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The symbiosis between arbuscular mycorrhizal (AM) fungi, subphylum Glomeromycotina, and terrestrial 

plants is one of the most widespread and arguably most successful plant symbioses on Earth. This ancient 

relationship, going back 475 MY (Remy et al., 1994; Redecker & Raab, 2006; Field et al., 2015; Rich et al., 

2021) is beneficial for the fungi and normally benefits their plant partners. Through colonisation of plant 

roots, the fungi provide their host plants with access to soil elements including phosphorus (P) and 

nitrogen (N) while the fungi are provided with carbon (Hodge et al., 2001; Smith & Read, 2008; Keymer & 

Gutjahr, 2018). The contribution of AM fungi to ecosystems goes beyond nutrient delivery to plants. They 

are active players that influence key ecosystem functions such as nutrient cycling, decomposition, soil 

aggregation, belowground biodiversity, and plant community ecology (Powell & Rillig, 2018; Tedersoo et 

al., 2020). There is widespread recognition that the morphological and functional diversity of AM fungi 

affects their impact on these functions (Van Der Heijden & Scheublin, 2007), and on host plant growth 

promotion and nutrient uptake (Chagnon et al., 2013). 

In addition to these functions, AM fungi can enhance host defence against pathogens and insect 

herbivory, to which much research has been dedicated (e.g., Bennett et al.,  2006; Cameron et al., 2013; 

Tao et al., 2016; Rivero et al., 2021). Despite this, the role of AM fungal diversity (comprising species 

richness and relative abundance) in these interactions continues to be largely overlooked by researchers. 

This is problematic considering plants typically associate with multiple AM fungi in both natural and A
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agriculturally managed environments (Öpik et al., 2006, 2013; Bainard et al., 2014). Wehner et al. (2010) 

previously highlighted this blind-spot with regard to plant protection from pathogens. Here, we contend 

that research on AM fungal effects on plant protection from insect herbivory suffers from a similar 

weakness. The importance of mycorrhizal fungal diversity is being increasingly recognised and 

incorporated into research efforts across various facets of ecology (Anderson & Cairney, 2004; Frąc et al., 

2018; Powell & Rillig, 2018). Meanwhile progress on how AM fungal diversity mediates mycorrhiza-

enhanced protection from herbivory is fragmented and piecemeal. 

Our purpose here is to (i) briefly outline key mechanisms by which the AM symbiosis enhances plant 

defences to insect herbivores, (ii) summarise where research has made progress in understanding the role 

of fungal diversity in plant defences against insect herbivory, (iii) emphasise why it is important to 

understand how AM fungal diversity determines plant defence outcomes while highlighting the key 

knowledge gaps to be addressed.

How can AM fungi protect plants from herbivory?

To enhance their fitness and survival when challenged with herbivore attack, plants rely on different 

defence strategies. These strategies can be categorised as tolerance-based, reflecting the ability of a plant 

to regrow and reproduce after damage from herbivores (compensatory growth), or resistance-based 

defences that reduce the performance or host preference of the insect (Strauss & Agrawal, 1999; Agrawal 

& Weber, 2015). AM fungi can improve access for plants to nutrients, and as such, it then follows that 

plants engaged in the AM symbiosis can be better equipped to defend themselves from biotic attackers, 

particularly in nutrient deficient environments. That said, better access to nutrients may also drive shifts 

in plant defence strategies, which can include decreased allocation to active defences and increased 

investment to improve regrowth and tolerance to herbivory (Coley et al., 1985). Furthermore, in addition 

to improving access to P and N, AM fungi are able to enhance uptake of other elements important for 

plant defence. For example, when soil silicon availability is limiting plant uptake, AM fungi can increase 

plant tissue silicon concentrations, and so augment silicon-based herbivore resistance (Frew et al., 2017). 

It is also worth acknowledging that improved nutrient access can also directly benefit insect herbivores, 

which are able to acquire fungal-delivered nutrients (Wilkinson et al., 2019a).

Commonly accepted theory predicts that there are investment trade-offs between tolerance and 

resistance-based defence mechanisms (van der Meijden et al., 1988; Simms & Triplett, 1994), although 

evidence also suggests plants can simultaneously invest resources in both (Leimu & Koricheva, 2006). Still, A
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for many plants their ability to regrow following herbivory will rely heavily on their mycorrhizal 

associations as tolerance is determined, in part, by the availability of resources (Wise & Abrahamson, 

2005). Thus, plant tolerance should be higher in plants associated with AM fungi. However, research has 

found the AM symbiosis can increase, decrease, or have no effect on tolerance-associated mechanisms 

(Borowicz, 2013). Such variation is not related to plant functional group, and we have limited data on the 

influence of herbivore feeding guilds (i.e., chewing or piercing insect, foliar or root herbivory; Borowicz, 

2013). Indeed, the role and effects of AM fungi on plant tolerance to herbivory are arguably less well-

characterised compared to their effects on resistance. This may be partly due to a lagging understanding 

of the ecology of tolerance more broadly (Fornoni, 2011), and that tolerance is infrequently observed or 

reported in cultivated plants (Stoner, 1992). 

In addition to tolerating attack, plants rely on a suite of resistance-based defence mechanisms that reduce 

herbivore performance (e.g., reduced growth, survival, fecundity) or preference (e.g., reduced 

consumption, avoidance). There is an abundance of research showing the variety of resistance 

mechanisms AM fungi can affect, both positively and negatively, which have been covered in several 

reviews (Hartley & Gange, 2009; Johnson & Rasmann, 2015; Schweiger & Müller, 2015; Bennett et al., 

2018). Examples include the regulation of secondary metabolites such as cardenolides (Vannette et al., 

2013), benzoxazinoids (Song et al., 2011; Frew et al., 2018), flavonoids and tannins (Pedone-Bonfim et al., 

2013), silicon-based resistance mechanisms (Frew et al., 2017), and many others.

Nonetheless, beyond the elucidation of specific resistance-associated traits, the ability of AM fungi to 

induce systemic resistance to insect herbivores and pathogens is increasingly recognised as defence 

priming, or AM fungal-induced resistance (Pineda et al., 2010; Jung et al., 2012; Cameron et al., 2013; 

Martinez-Medina et al., 2016; Bennett et al., 2018; Rivero et al., 2021). Here, there is regulation of plant 

defence-associated phytohormones where the development of mycorrhiza-induced resistance occurs 

over four-phases as the fungi colonise their host plant and an arbuscular mycorrhiza is formed (see model 

proposed in Cameron et al., 2013). Once established, evidence suggests the jasmonic acid (JA) and 

ethylene defence pathway is upregulated, while the salicylic acid (SA) pathway is suppressed (Pozo & 

Azcón-Aguilar, 2007; Nair et al., 2015; Song et al., 2015; Schoenherr et al., 2019). This defence priming 

itself does not necessarily lead to the expression of defences, but when subsequently challenged by a 

herbivore (or other biotic stressor) JA-associated defences are typically expressed more rapidly and with 

greater efficacy (Jung et al., 2012; Rivero et al., 2021). This understanding corresponds with the general 

patterns of how different insect herbivores are affected by the AM symbiosis. Specifically, chewing insects 

who are sensitive to JA-associated defences tend to be negatively affected, while piercing insects, A
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sensitive to SA-associated defences, are less negatively affected or even benefit from the AM symbiosis 

(Hartley & Gange, 2009; Koricheva et al., 2009; Yang et al., 2014; Johnson & Rasmann, 2015). This defence 

induction can even be elicited via the common mycelial network that connects the roots of different 

individual plants. For example, Song et al. (2014) showed that a herbivore-free plant connected to a 

conspecific neighbour, solely via mycorrhizal fungal mycelia, upregulated JA-associated genes and defence 

enzymes when the neighbouring plant was attacked by the chewing herbivore Spodoptera litura. 

Similarly, Babikova et al. (2013) demonstrated that a herbivore-free plant connected (via fungal mycelia) 

to a conspecific neighbour, exhibited changes in herbivore-induced plant volatile production when the 

neighbouring plant was subjected to the sucking herbivore Acyrthosiphon pisum.

Influence of fungal species identity and diversity on defence

The outcomes of the AM symbiosis for plant growth and nutrient uptake can be highly context-specific, 

dependent on factors such as soil nutrient availability, plant and AM fungal identities, and diversity (Fig. 

1a; Bever, 2002; Hoeksema et al., 2010; Veresoglou et al., 2012). Plant performance responses are often 

stronger when inoculated with multiple AM fungal taxa compared with single-species inoculation 

(Veresoglou et al., 2012; Zhang et al., 2019). Yet, it is worth noting the vast majority of experimental 

studies of plant responses to AM fungi, including plant responses under stress, use single-species inocula, 

a point that has been raised across multiple meta-analyses and reviews over the years (Hoeksema et al., 

2010; Chandrasekaran et al., 2014; Jayne & Quigley, 2014; Augé et al., 2015; Pellegrino et al., 2015). 

Tolerance

Given the functional diversity of AM fungi with regard to plant growth and nutrient uptake, it follows that 

plant tolerance to herbivory can also depend on fungal partner identity. In one of the few studies to 

experimentally manipulate AM fungal diversity and directly examine tolerance, Bennett and Bever (2007) 

demonstrated AM fungal taxon-specific tolerance outcomes, and found that the combined effects of a 

fungal community were driven by a single ‘dominant’ fungal species within the community. Other studies 

have also shown species-specific associations with AM fungi can drive plant tolerance to herbivory (Kula 

et al., 2005), and that AM fungal abundance can increase tolerance capacity (Tao et al., 2016). 

When considering only single AM fungal species studies, the meta-analysis by Borowicz (2013) found 

plant growth responses to herbivory strongly depended on fungal identity, highlighting that the model 

AM fungus Rhizophagus irregularis typically reduces tolerance, while Funnelformis mosseae improves it. 
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The authors also highlighted that single-species inoculants tended to enhance tolerance while, perhaps 

unexpectedly, multi-species inoculants actually augmented the effects of herbivory on plant growth. 

Resistance

Taxon-specific effects of AM fungi also extend to plant resistance-based defences (Fig. 1a). In one study, 

Goverde et al. (2000) found three AM fungal species differentially affected insect herbivore performance, 

although neither the AM fungi nor resistance-conferring mechanisms were identified. Building on this, 

and earlier pioneering work (Gange, 1996), research has continued to establish more broadly how 

different fungal species, or combinations of species, can deliver different resistance outcomes for plants 

(Gange, 2001; Wooley & Paine, 2007; Bennett et al., 2009; Currie et al., 2011; Roger et al., 2013; Vannette 

et al., 2013; Barber et al., 2013; He et al., 2017; Malik et al., 2018). Furthermore, research has shown that 

different isolates of the same AM fungal species can have distinct impacts on plant-herbivore interactions, 

highlighting a potential role for within-species genetic variation of AM fungi (See Box 1).   

As we garner greater appreciation for the differential effects of AM fungal taxa on herbivore 

performance, we are acquiring clarity as to how specific resistance-based defence mechanisms might 

underpin these effects. Bennett et al. (2009) investigated how resistance-associated chemistry in 

response to herbivory varies with different AM fungal species and diversity. The authors found that 

constitutive and induced defences were increased by specific AM fungal species (Scutellospora calospora 

and A. trappei, respectively), but their effects were lost if the fungi were applied as a mixed community, 

rather than single-species inoculation. Furthermore, several other studies have reported mixed 

communities of AM fungi can confer inferior plant resistance compared to single-species inoculation (Fig. 

1b; Currie et al., 2011; Gange, 2001). 

A number of additional experiments have now shown how different species, or levels of species richness, 

affect different herbivore-associated defence compounds (Nishida et al., 2010; Ceccarelli et al., 2010; 

Jung et al., 2012; Zubek et al., 2015; Malik et al., 2018; Frew & Wilson, 2021). We also have a better 

understanding of the AM fungal species-specific impacts on phytohormonal signalling that underpin 

mycorrhiza-induced resistance (Jung et al., 2012; Cameron et al., 2013). Specifically, studies have found F. 

mosseae induces greater expression of JA marker genes and JA-associated defence compounds when 

compared to R. irregularis (López-Ráez et al., 2010; Fernández et al., 2014). This reflects the 

aforementioned superior ability of F. mosseae to also confer greater tolerance to herbivory, compared to 

R. irregularis (Borowicz, 2013), suggesting F. mosseae can promote both tolerance and resistance-based 

defence. Indeed, as plant secondary metabolism is a strong driver of host plant choice for insect 

herbivores (Hopkins et al., 2017), any species-specific impacts of AM fungi on different components of A
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plant secondary chemistry will not only alter defence outcomes but have significant ecologically cascading 

effects (Babikova et al., 2014). Yet there seems to be surprisingly few empirical studies that directly 

demonstrate how any AM fungal species-specific changes in defence chemistry affect herbivore 

performance. Many demonstrate changes in plant secondary chemistry without measuring effects on 

herbivores, or show effects on herbivores without identifying the mediating defence mechanisms. As 

such, the vast majority of studies on how AM fungal taxa alter plant defence traits actually infer resistance 

to herbivory, rather than demonstrate it. 

In addition to using ‘mock’ communities, either from commercial inocula or from maintained cultures, 

studies have employed naturally occurring (or native) AM fungal communities in plant-herbivore 

experiments (Bennett et al., 2009, 2016; Karley et al., 2017; Real-Santillán et al., 2019; Damin et al., 2020; 

Frew & Wilson, 2021). Still, very few directly assess how the diversity of native AM fungal communities 

can differentially impact resistance mechanisms to herbivory. This is particularly surprising considering 

the widespread recognition of the importance of AM fungal functional diversity for host plant outcomes, 

and broader ecosystem functions. In one study, Barber et al. (2013) compared two native field-sourced 

communities with a commercial AM fungal inoculum (R. irregularis) and found the native communities 

induced greater concentrations of root secondary metabolites (cucurbitacin C) compared to the single-

species inoculum. Although the authors did not identify the fungal taxa within the native communities, or 

measure herbivore responses, the study highlights that drawing conclusions on AM fungal effects on plant 

defence from research on a small selection of AM fungal species (or communities) can misrepresent plant 

defence outcomes conferred by fungal communities in the field. The paucity of field studies, compared to 

laboratory, growth-chamber, or glasshouse studies, remains a key barrier to incorporating fungal diversity 

into our understanding of AM fungal effects on plant defence.

Box. 1 Importance of within-species genetic variation in AM fungi

In addition to between species genetic variation, within species genetic variation may also play a role 

in the outcome of AM fungal-plant-herbivore interactions.  There are a number of examples 

demonstrating that both plant and herbivore diversity can alter the outcome of this multi-species 

interaction (e.g., Bennett et al., 2016; Rasmussen et al., 2017), but within AM fungal species variation 

has been assessed significantly less often. The lowest level of genetic diversity in AM fungi is an 

‘isolate’ or a ‘line’ but as AM fungi are multi-nucleate and some isolates are dikaryons, with two 

distinct nuclear genotypes (Kokkoris et al., 2020), defining an ‘individual’ for AM fungi is challenging. 

We know of only three studies which have examined the impact of within AM fungal species variation 

on plant herbivore interactions. The first two studies tested the impact of two isolates of A
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Claroideoglomus etunicatum on the piercing herbivores mirids (Wooley & Paine, 2007) and silver leaf 

whitefly (Wooley & Paine, 2011) feeding on tobacco. Isolates promoted different mirid nymph 

population sizes (depending on nymphal stage), but no difference in silver leaf whitefly abundance. 

However, in the latter study, whitefly experienced different parasitism rates by Eretmocerus eremicus 

depending on the isolate. The third study tested the impact of four isolates of R. irregularis alone and 

in combination on herbivory by the chewing herbivore Spodoptera littoralis feeding on strawberry 

(Roger et al., 2013). Most isolates tended to suppress insect mass and survival, but this was not 

consistent across all isolates or combinations of isolates. Thus, the direction of responses (positive for 

piercing herbivores, negative for chewing herbivores) appears to be relatively consistent across 

isolates, but the degree of impact (from neutral to significantly positive or negative) varies by isolate.

Our ability to identify and manipulate AM fungal genetic variation has significantly advanced since the 

first two tests, and the most recent study built on these advancements.  The two isolates used in the 

two studies above were chosen based on geographical distance (Arizona and Georgia) in an effort to 

maximize genetic variation between them.  However, we now know that there can be great genetic 

variation within individual AM fungal isolates (e.g., Mateus et al., 2019; Masclaux et al., 2019; 

Reinhardt et al., 2021), and there are approaches for creating isolates that vary genotypically and 

phenotypically.  For example, the isolates used in the third study were developed from a cross of two 

clonal lines that have been shown to vary widely in host growth promotion (Angelard et al., 2010) and 

drought stress tolerance (Peña et al., 2020) capacity.  While the use of some genetic tools (e.g., 

CRSPR/CAS9) in AM fungi are still a long way off, the advance of sequencing and other approaches may 

allow us to select for AM fungi with specific traits in the not so distant future.  Thus, using these tools 

we could more explicitly test for the impact of within species genetic variation, and even test the 

importance of particular AM fungal traits on plant-herbivore interactions.

Why consider diversity?

AM fungal diversity has a strong influence on plant communities and plant productivity (Bever et al., 

2013; Manoharan et al., 2017; Powell & Rillig, 2018; Tedersoo et al., 2020). We argue that the role of AM 

fungal diversity in plant defence against insect herbivory continues to be overlooked, something we 

cannot afford if we are to be effective in managing AM fungi across a variety of contexts (i.e., agriculture, 

invasive species management, ecosystem restoration). 
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When it comes to demonstrating the functional diversity of AM fungi in the context of their effects on 

plant tolerance and resistance to herbivory, there has been progress, which we have briefly touched on. 

Yet experimental research has continued to focus only on a very limited number of commonly used AM 

fungal taxa. Indeed, a survey of studies on AM fungal-induced plant defence published between 2014-

2017 found that 75% of studies used a single AM fungal taxon, while 72% used R. irregularis and F. 

mosseae (Malik, 2018). With around 288 described species of AM fungi, or c. 1,700 putative species (Öpik 

& Davison, 2016) it is clear that we are likely to have barely scratched the surface of defence functional 

diversity of AM fungi (Heinen et al., 2018). To properly understand the mechanistic basis of mycorrhiza-

induced resistance, it is imperative to consider the role of fungal diversity in these interactions. In both 

natural and agricultural field environments plants interact with many different AM fungal taxa in a 

manner that can vary temporally and spatially (Öpik et al., 2013; Helgason et al., 2014; Bainard et al., 

2014). Yet currently there is no information on the relative importance of different aspects of diversity 

(i.e. species richness, relative abundance) to plant defence (Fig. 2), or the consequences of temporal 

changes (e.g., seasonality) in fungal diversity. Indeed, from a long-term perspective, shifts in plant 

nutrient acquisition strategies as ecosystems develop are also likely to have implications for plant defence 

strategies. For example, some systems may exhibit a reduction in the relative cover of AM plants in favour 

of other strategies i.e., cluster roots (Zemunik et al., 2015). Alternatively, AM plants may also persist and 

dominate as ecosystems progress (Holdaway et al., 2011). Although different mycorrhizal types (i.e., AM, 

ectomycorrhizal, ericoid mycorrhizal) can dominate any stage of ecosystem development (Dickie et al., 

2013), any shifts that do occur are likely to alter the relative influence of AM fungal diversity on defence 

(Tombeur et al., 2021), an area which requires further examination.

In addressing how AM fungal diversity determines plant defence outcomes, a trait-based approach could 

be employed (Zanne et al., 2020). This has been successful in other contexts in plant ecology, where traits 

have been valuable across a range of ecological inquiries such as identifying how plants invest resources 

to certain functions and components of fitness (Westoby et al., 2002; Wright et al., 2004), or in linking 

plant functional diversity to certain ecosystem processes (e.g., productivity) (Petchey & Gaston, 2006). As 

the identification of fungal traits develops and becomes more clearly defined (Chagnon et al., 2013; Rillig 

et al., 2015; Aguilar-Trigueros et al., 2015; Soudzilovskaia et al., 2020), AM fungal traits may underpin 

their function in the context of plant defence against herbivory. Indeed, in this context, fungal traits 

should be considered alongside the traits and life history strategies of the plant hosts. These may be 

considered within a life history strategy framework, for example the C-S-R (competitor, stress tolerator, 

ruderal) framework (Grime, 1979). Here, ‘ruderal’ AM fungi, with high growth rates and hyphal turnover, 
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would provide better herbivore protection, as their ruderal plant hosts are less likely to be nutrient 

limited and more likely to be susceptible to pathogen and herbivore attack (Chagnon et al., 2013). There 

may also be potential trade-offs between fungal functional traits (Fig. 2), for example, do traits which 

enhance the ability of AM fungi to provide resistance to herbivory impact on other functions such as soil 

aggregation or nutrient uptake? Resistance-associated traits may also inherently affect the 

competitiveness of a fungal species, or its role in ecosystem functions. 

AM fungal inoculants and diversity

Interest in the application of AM fungi as inoculants to serve certain ecological outcomes (e.g., accelerate 

ecosystem restoration, promote plant growth) has been around for some time. However, with mounting 

global efforts to improve food security and sustainability, there has been particular attention given 

towards their use to sustainably enhance crop productivity and a concomitant interest in commercially 

available ‘biofertilisers’ (Hart et al., 2018). Although some work has shown the application of 

cosmopolitan AM fungal species (such as R. irregularis) in the field can increase crop yields (Pellegrino et 

al., 2012; Ceballos et al., 2013; Zhang et al., 2019), strong and consistent evidence is still lacking (Thirkell 

et al., 2017; Hart et al., 2018). This is likely to be partly due to the fact that the AM fungal communities 

that colonise plant roots in response to inoculation are strongly influenced by the identities of the 

resident root-colonising fungi prior to inoculation, coupled with strong environmental drivers such as soil 

pH (Mummey et al., 2009; Dumbrell et al., 2010; Davison et al., 2021). Variation in suitability and 

competitiveness of certain fungal taxa for certain environments can mean that AM fungi with desired 

functions, such as crop growth promotion or herbivore resistance, may establish, but equally, they may be 

filtered out while other fungal species that are less ‘effective’ may dominate (Fig. 1c). Additionally, fungal 

species richness can have positive and negative effects on plant defence (Bennett et al., 2009; Currie et 

al., 2011; Roger et al., 2013; Vannette & Hunter, 2013), meaning it is difficult to predict if plants will 

receive any defence benefit from inoculation without knowing the composition of the resident soil fungal 

community, and how the application of foreign AM fungi might interact with the resident community. 

Thus, in agricultural systems, identifying land management approaches that favour particular AM fungal 

communities with a desired set of plant defence-associated traits is likely to be a more effective and 

pragmatic option over fungal inoculation. Regarding crop productivity, Rodriguez and Sanders (2015) 

pointed out the lack of field studies that assess if or how inoculation affects the soil or root-colonising AM 

fungal communities over time, a point later echoed by others (Hart et al., 2018). The same can be said for 
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plant herbivore defence where no studies, to our knowledge, have attempted to monitor AM fungal 

communities post-inoculation over time, and assess impacts on plant defences.

Conclusions 

The vast majority of plants in nature have mycorrhizas (Brundrett & Tedersoo, 2018), so any 

understanding of how plants defend themselves from insect herbivores is incomplete without considering 

their AM fungi. Our brief discussion here has touched on how AM fungi can affect plant defences, and 

that these effects differ between AM fugal taxa. As most research continues to focus on a handful of 

fungal species, the conclusions are far from representative of the range of interactions between AM fungi, 

plants and insect herbivores. Furthermore, even fewer studies have attempted to tackle the formidable 

challenge of determining how AM fungal diversity in the field can shape plant defence. Metabolomic and 

metagenomic-based approaches (e.g., DNA metabarcoding; Öpik et al., 2010) are valuable tools in 

addressing these knowledge gaps, where the inclusion of AM fungal community interactions into plant-

herbivore research is likely to pave the way towards effectively managing AM fungi to enhance plant 

protection (Hill et al., 2018; Wilkinson et al., 2019b). Over a decade ago Wehner et al. (2010) highlighted 

how the functional diversity of AM fungi necessitates that fungal diversity take a prominent role in 

research into plant pathogen protection. We echo this message and urge researchers to acknowledge the 

importance of AM fungal diversity, and to incorporate the community ecology of AM fungi in efforts to 

understand how the AM symbiosis governs plant defence against herbivory.
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Figure legends

Figure 1. Hypothetical effects of arbuscular mycorrhizal (AM) fungi on plant defences against insect 

herbivores. (a) Potential differential effects of AM fungi on plant defences where different taxa confer 

distinct effects on plant defences, potentially upregulating defence, having no impact, or reducing plant 

defence. (b) Different outcomes of multi-species fungal associations on plant defence. Dual-species 

colonisation may confer greater defence benefits than single species colonisation, alternatively the 

defence phenotype of one fungal species may dominate which may provide little/no defence or nutrient 

benefit, consequently greater fungal diversity may not confer greater defence benefits, or even reduce A
cc

ep
te

d
 A

rt
ic

le



This article is protected by copyright. All rights reserved

defence. (c) Two potential effects of inoculation with an AM fungus on native AM fungal communities and 

outcomes for plant defence. Inoculation could result in a change in fungal communities to promote plant 

defence, or the introduced AM fungus may not persist in the environment and thus have no impacts on 

plant defence. Figure created with BioRender.com. JA, jasmonic acid.

Figure 2. Priority areas to be incorporated into research investigating arbuscular mycorrhizal (AM) fungal 

effects on plant defence and insect herbivores. Research should assess how ‘native’ AM fungal 

communities across environmental contexts (i.e., different vegetation types and biomes) and 

management histories (e.g., organic agricultural management, unmanaged natural ecosystems) affect 

plant herbivore defences. Exploring how different components of fungal diversity (e.g., species richness, 

relative abundance), within-species genetic variation, and fungal traits relate to defence outcomes is a 

particularly important knowledge gap. A DNA metabarcoding approach referencing appropriate databases 

(e.g. MaarjAM) will be a valuable tool in addressing such gaps. Researchers should look at how defence 

outcomes vary across a range of host plant species (e.g. different plant functional groups), measuring 

resistance and tolerance defence mechanisms, including other trophic level interactions (i.e. natural 

enemy attraction via changes in herbivore-induced plant volatiles [HIPVs]). Measurement of herbivore 

responses (e.g., growth, survival, preference) is important to demonstrate defence outcomes, these 

should be assessed across herbivores of various feeding guilds and diet breadths. Figure created with 

BioRender.com.
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