a way of predicting policy effectiveness and potential greywater reclaim 

benefits based on individuals' preferences. For this, we use two existing models that allow us 

to make predictions of greywater reuse for different domestic purposes. In a case study 

application to the city of Santiago de Chile, we carry out scenario tests to predict the potential 

uptake under potential future policy settings and show how allowing for an additional permitted 

use of greywater could save several hundred litres of water per month per household. 

Keywords: greywater reuse; water reuse policies; prediction of greywater reclamation; stated 

preference; choice modelling 

1. INTRODUCTION 

A sufficient and reliable supply of water is crucial to the health and wellbeing of people. In this 

context, one such approach receiving increased attention is the reuse of greywater, which 
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involves storage and recycling of water previously used for hand washing, bathing, or laundry.  

Reusing treated greywater reduces the requirement for high quality treated water from the 

mains distribution systems for activities such as toilet flushing and garden irrigation. Greywater 

does not contain faeces, food residues, oil and fats, making it easier to treat (Lambert and Lee, 

2018), and there are now technologies to treat greywater for non-consumptive (e.g. through 

biological treatments) or consumptive activities (e.g. through biological processes combined 

with solids separation, filtration and disinfection practices) that can be deployed in-situ in 

households (Fountoulakis et al., 2016; Jefferson et al., 2004; Li et al., 2009; Wu, 2019). 

The implementation of greywater reuse schemes in Australia, California, India, Singapore, 

Spain and areas of South Africa, has revealed that treated greywater reuse in cities can provide 

clear environmental benefits and improve water security (Wilcox, Nasiri, Bell, & Rahaman, 

2016). These schemes have shown that the reduction in the demand for water from the mains 

system can range from 30% to 80%. This wide range is attributed to two factors. First, 

regulatory restrictions will limit the allowed uses for public health reasons. Second, the amount 

of water that can be saved depends on consumer preferences (i.e., whether people are actually 

willing to reuse greywater if allowed). There is evidence that this willingness is heterogeneous 

among individuals (Ilemobade et al., 2013; Wester et al., 2015), that is, two people may 

perceive reusing water differently, which directly impacts the potential uptake of greywater 

reuse and therefore, the success of management measures (Lefebvre, 2018; Muthukumaran et 

al., 2011; Subramanian et al., 2020; Roshan and Kumar, 2020; Vuppaladadiyam et al., 2019).  

Deployment and uptake of greywater reuse must be enabled by appropriate laws and policies, 

and the above discussion suggests that successful laws and policies need to consider the role 

of end user preferences. The ideal way of understanding user’s uptake of greywater reuse would 

clearly be to acquire this knowledge from evidence based on real-world policy schemes. 
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However, in cities that are starting to allow residential water reuse, much time and money 

would be required for the implementation and monitoring of pilot practices (Wanjiru and Xia, 

2018), and this has made basing regulations on the results of practices of other locations an 

appealing solution. While the implementation and use of greywater reuse systems elsewhere is 

a key input for cities that want to integrate greywater reuse as part of their supply sources, the 

direct transfer of policies and regulations could lead to unsuccessful outcomes due to 

differences between areas (Ormerod et al., 2019). Indeed, as with any innovation, the extent to 

which practices of greywater reuse is transferable between cities is unclear (Wester and Broad, 

2021). 

Until now, insights into individuals’ responses to water reuse schemes have been based on 

social and psychological interpretations of the individual (Dolnicar et al., 2011; Fielding et al., 

2019; Goodwin, Raffin et al., 2018; Hartley, 2006). Different approaches can be used to 

understand these public responses towards reuse (Smith et al., 2018), such as methods based 

on the theory of planned behaviour (Ajzen, 1985), random utility models (Domencich and 

McFadden, 1975), statistical analysis, for example using Statistical Package for the Social 

Sciences SPSS (see some aplications in Buyukkamaci and Alkan, 2013; Gu et al., 2015). In 

addition, there has been interest in approaches that are more focused on guiding and monitoring 

behaviour change, such as the Focus, Opportunity, Ability, and Motivation (FOAM) that aims 

to understand who is the target audience and what is the desired behaviour (Coombes and 

Devine, 2010).  

The most valuable cross-disciplinary insights that these methodologies can bring to the field of 

water reuse is that they have highlighted that consumer preferences, and thus acceptability, a 

key element in the success of any policy, can be linked to different factors such as mental, 

physical and/or cultural associations (Hurlimann and Dolnicar, 2016; Mankad and Tapsuwan, 
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2011; Wester and Broad, 2021;Stithou et al., 2012), and can vary by geographic location 

(Ormerod et al., 2019; Beveridge et al., 2017; Budziński et al., 2018; Czajkowski et al., 2017). 

These studies have also provided guidance and allowed to monitor behaviour change (Aldirawi 

et al., 2019; Coombes and Devine, 2010). However, although the identification of the most 

promising target audience for new schemes is a very important step, many of these studies do 

not make the transition from the academic field to the real world for policy design. Specifically, 

there is a gap in using these methods to make forecasts or evaluate the pre-implementation 

feasibility of measures in terms of designing policies and regulations for cities without 

widespread current greywater reuse. Importantly, the ability to do so depends not just on the 

interest of the analyst, but on the analytic approach used for uncovering preferences. 

In this paper, we make use of the insights from such past work, but with a particular focus on 

using the results from consumer preference studies in making predictions of the potential 

effectiveness of different policy schemes. Our attention is focussed on areas where greywater 

reuse is not a widely implemented practice, where this study considers the scenario of a city, 

Santiago de Chile, where the residential reuse of greywater is legally permitted (Law 21,075 

of 2018) for two uses, toilet flushing and garden irrigation, but as yet there are no official 

technical regulations supporting the actual implementation of the law. We propose an 

integrated framework to build bridges between theory and practice, taking quantitative results 

from modelling work that measures the impact of both quantitative and qualitative variables 

on potential uptake, and using them for policy evaluation through scenario testing. This final 

component is often a key missing step in academic work on consumer behaviour.  

The integrated assessment framework suggested in this work focuses on five objectives 

(described later) that seek to understand individual water reuse preferences based on 

knowledge of who makes decisions about greywater consumption and why, where specific 
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decisions are reached, how much these are likely to impact on water consumption, and what 

would happen if there were a change in policy or a shift in behaviour. Given that the central 

objective of this paper is to move from mathematical models to policy design, we rely on the 

outputs of previously estimated models. In particular, two different model structures belonging 

to the family of Discrete Choice Models (DCM, cf. Train, 2009) were used in the work 

providing the inputs to this paper. DCM are mathematical structures that seek to explain the 

role of product and consumer characteristics in decision making. They have been used in 

different areas such as environmental assessment (Hoyos et al., 2015), flood impact reduction 

(Veronesi et al., 2014), water collection systems (Lu et al., 2019), technology (Su et al., 2018), 

health (Minton et al., 2017) and transport (Ortúzar et al., 2014). These models are grounded in 

micro-economic theory and are suitable for making predictions of future behaviour (Ortúzar 

and Willumsen, 2011 Chapters 3, 7, 8 and 9,  Hess and Daly, 2014), yet also allow for the 

inclusion of psychological features (Hess et al., 2018).  

While the two models used in this paper differ in their structure and approach, they both share 

the key aim of capturing heterogeneity in preferences across consumers. The first, reported in 

Amaris et al.  (2021a), is a latent class (LC) model used to identify segments in the population 

with different behaviour/preferences according to their sensitivities to changes in the greywater 

service. The second, reported in Amaris et al. (2021b), is a hybrid choice (HC) model used to 

capture the heterogeneity in preferences, based on individual characteristics and psychological 

constructs towards greywater. It is important to highlight that much of the work in this area 

makes use of experimental techniques rather than “real world” decisions, especially for choices 

involving new products and/or services. The same applies when seeking to understand the 

response to characteristics that are difficult or impossible to measure in real choices, such as 

risk, or characteristics with insufficient real-world variation to capture changes in behaviour, 

such as key qualitative attributes like noise and smell. 
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Alongside the specific geographic setting and application context addressed in this paper, the 

work presents a general illustration of how results from such studies can be further processed. 

This can provide insights into the potential impact of changes in sensitivities and attitudes, as 

well as public policies in urban environments, motivating strategies that integrate social and 

economic components, as well as technical ones. This work should facilitate the transition of 

methodological work from academia into real-world practice, aimed at developing approaches 

to motivate the implementation of residential greywater reuse as a water management strategy. 

Additionally, we use this analysis to assess the potential effectiveness of the current greywater 

laws, contrast them with alternative rules, and thus determine the potential of the city to 

implement a new parallel integrated system of greywater and drinking water. 

2. CASE STUDY FOR SANTIAGO DE CHILE 

The study area is Santiago (Chile), a large city with no prior experience with residential 

greywater reuse, but where a new law requires collection, reuse and disposal of greywater in 

new properties (Law 21,075 of 2018). Santiago is an urban area located in the Metropolitan 

Region of Chile which covers an area of 641.4 km2 and is administratively divided into 37 

municipalities (Figure 1).  

 

 
 
 

 
 
 
 
 
 
 
 

 
 

Figure 1. Study area. 
a. Chile by Regions; b. Streamflow m3/s; c. Municipalities 

c. 
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There are three reasons to use Santiago as a case study; it is an area with i) water security risks, 

ii) a growing and changing population, and iii) residential greywater reuse is allowed by law 

and mandatory for new buildings. A more detailed description of each one is presented below: 

(i) Water security risks.  

The potable water supply comes predominantly from the Maipo River, supported by the 

Mapocho River, the Yeso reservoir and some groundwater wells (Meza et al., 2014). Almost 

90% of the population receives its water supply and sewage services from a private company 

called Aguas Andinas. Currently, residential water demand per capita averages 150 l/day, but 

can be as high as 600 l/day in some neighbourhoods, depending on the presence and size of 

gardens (Bonelli et al., 2014). Water losses due to pipe leaks in the mains water system are 

around 30% (Aguas Andinas, 2019).  

The Metropolitan Region has severe water deficit problems and is predicted to become the area 

with the highest deficit in Chile by 2025 (Valdés-Pineda et al., 2014), with periods between 

one to four weeks of very low flows (Vicuña et al., 2018). In 2014, for example, 102 districts 

across Chile declared a state of water emergency for four consecutive years because of droughts 

(Fundación Chile - FCH, 2017; Ministerio del Interior y Seguridad Publica, 2014). Despite the 

efforts of Aguas Andinas to strengthen the main drinking water system, it continues to be fragile 

in the face of significant threats due to climate variability, climate change and population 

growth (Vicuña et al., 2018). 

(ii) A growing and changing population.  

Approximately 40.5% of the Chilean population lives in the Metropolitan Region, and the large 

majority of these people (93%) live inside the urban area. The overall population is growing, 

although the rate is low (1%), and socio-demographic characteristics such as age and family 
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composition are changing. Furthermore, the growth of private homes between 2002-2017 in 

the Metropolitan Region was 44.9%, while increaseing population density has led to 8% of 

households having five or more inhabitants per room, and are considered to be critically 

overcrowded (INE, 2018). 

(iii) Regulation to allow greywater reuse.  

Given the extent and severity of the 2014 drought in Chile, Law 21,075 was published in 2018 

to allow for the regulation, collection and reuse of greywater in urban and rural areas of the 

Metropolitana Region. The law has three key components. 

• It sets out the requirements to request authorization for the operation of a greywater 

system. 

• It determines which urban uses are permitted (sanitary devices and garden irrigation - 

Article 8), and which are not permitted (human consumption, swimming pools, or any 

other use that the health authority considers risky for health - Article 9). The permitted 

uses require prior approval, and depending on this, the authorities are required to 

establish the quality that the water should have according to the projected use. The 

owner is required to meet certain quality levels for the requested use and, in turn, is 

responsible for the operation and maintenance of the technology (Article 12). 

• It sets out the mandatory installation of greywater reuse systems for new buildings. 

This final point, especially, is a key motivation for research looking at the potential future 

uptake of treated greywater reuse by consumers, given the anticipated widespread future 

availability of the technology in dwellings. 

3. METHODS AND DATA 



10 

3.1.Integrated assessment framework 

In this study, we illustrate a multi-component assessment framework to analyse residential 

greywater reuse preferences and use empirical results to develop policy insights. In particular, 

we rely on mathematical models that can be used to understand and predict consumer decisions 

for real-world applications and illustrate how they offer valuable information for policymaking 

in cities that have no previous experience with greywater reuse.  

The integrated assessment framework suggested focuses on five objectives that seek to 

understand individual water reuse. The first two objectives relate to understanding who makes 

specific decisions on greywater reuse, and why these decisions are reached, by seeking to 

understand the influence of consumer and service characteristics. The third objective is 

concerned with understanding where specific decisions are reached (i.e., studying the influence 

of geographic differences on preferences). The fourth objective looks at how much impact 

greywater reuse could have, that is, seeking to understand the quantitative impact (volume of 

water) of allowing the greywater reuse for different residential uses, considering users’ 

preferences, and also understanding the potential impact of different policies on behaviour 

through scenario testing. Finally, the fifth objective looks at what would happen if there is 

behavioural adaptation and/or changes in policies. We hypothesise that once these questions 

are answered, it should be possible to create insights for policy knowing in advance the possible 

effectiveness of the measures in terms of highest willingness to use, and thus expected water 

demand reduction.  

The framework comprises:  

a) Step 1: collect data on end-user uptake, either from existing experiences or hypothetical 

settings (carefully design and with bases on real experiences); 
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b) Step 2: develop models that allows to quantify the willingness to reuse greywater and 

heterogeneity therein (Who and why); 

c) Step 3: explore individual preferences and heterogeneity, including geographic 

differences expand the results from the sample level to the local population level 

(Where); and 

d) Step 4: use the models to predict behaviour in potential future scenarios, including the 

effect of policy interventions and various management strategies (What if). 

While each individual methodological step is not novel, their integration is, especially with a 

view to making the transition from modelling to practice (i.e., step 4 above).  

It is important clarify that in many cases, including in the present paper, steps 1 and 2 may 

draw from previous studies (i.e., using previously collected data and mathematical models that 

have been estimated before to identify the who and why of preferences in relation to greywater 

reuse). The interrelation between objectives in this framework are shown in Figure 2. 
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Figure 2. Integrated assessment framework for understanding the potential effectiveness of greywater reuse policies within a 

city. 

3.2.Data 

For this study, we are reusing data from a stated choice survey designed to gather information 

to understand quantitatively how the willingness to reuse residential greywater depends on 

qualitative (i.e., colour, odour, uses) and quantitative attributes (i.e., water savings) of 

greywater after treatment. A specific advantage of such data is that it allows us to test how this 

willingness varies as a function of characteristics of the individuals, their attitudes, and their 

sensibilities to changes in the greywater appearance and its intended uses (Amaris, et al., 2020). 

The final data contains information from 510 households covering 29 of the 37 municipalities 

of Santiago. The key components of the database used in this paper concern: 

• Characterization of dwelling and household: 15 questions related to the number of 

household members, their socioeconomic characteristics and their dwelling facilities 
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(e.g., age, gender, house size, presence of garden and coverage percentage, kind of 

coverage – grass or another kind of vegetation). 

• Greywater reuse: six questions with predefined possible answers/ratings were asked 

to gather information related to respondents’ attitudes (e.g., reactions to the concept of 

greywater reuse, confidence in a greywater reuse system). 

• Perceptual indicators: six attitudinal questions were used to capture differences in 

attitudes across respondents: “Water protection will provide a better world for me and 

for my family”, “Water and the environment must be protected for the well-being of the 

entire population”, “We should be more concerned with protecting water than with 

economic growth”, “Everyone can contribute by saving water”, “The claims that there 

is a drought are exaggerated”, and “If the government does not take care of water 

problems, why should I?”.  Responses were captured on a 5 point Likert scale.  

• Stated choice survey: six different hypothetical choice scenarios, where each 

participant had to choose between reusing greywater or not reusing greywater, 

according to the appearance of water, savings and uses. 

All this information is fundamental for the analysis of policies. However, the stated choice 

analysis is at the heart of this study. In what follows, we describe the most relevant information 

about the experimental design and the variables that were considered. 

To understand and quantify the potential demand for greywater reuse in urban settings where 

that practice is not widely implemented, it is necessary to i) collect information about consumer 

behaviour with an instrument specifically designed for that purpose and then ii) develop a 

model to explain users’ preferences. As a next stage, that model can be used to predict demand 

under varying scenarios. 
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Data on consumer decisions is the basis for modelling, and therefore the design of the data 

collection tool (usually surveys) must be carried out with utmost care. The information 

collected by the survey can be obtained either from what decision-makers have been observed 

to choose in real-world settings (Revealed Preference), or what they say they would do in 

hypothetical settings (Stated Preference, generally in the form of Stated Choice amongst 

mutually exclusive options, Louviere et al., 2000). Given that greywater reuse is not a common 

practice in Santiago, the second technique better fits the objectives of this study. 

The Stated Choice (SC) survey starts by showing the respondent a hypothetical environment 

as a baseline, which is later used as the basis for different choice tasks (see Figure 3). 

 

Figure 3. Stated choice example 

 

Baseline: The baseline assumption given to the study participants was that the greywater reuse 

technology would deliver the highest water quality standards (Figure 3a). Hydro4 (see 

3a - Hypotethical environment 

3b - Hypotethical scenario 
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Appendix A) was used as an indicative technology - it is as easy to use as a domestic appliance 

(e.g., washing machine), and, as it is solar powered, it does not add to the energy bill. However, 

and crucially for the hypothetical choice scenarios, the colour and odour of the treated water 

could vary (and differ from mains water) as a result of the treatment. This is consistent with 

residential greywater reuse around the world (Domnech and Saurí, 2010; Ilemobade et al., 

2013; Wester, et al., 2016). 

Choice tasks: 

The technique used here is known as stated preference elicitation, where each respondent faces 

a set of scenarios (Figure 3b. stated choice example) in which a choice must be made between 

mutually exclusive alternatives. Participants could see and evaluate the characteristics of 

greywater after treatment (colour and odour) and the water savings (monetised) that they would 

obtain if they reused water for a specific residential use. The survey considered six possible 

uses: garden irrigation, toilet flushing, laundry, washing hands, shower and drinking. Each 

alternative in the survey considered treated greywater for one use only (with mains water for 

all other uses). Each of these characteristics were based on real experiences in Spain, South 

Africa and the USA (Domnech and Saurí, 2010; Ilemobade et al., 2013; Wester et al., 2016), 

and are described in more detail by Amaris et al. (2020). 

As mentioned before, each respondent faced a set of six choice situations, with the alternatives 

varying between scenarios. The different alternatives presented in the tasks were produced by 

an experimental design that allows the combination of the different levels of each attribute. 

Table 1 shows the levels used for this study, where full details on the experimental design and 

survey can be found in Amaris et al. (2020).  

Table 1. Attributes and levels. Source: Amaris et al., (2020) 
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*expected savings on water bill 

 

3.3. Behavioural models 

3.3.1. Overview 

The models used in this study belong to the DCM family, which seek to explain how 

individuals make different choices as a function of changes in the characteristics that describe 

the product or service they are faced with, in our case through the choice scenarios in the SC 

survey. We specifically rely on Random Utility Maximisation (RUM) structures, which explain 

choices under the assumption that consumers maximize the “utility” or benefit they receive by 

choosing a particular alternative. This utility is based on the characteristics or attributes that 

define the alternative and the sensitivities of the user towards them (Ortúzar and Willumsen, 

2011, Chapters 7–9; Train, 2009; Hess and Daly, 2014). Characteristics that describe the 

good/service can be desirable or undesirable for the respondent, and according to their 

perception, they will choose the option that provides the highest utility or benefit. As the 

process of utility formation is not observed by the analyst, the models incorporate a random 

component and the choices become probabilistic (Train, 2009). 

To better understand the concepts, in simple terms, imagine an individual having two options, 

where option 1 is to reuse water that is transparent and odourless, in return for a 10% savings 

in the water bill, while option 2 is to use the mains supply system and not get any savings. If 

we observe this individual choosing option 1, we can assume that this person feels greater 

satisfaction or utility by maintaining a reasonable level of service and obtaining an extra 

monetary benefit. Now imagine that the same individual is asked to choose an alternative a 

 
Attributes 

colour odour of 

chlorine 

Savings*  Uses 

le
v

e
ls

 

Transparent odourless 10% garden irrigation 

light blue light 20% toilet flushing 

dark blue strong 30% laundry 

- - - washing hands 

- - - shower 

- - - drinking 
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second time, but under different conditions of the greywater service, where the treated water 

now has dark colour and a strong smell of chlorine but would lead to a saving of 20% in the 

water bill. If we now observe the person to choose option 2, and reject the greywater option, 

we can assume that the individual's utility decreases due to their perception of what a good 

quality of service means, and that the increase in savings was insufficient to motivate greywater 

reuse. Returning to the earlier point about heterogeneity in preferences, a second individual 

presented with the same options could choose differently (e.g., always option 2), reflecting 

their different individual tastes. 

A discrete choice model seeks to explain the above process by estimating parameters that 

explain the impact of the attributes of the available alternatives and the characteristics of the 

decision maker in the choices observed in a specific sample. In particular, let 𝑥!,# be a vector 

containing the attributes describing the different alternatives as faced by decision maker n in 

choice situation t (for example colour and odour), with 𝑌!,# giving the observed choice for 

individual n in situation t. The model thus takes the broad form of: 

𝑌!,# = 𝑓(𝑥!,# , Ω)         (1) 

where Ω is a vector grouping together the parameters estimated for the model, and 𝑓() is the 

functional form of the model, including its error structure. While in regression, 𝑌!,# would be 

continuous, in a discrete choice context, the dependent variable can take on a few mutually 

exclusive discrete outcomes (in our case 1, 2 and 3, given the three alternatives in the data). 

Each of these outcomes has a probability between 0 and 1, and the probabilities sum to 1 across 

alternatives. As explained above, we make use of the notion of utility maximisation, where 

each alternative has a given utility for an individual that is a function of the attributes of that 

alternative and the sensitivities of the individual. The individuals choose the option that gives 
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them the greatest utility. Notwithstanding extensions to non-linear specifications, the utility for 

a given alternative (say i) is typically given as a linear in attributes specification, such that: 

𝑉$,!,# = 𝛽!
%𝑥$,!,# = ∑ 𝛽!,&𝑥$,!,#,&'

&()        (2) 

In this notation, 𝑥$,!,#,& is a specific attribute (the kth attribute out of K) of alternative i, as seen 

by person n in choice situation t. The parameter 𝛽!,& captures the marginal utility for person n 

in response to this attribute. Imagine, for example, that attribute k relates to the savings in the 

water bill. Then we would expect that 𝛽!,& is positive (i.e., that, as the level of savings of a 

greywater alternative increases, so does its utility). The subscript n on 𝛽!,& reflects the fact that 

different individuals may have different sensitivities to changes in the attributes, as explained 

earlier. In practice, it is impossible to estimate separate parameters for each individual, and 

such heterogeneity is accommodated through estimating interactions between sensitivities and 

consumer characteristics (for example different parameters for men and women) and through 

allowing for additional random heterogeneity, as we will see in later sections. 

In the simplest type of random utility model, the Multinomial Logit (MNL) model, which 

serves as the starting point for what follows, the probability of person n choosing option i in 

task t is given by:  

𝑃!,#- 𝑖 ∣∣ 𝑥!,# , Ω 0 =
*!",$,%

∑ *!&,$,%'
&()

,        (3) 

where Ω groups together the different model parameters. Returning to the above example of 

the savings in the water bill (𝑥,,!,#,&) increasing for alternative i, this would imply that 𝑉$,!,# 

increases too, and as a result, the probability of person n choosing that option (i.e., reusing 

greywater), becomes larger. It is clear from Equation (3) that this probability is between 0 and 

1 for each alternative, and sums to 1 across alternatives. 
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The optimal values for the vector of parameters Ω are obtained through maximum likelihood 

estimation, by finding the values that best explain the choices observed in the data, that is those 

that maximise the log-likelihood function given by: 

𝐿𝐿(𝑥, 𝑧, Ω) = ∑ 𝑙𝑜𝑔-
!() ∏ 𝑃!,#(Y!,# ∣ 𝑥!,# , Ω).

#() 	      (4) 

where the vectors 𝑥 and 𝑧 now group together the data for all individuals in the sample. In a 

perfect model, the choice of each person would be explained with certainty, such that  

𝑃!,#- Y!,# ∣∣ 𝑥!,# , Ω 0 = 1, ∀n, t, and the log-likelihood in Equation (4) would be zero. In reality, 

choices are difficult to explain and data is noisy, thus the analyst seeks only to find the model 

that best explains the data, while retaining a certain level of error. 

In this paper, we reuse the results of two distinct models, with a particular focus on explaining 

differences in preferences across consumers. A brief overview of the aims of each model 

structure is given below, with more details on the econometric implementation given in 

Appendices B and C and the above referenced papers. Before describing the two models, it is 

important to highlight that both of them are complementary in the sense that both determine an 

individual’s willingness to reuse greywater; the results are consistent by virtue of being based 

on the same data. However, each model studies behaviour from a different perspective, and 

this is very useful in evaluating policies that motivate the reuse of greywater.  

3.3.2. Latent Class model (LC) 

The latent class (LC) model was estimated previously by (Amaris et al., 2021a) for the city of 

Santiago. A LC model probabilistically splits decision-makers into classes with distinct 

preference patterns. This not only provides important insights into preference patterns in the 

population but is crucial in predicting how distinct consumer segments may behave in future 

scenarios. The parameter estimates for the LC model are shown in Table 2. 
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Table 2. Estimation results for latent class model. Source: Amaris et al., (2021a) 

  Class 1 Class 2 Class 3 Class 4 

  
Estimate 

Robust    

t- ratio 
Estimate 

Robust     

t-ratio 
Estimate 

Robust 

t-ratio 
Estimate 

Robust 

t-ratio 

 (1) ALTERNATIVE SPECIFIC CONSTANT 

Left alternative† -0.367 -6.39 -0.367 -6.39 -0.367 -6.39 -0.367 -6.39 

 (2) GREY WATER SERVICE APPEARANCE             

Colour                 

… Clear (reference) 0 reference 0 reference 0 reference 0 reference 

… Light blue 0 n.s. 0 n.s. 0 n.s. -1.301‡ -2.05 

… Dark blue -0.313 -3.13  0 n.s. -0.619 -5.09 -1.301‡ -2.05 

 Odour                 

… Odourless (reference) 0 reference 0 reference 0 reference 0 reference 

… Light chlorine -0.169 -1.45 0 n.s. -0.472 -3.53 0 n.s. 

… Strong chlorine -0.816 -6.48 -11.057 -21.08 -1.032 -6.4 0 n.s. 

(3) USES                 

0.  Mains water (reference) 0 reference 0 reference 0 reference 0 reference 

1. Toilet flushing 3.963‡ 6.74 -4.959‡ -9.79 0.303‡ 2.14 5.957‡ 2.1 

… shift for female† 0.728 4.26 0.728 4.26 0.728 4.26 0.728 4.26 

… shift for previous knowledge† 0.375 1.35 0.375 1.35 0.375 1.35 0.375 1.35 

                  

2. Garden irrigation 3.963‡ 6.74 -4.959‡ -9.79 0.303‡ 2.14 5.957‡ 2.1 

                  

3. Clothes washing 3.963‡ 6.74 -4.959‡ -9.79 0.303‡ 2.14 0 n.s. 

… shift for female† 0.257 1.75 0.257 1.75 0.257 1.75 0.257 1.75 

… shift for previous knowledge† 0.448 2.22 0.448 2.22 0.448 2.22 0.448 2.22 

                  

4. Hands washing 3.71‡ 5.98 -4.959‡ -9.79 0 n.s. 0 n.s. 

… shift for female† 0.289 2.05 0.289 2.05 0.289 2.05 0.289 2.05 

                  

5. Shower/Tub 3.71‡ 5.98 -15.29‡ -18.02 0 n.s. 0 n.s. 

                  

6. Drinking 2.397 3.88 -15.29‡ -18.02 -0.82 -3.33 0 n.s. 

… shift for female† 0.448 2.15 0.448 2.15 0.448 2.15 0.448 2.15 

(4) SAVINGS ON WATER BILL               

Low water expenditure group† 0.089 4.26 0.089 4.26 0.089 4.26 0.089 4.26 

High water expenditure group† 0.039 3.39 0.039 3.39 0.039 3.39 0.039 3.39 

CLASS ALLOCATION MODEL             

Constant 0 reference -1.574 -3.7 -0.595 -2.41 -8.091 -5.52 

Low educational level 0 reference 0.723 2.75 0.471 1.79 -1.046 -1.95 

Garden 0 reference -0.824 -2.49 0 n.s. 6.771 4.34 

House 0 reference 1.402 2.98 0 n.s. 0 n.s. 

Class weight 40% 24% 30% 6% 

†:  parameter shared across classes 

‡: parameter shared across multiple uses or multiple levels of categorical attribute 

n.s.: parameter constrained to zero after initial estimate was not significantly different from zero 

 

According to the model, individuals can be split into four classes, which according to the 

specific signs of the coefficients of attributes have been labelled as “enthusiasts” (class 1), 

“greywater sceptics” (class 2), “appearance conscious” (class 3) and “water expenditure 
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conscious” (class 4). Note that all coefficients have a statistically significant impact on utility 

or benefit (at or above the 95% level) and, hence, on the probability of choosing a greywater 

option. Also note that the magnitude of the different coefficients show that the different 

attributes of the greywater service exert different weight and influence (positive or negative) 

on the utility or benefit that the user perceives, which directly affects potential uptake. The 

model highlights that worse appearance of the water reduces the probability of greywater reuse, 

while increased savings are beneficial. There are also differences as a function of the intended 

use of the greywater, where these vary as a function of respondent characteristics. 

3.3.3. Hybrid choice (HC) model with latent variables 

The HC model with latent variables used in this paper was estimated previously by (Amaris et 

al., 2021b) for the city of Santiago. This type of model incorporates a role for additional 

psychometric constructs, in this case an attitude towards greywater reuse, which was calibrated 

using the six attitudinal statements described in section 3.2. As with the LC model in Section 

3.4.1, there are specific reasons to adopt this model for the present study, given that 

psychometric factors are likely to play a major role in determining the success of greywater 

schemes. 

The model coefficients most relevant for the present paper are shown in Table 3 (additional 

parameters for the measurement model associated with the attitudinal indicators are available 

in Amaris et al., 2021b). Like the LC model, the HC model shows that worse appearance of 

the water reduces the probability of greywater reuse, while increased savings are beneficial for 

uptake. There are again differences in the utility of different uses (e.g., toilet flushing vs 

shower), and these differences again vary as a function of respondent characteristics.  
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Table 3. Results for choice model component. Source: Amaris et al., (2021b) 

Attribute General description Estimate t-ratio 

 Constant for left most alternative (𝜹𝟏) -0.697 -5.58 
    

C
o
lo

u
r Clear or light blue 0  

Dark blue (𝛽) -0.651 -5.28 
   

O
d
o
u
r 

Odourless 0  

Light chlorine (𝛽) -0.517 -3.74 

Strong chlorine (𝛽) -1.480 -9.39 
   

 

Savings on water bill (𝜷) 0.189 4.70 

… shift for high-water water expenditure group (Δ) -0.106 -2.66 
   

T
o
il

et
  
  
  
  
  
  
  
  
  
  
  
  
  
  

fl
u
sh

in
g
 

Mean for utility 𝜷 (𝝁𝟏) 3.172 5.75 

Standard deviation for 𝜷 (𝝈𝟏) 1.846 4.92 

… 𝜆" (impact of LV) 2.565 7.95 

… shift for female (Δ) 0.751 1.56 

… shift for female and high-water expenditure group (Δ) -0.861 -1.45 

… shift for low education (Δ) -1.457 -3.09 

… shift for low education and high-water expenditure (Δ) 0.707 1.12 
   

G
ar

d
en

  
  
  
  
  
  
  
  
  
  
  
  
  

ir
ri

g
at

io
n
 

Mean for utility 𝜷 (𝝁𝟐) 2.615 6.31 

Standard deviation for 𝜷 (𝝈𝟐) 0.432 1.45 

… 𝜆$ (impact of LV) 1.972 6.84 

… shift for female (Δ) 0.445 1.38 

… shift for female and high-water expenditure (Δ) -1.827 -3.86 

… shift for low education (Δ) -1.617 -4.65 

… shift for low education and high-water expenditure (Δ) 1.246 2.76 
   

W
as

h
in

g
  
  
  
  
  
  
  
  
  
 

cl
o
th

es
 

Mean for utility 𝜷 (𝝁𝟑) 2.095 5.05 

Standard deviation for 𝜷 (𝝈𝟑) 1.847 5.68 

… 𝜆& (impact of LV) 1.872 5.43 

… shift for female and high expenditure (Δ) -0.758 -1.82 

… shift for age below 55 and high-water expenditure (Δ) 0.521 1.29 

… shift for low education (Δ) -0.819 -2.36 
   

W
as

h
in

g
 

h
an

d
s 

Mean for utility 𝜷 (𝝁𝟒) 1.092 3.18 

Standard deviation for 𝜷 (𝝈𝟒) 0.878 3.14 

… 𝜆( (impact of LV) 1.572 6.02 
   

S
h
o
w

er
/ 

T
u
b
 

Mean for utility 𝜷 (𝝁𝟓) 1.728 4.32 

Standard deviation for 𝜷 (𝝈𝟓) 1.530 5.57 

… 𝜆* (impact of LV) 1.973 6.03 

… shift for female and high-water expenditure (Δ) -1.117 -3.06 

… shift for low education (Δ) -0.478 -1.48 
   

D
ri

n
k
in

g
 

w
at

er
 

Mean for utility 𝜷 (𝝁𝟔) -1.066 -2.30 

Standard deviation for 𝜷 (𝝈𝟔) -1.366 -3.02 

… 𝜆, (impact of LV) 1.152 4.46 

… shift for female (Δ) 0.870 1.96 

… shift for female and high-water expenditure (Δ) -2.153 -3.64 

… shift for age below 55 and high-water expenditure (Δ) 0.985 2.14 

… shift for previous knowledge and high-water expenditure (Δ) 1.928 3.28 
   

 Standard deviation of error component (𝜎-) 1.945 13.51 

 Goodness of fit for model component (𝜌$) 0.280  

    

 
Impact of socio-demographics on underlying attitude 𝜶𝒏 

(𝜸	parameters) 
  

 Female -0.199 -1.75 
 Age below 55  -0.323 -3.00 
 Low income (less than 200.000 CLP) 0.509 1.75 
 Low education -0.367 -3.20 
 Previous knowledge 0.299 2.28 
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But in contrast with the probabilistic split into four classes in the LC model, the hybrid structure 

incorporates heterogeneity first through additional continuous random variation in preferences 

(𝜎 terms), showing extensive differences in the appeal of different greywater uses across 

individuals. Notwithstanding this finding, for all six uses, the utility (and hence probability of 

choosing a given use) additionally varies as a function of underlying attitudes towards 

greywater reuse (𝜆 parameters), where the utility increases/decreases with a more 

positive/negative attitude. This attitude itself is latent, and has a deterministic as well as a 

random component, where the former highlights a more negative attitude for female 

respondents, younger respondents, and those with lower education, and a more positive attitude 

for lower income respondents and those with past greywater reuse knowledge. 

4. RESULTS AND DISCUSSION 

4.1.Individual preferences and heterogeneity (Step 3) 

4.1.1. Statistics of predicted uptake 

Once the data is collected (step 1) and the model(s) are estimated (step 2), the next step is to 

explore individual preferences and heterogeneity therein, including geographic differences. 

This also involves expanding the results from the sample level to the local population level 

(step 3). 

We used the estimated models to predict the expected probability of reusing treated greywater 

at the level of individual consumers in the estimation sample, looking separately at each of the 

six types of use. We specifically did this for a case where the treated greywater is odourless 

and clear in colour, meaning that the greywater fully meets the standards of Law 21,075 for 

urban and rural areas of Chile.  
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We use the models to analyse the range of predicted uptake of treated greywater by respondents 

for different residential uses. Figure 4 contrasts the results for the two models. While the 

average predictions for the different uses are similar between the two models, the fact that each 

one measures different sources of heterogeneity (type of consumer in the LC model vs the role 

of greywater reuse attitudes in the HC model), means that the heterogeneity around the mean 

predictions (width of the box) is larger in the hybrid model; this is a result of the continuous 

treatment of random heterogeneity. The notable exception is for “drinking”, where the HC 

model uncovers more heterogeneity across consumers for this use. 

Figure 4 shows that the probability of reusing greywater in the surveyed sample exceeds 40% 

for the vast majority of respondents across uses (except for drinking in the HC model), when 

treated to mains standards, for a modest 10% cost savings. Furthermore, for over half of the 

respondents, the predicted probability exceeds 50% for all uses apart from drinking. However, 

the mean probability decreases for uses with higher skin contact; this is consistent with other 

studies on water reuse (Aitken et al., 2014; Fielding et al., 2018; Massoud et al., 2018; Oh et 

al., 2018). While the mean probabilities are relatively stable across uses, the amount of inter-

consumer heterogeneity differs more across types of use, revealing different levels of 

heterogeneity in the preferences that individuals have for different uses. Garden irrigation has 

the greatest variation, perhaps reflecting the range in garden sizes in the sample and the fact 

that many households do not have a garden (37%). 

Therefore, this step of the analysis indicates that a significant proportion of people would 

accept unconventional sources of greywater reuse for direct and indirect household uses, as 

long as the water’s quality and appearance are similar to that obtained from the mains water 

supply system. This is consistent with other findings in the literature, from different types of 
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analysis (Oteng-Peprah et al., 2018). However, as shown in the detailed results in Amaris et al. 

(2020), any reduction in the the quality of the treated greywater reduces predicted uptake. 

  

a. Prediction with latent class model b. Prediction with hybrid model with latent variable 

Greywater conditions: 

Appearance: Water without colour and without odour 

Water’s savings: 10% of water bill 

Figure 4. Probability of using treated greywater (with no discolouration or odour) instead of mains water according to use 
(the whiskers extend up from the top of the box to the largest data element that is less than or equal to 1.5 times the interquartile 
range (IQR) and down from the bottom of the box to the smallest data element that is larger than 1.5 times the IQR) 

4.1.2. Exploring preferences and heterogeneity, including spatial effects  

Once we have characterized the preferences in statistical terms, we proceed to analyze the 

relationship between consumer characteristics, geographic location and reuse preferences. For 

this, we use the LC model as it allows us to segment people into clusters more easily than the 

continuous approach in the HC model. As described in Section 3.4.1, the latent classes classify 

the population into four categories reflecting their attitude towards greywater: “Enthusiasts”, 

“Sceptics”, “Appearance Conscious”, and “Expenditure water conscious”.  

After estimation, the posterior probability of belonging to each class (all four probabilities sum 

to one) was calculated for each respondent on the basis of the individual's demographic 

characteristics and their observed choices in the hypothetical scenarios. This information 

allows us to infer the characteristics of individuals in the different classes. Table 4 shows a 

gender split in the enthusiast and sceptic classes; for example, men show a higher propensity 

to be in the former and women in the latter. A possible interpretation for this finding could be 
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that women are more risk averse about the use of products that have a household-level health 

implication (i.e., water use). This is in line with general findings about gender roles and 

concerns about the well-being of others (Gustafsod, 1998; Kim et al., 2018). 

Recognizing the characteristics of each class is fundamental to better understand potential 

future uptake, and, for instance, to develop the best possible campaigns to promote greywater 

reuse (Katz et al., 2015). This spatial analysis highlights that by adding one more dimension 

(geolocation) to the analysis, patterns emerge in the probabilities of class memberships that 

would not be seen otherwise. In this way, it can be recognized if there are other factors that can 

influence heterogeneity in preferences for greywater reuse, as is the case of other cities (e.g. 

the Reno-Sparks community area of northern Nevada, USA), and that can be relevant when 

establishing strategies to achieve greater uptake according to people’s sensitivities (Wester and 

Broad, 2021).  

Table 4. Characterization of individuals in different classes 

Socio-economic characteristic Class 1 Class 2 Class 3 Class 4 
Sample 

average 

Gender           

… Male 0.37 0.32 0.34 0.34 0.35 

… Female 0.63 0.68 0.66 0.66 0.65 

Age           

… Under 30 years old 0.16 0.09 0.06 0.1 0.11 

… Between 30 and 60 years old 0.57 0.55 0.62 0.65 0.58 

… Over 60 years old 0.28 0.36 0.32 0.25 0.31 

Garden            

… Front garden (1) 0.25 0.25 0.27 0.18 0.25 

… Rear garden (2) 0.09 0.06 0.1 0.01 0.08 

… Front and rear garden (3) 0.51 0.5 0.47 0.81 0.51 

… None (4) 0.15 0.19 0.17 0 0.16 

Type of garden           

… Front garden with grass 0.28 0.31 0.33 0.43 0.31 

… Front garden with another type of vegetation 0.59 0.65 0.55 0.85 0.61 

… Rear garden with grass 0.14 0.12 0.13 0.41 0.15 

… Front garden with another type of vegetation  0.39 0.36 0.32 0.52 0.37 

 

In particular, our analysis of the results for the estimation sample relates to understanding the 

spatial element of heterogeneity trough the latent class model. In the model, each individual 
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has a non-zero probability of falling into each class, but these probabilities become more 

skewed towards the 0-1 bounds when moving to posterior probabilities, as these also consider 

the individual-level choices. This allows us to make the simplifying assumption of considering 

that those individuals who have a posterior probability greater than 0.5 for one of the classes 

fall into that class (which was the case for 508 out of the 510 respondents). We then plotted the 

geographic location of these individuals, segmented by class. A geographic information system 

(GIS) was used, with results reported at the municipality level, as shown in Figure 5. 

 

Figure 5 The most likely class membership for each respondent.  In all cases the highest probability for the dominant class 

exceeds 50%.  

The forecasts on the map allow us to look for spatial patterns of classes linked to the users' 

preferences for certain characteristics in the greywater service. For example, in Santiago, 

people that are more likely to belong to the category who are more positive about reusing 
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greywater for any use (i.e., the “Enthusiasts”) are more prevalent in the high-income 

municipalities of Providencia, Ñuñoa, La Reina and the eastern zone of Puente Alto. In the 

context of El Gran Santiago1, these areas have a denser concentration and also have recent 

planning approval for buildings of 5 or more storeys (between 2010 and 2017). These areas are 

characterised by individuals with a total average monthly income per household of over 

CLP1,360,000 (1,772 USD), and socioeconomic groups that have clustered together because 

they share certain lifestyle attitudes and conducts (Gfk, 2019). These findings are valuable in 

urban planning terms since the regulations for residential reuse of greywater in cities have 

considered new buildings as a starting point (Law 21,075 in Chile). The presence of people 

that are enthusiastic about reusing greywater in areas where new buildings have been planned 

could be key.  

Another pattern is that although the people more likely to belong to the category of Sceptics 

(i.e., people with more negative perceptions about greywater reuse) are spread through the city, 

they are especially prevalent in zones to the north-west of Santiago, such as, Quilicura, Quinta 

normal, Pudahuel, Lo Prado, where the predominant socioeconomic levels are medium-low 

(C3), low (D) and very low (E). The link between scepticism and lower socioeconomic levels 

is consistent with Akter et al. (2017) and Schmuck (2000), who showed the relation between 

climate change action and low educational attainment, lack of access to information and, 

perhaps most importantly, increased prevalence of religious beliefs. On the other hand, 

individuals most likely to belong to the Appearance conscious class are spread throughout the 

 

1https://www.ciperchile.cl/2020/01/03/contra-el-urbanismo-de-la-desigualdad-propuestas-para-el-futuro-de-

nuestras-ciudades/ 
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city with no marked pattern; this is to be expected in areas without previous experience with 

water reuse.  

4.1.3. Reweighting of results to match CENSUS data 

The datasets used for estimating econometric models are not, in general, fully representative 

of the population of the study area. By virtue of relying on a limited sample size, some 

population segments may be under-sampled while others may be over-sampled. Therefore, the 

direct model results relate to the estimation sample rather than to the area’s population. If the 

way in which preferences vary across consumers relates to the sampling method used, then a 

correction is required before using the results for policy analysis. Using weights during 

estimation is a statistically inefficient process, and also implies that the observations for under-

sampled respondents are “more important” than those for over-sampled respondents. In 

addition, such weighting means that the results cannot easily be adapted for predicting future 

changes in the population. A more flexible approach is to correct for sampling after estimation. 

This can be done either by using sample enumeration (i.e. applying the models to a larger, more 

representative, sample), or by reweighting the predictions from the estimation sample using 

weights that correct for the under/over-sampling of specific segments (Hensher et al., 2015).  

The results discussed so far relate to the unweighted estimation data, that, for example, over-

samples women (65% of the sample vs. just over 50% from the census). We next used the 2017 

Census data (INE, 2018) to create individual-specific weights for each respondent in our 

sample, correcting by gender and age (with three categories, namely under 54, 55-64, 65 and 

over). Of course, further reweighting along other socio-demographic dimensions would be 

possible with more detailed data. Combining the individual-level posterior probabilities for 

different classes (as used in Section 7.2) with the individual-level weights, we can compute an 
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expected class-membership probability for each of the four classes for each neighbourhood, as 

shown in Figure 6. 

 

Figure 6a - probability of belonging to Class 1. 6b - probability of belonging to Class 2.  
6c -probability of belonging to Class 3. 6d - probability of belonging to Class 4. 

 

The maps shown in Figure 6 provide a preliminary indication of areas in Santiago most likely 

to be receptive to reusing greywater. By also taking into account the preference structures in 

the four different classes, we can further understand the type of reuses most likely to be 

accepted, and then, by implication, what type of information or policy approach could help to 

improve uptake. These maps also show how mathematical models can be translated into real 
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life applications and can offer valuable information for policymaking in cities that have no 

previous experience with greywater reuse. 

For example, in the case of Santiago, we could say that: 

The municipalities of Providencia and San Ramón have the highest proportions of enthusiasts 

(Figure 6a), that is, people who would use greywater for the widest range of domestic uses. 

High proportions are also observed in other areas, with the exception of Peñalolen, Quilicura 

and San Miguel. However, since the level of predicted uptake in each zone is not the same, 

different strategies would be required to increase the confidence of individuals regarding the 

residential reuse of greywater; these will be discussed later. 

Figure 6b shows municipalities with high levels of scepticism, including Quilicura, Cerro 

Navia, Quinta Normal, and Lo Prado, where a policy consistent with the needs of these areas 

would be to design campaigns more oriented on raising awareness about the safety of treated 

greywater and the economic and environmental benefits that it provides. On the other hand, 

municipalities such as Peñalolen and San Miguel are dominated by appearance conscious 

people (Figure 6c). But it can also be seen that the high concentration of these individuals 

covers an area that corresponds to those zones with a high socioeconomic level in the Gran 

Santiago area (i.e. municipalities of Las Condes, La Reina). Therefore, for these areas it could 

be useful to promote campaigns focused on showing how technology can achieve optimal water 

quality and appearance for domestic uses. Finally, expenditure conscious people are the 

smallest group; in fact, only the municipalities of Ñuñoa, Independencia and Pedro Aguirre 

Cerda exceed 20% of people in this class. Strategies targeted at this group could be oriented to 

emphasize the amount of water (and hence also money) that can be saved if they decided to 

reuse residential grey water.   
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It is also important to highlight that, although some municipalities are heavily dominated by 

one class, many – including those with the most expenditure conscious people - are fairly 

mixed.  For example, Ñuñoa is a mix of enthusiasts (48%), appearance conscious (27%) and 

expenditure conscious (18%) individuals. Strategies need to recognise this diversity by using a 

mixed approach to encourage uptake or focus on a particular group to initiate the process.  

4.2.Assessment of policies and changes in behaviour 

The final step in the analysis involves scenario testing to predict the potential uptake under 

different future settings. In the analysis, and according to the type of models used, the impact 

of two possible types of changes were included: (i) changes to policy in terms of which uses 

are allowed, and (ii) changes in preferences, for example as a result of education campaigns. 

In the first case, given the current mix of preferences, as established by the modelling work, an 

analyst can contrast the impact of different policy decisions, for example looking at the likely 

success of incentives or the impact of changes in regulation, such as allowing for additional 

types of uses of treated greywater. In the second case, with models that capture extensive 

heterogeneity in preferences, the analyst has the ability to predict the impact on potential uptake 

of changes in preference in the population. For example, one could simulate the success of 

educational campaigns or other practical demonstrations to reduce scepticism in a population 

as yet unfamiliar with the service. 

In what follows, we describe both cases. 

4.2.1. Impact of allowing for additional uses 

Residential water reuse is typically preferred for uses that do not require direct contact with the 

skin (i.e., toilet flushing and garden irrigation; Mankad and Tapsuwan, 2011; Garcia-Cuerva et 

al., 2016; Leong, 2016), and this is reflected in the uses allowed by the current law in Santiago. 

This inevitably leads to a situation where some greywater remains unused and must be 
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discarded (to avoid water stagnation2); this is especially the case when many people do not 

have gardens or do not need to water plants all year round. This section analyses the likely 

amount of greywater used (and discarded) depending on the permitted uses.  

The process starts by making assumptions about consumption levels in each household. This 

was estimated based on the daily consumption per use and per inhabitant indicated by the 

Superintendency of Public and Sanitary Services of Chile (SISS; cf. Appendix C) and the 

characteristics of the households in our sample, after the reweighting explained in Section 

4.1.3. The resulting averages are shown in Table 5 under “average monthly consumption (L)”, 

showing clear differences between winter and summer, and whether the household has a 

garden. We evaluated two possible regulations, namely the current one where only toilet 

flushing and garden irrigation are permitted uses, and a hypothetical situation where the use of 

greywater for laundry was also allowed.  

The potential amount of treated greywater that can be reused in a household is capped by two 

factors, regulation of uses and water resource availability. Firstly, the fact that not all uses are 

permitted caps the possible amount of greywater that can be reused at the total household 

consumption of those, as reflected in Table 5 under “average monthly consumption in GW 

permitted uses (L)”. Furthermore, the possible amount that can be reused is also capped by the 

physical availability of greywater for treatment. Not all greywater produced by a household is 

suitable for treatment, and available raw greywater before treatment is limited to that from 

handwashing, tooth brushing, taking a shower/bath, and laundry. Consistent with other studies 

(Lefebvre, 2018; Silva et al., 2019; Vuppaladadiyam et al., 2019) and information from Chile 

 

2 https://www.waterless.com/blog/six-rules-for-using-grey-water-properly 
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(Rodríguez et al., 2020), we assumed a 70% recovery rate of water for these uses. This provides 

the “average volume of GW available per month (L)” 

Based on these three inputs, and the estimated LC model, we conducted a simulation exercise 

using the reweighted sample of respondents (i.e., as in Section 4.1.3), where we predicted the 

monthly consumption of greywater in situations where multiple uses are permitted and could 

be used simultaneously for each individual. The predictions are then aggregated across 

households. An iterative process was used, as follows:  

1. For each permitted use, we first assign the probability of choosing to reuse greywater 

as opposed to mains water, separately for each given use, calculated with the LC model, 

for each individual in the sample, say 𝑃!& for person n and use k (where k=1,…,6, with 

1=toilet flushing, 2=garden irrigation, 3=laundry, 4=washing hands, 5=shower, and 

6=drinking).  

2. These probabilities indicate how likely a given individual is to choose a specific use in 

a binary choice against mains water. In making predictions, we need deterministic 

outcomes; that is, whether or not a given person n will reuse greywater for use k in a 

specific simulation run. Use k should be chosen to person n with a probability given by 

𝑃!&, and to move from probabilities to outcomes, we select as chosen those uses where 

𝑃!& > 𝜈!&, where  𝜈!& are separate uniformly (U[0,1]) distributed disturbances. The 

logic in this is easily understood by noting that, with 𝜈!&~𝑈[0,1], there is a probability 

𝑃!& of the draw 𝜈!& being less than this threshold. For example, if a given use has a 

probability of being chosen of 0.7 according to the model, then there would be 70% 

chance of a uniform random variable falling below that value. 
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3. Three conditions were tested: 

a. If none of the uses is chosen (i.e., 𝑃!& < 𝜈!& , ∀𝑘), then no greywater is assumed 

to be consumed by that individual. 

b. If a single use is chosen (e.g., only 𝑃!) > 𝜈!)), then greywater is assumed to be 

consumed for that use, if allowed by law, and capped by both the available 

amount of greywater and the household consumption for that use. 

c. If multiple uses are acceptable (i.e., exceed the threshold), they are ranked in 

decreasing order in terms of by how much 𝑃!& exceeds the random draw 𝜈!&. 

Uses with a higher probability given by the model, will have a higher probability 

of being ranked first, but the random nature of probabilities is considered. Then 

the algorithm iteratively assigns greywater for reuse, going through the ranked 

options, and again considering the regulatory and physical availability 

constraints mentioned in step b. The amount of greywater actually available to 

the household is decreased accordingly after each use (with less greywater 

remaining), and the algorithm moves on to any other uses found acceptable in 

step 2, until no further uses are allowed, or no more greywater is available. 

4. The process in steps 2-3 is repeated a large number of times in a Monte Carlo simulation 

scheme (in our application, we used 250 iterations to obtain a stable solution), the 

results are averaged across iterations, and are then reported at the population aggregate 

as “average predicted amount of greywater used per month (L)” in Table 5, and also 

expressed as a ratio in “share of available GW used”. The simulation exercise was 

conducted under the best conditions of appearance of greywater after treatment 

(transparent water, without odour). Each time, we looked separately at individuals with 

and without a garden, and also made separate predictions for winter and summer. 
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Table 5. Impact of allowing additional greywater uses on water consumption in summer and winter  

  No garden Garden 

Description 
current 

regulation 

a third use 

allowed 

current 

regulation 

a third use 

allowed 

  winter 

average monthly consumption (L) 13,947 17,177 

average monthly consumption in GW permitted uses (L) 1,928 2,766 3,461 4,384 

average volume of GW available per month (L) 8,009 8,009 9,138 9,138 

average predicted amount of greywater used per month (L) 1,176 1,566 2,026 2,436 

share of available GW used 15% 20% 22% 27% 

  summer 

average monthly consumption (L) 16,620 29,017 

average monthly consumption in GW permitted uses (L) 2,120 3,127 12,469 13,577 

average volume of GW available per month (L) 9,880 9,880 11,275 11,275 

average predicted amount of greywater used per month (L) 1,293 1,763 5,865 6,145 

share of available GW used 13% 18% 52% 55% 

 

Table 5 first shows that, whether or not a third use is allowed, the amount of greywater available 

far exceeds the actual demand in allowed uses, except in the summer for houses with a garden 

(e.g., 1,928L vs 8,009L in the case of houses without a garden in winter and with two permitted 

uses). This implies that the current law would mean that some greywater would be wasted, 

even if greywater reuse was universally accepted by consumers. We next turn to the predicted 

consumption. With or without the additional permitted use, the amount of greywater reused is 

below the possible maximum (e.g., 1,176L vs 1,928L in the case of houses without a garden in 

winter and with two permitted uses). This is a result of the heterogeneity in preferences across 

individuals and the fact that there is not a universal predicted uptake of greywater. The results 

clearly show that with the current law, the share of greywater that would be discarded is high, 

especially for those houses without a garden (85% discarded in winter, and 87% in summer), 

but also for houses with a garden in winter (78% discarded) – although 55% of greywater would 

be reused for houses with gardens in summer. Allowing for an additional use in the form of 

laundry can lead to a modest increase in the share of available greywater that is actually used. 

However, even though this percentage is modest, it would still lead to savings of several 

hundred l/month/household, which is crucial in an area with serious water security problems.  
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4.2.2. Scenario tests with changes in behaviour 

We now use both the LC and HC models in a sensitivity analysis to determine the impact of 

changes in sensitivities and attitudes on the predicted uptake of greywater reuse. We consider 

a baseline scenario and five possible future scenarios, as follows:  

Baseline - S0: This scenario reflects the current circumstances, that is ideal conditions for the 

appearance of greywater (no colour and no smell) and savings in mains water associated with 

less use of the main drinking water system and sanitation (see Figure 7). We compute this 

baseline forecast separately for the two models. As both models were calibrated on the same 

data, the results are expected to be very close, albeit with more heterogeneity in the HC model 

given the additional psychological constructs.  

Scenario 1 – S1: This strategy is based on monetary incentives. We use the HC model to look 

at the situation of ideal greywater appearance after treatment and 30 % of savings in the water 

bill (associated with 20% less use of the mains system plus 10% as an additional incentive). 

Scenario 2 – S2: This strategy is based on increasing educational awareness about greywater 

reuse and how the system could work inside the home. Using the HC model, we look at the 

situation of ideal greywater appearance after treatment, 10% savings in the water bill, and all 

individuals having previous knowledge of greywater reuse. 

Scenario 3 – S3: This strategy is based on educational awareness with the objective of 

removing scepticism from the population; this could be possible if the population is shown how 

the system works with a real-life example (technology pilot test) and individuals can observe 

that the appearance of greywater after treatment is as good as that of mains water (Dolnicar et 

al., 2011; Smith et al., 2018). Additionally, this example considers the situation of ideal 

greywater appearance after treatment and 10 % of savings in the water bill. The mechanism for 
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this scenario test is to use the LC model, and shift people out of class 2 (sceptics) into the 

remaining three classes, using allocations proportional to the existing class sizes. 

Scenario 4 – S4: This strategy is also based on educational awareness with the objective of 

removing scepticism from the population but focused on increasing prior knowledge and 

strengthening the pro-water reuse attitudes of individuals (i.e., using the HC model). This is 

achieved by giving all individuals the attitudes of the most positive group in the population, 

for example through campaigns aimed at showing environmental benefits and social benefits 

with additional information. The scenario uses a mains water consumption reduction (10%) 

along with the optimal appearance of treated greywater.    

Scenario 5 – S5: This strategy is based on combining several others together. It provides ideal 

greywater appearance after treatment, 30 % water bill savings (20% reduced mains use plus 

10% as an additional incentive), educational awareness and a more positive attitude.  

Figure 7 summarizes the resulting probabilities for the different scenarios. In particular, the 

box-plots show the probability (in a binary setting) of people preferring treated greywater reuse 

over the mains system for toilet flushing, garden irrigation and laundry. Each box corresponds 

to a management scenario to evaluate the potential uptake in the population. The two base 

scenarios correspond to the current probability distribution of the surveyed population 

estimated from the LC and HC models. These provide the point of reference for evaluating the 

effectiveness of each strategy. Although the distribution of both models is not exactly the same, 

they maintain the same magnitude for the mean. 

The plots show that there is clear potential for increasing greywater reuse uptake through 

different means. In the case of reusing greywater for toilet flushing, predicted uptake could 

reach up to 0.9, which in the specific case of the analysed population corresponds to a 

percentage increase of up to 25% from the base. In the case of reusing water for garden 
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irrigation, predicted uptake can again reach up to 0.9, but the most interesting point in this 

case is that by establishing strategies to achieve a higher willingness to reuse greywater, the 

average probability of reusing greywater could reach up to 30% increase with respect to the 

initial decisions (0.6 to 0.9). Finally, note that here is a high probability in the population to 

reuse greywater for laundry. However, current Chilean regulations do not allow this use. An 

average predicted uptake of up to 0.9 could be achieved for greywater reuse for laundry if 

strategies are established to promote this use.  

Looking in more detail at each scenario, we note that: 

- All the evaluated situations show an increase in predicted uptake, with some of them 

more effective than others. For the three uses, monetary incentives (S1) have almost 

the same impact as generating educational awareness in individuals (S2). However, 

although both strategies separately show an increase in predicted uptake (e.g., going 

from 0.65 to 0.7 for toilet flushing for both S1 and S2), this does not represent a notable 

increase compared to the base situation. At this point, it is important to clarify that other 

studies have shown that disseminating information on water reuse has a positive effect 

on acceptability (Hou et al., 2020). Although the results of this study support this claim, 

it also clarifies that the impact of changes in sensitivities/preferences depends on the 

intended use. 
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Figure 7 Probability of using greywater according to different scenarios 
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- Scenarios S3-S4 show that a change in the attitude of sceptical people and a shift 

towards more pro-greywater reuse attitudes could be more effective in achieving higher 

uptake than offering monetary incentives or strengthening the general knowledge about 

water reuse (scenarios S1 and S2). Note that S4 achieves higher predicted greywater 

reuse without offering extra monetary incentives which could be an important input to 

create strategies to promote water reuse. This is not addressed as an objective in this 

paper. Additionally, note the fact that the interquartile range in the box-plots for these 

scenarios is narrower, meaning that individuals would have similarly high levels of 

predicted uptake. 

- The strategies considered in scenarios S3-S5 show that differences in the effects vary 

across uses. We observe that  removing consumers’ scepticism about reusing greywater 

for toilet flushing by generating educational awareness about water or even 

incorporating monetary incentives would have the same impact on behaviour. 

Therefore, for this particular use, promoting educational awareness for toilet flushing 

can achieve greater uptake. In contrast, scenarios S3-S5 show a different impact on 

potential greywater reuse for garden irrigation. Promoting educational campaigns 

(S4) would be more efficient than trying to remove scepticism from the population (S3) 

and more economical than assigning extra monetary incentives (S5). 

- If we now analyse the option of reusing water for laundry, which is proposed in this 

study as a suitable alternative to be incorporated into current Chilean regulations, we 

can see that the optimal strategy to achieve higher uptake would be to promote 

educational awareness campaigns and monetary incentives (S5). However, if no extra 

monetary incentives were offered, it could still be effective in increasing potential 

uptake for reusing greywater for this purpose, with an average probability between 0.8 

and 0.9. 
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The evaluated scenarios take as an input potential changes in sensitivities or attitudes of 

individuals. These could be realised in practice through communication strategies (Katz et al., 

2015; Tortajada and Nambiar, 2019). In particular, the study carried out by Katz et al., (2015) 

shows that diffusion strategies are a good tool to achieve greater acceptability. However, they 

highlight two elementary components: i) the need for each place to conduct its own analysis of 

preferences and ii) get the language right (e.g., speak as briefly and simply as possible, promote 

two-way communication, using graphics and videos).  

5. CONCLUSIONS 

The paper has sought to use the results from studies of consumer preferences in evaluating the 

potential effectiveness of policy schemes aimed at allowing and encouraging residential 

greywater reuse in areas where this practice is not widely implemented. Our work not only 

provides important qualitative and quantitative insights specific to the present study, including 

on the potential amount of mains water that can be saved, but can also serve as a guideline for 

an integrated approach for other similar studies.  

The first aspect that must be considered is that understanding individuals is not an easy task. 

This paper has used stated preference (SP) techniques in this context, based on the notion that 

it is possible to obtain a reliable approximation of real-world consumer decision-making 

(Louviere et al., 2000). In the context of wanting to understand and disentangle the separate 

influences that different characteristics of a greywater service may have on potential uptake, 

we suggest that it is important to use advanced mathematical models that bring together 

economic theory and behavioural foundations from psychology. This study used advanced 

discrete choice models (DCM), which allowed us to quantify the influence of qualitative and 

quantitative attributes on potential residential greywater uptake and make a detailed analysis 

of it based on choice scenarios. Of course, there are other approaches that can be used, for 
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example using the theory of planned behaviour – for a review of possible alternatives, see 

Smith et al. (2018) 

This research has shown how changes in sensitivities or attitudes can improve the potential 

level of uptake, more so than economic incentives alone. We have created insights that would 

be useful for developing outreach strategies for residential water reuse, considering the 

extensive heterogeneity in users’ preferences.  

An important insight obtained from this paper involves the forecasts (4.2.1) of the volume of 

water that could be recovered under current regulations vs the volume of water that could be 

recovered under the scenario of allowing an additional use (laundry), which does not require 

direct contact with the skin or actual water intake. Our results show that this would lead to 

additional savings of several hundred litres per household, with clear environmental benefits, 

as well as a more efficient use of the greywater reuse system by reducing the gap between the 

amount of available treated greywater and that which is actually used. Of course, this analysis 

was limited to the uses studied in our survey, but the findings could be extrapolated to suggest 

that if individuals are willing to reuse greywater for residential uses, they could also accept it 

in other high-consumption urban uses such as washing cars. 

By limiting the uses to those that do not require direct contact with the skin (i.e. toilet flushing 

and garden irrigation), the laws may be acting as a demotivator. For example, many houses do 

not have gardens and are therefore unable to fully exploit the potential of greywater, reducing 

the motivation for installing a greywater treatment system in existing dwellings. Furthermore, 

although toilet flushing is a major component of household water use, efficiency improvements 

mean that modern toilets use less than half the water of those installed over 10 years ago. This 

further reduces the absolute benefits from a greywater system limited to a small number of 
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uses.  Our analysis shows that increasing the number of uses for greywater could improve 

system efficiency and effectiveness, which should increase uptake.  

The results provide important insights into potential uptake of greywater reuse technologies in 

Santiago.  They allow the development of more effective strategies to increase the acceptability 

of residential greywater reuse and, thus, the number of users. However, the insights are not 

limited to Santiago, but should also be an important contribution to other communities that 

want to start establishing water reuse within cities together with new regulations. The steps 

outlined in the framework constitute the key components required for applying similar work 

elsewhere. The key distinction will arise in the data sources, the local regulations, and of course 

the findings in terms of behavioural patterns, which is the key aim of the modelling work. 

As with any study, there are limitations and opportunities for future work. First, the empirical 

modelling results are based on data from hypothetical choice scenarios. There are good reasons 

for this, given that the lack of widespread implementation of greywater schemes limits 

opportunities for studying choices in a real-world setting. Great care was taken to ensure 

realistic choice behaviour3 in the data (cf. Louviere et al., 2000), but nevertheless, there is scope 

for validating the results with real-world data post-scheme implementation, to learn lessons for 

future studies. Second, some of the insights are potentially specific to the study area, i.e. 

Santiago. Changes to the type of questions asked in surveys and/or the modelling approach 

may be needed in other cities, however, the broad framework outline still applies. Also, in 

Santiago, the work was motivated by the fact that the installation of greywater treatment 

facilities is going to be mandatory for new buildings – in other cities, different circumstances 

 

3 See also the discussions in Amaris et al. (2020) and the importance of carefully explaining the notion of new 

technologies such as greywater treatment to respondents in surveys, 
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may apply, and the selection of study areas will also depend on whether the quantity of 

produced greywater would justify the investment in technology. Finally, alongside more 

quantitative factors such as the role of monetary incentives, our work has focussed on 

predicting the impact on potential uptake of changes in sensitivities and attitudes. In line with 

evidence in e.g. Katz et al., (2015), we have posited that these changes could be achieved 

through information/education campaigns. The actual extent to which this is the case, i.e. the 

level of impact of these campaigns, needs to be evaluated on a case by case (local) basis, which 

is another area for future research. 
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8. APPENDIX  

8.1.Appendix A. Technical specifications of water recycling technology (Hydro4) 

 

8.2.Appendix B. Specification of latent class model  

In a model with S different classes, each class would then be characterised by a different vector 

of parameters, say Ω/ for class s. This could for example capture the existence of one class of 

individuals who are particularly sensitive to reductions in water expenditure, while another 

class is more sensitive to the qualitative appearance of the water. If we knew with certainty that 

person n falls into class s, then the choice probability would simply be given by 𝑃!,#,/(𝑗 ∣

𝑥!,# , 𝑧!, Ω0), where this would be given by Equation (3) when using an underlying MNL model 

inside each class. However, the actual class allocation is not observed deterministically, and a 

LC structure consequently uses a class allocation model, where respondent n belongs to class 

s (out of a total of S classes) with probability πn,s, where 0 ≤ πn,s ≤ 1 ∀k and ∑ 𝜋!,/ = 11
/() , ∀𝑠. 

These class allocation probabilities can vary across individual decision-makers as a function of 

their observed characteristics, i.e. 𝜋!,/ = ℎ(𝑧!, 𝛾), where 𝛾 is an additional vector of estimated 

parameters, and 𝑧! are characteristics of the decision maker. Returning to the above example, 

this model component might for example explain that lower income respondents are more 

 Guiding Values 

Control in treated water Greywater entry Greywater recovered exit 

Turbidity [NTU] 22 - 100 NTU < 2 

E. Coli [CFU / 100 ml] 10-10000 UFC/100 ml No detected 

DBO5 [mg/Lt] 90 - 100  < 20 

pH if chlorine is added  7.0 - 8.0 

   

 

Equivalent 

inhabitants 

Daily 

flow 

[L/day] 

Electrical 

consumption 

[kWh/day] 

30 max. 3000 22 

60 max. 6000 35 

120 max. 12000 70 
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likely to fall into the class that is more sensitive to reductions in water expenditure, while higher 

income respondents might be more likely to fall into the class that is more sensitive to 

qualitative appearance of the water. In contrast with the simple MNL model, the log-likelihood 

function now uses a weighted average across separate sub-models (one for each class), with 

the weights given by the class allocation probabilities, such that: 

𝐿𝐿(𝑥, 𝑧, Ω, γ) = ∑ 𝑙𝑜𝑔-
!() ∑ π!,/1

/() O∏ 𝑃!,#,/(Y!,# ∣ 𝑥!,# , Ω0).
#() P	   (5) 

where this is now also a function of the vector of parameters 𝛾 used in the class allocation 

model, and where Ω =< Ω), … , Ω1 >. The final model specification implemented in this study 

uses four classes, where the preferences in these classes allowed us to refer to them as 

“enthusiasts”, “greywater sceptics”, “appearance conscious” and “water expenditure 

conscious” (cf. Amaris et al 2021a).  

In the present paper, the model is applied, rather than estimated. In estimation, we rely on class 

allocation probabilities πn,s that are independent of the observed choices and thus equal for two 

individuals with the same socio-demographics. However, two individuals that have the same 

observable characteristics may still make different choices, and this disparity can help yield 

further insights into class membership, post estimation. In application of the model, such as 

prediction, we can then make use of the conditional class allocation probabilities, calculated 

using Bayes rule, thus explaining how likely a specific individual is to fall into a given class s, 

given the sample level model as well as the observed choices for that individual. We have: 

𝜋!,/R = 2$,*∏ 4$,%,*(6$,%∣8$,%,9$,:+)
,
%()

∑ <$,*-
*() =∏ 4$,%,*(6$,%∣8$,%,9$,:+),

%() >
       (6) 

where all the individual terms have been defined above. These posterior class allocation 

probabilities 𝜋!,/R  can then be used to make predictions of behaviour at the level of individual 
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respondents in the data. For example, imagine making a prediction of a given respondent n 

accepting the use of a greywater alternative (say alternative 1) in a binary choice against mains 

water only (alternative 2). This would then be calculated as: 

  𝑃!(1 ∣ 𝑥!, Ω) = ∑ π!,/1
/() 𝑃!,/(1 ∣ 𝑥!, 𝑧!, Ω0)      (7) 

In addition, we can use the posterior class allocation probabilities to, after estimation, 

understand the socio-demographic make-up of individual classes, i.e. producing a membership 

profile for each class. For example, let 𝑧?,! indicate whether individual n has the specific 

characteristics 𝑧?, with for example 𝑧?,!=1 if the individual is female, and 𝑧?,! = 0 otherwise. 

We can then calculate the share of individuals in class s having that characteristic as: 

𝑧?,/R =
∑ 2$,*@9.,$
/
$() 	

∑ 2$,*@/
$() 	

          (4) 

where N is the number of individuals in our sample. Again, this could highlight how people or 

households with given characteristics fall into given preference clusters, and this information 

can be helpful in targeting specific population segments for early implementation of a new 

scheme, or for further policy measures such as incentives or information campaigns. 

8.3.Appendix C. Specification of hybrid choice models 

In a HC model, we recognise that the preferences of individuals are driven in part by underlying 

(but unobserved) psychological constructs such as attitudes and perceptions. Using a single 

such latent construct, say in our case an attitude towards greywater reuse, we define this as: 

𝛼! = 𝛾𝑧! + 𝜂!          (5) 

where this latent attitude has a deterministic component, with 𝛾 being a vector of parameters 

capturing the influence of characteristics of the individual, 𝑧!, and a random component, 𝜂!, 

which is normally distributed across individuals.  
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We then rewrite the probability of a choice as 𝑃!,#(𝑗 ∣ 𝑥!,# , 𝑧!, 𝛼!, Ω), where Ω now includes 

parameters that capture the influence of the latent variable 𝛼! on the choices. To allow us to 

calibrate the role of the latent attitudes in a model, we make use of additional information at 

the person level, typically in the form of answers to attitudinal questions, with say person n 

answering L different such questions, with 𝐼! =< 𝐼!,), … , 𝐼!,B >. We specify a measurement 

model to explain these answers on the basis of the latent variable, with say 𝑃!(𝐼!,C ∣ 𝛼!, Ψ), 

where Ψ is a vector of estimated parameters. The specific functional form used for 𝑃!(𝐼!,C ∣

𝑧!, Ψ) depends on the data at hand, e.g. whether the attitudinal questions are categorical or 

continuous. 

Both 𝑃!,#(𝑗 ∣ 𝑥!,# , 𝑧!, 𝛼!, Ω) and 𝑃!(𝐼!,C ∣ 𝛼!, Ψ) now depend on 𝛼!, which is unobserved, 

meaning that the actual likelihood for person n is given by an integral over the distribution of 

the random component in 𝛼!, with 𝜂 ∼ 𝑁(0,1). 

𝐿!(𝑥!,# , 𝑧!, Ω) = ∫ ∏ 𝑃!,#- 𝑖!,#∗ ∣∣ 𝑥!,# , 𝑧!, Ω 0.
#() ∏ 𝑃!- 𝐼!,C ∣∣ 𝛼!, Ψ 0B

C() 𝜙(𝜂)𝑑𝜂E 	  (6) 

8.4.Appendix D. Average per capita consumption of water from the mains (Chile) 

      Winter   Summer 

id. Use  (lt/d)  (m3/month)  (lt/d)  (m3/month) 

1 Handwashing 10 0.3 18 0.54 

2 Brush your teeth 10 0.3 18 0.54 

3 Take a shower 90 2.7 100 3 

4 Tub bath 250 7.5 300 9 

5 Toilet flushing WC (new)  8 0.24 10 0.3 

6 Toilet flushing WC (old)  20 0.6 22 0.66 

7 Wash dishes by hand 22.5 0.675 30 0.9 

8 kitchen and drink 16 0.48 22 0.66 

9 Use the washing machine 75 2.25 90 2.7 

10 Water 100 m2 of garden 400 12 400 12 

 

   


