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Time-dependent pricing strategies for metro lines considering peak 

avoidance behaviour of commuters 

With growing concerns about travel demand management practices in 

overcrowded metro systems, it is considered that time-dependent pricing 

strategies are effective for dealing with the crowding occurring during peak 

commuting hours. In this study, a bi-level optimisation framework is used to 

consider the peak avoidance behaviour of commuters in the development of time-

dependent pricing strategies. The behavioural sensitivity of commuters to pricing 

factors is investigated in terms of departure time and mode shift decisions based 

on a stated preference survey conducted in Beijing, China. The proposed bi-level 

programming model comprises a multi-objective optimisation model at the upper 

level and a nested logit-based stochastic user equilibrium model at the lower level. 

Based on an empirical case study of the Batong line in Beijing metro, nine 

optimal time-dependent pricing strategies are tailored by representative decision 

preferences, yielding an optimal off-peak discount of approximately 30% and 

best extra peak charge of 135%. Accordingly, the peak ridership is reduced by up 

to 13.97% during rush hours. 

Keywords: differential pricing; bi-level optimisation; departure time choice; 

mode shift; nested logit model 

1. Introduction 

Owing to its massive capacity, high efficiency, and low energy consumption, urban rail 

transit has been commonly considered as a preferred mode choice for the public and has 

played a crucial role in alleviating traffic congestion and promoting sustainable mobility 

in many megacities. As the most reliable method for commuting daily, the continuous 

expansion of metro networks is leading to a significant increase in the number of 

commuters during peak hours. Consequently, there is an inevitable imbalance between 

transport supply and travel demand.  

As an example, the Beijing metro has 23 lines and 394 stations in operation, 

with a total mileage of 678 km by the end of 2019, ranking the system as the second 



largest in the world. On average, approximately 5 million passengers use this metro 

network during the morning peak from 7:00 a.m. to 10:00 a.m. The broad application of 

the automated fare collection (AFC) system provides access to data, allowing the 

ridership patterns to be statistically analysed. Figure 1 presents the hourly ridership 

variation of the entire network on a weekday in 2019. Clearly, the hourly ridership is 

distributed nonuniformly throughout the day, with two distinct peaks, which are most 

probably governed by commuting activities.  

Figure 2 presents the crowdedness degree of line 4 in terms of the section load 

rate (SLR). For each section between two stations, the SLR represents the ratio of the 

number of passengers transported to the train carrying capacity. The temporal and 

spatial distributions of the SLRs in the southbound and northbound directions present 

different characteristics. The southbound direction departs from the suburb to the city 

centre, leading to SLR peaks in the first few sections during the morning peak. The 

bottleneck of the northbound direction is located in the city centre during the evening 

rush hours. From the perspective of the operator, a high SLR generally implies highly 

crowded carriages and leads to operational risks in the localised network.  

To alleviate the operation pressure during peak times, travel demand 

management (TDM) strategies involving both regulatory and incentivised approaches 

have been proposed. Following the definition in (Roby 2014), TDM refers to the 

various strategies for alleviating the effects of recurrent congestion by redistributing the 

travel demand in space and time. In metro operation management, passenger flow 

control is the most commonly used regulatory strategy, aiming to avoid crowd 

accumulation on a platform by implementing batch release at security points, e-gates, or 

even transfer channels. However, regulatory strategies inevitably negatively impact the 



travel experiences of passengers and probably lead to a loss of ridership owing to the 

low service quality. 

Concurrently, incentivisation strategies are aimed at promoting voluntary peak 

avoidance behaviour. Typically, time-dependent pricing, also known as time-based 

pricing, is a pricing strategy that allows flexible prices for products or services 

determined by the current market demands. Time-dependent pricing has been 

successfully applied in varied industries, including retailing, energy, tourism, and public 

transport. In the context of metro operation management, time-dependent pricing 

strategies, also called fare incentive strategies (Zhou et al. 2020), are commonly 

recognised as practical approaches for incentivising possible adjustment of unnecessary 

or flexible travel demand. They are currently used in metro systems of many megacities 

worldwide, such as London, Singapore, and Sydney.  

In Beijing, a time-dependent pricing scheme was first introduced on the Batong 

(BT) and Changping lines in December 2015. During the first year of trial, the 

passengers who tapped in at any station of the specific lines before 7:00 a.m. 

automatically received a 30% decrease in their entire trip fare. The reduced fare was 

deducted from their e-card when tapping out at any station. Subsequently, the concerned 

authority raised the off-peak discount to 50% for strengthening the incentivising effects. 

Despite the above strategies, the daily ridership continued to grow drastically and 

surpassed 11 million in 2019. Discussions on future implementation plans of time-

dependent pricing are ongoing. To develop effective strategies that balance the interests 

of all involved stakeholders and overcome the problems of experience-based decision-

making, quantitative analysis and comprehensive optimisation methods are required. 

The remainder of this paper is organised as follows. Section 2 reviews the 

related research on time-dependent pricing strategies. Section 3 presents a bi-level 



optimisation model for developing time-dependent pricing strategies. Section 4 reports 

the results of the empirical case study conducted considering the BT line in the Beijing 

metro network. Section 5 summarises the findings, policy implications, and directions 

for future studies. 

2. Literature review 

This section reviews the past studies in regard to commuter behaviour modelling, 

effects of pricing strategies on commuter behaviour, and existing methods for 

developing pricing strategies. 

Commuter behaviour has been extensively studied in the field of choice 

modelling. Based on collected revealed preference (RP) or stated preference (SP) data, 

commuter behaviour is typically modelled in terms of departure time choice, mode 

choice, or both. Hess et al. (2007) employed a nested logit (NL) model to interpret trip 

timing and mode choice using SP data. Habib et al. (2009) used a joint discrete–

continuous model to understand trip timing and mode choice using RP data. Lemp, 

Kockelman, and Damien (2010) formulated a continuous cross-NL model to obtain 

departure time decisions based on RP data. The above studies suggested the importance 

of including the sensitivity of an individual to pricing for understanding the commuting 

behaviour of commuters. In this respect, Kouwenhoven and de Jong (2018) and Kou et 

al. (2017) explored the key factors that affect the value of travel time and its reliability. 

With pricing strategies becoming increasingly common in mass transit systems, 

commuter behaviour is receiving significant attention. Ho, Hensher, and Wang (2020) 

used SP/RP data to calibrate the NL-based mode and time of a day choice model 

considering the differential pricing of a train. Li et al. (2018) used SP data to understand 

departure time choice employing a smart corrected mixed logit model considering metro 

fare discount.  



Furthermore, from an empirical perspective, numerous real-world cases of 

pricing strategies are available in the literature for analysing their effects on the 

behavioural changes of commuters. Ben-Elia and Ettema (2011a; 2011b) conducted a 

13-week field survey to determine the rush hour avoidance intentions after the 

introduction of the Spitsmijden project in the Netherlands, which set rewards of 

different levels and types, either monetary or in-kind, for driving commuters. The 

itineraries of the participants were tracked using state-of-the-art detection equipment 

and modelled by a discrete mixed model. The results revealed that the rewards 

promoted shifts to off-peak periods, public transport, and working from home. Peer, 

Knockaert, and Verhoef (2015) targeted an annual train pass holder in the Netherlands 

to explore trip scheduling preferences in a peak avoidance experiment. A customised 

application was installed on the smartphones of the participants in advance to record 

their commuting activities. The collected data indicated that the rewards motivated a 22% 

decrease in the number of peak trips.  

Using smart card data recorded before and after the implementation of a pricing 

strategy, Lovrić et al. (2016) developed a schedule-based demand framework for 

evaluating a free pre-peak travel policy. They found that the policy led to a 3.48% 

decrease in the peak hour ridership to central business districts and a 2.16% loss in the 

revenue of the operator. Graham et al. (2020) studied the impact of an early bird 

discount policy on trip scheduling preferences. They suggested that similar levels of 

pre-peak discounts had very limited effects on relieving peak crowding, which is in 

agreement with the experiences in cities such as Melbourne and London. In relation to 

the Beijing metro, Lin and Feng (2013) measured the loss aversion of different groups 

of metro travellers in response to a ticketing reform in Beijing, China. The feasibility of 

duration-, distance-, and zone-based pricing strategies was also discussed in their study. 



Zhang, Fujii, and Managi (2014) explored the key factors for motivating peak 

avoidance behaviour and presented the effects of pre-peak fare discounts, free Wi-Fi, 

breakfast coupons, and flexible work time schedules. 

Summarizing, in the above studies, the validity of various pricing strategies was 

assessed based on behavioural models or empirical cases. However, the discussion on 

the difference between traditional mode choice behaviour and mode shift behaviour in 

the context of time-dependent pricing is still insufficient. Some of the related studies 

obtained the departure time and mode choice preferences of commuters as an 

approximate reference to support the development of time-dependent pricing strategies. 

Inevitably, the habitual factors of regular metro commuters were observed to be 

restricted and resulted in biases when evaluating behavioural effects. Thus, it is crucial 

to provide various ranges of the departure time and mode shift alternatives in survey 

design and choice modelling, given that commuters show different peak avoidance 

intentions for the same pricing strategy. Additionally, some studies used smart card data 

before and after the implementation of pricing strategies to capture well the peak 

avoidance behaviour of metro commuters (Lovrić et al. 2016; Graham et al. 2020). 

Alternatively, they conducted SP surveys to collect the departure time decision 

preferences of commuters towards reduced fares (Li et al. 2018). However, there is still 

a lack of comprehensive analysis of the effects of different pricing strategies, 

particularly the combined effects of an extra peak charge and an off-peak discount. 

Regarding the development of pricing strategies for transport systems, the 

previous studies mostly focused on Ramsey-based pricing models (a deviation from the 

standard socially optimal pricing principle aimed at maximising social welfare), 

mathematical models with various optimisation objectives, or proposing specific design 

criteria. Hamdouch and Lawphongpanich (2010) aimed to achieve the least overall 



delay under an equilibrium condition by adjusting metro fares. Gong and Jin (2014) 

applied the trilateral game theory to pricing modelling to achieve a balance between the 

interests of the government, transport operator, and passengers. The most important 

contribution of the above research can be considered as the provision of relevant 

guidance for pricing scheme adjustment in specific development stages. In recent years, 

the methodologies for optimising time- or area-dependent pricing strategies have been 

receiving increasing attention not only for metro systems but also for other mass transit 

systems. Regarding the latter case, Sabounchi et al. (2014) and Zheng, Rérat, and 

Geroliminis (2016) proposed simulation-based methods for tailoring area-dependent 

pricing schemes for multimodal transport systems considering a mode share between 

private cars and public transit. Wu et al. (2019) presented a two-stage optimisation 

model for the dynamic pricing of a high-speed rail in the Beijing–Shanghai corridor. 

Tang, Ge, and Lam (2019) evaluated time-, area-, and quality-dependent pricing 

strategies for a bus transit system. Further progress has been achieved regarding the 

time-dependent pricing problem in a metro network. Aiming to rebuild the mode share 

patterns in a multimodal transport system, Liu and Wang (2017) modelled a time-

dependent pricing problem with the objective of minimising the total travel time of 

passengers. Yang and Tang (2018) presented a fare-reward scheme to incentivise 

departure time shift by offering a free off-peak trip after a certain number of paid peak 

trips. Furthermore, Tang et al. (2020) combined a fare-reward scheme with a non-

rewarding uniform fare scheme. Using the proposed transit bottleneck model, they 

determined the free fare intervals, reward ratio, and new fares of the sub-schemes. 

Using a bi-level programming framework, Tang et al. (2020) optimised a surcharge-

reward scheme to incentivise departure time shift from a central period to shoulder 

periods. Specifically, the upper-level problem maximised the total equilibrium cost of 



the commuters, and the lower-level problem specified the equilibrium condition for the 

departure time choice. 

Although methods for developing time-dependent pricing strategies have been 

investigated for a wide range of research scenarios, the past studies are still not 

sufficiently comprehensive in the following aspects, which is also the main motivation 

of the present study. First, departure time and mode shift behaviours should be 

considered simultaneously to capture the changes in metro demand patterns, which is 

essential for optimising desirable pricing strategies. Second, the combined effects of an 

extra peak charge and an off-peak discount need to be further explored. Third, it is 

necessary to discuss various decision preferences that either favour the interests of one 

stakeholder or balance the interests of all. Fourth, the above three elements should be 

collectively incorporated in optimisation models for developing demand-responsive 

time-dependent pricing strategies. In this study, the peak avoidance behaviour of metro 

commuters in response to time-dependent pricing strategies is investigated and 

modelled using an NL structure. Moreover, an elastic demand is incorporated into the 

optimisation process based on a bi-level programming framework. Additionally, time-

dependent pricing schemes optimised by representative decision preferences—operator 

and commuter benefits preferred, ridership peak-cutting preferred, and balanced 

schemes—are evaluated to provide references to policymakers. 

3. Methodology 

When a time-dependent pricing strategy is scheduled to be implemented, the impacts of 

the policy elements, such as the affected periods and stations, level of off-peak discount, 

and extra peak charge, need to be understood a priori to ensure the intended effects. 

Thus, an SP survey is conducted to obtain commuter responses to time-dependent 



pricing strategies. Based on the estimated NL model, a bi-level optimisation model 

comprising a multi-objective optimisation model in the upper level and a stochastic user 

equilibrium (SUE) model in the lower level is formulated, together with a solution 

algorithm for the models. 

3.1. Modelling peak-avoidance behaviour of commuters 

3.1.1. SP survey 

The SP survey is designed to identify the factors that influence the spontaneous 

behaviour changes of commuters in response to time-dependent pricing strategies. 

Specifically, we consider the peak avoidance behaviour of commuters in terms of their 

departure time and mode shift decisions. Face-to-face interviews were conducted in the 

areas within the Fifth Ring Road in Beijing in May 2018. Because only regular metro 

commuters are qualified to respond, the interviews are mostly conducted in shopping 

centres around metro stations during after-work hours.  

Each interview comprises three steps. The interviewee is asked about his/her 

commute mode choice at the beginning. Only qualified metro commuters move to the 

second step, in which a brief introduction is provided to ensure that the respondent has 

the basic knowledge of time-dependent pricing. Subsequently, the interviewer guides 

the respondent to complete the SP choice tasks sequentially and provides assistance 

where needed. In the actual survey, each SP task shows ten alternatives of metro 

departures covering a wide range of departure times and three alternatives involving 

shifts to other travel modes. We base the scenarios on a regular commuting plan, given 

that previous travel habits of a commuter might influence the intention of adjusting 

previous behaviour. Figure 3 displays as an example a set of SP choice tasks developed 



based on a real commuting route between the Huilongguan community and the 

Xizhimen centre area in Beijing. 

The regular departure time of a commuter directly determines the difficulty in 

accessing the off-peak discount. For example, if a commuter typically leaves home at 

7:10 a.m. and the off-peak discount is planned to end by 7:00 a.m., then the reduced fare 

is available to the commuter subject to a shift to an earlier departure by a minimum of 

10 min. In contrast, for the commuters departing at 8:00 a.m., the off-peak discount will 

be less attractive as a significant change (an hour) is required in their regular schedule. 

Therefore, it is necessary to include regular departure times in an SP scenario, providing 

respondents with a highly realistic decision-making environment. As forms of time-

dependent pricing, apart from the most commonly used off-peak discount, an extra peak 

charge is also considered for further strengthening policy effects.  

By on-site interviews, we collected a total of 2,467 SP choice observations from 

135 respondents, of which 1,245 valid choices were answered in the morning peak 

scenario and the remaining 1,222 in the evening peak scenario. Each respondent was 

invited to complete ten SP choice tasks in both morning and evening peak scenarios. 

Each scenario comprised a current pricing scheme and two hypothetical pricing 

schemes (Schemes I and II in Figure 3). The respondents made five SP choices in 

Scheme I and another five SP choices in Scheme II. Figure 4 presents the descriptive 

statistics of the responses. 

Based on the preliminary statistics of the socio-demographics, although there is 

a high proportion of male interviewees, most of the indicators are distributed uniformly 

across the respondents, which is in line with the gender distribution of metro passengers. 

To preliminarily test the elasticity of the peak avoidance behaviour, Figure 5 

summarises the statistical results of the SP responses to the shift in the departure time. 



The intention of the commuters for departing earlier is relatively stronger than that for 

departing later, which is particularly evident from the higher proportions of accepting 

the 5-min and 20-min ahead options. This is in line with the aim to arrive on time for 

work and also indicates a loss of metro ridership caused by the mode shift behaviour 

when the pricing strategies take effect. 

3.1.2. NL model of departure times and mode shift decisions of commuters 

Based on the random utility theory, the utility function for alternative i  and decision 

maker n  consists of the following two parts: 

 ni ni niU V = + , (1) 

where niV  and ni  are the deterministic and stochastic terms of the utility function, 

respectively. 

The assumption of a type I extreme value distribution yields a logit model, with 

the probability of commuter n choosing alternative i out of 1, 2, ..., =J J  given by 
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where *
m

V  is the logsum term reflecting the impact of the lower level on the upper level 

and 1  and 2  are the scale parameters of the upper and lower levels, respectively. 

Because the normalisation is performed at the top, 1 1 =  and 2 >1 . |i m
V  is the lower-

level utility of choosing alternative i  in nest m  perceived by a commuter and m
V  is the 

upper-level utility of choosing nest m  perceived by a commuter. 

Intuitively, there might be differences in the peak avoidance intentions of 

commuters in the morning and evening peak times. Commuters frequently have more 

choices for after-hour activities, instead of returning home immediately, which probably 

leads to a difference in the value of time (VOT). Thus, we establish choice models for 

morning and evening peaks separately. The NL model structure is illustrated in Figure 6. 

The upper level shows whether a commuter keeps travelling by metro or shifts 

to other travel modes, such as buses, taxis, and private cars. The lower level describes 

the departure time adjustment of a commuter, including maintaining the regular 

schedule and departing earlier or later in various time ranges.  



There are four nests referring to the nests of metro, bus, taxi, and private car, 

respectively. 
j

A  denotes the alternative in the first nest of metro in Table 1, where the 

attributes used in the utility function are listed.  

The entire sample set is divided into two subsets in terms of the peak types. 

Subsequently, we use Guass 16.0 to calibrate the NL models with the classified SP data. 

The model estimation results are summarized in Table 2. 

All estimates for the situational attributes listed in Table 2 have absolute t-values 

greater than 1.96, indicating significant effects on the commuter behaviour. The 

variables of travel time, travel cost, shift in departure time, and crowding degree have 

significant negative impacts on the departure time and the mode shift decisions, as 

expected. The adjusted 2  values of the two models are 0.417 and 0.388, respectively, 

suggesting they perform well in terms of model fitting. Additionally, the VOTs 

reflected by the time-related attributes are calculated based on Equation (7). The VOT 

estimation results are summarized in Table 3. 

 T F/  = , (7) 

where   is the VOT of a time-related variable, CNY/h; and T  and F  are the 

estimated coefficients of a time-related variable and the travel cost, respectively. 

Based on the data released by the Beijing Municipal Bureau of Statistics, the per 

capita disposable income of Beijing was 62,361 CNY in 2018. As a reference for the 

obtained VOTs, the mean working VOT of Beijing residents is estimated as 29.52 

CNY/h considering 8 working hours a day, 22 working days a month, and a total of 

2,112 working hours per year.  

The VOTs in the morning peak are higher than those in the evening peak 

because the former is typically more crowded and less comfortable than the latter. We 



also speculate that commuters generally prefer to have flexibility in adjusting the after-

work schedule. In most cases, the primary task of a commuter in the morning is to avoid 

being late for work. However, in the evening peak, numerous people tend to spend time 

on after-work activities, which also helps motivate peak avoidance behaviour. Therefore, 

time-dependent pricing strategies typically perform better in the evening peak times and 

are lesser likely to lead to a loss of ridership than those in the morning peak times, 

which is also in line with the statistical survey results displayed in Figure 5. 

We also notice that the sensitivity to shifting the departure time is less strong 

than that to the travel time. This is closely related to the natural differences between 

these two attributes; specifically, travel time is the actual time consumed of time by the 

commuters to complete a daily round-trip. However, when commuters reschedule their 

commuting plans to access a reduced fare, a scheduling disutility occurs; concurrently, 

the time can still be used for other activities. 

3.2. Bi-level optimisation model 

Based on the estimated choice model, this section presents the bi-level programming 

conducted for developing time-dependent pricing strategies. The upper-level 

optimisation model generates candidate strategies that balance the interests of the metro 

operator and the commuters with multiple objectives of maximising the sum of the 

operator and commuter surplus, and minimising the peak ridership. The lower level 

utilizes an NL-based SUE model to estimate the variations in the travel demand under 

the impact of the candidate strategies. The feedback of the SUE demand patterns from 

the lower-level model enables the upper-level model to evaluate the candidate strategies 

accurately and helps obtaining the optimal solution for the entire bi-level model. 



3.2.1. Upper-level multi-objective optimisation model 

The upper-level model aims to ensure an appropriate optimisation direction to avoid a 

local optimum solution. Regarding the optimisation objectives, the primary goal of 

implementing a time-dependent pricing strategy during rush hours is to motivate the 

peak avoidance behaviour of passengers to the maximum extent to alleviate the 

overcrowding on platforms and trains. At most crowded stations, the arrival of 

numerous passengers in a short period overloads the metro system. Hence, reducing the 

peak ridership is crucial for operators to ensure safe operation and provide high-quality 

commuter service. Concurrently, metro operators intend to maintain or even improve 

the current profits from ticket sales. From a commuter perspective, the preferences are 

for better service and lower prices. Based on the above considerations, two objectives 

are used in the upper-level optimisation model: maximising the sum of the operator and 

commuter surplus and minimising the peak ridership. 

For the operator surplus, we assume that the cost of the metro operator is 

relatively fixed in our research context; it mainly consists of the construction cost, 

operation cost (largely depending on the train timetable and the rolling stock schedule), 

and labour cost. Although pricing strategies impact the perceived service quality of the 

commuters, and thus, lead to changes in the travel demand, they have less effect on the 

overall cost of the operator. However, the ticket revenue of the operator is directly 

affected by the adopted pricing strategy. Given that the cost of the operator is assumed 

to be constant in this study, the revenue changes can be regarded as equivalent to the 

surplus changes. Thus, we use the difference between the ticket revenue before and after 

implementing a pricing strategy to represent the operator surplus.  



Let K  denote the set of research periods, k K ; 1K , 2K , and 3K  denote the sets 

of pre-off-peak, peak, and after-off-peak periods, respectively; and W denote the set of 

origin–destination (O–D) pairs, w W . Thus, the operator surplus can be expressed as 

 ( ) ( ) ( )ˆ= ,  1
w w

w W

w

m w

k K

E k q k qp mk
 

−  = , (8) 

where E  is the operator surplus, CNY; wp  is the base fare between O–D pair w . ( )
w

k  

is the time-dependent fare rate between O–D pair w  during period k , which is also the 

decision variable in the optimisation model. ( )ˆ
w

q k  is the number of commuters 

travelling by the metro between O–D pair w  during period k before implementing a 

time-dependent pricing strategy. ( )w

m
q k  is the number of commuters travelling by mode 

m  between O–D pair w  during period k  after implementing the time-dependent pricing 

strategy. 

Given that travel cost of a commuter comprises both time and monetary costs, 

we calculate the commuter surplus in terms of time and monetary components. Taking 

the monetary component as an example, we consider the current ticket price (i.e., the 

base fare) as the amount that commuters are willing to pay and consider the time-

dependent ticket price as the amount that a commuter actually spends. It should be 

noted that the monetary component of the commuter surplus (MCCS) should cover all 

commuters either still taking the metro or shifting to other travel modes. For the 

minority commuters shifting to other travel modes, we take the fare of the new travel 

mode as the amount they spent. Hence, there is a difference between the metro ticket 

revenue of the operator and the total monetary cost of the commuters. The equations for 

calculating the MCCS are 
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where MC  is the MCCS, CNY; M  is the set of the nests in the NL model, m M ; and 

( )w

mp k  is the travel cost of mode m  between O–D pair w  during period k CNY. Note 

that except when =1m , ( )w

mp k  is related only to O–D pair w  and does not vary with 

period k , given that time-dependent pricing only applies to the metro. 

The time component of the commuter surplus (TCCS) is calculated similarly as 

above. We use the difference between the original and current travel times to represent 

the TCCS. Using the VOT coefficient obtained from the choice model, the unit of the 

TCCS can be further converted from seconds to CNY as follows: 

 ( ) ( ) ( ) ( )T
ˆˆ= w w

w mw m

w W k K m M

C k q k k q kt t
  

 − , (11) 

where TC  is the generalised TCCS, CNY; ( )ˆw

mt k  is the metro travel time between O–D 

pair w  during period k before implementing a time-dependent pricing strategy; and 

( )w

m
t k  is the time travelling by mode m  between O–D pair w  during period k  after 

implementing the time-dependent pricing strategy. 

Based on the above specifications, the upper-level optimisation model can be 

formulated as follows: 

 ( )1 M TmaxZ E C C= + + , (12) 

 ( )2 ,= min max  1w

mZ mq k   = , (13) 

subject to 

 ( )min 1 31, , |w w W k Kk K       , (14) 



 ( ) max 21 , , w w W kk K       , (15) 

where 1Z  and 2Z  are the two objectives of the optimisation model, representing the 

decision preferences for improving the benefits of operator and commuters, and 

reducing the peak ridership in the network during the rush hours, respectively. min  and 

max  are the lower and upper limits of the decision variable, ( )
w

k . 

Equations (15) and (16) are set to ensure reasonable ranges of the solutions, i.e., 

time-dependent fare rates ( )
w

k . Considering realistic scenarios, we assume that the 

extra peak charge only applies to the peak hours and the off-peak discount only to the 

off-peak hours. Accordingly, we set an upper limit for the extra peak charge and a lower 

limit for the off-peak discount to protect the basic interests of the commuters and the 

operator, respectively. 

3.2.2. Lower-level NL–SUE model 

Instead of simply assuming that all commuters follow the least-cost choice as in the 

deterministic user equilibrium model, the SUE model describes the decision-making of 

the users as a dynamic process. This is because the behaviour of a commuter, which 

affects the behaviour of other commuters as one of the determinants (i.e., crowding 

degree), varies with his/her peak avoidance behaviour (i.e., the shift in the departure 

time and the mode choice).  

The SUE model defines a scenario in which no user can improve the perceived 

travel cost by changing the alternatives unilaterally (Prashker and Bekhor 2004). Under 

this condition, each alternative in the NL choice model has a non-zero probability of 

being chosen (Zhang, Yao, and Pan 2019). Thus, the travel demand of the commuters 



can be measured by their choice results under the SUE condition, i.e., the flow of 

choosing the alternatives in the NL model.  

In a two-level NL model, two SUE conditions are derived from each level of the 

choice model. The first condition is the equilibria of the mode choice decisions, and the 

second condition is the equilibria of the departure time decisions in the nest of the metro. 

The generalised cost of the alternatives can be expressed as 

 ( ) ( )| | ,  1w w

i m i mC k V k m=− = , (16) 

 ( )
( )

( )

2 |

2

1
ln exp ,  1

,  1

w

i mw
i Im

w

m

V k m
C k

V k m


 

  − =  = 
− 


, (17) 

where ( )w

mC k  is the generalised cost of choosing nest m  between O–D pair w  during 

period k ; ( )w

mC k  is the generalised cost of choosing alternative i  in nest m  during 

period k ; and I  is a set of alternatives in the NL model, i I . 

Extensive studies have suggested that the lower-level SUE model can be 

expressed as a minimisation problem (Prashker and Bekhor 2004). However, entropy-

based formulations have no economic interpretation (Liu et al. 2018; Tang et al. 2020). 

To illustrate well the SUE conditions regarding the departure time and mode joint 

choice problem, we formulate the lower-level NL–SUE model as a fixed-point problem. 

Regarding the upper-level mode choice, ( ) min w

mE C k    denotes the minimum 

expected cost of choosing mode-related nest m . The perceived cost of the commuters of 

choosing nest m  can be expressed as 

 ( ) ( )  ( )1

1

1
min ln expw w w

m m m

m M

S C k E C k C k
 

     = = − −      . (18) 



Similarly, with respect to the lower-level departure time choice, ( ) |min w

i mE C k    

denotes the minimum expected cost of choosing departure time-related alternative i . 

The perceived cost of the commuters for choosing alternative i  can be expressed as 

 ( ) ( )  ( )
2

|2| |

1
= min = ln exp ,  1w w

m

w

i I

i m i m iS C k E C k C k m
 

     − − =      . (19) 

There are two SUE conditions in this problem: equilibria of the mode choice and 

departure time choice, respectively. When the SUE conditions are reached, the 

generalised costs of choosing different alternatives perceived by the commuters are 

equal and minimised, which are applied to each O–D pair w  and period t  as follows: 

 ( ) ( ) ( )  0w w w

m m m

w k

q k C k S C k − =  , (20) 
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w w w

w k

q k C k S C k m − = =  , (21) 

 ( ) ( )
( )

( )

1

1

1

ˆ=

w
m

w
r

V k

w

m w R V k

r

e
q k q k

e




=

, and (22) 

 ( ) ( )
( )

( )

2 |

2 |

1

| = ,  1

w
i m

w
j m

V k

w w

m J V ki m

j

e
q k q k m

e





=

=


 (23) 

where ( )|
w

i mq k  is the number of commuters choosing alternative i  between O–D pair w 

during period k , i.e., the alternative flow. 

Additionally, the SUE conditions specified in Equations (20)–(23) are subject to 

the following constraints: 

 ( ) ( )ˆ  , ,w

w m

m

kq k wq k=  , (24) 



 ( ) ( )| , 1, ,  =w

i m

w

m

i

q q wk kk m = , (25) 

 ( ) ( ) ( )|
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mi m w w kq k q k q k   , (26) 

 ( ) ( ) , ,w w

m mC kk S C k w   , and (27) 

 ( ) ( )| | , ,m

w w

i m i w kC k S C k    . (28) 

Equations (24) and (25) express the conservation conditions of the flows of the 

mode-related nests and the departure time-related alternatives, respectively. Equation 

(26) is a non-negative constraint. Equations (27) and (28) illustrate the relationship 

between the perceived cost of the commuters and the minimum expected cost in the 

SUE problem. The flow-related constraints of the feasible region ensure a non-empty 

convex set. In addition, the utility functions in Equations (16) and (17) as well as the 

functions for calculating the probability of the alternatives being chosen in Equations 

(22) and (23) are continuous. The Brouwer fixed-point theorem ensures the existence of 

a fixed point, which also indicates the existence of a solution of the equivalent NL–SUE 

problem. 

3.3. Solution algorithm 

The bi-level programming is an NP-hard problem that involves high computational 

complexity. Following the method of successive weighted averages (MSWA) proposed 

by (Liu, He, and He 2009), a genetic algorithm-based MSWA algorithm is proposed to 

solve the formulated bi-level optimisation model. 



3.3.1. Computing optimal time-dependent pricing strategies 

Given the two optimisation objectives in the upper-level optimisation model, a 

normalisation approach is used to standardise their dimensions. The extreme values of 

both objectives are estimated in advance by solving each single-objective optimisation 

problem. Subsequently, the multi-objective optimisation problem is converted into a 

single-objective form using the fuzzy-compromise decision-making method, such that 

 ( )1 1 2 2max maxZ    = − , (29) 

 
min

max min
e e

e

e e

Z Z

Z Z
 −

=
−

, (30) 

where e  and  e  are the allocation and weight coefficients of objective eZ , respectively, 

1 = e ,  1,  2e ; and max
e

Z  and min
e

Z  are the maximum and minimum values of 

objective eZ , respectively. 

A set of time-dependent fare rates for the pre-off-peak, peak, and after-off-peak 

hours forms a gene in the genetic algorithm, which is equivalent to the decision variable 

in the optimisation model. The chromosome is composed of a set of genes, forming an 

individual in the population. The best individual carries the optimal solution of the time-

dependent fare rates when convergence is reached. In addition, several essential 

procedures, such as selection, crossover, and mutation, are included in the algorithm. 

We use the gambling-wheel disk selection method to support selecting good individuals 

from the population as well as to avoid falling into a local optimum solution. The 

algorithm for solving the upper-level model involves the following steps (for detailed 

steps, see Figure 7): 



• Step 1: Parameter initialisation. The related parameters are the binary code of 

the gene, population size, probabilities of crossover and mutation, and number 

of iterations. In particular, the first generation of the population is initialised 

subject to Equations (14) and (15). 

• Step 2: Fitness evaluation. The best individual is substituted into the lower-level 

model to obtain the SUE solution. Furthermore, the fitness of an individual is 

measured by the objective function based on the obtained SUE solution.  

• Step 3: Individual selection. All individuals in the current population are 

prioritised in terms of the fitness performance. Thus, good individuals are 

preserved for the next generation using the gambling-wheel disk selection 

method. 

• Step 4: Population evolution and convergence determination. A two-point 

crossover and a stochastic mutation are applied for the evolution of the 

population. The above steps are repeated until the convergence condition is 

satisfied. 

3.3.2. Computing NL–SUE solution 

The main objectives of the lower-level model are to estimate the choice results of the 

commuters under the influence of the candidate time-dependent pricing strategies 

generated by the upper-level model and provide accurate criteria for the fitness 

evaluation of the candidate strategies. An MSWA-based method is used to solve the 

SUE problem by the following steps: 



• Step 1: Parameter initialisation. Let iteration index 1g = , lower error bound 

-410= , period index 1k = , flow of mode ( ) ( ), 0=g

m wq k , flow of departure time 

( ) ( )| , 0=g

i m wq k , and additional flows ( ) ( ), 0=g

m wq k  and ( ) ( )| , 0=g

i m wq k . 

• Step 2: Utility updation of the alternatives. Based on the current status of the 

situational attributes, utilities ( ) ( ),

g

m wV k  and ( ) ( )| ,

g

i m wV k  of the alternatives are 

calculated. Concurrently, probabilities of choosing each alternative ( ) ( ),

g

m wp k  and 

( ) ( )| ,

g

i m wp k  are also updated. 

• Step 3: Flow assignment. The formulae for calculating the flow of choosing each 

alternative are 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )-1 -1

| , | , | , | ,
1 2

g g g g

i m w i m w i m w i m w

g
q k q k + q k q k

g
 = − + + +

 and (31) 

 
( ) ( ) ( ) ( ) ( ) ( )1

| , | , | , 1−= +g g g

i m w i m w i m wq k q k p k . (32) 

• Step 4: Convergence determination. The algorithm is ended when the 

convergence condition in Equation (31) is satisfied. Otherwise, Step 2 is 

repeated, and the iteration is continued.  
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By combining the above two parts of the solution procedure, the proposed bi-

level optimisation model can be solved efficiently. For a more explicit illustration, 

Figure 7 presents a flowchart of the solution algorithm. 



4. Case study 

In this section, an empirical case study of the BT line in the Beijing metro network 

conducted to test the proposed model is discussed. The BT line connects the eastern part 

to the central area of Beijing and currently has 13 stations in operation, as shown in 

Figure 8.  

The eastern end of the BT line is located in a residential area of east Beijing, 

where numerous commuters take the metro to the CBD area every morning. The BT 

line plays a crucial role in supporting the west–east commuting corridor of Beijing. The 

blue dotted lines represent the O–D pair studied in this case. Specifically, the residential 

area is composed of the Liyuan (LY), Linheli (LHL), and Tuqiao (TQ) stations, and the 

CDB area is composed of the Yonganli (YAL), Guomao (GM), Dawanglu (DWL), 

Sihui (SH), and Sihuidong (SHD) stations.  

The study period was set between 6:00 am and 9:00 am, in which the peak hour 

is between 7:00 am and 8:00 am. The periods on either side are defined as the off-peak 

hours on a weekday morning: a pre-off-peak hour from 6:00 am to 7:00 am and an 

after-off-peak hour from 8:00 am to 9:00 am.  

The data on the travel demand in the study period were extracted from the smart 

card usage records collected by the AFC system. Additionally, the current pricing 

scheme, train capacity, and timetable were obtained for use in the upper-level 

optimisation model. In particular, access to the situational attributes of the substituted 

travel modes was obtained using the Baidu web application programming interface, a 

professional tool for developers to use real-time navigation data provided by the Baidu 

Map. Thus, all attributes involved in the utility functions were derived well to support 

solving the lower-level NL–SUE model.  



The parameters of the solution algorithm were determined by parameter tuning. 

Based on the computational complexity of the optimisation problem and the available 

computing resources, the optimisation results were tested under different levels of 

parameter values and evaluated in terms of the convergence rate and the solution quality. 

In the genetic algorithm, the population size was set as 30 and the maximum number of 

iterations was set as 500. The crossover and mutation probabilities were set as 99% and 

5%, respectively. The smallest unit of the fare rate change was set as 0.01. For the 

MSWA, the upper error bound for the convergence was set as 10−4. Additionally, the 

upper and lower limits of the decision variable, i.e., the time-dependent fare rate, were 

set as 2.00 and 0.25 for the extra peak charge and the off-peak discount, respectively. 

From a practical perspective, time-dependent pricing strategies take 

responsibility for all interest groups. Generally, although a balanced strategy is 

preferred, the optimal strategy varies with the priorities of policy-making. Under 

different weight combinations of the two optimisation objectives (i.e., Z1 and Z2), time-

dependent pricing schemes under three representative decision preferences—operator 

and commuter benefits preferred pricing schemes (Z1:Z2 = 1:0, namely, only Z1 was 

retained, and Z2 was converted into a constraint), ridership peak-cutting preferred 

pricing schemes (Z1:Z2 = 1:2), and balanced pricing schemes (Z1:Z2 = 1:1)—were 

optimised using the proposed model. Table 4 reports the optimal time-dependent fare 

rates. 

As seen from Table 4, there are three pricing measures in each category of the 

pricing schemes—off-peak discount, extra peak charge, and both—intending to provide 

comprehensive references to policymakers. A total of nine optimal schemes are 

obtained and evaluated in this study, along with the current pricing scheme as the 

reference. In the operator and commuter benefits preferred pricing schemes (Schemes 



II, III, and IV), the price increase and decrease are smaller than those in the ridership 

peak-cutting preferred pricing schemes (Schemes V, VI, and VII), indicating the 

necessity of including the second objective. The two objectives achieve a balance in the 

third category of schemes (Schemes VIII, IX, and X), with an optimal off-peak discount 

of approximately 30% and the extra peak charge working best at 135%. 

To provide more quantitative criteria for choosing appropriate strategies, the 

performance of the above six optimal strategies were further evaluated. Figure 9 

presents the temporal distributions of the metro ridership under the influence of the 

time-dependent pricing strategies. 

Schemes V, VI, and VII reduce the peak ridership most significantly during 

7:45–8:00. Commuters who originally depart at the start or the end of the peak hour 

tend to avoid the extra peak charge or prefer to receive the off-peak discount by 

adjusting their departure times. Among these three most powerful strategies, the flow-

regulation effects appear to be excessive as numerous commuters are incentivized to 

shift to the pre-off-peak period of 6:45–7:00 as well as the after-off-peak period of 

8:00–8:15, thereby leading to new ridership peaks. Schemes VIII, IX, and X perform 

moderately for mitigating crowding during the peak hours. In contrast to the above two 

categories of the schemes, Schemes II, III, and IV have comparatively weaker flow-

regulation effects. Furthermore, Figure 10 presents the mode share patterns under the 

above schemes to provide a complete evaluation. 

As seen in Figure 10, Scheme VI results in the maximum loss of metro ridership 

of approximately 6%, given that only a relatively high level of extra peak charge is 

adopted. As shown in Figure 9, the peak-cutting effects of Schemes VII (both measures), 

VI (extra peak charge), and V (off-peak discount) decrease in order, which is basically 

in line with the loss of the total ridership. It should be noted that Scheme VII leads to 



less loss of ridership than Scheme VI, indicating that the inclusion of the off-peak 

discount helps retain ridership while pursuing more potent incentivizing effects. If only 

focusing on the performance of ridership retention, Schemes II, VI, and VIII can be 

deemed as the best three schemes because they are more concerned about the benefits of 

the commuters by purely offering off-peak discounts. Additionally, the most favourite 

alternative travel mode of the metro commuters is confirmed to be a bus, transporting 

approximately three-quarters of the total number of shifted commuters.  

Finally, we compare the objective-related indicators of the pricing schemes to 

evaluate their overall performance. In Table 5, the obtained nine optimal pricing 

schemes are compared with the current pricing scheme, Scheme I, in terms of the ticket 

revenue of the operator, generalised travel cost of the commuters (including both travel 

time cost and monetary cost), and peak ridership after implementing the time-dependent 

pricing schemes. Clearly, all nine schemes reduce the peak ridership regardless of the 

amount of change. Schemes II, V, and VIII not only reduce the cost of the commuters 

but also the revenue of the operator. Schemes III, VI, and IX have positive impacts on 

the revenue of the operator but increase the cost of the commuters. Only Schemes IV, 

VII, and X achieve a win–win scenario for the operator and the commuters. Although 

the benefits for both are small, the decrease in the peak ridership is significant, which is 

more important for policymakers. Among these three schemes, Scheme IV has the 

weakest effect on the ridership peak cutting; therefore, we do not recommend its use 

under realistic conditions. In addition, Scheme VII outperforms Scheme X in terms of 

the three indicators. It should also be noted that Scheme VII results in greater loss of the 

metro ridership than Scheme X. Overall, Schemes V and VIII are recommended if the 

operator has the customer-first mindset or has access to government subsidies or other 

forms of financial supports. Schemes VI and X are suggested under general 



circumstances. Comparatively, the former can maximise the benefits of the system, 

whereas the latter has less impact on the current travel demand patterns. The fare rate 

changes in Scheme X are smaller than those in Scheme VI. Scheme X can be deemed as 

a moderate alternative to Scheme VI to some extent, and therefore, is recommended for 

policy exploration. 

5. Conclusions 

The present paper proposes a comprehensive framework for optimising time-dependent 

pricing strategies based on the peak avoidance behaviour of commuters, which enables 

policymakers to manage the increased travel demand on overcrowded metro lines. 

Several conclusions can be drawn from this study.  

Between the two forms of time-dependent pricing discussed in this paper—off-

peak discount and extra peak charge—the former is clearly beneficial for commuters 

but incapable of reshaping demand patterns based on the results of an empirical case 

study of the BT Line. In this regard, the off-peak discount is more preferable for metro 

operators who have particular access to government grants or other sources of revenue. 

The latter (i.e., extra peak charge) performs effectively for both flow regulation and 

ticket revenue retention. However, it occasionally leads to a severe loss of the metro 

ridership and tends to be less commuter-friendly. From the application perspective, the 

extra peak charge is a reasonable choice for incentivising peak avoidance behaviour 

only if there is a preference for maintaining the revenue of the operator. Moreover, it 

should also be based on the premise that the metro overwhelmingly dominates other 

modes in a specific commuting corridor so that the loss of ridership can be minimized. 

In contrast, the combined strategy possesses the advantages of both measures. Notably, 

inclusion of the off-peak discount reduces the aversion of the commuters to shift outside 

the peak hours, which provides cost-saving choices to them to avoid the expensive peak 



trip, and thus, can be a useful supplement to the extra peak charge. Concurrently, the 

accompanying loss of ticket revenue driven by the off-peak discount can be 

compensated by the lower reduction in the total ridership.  

In addition, there are still limitations requiring further improvements in future 

studies. The first concern is associated with the implementation of time-dependent 

pricing in a real-world context. With the fixed boundary points (i.e., starting at 7:00 a.m. 

and ending at 8:00 a.m.) currently adopted in the time-dependent pricing strategies, 

commuters who depart much later than the given boundary point are less likely to be 

affected by the pricing strategy. In this regard, the rapid adoption of e-tickets will create 

opportunities to track the commuting activities of individuals in the future. There is a 

possibility for providing a customised reward plan to individuals who intend to adjust 

their personal commuting behaviour in response to the call for peak avoidance. 

Additionally, in the NL model, the mode shift intentions of the metro commuters are 

measured using the collected SP data. By contrast, the commuters who initially take 

other travel modes and might be attracted by the metro pricing strategy (mainly by the 

off-peak discount) are not considered in this research, which is another limitation of this 

study. In fact, there is a theoretical possibility of inducing demand outside of the metro, 

although the impact may be minimal and is typically ignored in relevant studies. To 

fully understand the mode share patterns in a commuting corridor, a large survey 

involving commuters who travel by modes other than the metro is needed in future 

research. 

Overall, this study provides insights about the peak avoidance behaviour of 

commuters in response to pricing incentivisation measures and further proposes a 

methodology for tailoring demand-responsive time-dependent pricing strategies for 

practical needs. The findings regarding the departure times and mode shift intentions of 



commuters indicate that significant attention should be paid to understanding the 

evolution of travel demand patterns in the context of TDM. This is particularly essential 

for research on the issues of operation management (e.g., train scheduling, bus bridging 

service, and passenger flow control strategies) as well as other empirical studies in 

relation to the supply and demand issues in mass transit systems. The proposed optimal 

time-dependent pricing strategies meet a wide range of preferences for decision-making, 

allowing policymakers to adopt steps to reshape demand patterns depending on actual 

requirements. 
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Table 1. Composition of utility functions 

               Alternatives 

Attributes 

Metro 
Bus Taxi Private car 

A1 A2 … AJ 

Upper 

level 

Alternative-specific 

constant (ASC) 

- - √1 - 

- - - √ 

Travel time √ √ √ √ 

Travel cost √ √ √ √ 

Lower 

level 

Shift in departure time √ - - - 

Crowding degree √ - - - 

1 Tick mark indicates that attribute in horizontal row is included in utility function of 

alternative in vertical column. Short dash reflects opposite case. 

 

Table 2. Model estimation results 

Attributes Unit 
Morning peak Evening peak 

Est. t-rat. Est. t-rat. 

Scaled parameter - 0.967 3.140 0.558 3.144 

ASC for taxi - 12.471 2.201 17.843 2.750 

ASC for private car - 10.564 2.046 15.546 2.632 

Travel time h −8.068 −11.198 −5.651 −14.828 

Travel cost CNY1 −0.250 −2.870 −0.317 −3.180 

Shift in departure time h −5.552 −3.238 −2.446 −3.204 

Crowding degree2 % −0.333 −2.832 −0.206 −2.853 

Sample size 1245 1222 

Adjusted 2  0.417 0.388 

1 CNY/USD ≈ 0.145 during survey period. 2 Crowding degree is quantified by mean 

SLR of route. 

 

Table 3. VOT estimation results 

Time-related variables Morning peak (CNY/h) Evening peak (CNY/h) 

Travel time 32.3  17.8  

Shift in departure time 22.2  7.7 

 



Table 4. Optimal time-dependent pricing schemes under various decision preferences 

No. Scheme description 

Pricing measure Optimal fare rate 

Off-peak 
discount 

Extra peak 
charge 

Pre- 

off-peak 
Peak 

After- 
off-peak 

Ⅰ Current pricing scheme × × 1.00* 1.00* 1.00* 

Ⅱ Operator and commuter 
benefits preferred pricing 

scheme 

√ × 0.93 1.00* 0.95 

Ⅲ × √ 1.00* 1.18 1.00* 

Ⅳ √ √ 0.87 1.13 0.90 

Ⅴ 
Ridership peak-cutting 

preferred pricing scheme 

√ × 0.46 1.00* 0.49 

Ⅵ × √ 1.00* 1.63 1.00* 

Ⅶ √ √ 0.56 1.52 0.60 

Ⅷ 

Balanced pricing scheme 

√ × 0.73 1.00* 0.74 

Ⅸ × √ 1.00* 1.48 1.00* 

Ⅹ √ √ 0.68 1.35 0.70 

* indicates that fare rate is constant in pricing scheme. 

 

Table 5 Overall performance of different pricing schemes 

Scheme 
No. 

Ticket revenue of 

operator/kCNY 

Time cost of 

commuters/kCNY 

Monetary cost of 

commuters/kCNY 

Peak ridership 

during rush hour 

Ⅰ 44.32 220.52 44.32 1430 

Ⅱ 42.93 (−3.13%)1 217.98 (−1.15%) 43.45 (−1.96%) 1384 (−3.23%) 
Ⅲ 47.63 (7.47%) 219.59 (−0.42%) 49.53 (11.74%) 1355 (−5.28%) 
Ⅳ 44.89 (1.29%) 217.84 (−1.22%) 46.08 (3.96%) 1338 (−6.41%) 
Ⅴ 31.98 (−27.85%) 219.73 (−0.36%) 32.32 (−27.08%) 1245 (−12.91%) 
Ⅵ 56.89 (28.37%) 220.63 (0.05%) 59.73 (34.77%) 1239 (−13.32%) 
Ⅶ 45.08 (1.71%) 218.16 (−1.07%) 47.27 (6.67%) 1230 (−13.97%) 
Ⅷ 37.75 (−14.82%) 219.12 (−0.64%) 38.23 (−13.73%) 1302 (−8.95%) 
Ⅸ 54.18 (22.25%) 220.71 (0.09%) 56.50 (27.49%) 1282 (−10.33%) 
Ⅹ 44.68 (0.81%) 218.35 (−0.98%) 46.29 (4.45%) 1267 (−11.41%) 

1 Value in parenthesis are percent changes in indicator compared to those in Scheme I. 



Figure 1. Hourly ridership variation on single weekday 

 

Figure 2. Spatiotemporal distributions of section load rate of line 4 

 



Figure 3. Example of hypothetical scenario in questionnaire 

 
  



Figure 4. Descriptive statistics of collected samples 

 

 

Figure 5. Statistical results of SP choices towards departing earlier 

 
  



Figure 6. NL model structure 

 

 

Figure 7. Flowchart of solution algorithm 

 
  



Figure 8. Schematic of BT line 

 

 

Figure 9. Metro ridership patterns under different pricing schemes 

 
  



Figure 10. Mode share patterns under different pricing schemes 

 

 


