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Abstract 44 

Analytical performance specifications (APS) for measurands describe the minimum analytical 45 

quality requirements for their measurement. These APS are used to monitor and contain the 46 

systematic (trueness/ bias) and random errors (precision/ imprecision) of a laboratory 47 

measurement to ensure the results are “fit for purpose” in informing clinical decisions about 48 

managing a patient’s health condition. In this review, we highlighted the wide variation in the 49 

setting of APS, using different levels of evidence, as recommended by the Milan Consensus, and 50 

approaches. The setting of a priori defined outcome-based APS for HbA1c remains challenging. 51 

Promising indirect alternatives seek to link the clinical utility of HbA1c and APS by defining 52 

statistical confidence for interpreting the laboratory values, or through simulation of clinical 53 

performance at varying levels of analytical performance. APS defined based on biological variation 54 

estimates in healthy individuals using the current formulae are unachievable by nearly all routine 55 

laboratory methods for HbA1c testing. On the other hand, the APS employed in external quality 56 

assurance programs have been progressively tightened, and greatly facilitate the improved quality 57 

of HbA1c testing. Laboratories should select the APS that fits their intended clinical use and should 58 

document the data and rationale underpinning those selections. Where possible common APS 59 

should be adopted across a region or country to facilitate the movement of patients and patient 60 

data across health care facilities.   61 
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Introduction  62 

With exponentially rising healthcare costs brought about by the demands of population growth and 63 

ageing coupled with rapid healthcare inflation, there is increasing emphasis on providing quality 64 

care at sustainable costs. The quality of diagnostic tests may have significant financial implications 65 

with people missing out on beneficial/ necessary treatment due to false negative results, or people 66 

undergoing further unnecessary investigations and treatment due to false positive results. On the 67 

other hand, requiring a test to perform better than that which is clinically required may add 68 

unnecessary costs by excluding less expensive methods that are still fit-for-purpose. At the 69 

healthcare systems level, biomarkers have been used as a convenient secondary indicator to 70 

assess the quality of care for certain diseases. This is most notable in chronic disease 71 

management such as diabetes and lipid disorders, where clear treatment goals, based on 72 

biomarker measurements, have been defined to assess adequacy of access to care and 73 

comparison of the quality of care [1]. Wide analytical bias and variation among laboratory methods 74 

can lead to erroneous conclusions about the quality of care, with far-reaching consequences that 75 

may lead to ill-informed policy decisions and suboptimal resource allocation [2]. This calls for 76 

analytical performance specifications for tests that meet the needs of clinicians who make 77 

decisions about the care of patients and policy makers who make decisions about health systems.  78 

 79 

Analytical performance specifications (APS) for measurands describe the minimum analytical 80 

quality requirements for their measurement [3-5]. These APS are used to monitor and contain the 81 

systematic (trueness/ bias) and random errors (precision/ imprecision) of a laboratory 82 

measurement to ensure the results are “fit for purpose” in informing clinical decisions about 83 

managing a patient’s health condition. APS are often presented as discrete numerical or 84 

percentage values indicating a deviation from a defined target. They are used as assessment 85 

criteria by proficiency/ external quality assurance testing organizations and regulatory agencies, 86 

and play an important role in the accreditation and licensing of medical laboratories (e.g. the 87 

Clinical Laboratory Improvement Amendments 1988 in the US) and in the regulation and market 88 

approval of in vitro diagnostics (e.g. by the Food and Drug Administration in the US or Conformité 89 

Européenne marking in Europe). APS are the cornerstone of many clinical laboratory decisions 90 
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relating to quality, including the calculation of the sigma value of a laboratory measurement method 91 

and the setting of an internal quality control system (e.g. frequency, control limits, interpretative 92 

rules). Laboratories use APS as acceptance criteria when new methods or new lots of reagents are 93 

evaluated and when considering factors that may affect result such as hemolysis interference or 94 

analyte stability.  95 

 96 

The process of setting APS for a specific measurand is a developing activity. In this paper we 97 

discuss the principles behind assigning APS using hemoglobin A1c (HbA1c) as a model 98 

measurand. An understanding of the principles in setting APS is key to appraising and applying 99 

them in routine laboratory practice. Hemoglobin A1c was selected as the model measurand as it 100 

has robust evidence base for different approaches in setting APS that can serve as illustrative 101 

examples.  102 

 103 

Evidence-based analytical performance specifications 104 

The 2015 Milan consensus proposed three models for setting APS for a measurand based on a 105 

hierarchy of evidence [4,5]. The highest level of evidence relates to health outcomes data (Model 106 

1), followed by biological variation data (Model 2) and information on the analytical performance 107 

achieved by “state of the art” methods (Model 3). Model 1 can be approached in two ways, either 108 

directly with health outcome studies (Model 1a) or indirectly by modelling the influence of analytical 109 

performance on clinical decision making (Model 1b).  110 

 111 

An ideal outcome study (Model 1a) would have an a priori objective of directly comparing 112 

outcomes in patients who are subjected to the same laboratory test/method of measurement, but 113 

with varying analytical performance [6]. The ‘outcomes’ of interest can be broadly categorized into 114 

health, operational, and economic. Health outcomes include patient outcomes such as morbidity, 115 

quality of life, and mortality. A positive difference in patient outcomes in this context provides direct 116 

evidence of the impact of analytical performance on clinical effectiveness. Operational and 117 

economic outcomes can also be taken into account when setting APS, provided that patient health 118 

outcomes are not unduly compromised. For example, HbA1c measured using a point of care 119 
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device with low bias in the clinic facilitates faster decisions on the adjustment of treatment, which 120 

can be better communicated to patients at their clinic visit and thus leads to increased adherence 121 

with treatment [7]. This raises the important concept of balancing priorities for both health 122 

outcomes and costs.  123 

 124 

APS can also be defined using intermediate outcomes such as diagnostic accuracy and medical 125 

decision making, whereby the consequent management can be linked to evidence on patient 126 

outcomes to estimate clinical effectiveness (e.g. via decision analytic modelling; Model 1b)[8]. 127 

Cost-effectiveness studies, combining health and economic outcomes, (such as cost per quality 128 

adjusted life year) may also be conducted in this way.  129 

 130 

In practice, there are significant challenges to executing studies that directly generate evidence on 131 

the impact of analytical performance on outcomes (Milan Model 1a). Notably, there may be ethical 132 

questions about conducting studies where the use of laboratory tests with differences in analytical 133 

variation and systematic bias may lead to different and potentially erroneous clinical decisions and 134 

thus harmful effects on health. Additionally, the operational challenges of maintaining the multitude 135 

of tests of varying analytical performance in the laboratory and ensuring that patients who are 136 

assigned to a certain analytical performance are consistently tested with this throughout the study 137 

period may not be trivial.  138 

 139 

An alternative method is to examine the impact of analytical performance on health outcomes 140 

using quasi-experimental (pre-post intervention) study designs involving different laboratory 141 

methods of varying analytical performance [9]. Or, the measurand can be evaluated by different 142 

laboratory methods concurrently to examine the impact of different analytical performance on 143 

clinical decision making [10]. Simulation methods (i.e. Model 1b), based on the application of 144 

hypothetical bias and imprecision onto baseline test measurements, have also been employed in 145 

this context to overcome the challenges of conducting direct outcome studies [6].  146 

 147 
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Additionally, different laboratory assays for the same measurand commonly have varying analytical 148 

specificity (degree of interference/ cross-reactivity with non-target molecule), sensitivity (limit of 149 

detection) and upper reporting limits, which are dimensions of analytical performance 150 

specifications that can influence the interpretation and attribution of the observed outcome. For 151 

example, the presence of hemoglobin variants can variably interfere with HbA1c measurement 152 

[11,12]. This may lead to results being variably suppressed by different methods, if the interference 153 

is detected or not, or differences seen in monitoring a patient should their testing move between 154 

measurement systems. This may happen for example with a patient with persistent levels of 155 

hemoglobin F. Even within the same analytical method, different platforms can have different 156 

analytical quality, and this can affect diagnostic accuracy and subsequent patient management 157 

decisions [13]. Moreover, a change in laboratory method can also bring about a change in clinical 158 

workflow that may impact operational/ economic outcomes.  159 

 160 

Based on the above, it is perhaps unsurprising that despite a strong mandate for laboratory 161 

medicine to base APS on outcome studies, they are exceedingly uncommon. We have little direct 162 

outcome data to support the objective setting of APS based on a priori determined clinical 163 

outcomes, and although simulation methods provide a potentially powerful mechanism for 164 

extracting APS, indirect outcome studies have yet to achieve wide-scale adoption in this context. 165 

Consequently, biological variation (Milan Model 2) and “state-of-the-art” (Milan Model 3) are 166 

currently the most used methods for setting APS in laboratory medicine.  167 

 168 

Different uses of a measurand 169 

A measurand has different uses in different clinical contexts and they may not always be apparent 170 

to the laboratory. At the first clinical encounter, a biomarker is often used to assist in the screening, 171 

clinical diagnosis or differential diagnosis of a patient [14]. The result of the biomarker is compared 172 

to a reference interval or a clinical decision limit in order to decide whether or not the patient has, 173 

or is likely to have the condition. Under such use, the clinical sensitivity (true positive rate) and 174 

specificity (true negative rate), and the consequent positive and negative predictive values (taking 175 

into account the disease prevalence in the target population) are of key importance. In such a 176 
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case, the APS should be set to minimize false positive and/or false negative rates to ensure 177 

diagnostic accuracy is optimal for the intended clinical use.  178 

 179 

Stringent APS and a demand for harmonization or standardization between measurement methods 180 

are particularly important for measurands where a single threshold is used as a diagnostic 181 

criterion, such as HbA1c for diagnosis of diabetes mellitus [13]. For this setting, with regard to 182 

precision, the biological variation approach can be seen to be useful for indicating when the assay 183 

performance does not contribute materially to the total uncertainty of the result. By contrast, bias 184 

can lead to changes at the individual and population levels leading to changes in apparent disease 185 

prevalence. 186 

 187 

In subsequent serial measurements of the same patient, the focus shifts from diagnosis to 188 

monitoring of the disease progression or response to treatment [15,16]. The reference change 189 

value (RCV) is the difference in sequential results that must be exceeded to be considered 190 

significant beyond the combined inherent biological and analytical variation in the two results. 191 

Mathematically, RCV (%) = 20.5 × Z × [(CVa)2 + (CVi)2]0.5, where CVa is the within-laboratory 192 

analytical imprecision of the method, CVi is the within-subject biological variation and Z is the Z-193 

value for a predefined probability. The result of the subsequent measurement is compared against 194 

the earlier results with the RCV to determine if a significant change that cannot be explained by 195 

analytical and biological variation with a certain probability has occurred [17]. However, it does not 196 

indicate anything concerning the probability that a true change has occurred or not [18]. An 197 

alternative view would be that, rather than dichotomising changes into significant/not-significant 198 

based on a pre-determined probability, a probability of a change being “real” can be calculated in 199 

the relevant clinical setting. A series of sequential measurements may also inform the general 200 

trend of the progression of the condition or its response to treatment. In all these considerations, 201 

the APS should be set such that the underlying trend of the serial measurements (the “signal”) is 202 

not obscured by analytical variation (the “noise”)[19]. Additionally, the systematic bias within and 203 

between analytical measurement methods needs to be understood to allow quantitative trending of 204 
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patient results to be identified across healthcare facilities that may be using different analytical 205 

methods.  206 

 207 

Setting analytical performance specifications for HbA1c 208 

Setting APS is a complex and multi-faceted exercise. We not only need to consider the evidence 209 

base, but also the potential use of the measurand in the context of the health system and the 210 

health care setting. To help illustrate these concepts, we present HbA1c as an example for setting 211 

APS (Table 1).  212 

 213 

HbA1c is a biomarker that reflects the glycemic status of the last 30 - 60 days of an individual. It is 214 

used for monitoring the glycemic control of patients with diabetes using guideline-specific treatment 215 

targets. Since 2010, HbA1c has also been used as a diagnostic criterion for diabetes [20,21].  216 

 217 

Analytical performance specifications for HbA1c based on Milan Model 1a  218 

To date, there has been no study with a direct comparison of clinical outcomes in patients 219 

receiving HbA1c measurements using the same laboratory method with varying degrees of 220 

analytical performance.  221 

 222 

Analytical performance specifications for HbA1c based on Milan Model 1b 223 

The impact of analytical performance of tests on clinical outcomes can be investigated by statistical 224 

derivation, surveying clinicians, or by using modeling simulations.  225 

 226 

Statistical derivation 227 

To overcome the limitation of a lack of a priori clinical outcome studies, the APS for HbA1c have 228 

been statistically determined a posteriori using clinical outcomes measured in clinical trials.  229 

 230 

The biochemical treatment target of diabetes mellitus is based on the risk of microvascular 231 

surrogate events (e.g. retinopathy detected on ophthalmologic screening or nephropathy detected 232 

on testing for albuminuria), first demonstrated in the Diabetes Control and Complications Trial and 233 
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UK Prospective Diabetes Study [22,23]. Different statistical approaches have been applied to trial 234 

data such as these, to derive acceptable within- and inter-laboratory analytical variation for HbA1c. 235 

(Table1)[24]. The original Diabetes Control and Complications Trial showed a significant difference 236 

in outcome with HbA1c of 7.0% and 8.0%. This sets a standard that these two values must be able 237 

to be separated (including biological variation). When HbA1c is used for monitoring disease 238 

progression, the RCV concept has been used to determine the analytical variation that allows the 239 

detection of a 0.5% National Glycohemoglobin Standardization Program (NGSP) unit change (~5.5 240 

mmol/mol) in the absolute value of sequential HbA1c. This is commonly considered the target/ 241 

minimum response in treatment algorithms and clinical trials [24-26]. On the other hand, APS can 242 

also be determined if the required 95% confidence for a HbA1c treatment target (e.g. 7 ± 0.5% or 243 

53 ± 5.5 mmol/mol) is defined. The APS determined under these two considerations are 244 

considerably different. Note also that both of these determinations only address the APS from a 245 

statistical point of view and do not directly link them with the clinical outcomes of the primary study. 246 

Based on these statistical methods of determining the APS, an inter-assay CVa of 5% (ideally 247 

<3%) has been recommended [27]. 248 

 249 

Physician survey 250 

To link the APS of a biomarker to the clinical context within which it is used, clinical scenarios may 251 

be presented to clinicians to solicit their opinion of what is considered clinically significant. In a 252 

large international survey of this nature, which spanned six nations, clinicians were presented with 253 

a brief clinical scenario involving a patient with diabetes on a follow-up visit and asked the 254 

magnitude of change in HbA1c that is considered significant enough to warrant a change in clinical 255 

management [28]. The magnitude of change in HbA1c considered clinically significant by the 256 

responding clinicians was then used as a basis to determine the analytical variation, using the 257 

reference change value concept (Table 1). The scenario-based survey approach may improve the 258 

association of the APS with the clinical context. However, it may not be entirely reflective of routine 259 

clinical practice and is liable to clinician heuristics. It is also not directly related to clinically 260 

important health outcomes.  261 

 262 
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The range of responses produced very wide APS among the surveyed countries and were different 263 

for the expected direction of change [28]. For example, the range of CVa for the median RCV 264 

response from the 6 countries (at 80% probability) for positive direction of change was 3.5% to 265 

11%, and 7.4% to 25% for negative direction of change. In other words, clinicians tolerate less 266 

analytical variation when HbA1c results increase than when results decrease, as increase in 267 

HbA1c triggers more clinical action than when results show a desirable downward trend in a 268 

treated diabetic patient. An alternative interpretation is that clinicians are aware that movement of 269 

results away from the population median are less likely than movements towards the median, due 270 

to the effect of regression to the mean. At 95% probability, it was not possible to calculate the CVa 271 

for the responses from several countries (Table 1). In part, this was due to the relatively high CVi 272 

estimate of 4% used in the study, which invalidated the calculation of the APS using the RCV 273 

method. An important limitation of this method is that the survey responses may have depended on 274 

the magnitude of analytical error in the laboratory tests clinicians were familiar with [29].  275 

 276 

Statistical simulation modelling  277 

Another approach to overcome the inherent challenges with a priori outcome studies is the use of 278 

statistical simulation modelling. Several approaches have been undertaken to examine the impact 279 

of analytical performance, in terms of imprecision and bias, on the clinical performance of HbA1c.  280 

 281 

Under this approach, the distribution of HbA1c in a reference population is first evaluated, usually 282 

from a cross-sectional population survey. This baseline is then considered the ‘true’ value of the 283 

individual or population distribution [13,30,31]. Alternatively, the normal or log-normal distribution of 284 

published data has been adopted [32-34]. In reality, this distribution will contain confounding 285 

analytical variability of the laboratory method, which is often ignored. Following this, different 286 

degrees of analytical variation and bias can be artificially introduced to the distribution, to generate 287 

HbA1c values that incorporate these additional analytical errors. The diagnostic threshold of 288 

HbA1c for diabetes is then applied to the original HbA1c values as well as to those incorporating 289 

the analytical errors. Once this basic model is set up, diagnostic performance parameters can be 290 

examined, such as false positive and negative rates [30,34], or, alternatively, clinical sensitivity and 291 
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clinical specificity [13], for varying levels of analytical variation and bias. It should be noted that the 292 

latest definition of pre-diabetes uses a diagnostic threshold that may lie close to the average 293 

(mean, median) of HbA1c measurements in the general population. Consequently, the 294 

classification error can be very sensitive to changes in analytical variation and bias, which may 295 

result in both under- and over-diagnosis [13,30,34].  296 

 297 

The use of real-world data allows for a numerical assessment of the effect of analytical bias on 298 

patient misclassification. In the following example, data was collected in an Australian laboratory 299 

over 3 years from patients with a single HbA1c measurement, assuming those were considered for 300 

diagnosis of diabetes rather than for monitoring of known diabetes (Figure 1). At a decision point of 301 

5.5 % NGSP units, a positive bias of 0.2 % NGSP units (~3.6%), decreased the percentage 302 

flagged from 45% to 31%, with a similar negative bias increasing the flagged rate to 62%. By 303 

contrast biases of 0.3 % NGSP (4.6%) at the diabetes threshold of 6.5% changed the flagging rate 304 

from 12% to either 10% or 15%. In this model the use of the same percentage (or absolute) APS 305 

for HbA1c has markedly different numerical effects at different concentrations. This must be 306 

balanced against the critical importance of a diagnosis of diabetes against the less critical 307 

assessment of pre-diabetes. This is an argument for variable APS based on the value of the 308 

measurement result. 309 

 310 

The advantage of this modelling approach is that it links analytical performance to clinical 311 

performance of HbA1c that is relevant to clinical decisions. It does not provide a definitive 312 

boundary for the APS, since the relationship between analytical performance and clinical 313 

performance is continuous. For example, increasing positive bias in HbA1c measurement will lead 314 

to exponentially increasing false positive rate for diabetes diagnosis [30]. In one study, this 315 

approach was used to examine the prognostic ability of HbA1c in detecting retinopathy [33]. 316 

Nevertheless, the clinical consequences of false negative and false positive diagnosis remain 317 

under-explored and present an important area of research. Further investigation could focus on 318 

subjects with values near the clinical decision points. For example, the misdiagnosis of a patient 319 

with a true HbA1c within 0.3 NGSP % units (above or below) 6.5% may be more common, but of 320 
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less consequence, than the misclassification of patients with true HbA1c results that are clearly in 321 

diabetes or normal ends of the population distribution. Of interest, one group has examined the 322 

impact of analytical performance on the probability of producing unreliable results, defined as a 323 

result exceeding a desirable APS [35]. Such studies could be redesigned to derive outcome-based 324 

APS.  325 

 326 

It is also important to model the described use of a test as closely as possible. For example in 327 

Australia a repeat HbA1c >6.5% (48 mmol/mol) is required for the diagnosis of diabetes. While 328 

assay bias will have a clear effect on the diagnostic rate, the effect of imprecision is less clear. As 329 

only positive first results are repeated, the larger imprecision on the second measurement will also 330 

counteract the effect of over-classification on the first. 331 

 332 

Depending on the statistical criteria chosen, the APS obtained using the indirect modelling 333 

approach may be relatively close to those derived a posteriori from clinical outcome studies, as 334 

described above (see Table 1), but this has not yet been formally evaluated. Further, the impact of 335 

HbA1c APSs on operational and economic outcomes remains under-investigated. In the general 336 

climate of resource consciousness, it may be timely to include an independent parameter, such as 337 

the laboratory cost of achieving different APS, to objectively select the most cost-effective discrete 338 

APS that optimally balances costs and health outcomes. For example, improved precision of 339 

results may be possible by analysis in duplicate, or bias improved by distribution of commutable 340 

samples to use as calibrators, however the cost implications cannot be ignored in this scenario. 341 

 342 

More sophisticated decision modelling approaches can also be set up to examine the population 343 

from a health systems perspective. For example, the entire disease journey of a patient from time 344 

of diagnosis, treatment, development of complication, death, or other end outcomes can be 345 

mapped out. The corresponding probabilities of different permutations of the journey and the 346 

associated costs can be assigned, based on published data. A hypothetical group of patients that 347 

are representative of a reference population are then introduced into the model and allowed to go 348 

through the disease journey. The end outcomes of the patients are then recorded and evaluated. 349 
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Such an approach is commonly used to evaluate the cost-effectiveness of a healthcare 350 

intervention [36]. The impact of HbA1c measurement with different APS on healthcare costs and 351 

patient outcomes can be examined as part of the sensitivity testing of such models. Nonetheless, 352 

when a range of APS meets a predefined outcome (e.g. healthcare costs) in the sensitivity testing, 353 

a discrete APS may need to be selected subjectively.  354 

 355 

Analytical performance specifications for HbA1c based on Milan Model 2  356 

CVi is the day-to-day variation around a homeostatic set-point of a measurand. Between-subject 357 

biological variation (CVg) is the variation in the set-point among different individuals. There are well 358 

described methods to derive APS based on biological variation data [19]. The general principle 359 

behind these methods is to contain the analytical variation (‘noise’) relative to the biological ‘signal’ 360 

when determining the RCV, or to minimize the shift in population values relative to the reference 361 

intervals. Commonly, the APS are described as minimum, desirable, and optimum according to the 362 

degree of additional variability contributed by the analytical variation.  363 

 364 

While this concept is elegant in its simplicity, its application may not be straightforward. It does not 365 

take into account the uncertainty of point estimate of the CVi which can vary from measurand to 366 

measurand. The conventional theories of biological variation are used in the above discussion and 367 

summary of results in Table 1 for consistency across publications from different periods. However, 368 

it should be noted that a more contemporary approach to biological variation and the derivation of 369 

APS has been proposed [37]. 370 

 371 

Biological variation data for HbA1c have been reported in multiple studies. The European 372 

Federation of Clinical Chemistry and Laboratory Medicine Task Group maintains a Biological 373 

Variation Database and APS for different measurands that are constantly updated to take into 374 

account the latest available evidence (https://biologicalvariation.eu/). It should be noted that these 375 

estimates contain considerable between-study variation.  376 

 377 
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The Task Group reviewed the literature and performed a meta-analysis of the HbA1c CVi and CVg 378 

in healthy subjects [38]. The CVg ranged widely, whilst the CVi estimates were more consistent 379 

(Table 1). The biological variation was found to be wider in subjects with diabetes even when well 380 

controlled [39]. Moreover, the biological variation estimates seemed to increase with higher 381 

concentration. The biological variation is even wider in children [40]. Care should be exercised 382 

when selecting the optimal biological variation estimates to derive the APS as they differ widely 383 

between populations and between different study designs. The CVi of HbA1c in healthy subjects is 384 

very small and thus the resulting desirable APS can be very difficult to achieve in routine laboratory 385 

practice (Table 1). 386 

 387 

A weakness of the concept of CVg, i.e. the distribution of a measurand in healthy subjects, is that 388 

assessment of bias is related only to the misclassification of this population. In reality, subjects with 389 

the relevant disease may also be misclassified. The use of a population in which the test will be 390 

applied (see Australian example above), allows incorporation of both groups in the assessment. 391 

For the purposes of HbA1c, where clinical decision points rather than population reference 392 

intervals are used, the concept of CVg of a healthy population could be considered not relevant for 393 

the setting of APS.  394 

 395 

An additional factor to the apparent need for very tight assay precision can be seen in the reporting 396 

intervals used for HbA1c. In NGSP units, the difference between 6.5 and 6.4% (NGSP units) is 397 

1.5%, and between 48 and 47 mmol/mol is 2.1%. If an assay reaches a CVa of 1.2% (i.e. equal to 398 

the stated CVi), this will increase the variation in the results by a factor of approximately 1.4. On 399 

many occasions this will be within the same reporting interval and be unseen by the clinician [41] 400 

making the effort put into achieving this performance of limited clinical value 401 

 402 

The biological variation approach to setting APS has two specific advantages. Firstly, if the goals 403 

are met, it can be stated with some certainty that the assay variation is small compared to the 404 

biological variation and will unlikely affect clinical decision-making; and secondly that the effect of 405 
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the analytical performance can be quantitated, providing information on the additional variation 406 

seen in the final result.  407 

 408 

Analytical performance specifications for HbA1c based on Milan Model 3 409 

The use of state-of-the-art to set APS is a pragmatic approach. It considers the capabilities of 410 

current laboratory methods and sets the APS such that most of the laboratories can meet the 411 

specification; for example the 95th percentile of peer laboratory performance [42]. This approach is 412 

commonly used in external quality assurance/ proficiency testing programs and may carry 413 

regulatory implications to ensure most (if not all) clinical laboratories can meet the requirements. 414 

However, this approach in setting APS completely delinks the performance specifications from the 415 

clinical utility of the measurand or the relationship between the analytical noise and biological 416 

signal (variation). Indeed, this approach runs the risk of accepting laboratory methods that are not 417 

fit for clinical purpose to be used in patient care [43]. Moreover, the definition of ‘state-of-the-art’ 418 

can differ from country to country, in different publications or in different use, and requires 419 

harmonization of analytical methods to ensure consistent clinical application. There is of course a 420 

link between state of the art and physician survey for model 1b as described above, as clinicians 421 

will have formed their opinion based on their experience with the quality of available 422 

methodologies.  423 

 424 

The adoption of a lenient state-of-the-art for setting APS reduces the incentive for the industry and 425 

for laboratories to improve their analytical methodology and may lead to tolerance of poor 426 

analytical performance. For HbA1c, a state-of-the-art APS for total error of up to 18%, which is 427 

considerably higher than other approaches, has been adopted by a national proficiency testing 428 

program, which is considering a revision [44]. The National Glycohemoglobin Standardization 429 

Program has progressively tightened the APS for HbA1c over two decades, from an allowable total 430 

error of ±12% in 2008 to ±6% currently, which led to significant improvement in test performance 431 

[24]. The program is considered a great success story of assay standardization [44]. At the same 432 

time, the use of sigma metrics as an assessment criterion has been evaluated and a clinical risk-433 

based approach has been proposed [45]. Under that approach, a laboratory achieving high sigma 434 
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performance is associated with higher passing rate in the proficiency testing program, although the 435 

optimal target sigma value is still debated [46]. Amidst the concerted effort by the industry and 436 

laboratory community to improve the standards for assessment, the Clinical Laboratory 437 

Improvement Amendments have recently proposed to widen the total error acceptance limit for 438 

HbA1c proficiency testing from ±6% to ±10%, which is widely considered as a major step backward 439 

that may put patients at risk [25]. 440 

 441 

Future: computer algorithm-driven clinical decision support 442 

As healthcare progresses towards increasing adoption of computer algorithm-driven clinical 443 

decision support, such as rule-based algorithms, machine learning algorithms and other forms of 444 

artificial intelligence, the need for understanding the impact of analytical performance on these 445 

novel techniques is greater than ever [47]. Several groups have demonstrated feasibility of 446 

computer algorithm-driven clinical decision support tools for managing diabetes that use HbA1c as 447 

the key biomarker. The APS required to sustain the performance of these algorithms should be i) 448 

examined during the initial set-up as part of the sensitivity testing; ii) adopted by the clinical 449 

laboratory to ensure the robustness of the clinical decision support system; and iii) maintained 450 

using a quality management system.  451 

 452 

Setting analytical performance specifications – the process 453 

When an APS is set or adopted by an organization, the use of the above models allows a 454 

structured approach to selecting the most appropriate model taking into account the quality of the 455 

evidence, the clinical use of the assay (e.g. diagnosis or monitoring), the likely clinical setting (e.g. 456 

point of care) and available technologies, and the consequences of test results in terms of patient 457 

management. While a single model may be selected as the primary approach to setting APS, 458 

awareness of the available data and assessment of its quality for the other models allows a full 459 

awareness of the effect of selected APS against the other frameworks. 460 

To adapt the Guide to the Expression of Uncertainty in Measurement [48]: While the Milan models 461 

provide a framework for assessing APS, they cannot substitute for critical thinking, intellectual 462 

honesty and professional skill. The evaluation of assay performance requirements is neither a 463 
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routine task nor a purely mathematical one; it depends on detailed knowledge of the nature of the 464 

measurand, the measurement and the clinical use and consequence of the result. The quality and 465 

utility of the APS therefore ultimately depend on the understanding, critical analysis, and integrity of 466 

those who contribute to the assignment of its value. 467 

 468 

Conclusion 469 

There is wide variation in the setting of APS, using different levels of evidence and approaches. 470 

The setting of a priori defined outcome-based APS for HbA1c remains challenging owing to 471 

complexities associated with conducting direct outcome studies. Promising indirect alternatives 472 

seek to link the clinical utility of HbA1c and APS by defining statistical confidence for interpreting 473 

the laboratory values, or through simulation of clinical performance at varying levels of analytical 474 

performance. APS defined based on biological variation estimates in healthy individuals using the 475 

current formulae are unachievable by nearly all routine laboratory methods for HbA1c testing. On 476 

the other hand, the APS employed in external quality assurance programs have been 477 

progressively tightened, and greatly facilitate the improved quality of HbA1c testing. Health 478 

economic modelling to estimate cost-effectiveness of various APSs for HbA1c may provide 479 

important information for laboratory and health policy decisions. Laboratories should select the 480 

APS that fits their intended clinical use and should document the data and rationale underpinning 481 

those selections. Where possible common APS should be adopted across a region or country to 482 

facilitate the movement of patients and patient data across health care facilities. This need for 483 

commonality indicates the vital role of professional organizations in achieving common practices.  484 
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Table 1. Published examples illustrating different models for setting analytical performance specifications for HbA1c (data refer to 

measurements in NGSP% HbA1c units, unless otherwise stated). CVi = within-subject biological variation, CVg = between-subject 

biological variation, CVa = within-laboratory analytical variation, APS = analytical performance specification, EQA = external quality 

assurance program.  
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Evidence base Model Statistical approach References APS 
Relationship between HbA1c and 
risk of progression to microvascular 
complication. Intensive Glycemic 
control (reflected by HbA1c) reduces 
microvascular complications 

1b 
(Statistical 
derivation) 

To interpret a treatment target of 7 ± 0.5% (53 ± 
5.5 mmol/mol) with 95% confidence.  

DCCT 1993 
[22],  
UKPDS 
1998 [23], 
Little 2011 
[24] 

CVa = 3.5% 
 
Assumed CVi = 1% (healthy subjects), bias = 0%  

A reduction of 0.5% (5.5 mmol/mol) 
HbA1c is the evaluation target in 
treatment algorithms and commonly 
used in clinical trials. 

1b 
(Statistical 
derivation) 

HbA1c reduction by 0.5% NGSP units in 
sequential measurement is taken as critical 
difference. Applying the reference change value 
concept, RCV (%) = 20.5 × 1.96 × [(CVa)2 + 
(CVi)2]0.5 to derived CVa. A Z-value of 1.96 
represents a two-tailed 95% probability.  

Little 2011 
[24], Nathan 
2009 [49], 
NICE 2009 
[50]  

CVa = 2% 
 
Assumed CVi = 1% (healthy subjects)  

Physicians provided separate 
magnitude of change in HbA1c to be 
considered clinically significant 
change for clinical scenarios 
involving a positive and negative 
direction of change.  

1b 
(Physician 
survey) 

RCV used to calculate CVa based on the 
physician responses. One-tailed Z-values of 80% 
and 95% probabilities were used as the direction 
of change was specified in the survey.  

Skeie 2005 
[28] 

Range of CVa for the median RCV response from the 6 
countries (at 80% probability) for negative direction of change = 
7.4% - 25% 
 
Range of CVa for the median RCV response from the 6 
countries (at 80% probability) for positive direction of change = 
3.5% - 11% 
 
Range of CVa for the median RCV response from the 6 
countries (at 95% probability) for negative direction of change = 
2.2% - 9.1% (not possible to calculate for 1 country) 
 
CVa for the median RCV response from the 6 countries (at 80% 
probability) for positive direction of change = 1.5% (not possible 
to calculate for all but 1 country) 
 
Assumed CVi = 4%, bias = 0% 

Empirical national health survey 
data were considered ‘true’ values. 
CVi, CVa and bias were 
incorporated by simulation. The 
original and simulated results were 

1b 
(Simulation) 

Misclassification rates for different magnitudes of 
CVa (2% and 3.5%) and bias (-3% and + 2.5%) 
were assessed. 

Chai 2017 
[13] 

APS not discreetly defined. Misclassification rates for different 
diagnostic thresholds demonstrated.  
 
Assumed CVi = 1.8% (healthy subjects) 
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classified according to diagnostic 
thresholds.  

Empirical HbA1c results from 
patients attending outpatient clinic of 
a single centre, with and without 
diabetes (defined by oral glucose 
tolerance test according to WHO 
criteria) were subjected to ± 0.6% 
HbA1c bias at 0.1% steps. 

1b 
(Simulation) 

The likelihood ratio of diagnosing diabetes with 
and without bias were compared. 

Åsberg 2015 
[31] 

APS not discreetly defined. Change in likelihood ratio of 
diagnosing diabetes at different degrees of bias demonstrated.  
 
CVa not explored. 
 

HbA1c in healthy reference 
populations that were represented 
by simulated normal/ log-normal 
frequency and cumulative probability 
distributions based on published 
data. CVa and bias were 
incorporated by simulation.  

1b 
(Simulation) 

A range of CVa and bias were assessed in terms 
of false positive rates above the diagnostic 
threshold.  

Petersen 
2014 [34] 

At 1% false positive rate, assuming bias = 0%, CVa = 5% 
At 1% false positive rate, assuming CVa = 0%, bias = 3% 
 
Assumed CVi = 1.2% 

A series of ‘biological set-points’ 
were assessed along the 
measurement range, with normal 
distributions fitted around each value 
to incorporate biological variability. 
Imprecision and bias was applied to 
each “true” set point by simulation.  

1b 
(Simulation) 

Probabilities of observing particular values for a 
given set point of HbA1c for the prognostic 
assessment of the risk of retinopathy were 
assessed 

Petersen 
2005 [33] 

At 95% probability, assuming bias = 0%, CVa = 5% 
At 95% probability, assuming CVa = 0%, bias = 0.5%HbA1c 
 
 
Assumed CVi = 1.9% 
 

Empirical data from a biobank from 
subjects without prior diagnosis of 
diabetes were extracted. CVa and 
bias were incorporated by 
simulation. Diagnosis of diabetes is 
based on fasting plasma glucose 
and HbA1c.  

1b 
(Simulation) 

Undiagnosed rate of diabetes for varying degree 
of CVa and bias were assessed.  

Nielsen 2014 
[30] 

APS not discreetly defined. Undiagnosed cases of diabetes 
increased exponentially with increasing CVa and bias.  

European Federation of Clinical 
Chemistry and Laboratory Medicine 
Working Group on Biological 
Variation and Task Group for the 
Biological Variation Database 

2 (biological 
variation) 

Meta-analysis of 13 studies on HbA1c biological 
variation derived from healthy individuals 

González-
Lao 2019 
[30] 

CVi = 1.3%, CVg = 5.0% 
CVa: minimum = 1.0%, desirable 0.7%, optimum 0.3% 
Bias: minimum 1.9%, desirable 1.3%, optimum 0.6% 
Total error: minimum 3.5%, desirable 2.4%, optimum 1.2% 
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Fifteen subjects with type 1 diabetes 
with <±1% HbA1c variation over 18 
months and no changes in basal 
insulin dose over last 2 months and 
stable body weight. Samples 
collected weekly for 13 weeks 

2 (biological 
variation) 

CVi and CVg were estimated separately using an 
ANOVA model (balanced two-fold nested random 
model). 

Carlsen 
2011 [39] 

CVi = 1.7%, CVg = 8.2% 
 
CVa: minimum = 1.3%, desirable 0.9%, optimum 0.4% 
Bias: minimum 3.1%, desirable 2.1%, optimum 1.0% 
Total error: minimum 5.2%, desirable 3.6%, optimum 1.7% 

Thirty-six children with cystic fibrosis 
but do not have diabetes were 
included. At least 5 measurements 
taken over 5 years. Median age 14 
years (range: 5-18 years) 

2 (biological 
variation) 

CVi and CVg were estimated separately using a 
nested ANOVA 

Desmeules 
2010 [40] 

CVi = 4.8%, CVg = 12.8% 
 
CVa: minimum = 3.6%, desirable 2.4%, optimum 1.2% 
Bias: minimum 5.1%, desirable 3.4%, optimum 1.7% 
Total error: minimum 11.0%, desirable 7.4%, optimum 3.7% 

College of American Pathologists 3 (state-of- 
the-art) 

Assessment of participant results against target 
value set by higher metrology order techniques 
using APS.  
 

Little 2019 
[44] 

Total error: ±5% 

German Rili-BAEK. Previous 
proficiency testing material had 
commutability issue, necessitating a 
wider APS 

3 ( state-of- 
the-art ) 

Assessment of participant results against target 
value set by higher metrology order techniques 
using APS.  
 

Heinemann 
2018 [43] 

At EQA APS = ± 18%, passing rate = 93% 
At EQA APS = ± 8%, passing rate = 83 % 

The National Glycohemoglobin 
Standardization Program 

3 ( state-of- 
the-art 

Assessment of participant results against target 
value set by higher metrology order techniques 
using APS. Contours plots of constant probability 
(0.95, 0.99 and 0.999) were derived from the 
computed probabilities of passing a given criterion 
over the grid of relative bias and CV combinations 
evaluated.  
 

Little 2019 
[44],  
Rohlfing 
2014 [51] 

Manufacturer and Level II laboratory: 36 of 40 results within ±5% 
Level I laboratory: 37 of 40 results within ±5% 

Clinical Laboratory Improvement 
Amendments Rule of 2019 
(proposed) 

3 ( state-of- 
the-art ) 

Assessment of participant results against target 
values using APS. 

Klonoff 2019 
[25] 

± 10% 
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Figure legend 

Figure 1. Selected population representing those being assessed for diagnosis of diabetes 

(as described in the text). The fraction of the population re-classified with +/- 0.2 units at 

5.5% (NGSP) and +/- 0.3 units at 6.5% (NGSP are shown). The y-axis indicates the 

relative frequency of the population.  


