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a b s t r a c t 

Shape reconstruction from sparse point clouds/images is a challenging and relevant task required for a va- 

riety of applications in computer vision and medical image analysis (e.g. surgical navigation, cardiac mo- 

tion analysis, augmented/virtual reality systems). A subset of such methods, viz. 3D shape reconstruction 

from 2D contours, is especially relevant for computer-aided diagnosis and intervention applications in- 

volving meshes derived from multiple 2D image slices, views or projections. We propose a deep learning 

architecture, coined Mesh Reconstruction Network (MR-Net), which tackles this problem. MR-Net enables 

accurate 3D mesh reconstruction in real-time despite missing data and with sparse annotations. Using 3D 

cardiac shape reconstruction from 2D contours defined on short-axis cardiac magnetic resonance image 

slices as an exemplar, we demonstrate that our approach consistently outperforms state-of-the-art tech- 

niques for shape reconstruction from unstructured point clouds. Our approach can reconstruct 3D cardiac 

meshes to within 2.5-mm point-to-point error, concerning the ground-truth data (the original image spa- 

tial resolution is ∼ 1 . 8 × 1 . 8 × 10 mm 

3 ). We further evaluate the robustness of the proposed approach to 

incomplete data, and contours estimated using an automatic segmentation algorithm. MR-Net is generic 

and could reconstruct shapes of other organs, making it compelling as a tool for various applications in 

medical image analysis. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Reconstructing plausible 3D shapes (represented as parametric 

urface meshes) from sparse, unstructured point clouds (PCs) ex- 

racted from single- or multi-view images, is an active problem 

n Computer Vision (CV) and Medical Image Analysis. 3D shape 

econstruction helps visualise the spatial structure of 3D objects, 

nd is relevant to several applications such as, computer-aided di- 

gnosis, surgical planning, image-guided interventions, and com- 
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utational simulations, to name a few ( Suinesiaputra et al., 2017; 

ehmann et al., 2009 ). 

Generally, traditional cardiac shape reconstruction comprises 

wo steps: (1) cardiac image segmentation; and (2) mesh gener- 

tion from the estimated segmentations. Cardiac image segmen- 

ation (manual/automatic segmentation) aims to find the region 

f interest in the original magnetic resonance (MR)/computed to- 

ography (CT) images (e.g. left ventricle (LV), right ventricle (RV)). 

he mesh generation process then takes the segmentation re- 

ults as input and generates the corresponding meshes. Marching 

ubes ( Lorensen and Cline, 1987 ) is the most widely used algo- 

ithm for generating meshes from segmented image volumes, but 

enerally requires dense segmentation volumes for reconstructing 
under the CC BY-NC-ND license 
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D shapes as triangulated surfaces/meshes. Such an approach is ill- 

uited to reconstructing 3D shapes from sparse, stacked 2D con- 

ours. Therefore, in cardiac shape reconstruction, previous stud- 

es have approached the problem as one of mesh adaptation. 

n this context, a template mesh is first generated (either using 

n isosurfacing technique or directly from an existing statistical 

tlas/template), and then deformed under the guidance of con- 

ours or points (extracted from segmentation results) ( Medrano- 

racia et al., 2013; Lim et al., 2014; Zou et al., 2015; Villard 

t al., 2018 ). Using segmented contours to deform the template 

esh, Lim et al. (2014) proposed to reconstruct specific 4D meshes 

spatial-temporal mesh) for patients. Villard et al. (2018) proposed 

 method to reconstruct geometrical surface meshes from sparse, 

eterogeneous, non-coincidental contours. They used contours to 

uide the deformation of an initial mesh to obtain the target mesh, 

sing a smoothness term while maximising the data fitting. How- 

ver, those methods are all time-consuming, which limits mesh 

econstruction for real-time applications in surgical guidance and 

avigation. 

Deep learning-based methods have also been explored for this 

ask. As inference using a trained deep neural network is just one 

orward pass through the network, such methods can significantly 

peed up the process of cardiac shape reconstruction. Few stud- 

es have explored the application of deep learning methods on this 

ask. For example, Xu et al. (2019) proposed to tackle this task as 

 volumetric mapping problem followed by isosurface estimation 

sing the generated volume. Their approach generated three dense 

D volumes, LV myocardium, LV cavity and RV cavity, from sparse 

olumes of contours. Then marching cubes was used to reconstruct 

he bi-ventricular cardiac meshes. This approach was able to ac- 

urately predict cardiac meshes even with discrepancies between 

ntersecting slices (short-axis (SAX) view and long-axis (LAX) view 

lices). Attar et al. (2019) viewed shape reconstruction as a regres- 

ion problem, building a deep regression network to predict the 

ardiac shape parameters in Principal Component Analysis (PCA) 

pace from image data (from the UK Biobank (UKBB) cohort), us- 

ng both short and long axis views and patient metadata. Using 

 cardiac statistical shape model (SSM) estimated a priori and its 

ssociated mean template mesh and principal eigenvectors, during 

nference, they reconstructed the bi-ventricular cardiac meshes for 

ach unseen image volume using the PCA parameters estimated 

y their network. Instead of using traditional methods to gener- 

te the final shape, some studies have proposed to predict car- 

iac PCs ( Zhou et al., 2019 ) or meshes ( Wang et al., 2020 ) di-

ectly using deep neural networks, enabling cardiac shape recon- 

truction in real-time. Zhou et al. (2019) firstly proposed to ap- 

ly deep learning network in cardiac point cloud reconstruction, 

hich could reconstruct RV from a single image (in the LAX view). 

imilarly, Wang et al. (2020) designed a deep learning network, 

nstantiation-Net, to reconstruct 3D RV mesh based on a single LAX 

iew image. However, reconstructing a 3D object from the image in 

 single view is ill-posed due to the large proportions of missing 

nformation, making it difficult to generate accurate meshes. 

To reconstruct plausible and high-quality meshes from cardiac 

mages, multiple images with boundary information (e.g. contours) 

ould be a better input choice. They are usually available from 

anual/semi-automatic contours derived from most medical im- 

ge segmentation tools. As those tools do not provide full 3D re- 

onstructions, the mesh reconstruction method could be a supple- 

ent of these tools in return. Previous research ( Medrano-Gracia 

t al., 2013; Lim et al., 2014; Zou et al., 2015; Villard et al., 2018 )

ave also proved that deforming a template mesh under the guid- 

nce of contours facilitates the generation of high-quality person- 

lised meshes (fitted to the contours). Therefore, in this paper, we 

ocus on cardiac mesh reconstruction from a point cloud of con- 

ours. We design a novel approach, MR-Net, to achieve the task 
2 
f reconstructing 3D bi-ventricular cardiac shapes from stacked 2D 

ontours, viewing it as a DL-based template-to-PC fitting task. An 

verview of the proposed framework is presented in Fig. 1 . Given 

AX cine-cardiac MR image stacks, we first manually/automatically 

egment the cardiac structures of interest in each 2D slice. Next, 

Cs of stacked contours are extracted from these segmentations. 

inally, MR-Net is applied to predict high-quality meshes from PCs 

f contours. With deep learning-based segmentation methods and 

R-Net, we can reconstruct accurate 3D cardiac shapes from the 

R images accurately, robustly, and in real-time. 

Recently, many deep learning-based methods have been pro- 

osed for meshes/PCs reconstruction and analysis ( Qi et al., 

017a; 2017b; Wang et al., 2018 ). Among them, the most popular 

ask is to reconstruct 3D mesh from single-/multi-view image(s). 

ang et al. (2018) firstly proposed a network Pixel2mesh based 

n graph convolutional network (GCN) ( Bronstein et al., 2017; Def- 

errard et al., 2016; Kipf and Welling, 2017 ) for mesh reconstruc- 

ion from a 2D image (a projection of the original 3D object on 

o one view). They used an ellipsoid mesh as the template, then 

pplied the GCN blocks to deform it with the guidance of fea- 

ures extracted from the input image using VGG 16-like architec- 

ure ( Simonyan and Zisserman, 2015 ) like architecture. Based on it, 

en et al. (2019) proposed an improved network, Pixel2mesh++, to 

ackle the problem of 3D mesh reconstruction from multi-view im- 

ges, reconstructing more accurate surfaces of 3D objects. Instead 

f GCN, Pan et al. (2019) proposed to apply a multi-layer percep- 

ron (MLP) as the deformation module followed by topology modi- 

cation blocks, and finally designed a boundary refinement block 

o improve the visual quality of reconstructed meshes further. 

hese approaches were developed and validated on publicly avail- 

ble datasets for the reconstruction of general objects (e.g. plane, 

hair). Using approaches like Pixel2mesh, recent studies have also 

xplored the reconstruction of human hand ( Ge et al., 2019 ) or 

ody ( Kolotouros et al., 2019 ) meshes from 2D images. In addition, 

everal deep learning-based methods have been proposed for mesh 

econstruction from dense PCs, which rely on predicting the sur- 

ace normal vector for every point in the input PCs ( Hashimoto and 

aito, 2019 ), or predicting the skinned multi-person linear model 

SMPL, i.e. a parametric human body model ( Loper et al., 2015 )) 

arameters of the target mesh, then using the off-the-shelf SMPL 

odel to reconstruct meshes from parameters ( Jiang et al., 2019 ). 

owever, in our case, the input PCs are sparse contours with large 

roportions of missing information relative to dense point cloud- 

ased representations of shapes. And these contour points differ in 

umber and spatial distribution to the vertices of the surface (our 

arget/output) that they implicitly represent. 

To this end, considering the nature of the traditional cardiac 

esh reconstruction methods and the context of deep learning- 

ased mesh reconstruction methods, we propose to use deep 

earning network to deform a cardiac template mesh to obtain the 

arget meshes under the guidance of contours. The key idea be- 

ind mesh reconstruction from single/multiple images is to find 

 mapping from the input image(s) to the template mesh, and 

ubsequently, to use the learned features in the input image to 

uide the deformation of the template mesh. Generally, a 2D pro- 

ective transformation is applied to find the corresponding pixels 

n the 2D image for every vertex in the template mesh, before 

ransferring the features of 2D pixels to the corresponding vertex. 

owever, in our case, the inputs are contour PCs in 3D coordi- 

ate space. Applying a single 2D projection of the input PCs would 

ause a loss of structural information. Therefore, we design a PC- 

o-PC mapping going from the 3D contour point cloud to a 3D vol- 

me, and correspondingly, from the 3D volume to the vertices of 

he 3D template mesh (i.e. a PC-volume-PC mapping), which ad- 

resses the challenge of mapping features between unstructured 

ata sets that lack spatial correspondence. 
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Fig. 1. The proposed pipeline for 3D cardiac shape reconstruction from MR images (The cardiac image presented were reproduced with the permission of UK Biobank©). 

Note that, the slice-by-slice segmentation methods can be both manual segmentation and automatic segmentation algorithms. 
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The main contribution of our work is a hybrid graph convolu- 

ional neural network for 3D mesh reconstruction, MR-Net, which 

pproaches the problem as a template deformation task condi- 

ioned on the sparse point cloud data (stacked 2D contours in 

ur case). To the best of our knowledge, this is the first study 

o employ deep learning for registering a 3D mesh to sparse PCs 

or stacked 2D contours), enabling real-time 3D shape reconstruc- 

ion. Although we focus on 3D cardiac shape reconstruction from 

tacked 2D contours in this study, MR-Net is generic and flexi- 

le, and can be employed for various PC-to-PC/mesh reconstruc- 

ion tasks (e.g. PC/mesh reconstruction, PC/mesh completion and 

orrection) within the medical imaging or CV domain. To sum up, 

he contributions of this paper are as follows, 

• We propose a novel cardiac mesh reconstruction framework, 

which can predict accurate cardiac meshes from original MR 

images in a fast and robust manner, assisted by existing deep 

learning-based segmentation methods. 
• We demonstrate that MR-Net can generate accurate and high- 

quality meshes even from incomplete contours, a challenge that 

often arises in clinical scenarios. 

The rest of the paper is organised as follows: In Section 2 , each

omponent of the proposed approach is described. Section 3 exem- 

lifies our proposed MR-Net on UKBB dataset. Finally, Section 4 is 

he conclusion of this paper. 

. Methods 

Traditional 3D shape reconstruction approaches have relied on 

terative deformation of a template mesh to sparse contours/PC, 

sing the latter to guide the former, with including various penalty 

erms to ensure the estimated deformation is smooth. To eliminate 

he requirement of several iterations during inference (which can 

e time-consuming), in this paper, a deep learning-based network, 

R-Net, is designed to mimic such a process. After training, unseen 

ontours/PCs are reconstructed into 3D shapes (represented as tri- 

ngulated surface meshes) via a simple forward pass through the 

etwork. This can significantly speed up 3D shape reconstruction 

hile predicting high-quality meshes. In subsequent sub-sections, 

e first introduce the overall network architecture of MR-Net, and 

hen provide details of — the feature extraction module, deforma- 

ion module, 3D PC-to-PC mapping, and the loss function formu- 

ated for effective training of the proposed approach. 

.1. Network architecture 

The task of our MR-Net is to reconstruct personalised meshes 

rom sparse contours under the guidance of a template mesh. 

o accomplish this, we design two modules: the feature extrac- 

ion module and the deformation module (comprising three GCN 

locks), as shown in Fig. 2 . The purpose of the feature extraction 

odule is to extract features from the input point cloud of stacked 

ontours that are beneficial for the deformation module, while the 

atter utilises this information to deform the template mesh to the 
3 
ersonalised target mesh under the guidance of the features from 

he feature extraction module. The feature extraction module con- 

ists again of two parts: direct PC feature extraction (in PC do- 

ain), and 3D convolutional neural network (CNN LeCun et al., 

998 ) feature extraction (in image domain). The former is to ex- 

ract features directly from point clouds whereas the latter extracts 

eatures from a voxel-based representation of the contours. 

Generally, the meshes can be presented by vertices and con- 

ectivity. Following Pixel2mesh ( Wang et al., 2018 ), we assume the 

onnectivity in the target meshes are fixed (the same as template 

esh), thereby the mesh reconstruction from PC could be simpli- 

ed to learn the mapping between input PC and vertices of tar- 

et meshes. To achieve this mapping, two problems must be ad- 

ressed: (1) how to learn the shape priors from input PC; (2) how 

o find the point-to-point correspondence between the input PC 

nd vertices of the template, in order to apply the graph convolu- 

ion. The main contributions of our proposed MR-Net lie to tackle 

hese two challenges. 

.2. Feature extraction 

Due to the large proportion of missing inter-slice information, 

D shape reconstruction from sparse 2D contours is a challeng- 

ng task. A template mesh is randomly selected from the train- 

ng dataset to supply the missing information in the reconstruc- 

ion process. The input PCs of contours serve as the guidance of 

emplate deformation. All the input PCs and corresponding target 

eshes are normalised to a standard sphere (centred at (0,0,0) 

ith the radius of 1) before training the network. To learn the 

uidance information, feature extraction from the input contours 

s decomposed into two paths. 

The first path is a point cloud feature extraction block based 

n PointNet++ Qi et al., 2017b ), which predicts two new PCs using 

ampling and grouping. In our experiments, the number of points 

n input PCs is 3,0 0 0, and these two new PCs contain 2,0 0 0 and

,578 points respectively (the number of points is set empirically, 

ampling and grouping the original point clouds of contours grad- 

ally from 3,0 0 0 to 1,578). After obtaining these two new PCs, a 

D projection (i.e. a mapping from vertices’ coordinate to index of 

oxels, projecting points in 3D space to voxels in 3D volume, see 

n Formula. (2) is applied to transfer them with the original point 

loud of contours into three 64 3 features, where each voxel is a 

eature vector with dimension 1 × 4 . 

In the other path, we first apply a 3D projection to turn the 

nstructured input point cloud into a structured volume with 64 3 

oxels in the image domain. Then a 3D CNN (4 layers, down- 

ampling from 64 3 to 8 3 ) is used to extract features from the 

D volume projected from the input point cloud, where the 

xtracted features contain feature maps in all four resolutions 

 64 3 , 32 3 , 16 3 , 8 3 ), where corresponding feature dimensions are 64,

28, 256, 500 respectively. 

With a volume-to-PC mapping, we can map the features in vox- 

ls of volumes back to points in the template mesh and guide its 

eformation. Therefore, we finally obtain a feature of (64 + 128 + 
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Fig. 2. Schema of the proposed method, MR-Net. The overall network is displayed in the top row, with the details of the 3D CNN and our proposed PC-to-PC mapping blocks 

(between input PCs and vertices of template mesh) presented in the bottom row. The feature extraction module is to extract features from the input contours, and then the 

deformation module deforms the template mesh to the target mesh under the guidance of the learned features in features extraction module. 
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56 + 500 + 4 × 3) = 960 × 1 for every point in the vertices of

emplate mesh, which is concatenated with the coordinate ( 3 × 1 ) 

f the template mesh (or the coordinate predicted in the previ- 

us GCN block) and taken as input by the GCN blocks. Although it 

ould cause little information missing in the process of 3D projec- 

ion, the multi-layer 3D CNN learns rich structured features (across 

ifferent resolutions) from the original PCs, which is essential for 

xtracting features from the input PCs. With feature extraction 

n both point cloud domain and image domain, we can obtain a 

roper understanding of the input contours and use it to guide the 

eformation of the template mesh. 

.3. Deformation module 

With the features learned from input contours as the guidance, 

e design a deformation module to deform the template mesh 

radually, which helps to preserve the topology and the connec- 

ivity of meshes, following deformation. The deformation module 

ncludes three GCN blocks (referring to Pixel2mesh ( Wang et al., 

018 )), each comprising 14–15 graph convolution layers (the first 

s 14, while the next two are 15). Note that, the number of layers

n MR-Net are set empirically and tuned based on results obtained 

n the validation set. 

3D meshes comprise vertices, edges and faces. The vertices are 

he coordinates of the nodes on the mesh, which is generally an 
4 
 × 3 array (the three columns stand for x,y,z coordinate respec- 

ively). Edge denotes the connectivity between two vertices. In our 

ase, the face of the mesh is defined by surface triangles, whereby, 

very face in the mesh comprises the indices of three vertices 

connected by edges to form a triangle). Let F = { f i } N i 
be the fea-

ures on every vertex of the mesh, the graph convolution layer can 

e formulated as, 

 

l+1 
p = ω 0 f 

l 
p + 

∑ 

q ∈ N( p ) 

ω 1 f 
l 
q , (1) 

here f 
l+1 
p ∈ R 

d l+1 is the output feature of vertex p after l-th graph 

onvolution layer, and f 
l 
p ∈ R 

d l is the corresponding input feature 

n l-th layer. N( p ) are the neighbour points of vertex p . Both ω 0 

nd ω 1 are parameters ( d l × d l+1 ) automatically learned during 

raining. The ω 1 is shared by all edges, thereby the graph convo- 

ution layer can be applied to meshes with irregular shapes (i.e. 

odes with different vertex degrees). 

The structure of GCN blocks mainly follows Pixel2mesh 

 Wang et al., 2018 ). In the first GCN block, the first graph convolu-

ion layer takes the concatenation of the learned feature ( 1 × 960 ) 

nd the original vertices ( 1 × 3 ) of template mesh as input and 

redicts hidden features at 1 × 256 , followed by 12 hidden graph 

onvolution layers (the input is 1 × 256 and the output is 1 × 256 ) 

nd a graph convolution layer to predict the coordinate of each 
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ertex ( 1 × 3 ). The next two GCN blocks are the same, where the

rst graph convolution layer takes the concatenation of learned 

ontour features ( 1 × 960 ), the predicted coordinates ( 1 × 3 ) and

he learned features ( 1 × 256 ) in hidden layers of the previous 

CN block as input and predicts features at 1 × 256 . This is fol-

owed by 13 hidden graph convolution layers (both input and out- 

ut are 1 × 256 ) and a graph convolution layer to predict the co- 

rdinates ( 1 × 3 ). Therefore, each GCN block predicts an output 

f the target mesh, while the template mesh is deformed gradu- 

lly to fit the contours. Further details about GCN can be found 

n Wang et al. (2018) ; Bronstein et al. (2017) . 

.4. 3D PC-to-PC mapping 

To apply deformation based on GCN, point-level features are re- 

uired for the vertices in the template mesh. However, as the in- 

ut point cloud and the template mesh are both unstructured and 

ave different cardinalities, there is no point-to-point correspon- 

ence between them. To transfer the learned shape information 

rom input point cloud to the vertices of the template mesh, we 

uild a PC-to-PC mapping module comprising 3D projection and 

olume-to-PC mapping, where the 3D volume is used as the bridge 

etween the input point cloud and template. The 3D projection 

ims to map 3D PCs to 3D volumes, which can be formulated as 

ollows (using a volume of 64 3 voxels as an example), 

 x,y,z = 

{
0 , (x, y, z) � = � ( P i ) × 32 � + 32 

1 , (x, y, z) = � ( P i ) × 32 � + 32 

(2) 

here P i is the coordinate of i -th point in PCs, which has been 

ormalised before the training. V x,y,z is the corresponding voxel in 

rojected 3D volumes. We project the point cloud into a 64 3 vol- 

me. If there is a corresponding point in the point cloud, the voxel 

n 3D volume would be 1, otherwise 0. 

Correspondingly, the volume-to-PC mapping is the inverse pro- 

ess of 3D projection, 

 i = VF x,y,z , s.t. (x, y, z) = � ( P i ) × 32 � + 32 , (3)

here f i is the obtained feature for point i in template mesh, and 

F x,y,z is the corresponding feature in 3D volume. With these two 

appings, we finally obtain point-level features for the template 

esh, which serve as the input of GCN blocks. Note that, there 

s a coordinate scale missing (from float coordinate to integer in- 

ex) in the process of 3D PC-to-PC mapping. Generally, larger vol- 

mes would enable more accurate reconstruction results, although 

equiring more memory. For a trade-off between the accuracy and 

omputational complexity (GPU memory), we choose a 64 3 volume 

s the bridge between input PC and template mesh. 

.5. Loss functions 

We employ deep supervision with a multi-term mesh loss func- 

ion to train our proposed MR-Net. The mesh loss is designed fol- 

owing Pixel2mesh ( Wang et al., 2018 ), including Chamfer distance 

CD), edge loss, normal loss and Laplacian loss. CD is applied to 

apture an overall distance between the predicted vertices and ver- 

ices of ground-truth. It does not require the point number/order 

o be the same in the two PCs. Denoting p and q as the predicted 

nd ground-truth vertices, Chamfer distance L CD is written as, 

 CD = 

∑ 

p 

min q || p − q || 2 2 + 

∑ 

q 

min p || p − q || 2 2 . (4) 

Edge loss is a regularisation to penalise high edge length. We 

se the sum of all edge lengths in the predicted mesh as the edge

oss L edge , 

 edge = 

∑ 

p 

∑ 

k ∈ N( q ) 

|| p − k || 2 2 , (5) 
5 
here N( q ) is the neighbour vertices of q . 

Normal loss L normal is computed on surface normals, which 

elps preserve mesh topology and retain fine structural details, and 

s formulated as, 

 normal = 

∑ 

p 

∑ 

q = argmin q (|| p −q || 2 
2 
) 

|| < p − k , n q > || 2 2 , s.t. k ∈ N( p ) , 

(6) 

here < ·, · > is the inner product of two vectors, k belongs to 

he neighbour point of p (denoted by N( p ) ), and n q is the sur- 

ace normal of ground-truth. In the predicted/target meshes, the 

ectors (edges) from each vertex to its neighbour vertices should 

e perpendicular to its normal. If the predicted vertices of meshes 

re exactly the same as the target mesh, the normal loss becomes 

ero. Therefore, this loss is to guarantee the normal of the pre- 

icted mesh is close to the normal in the target mesh. 

Similar to edge loss, Laplacian loss L Laplacian is also a regular- 

sation term. Let δp be the Laplacian coordinate of vertex p . The 

 Laplacian is as follows, 

p = p − ∑ 

k ∈ N( p ) 

1 
|| N(p) || k , 

 Laplacian = 

∑ 

p 
|| δp 

′ − δp || 2 2 , 
(7) 

here δp and δp 
′ 

are the Laplacian coordinates of vertex p before 

nd after deformation. 

The mesh loss has been proven to be useful in mesh recon- 

truction ( Wang et al., 2018; Wen et al., 2019 ). However, in our 

ask, we found it is inadequate to generate accurate vertex coordi- 

ates, as there is no exact point-to-point loss. To tackle this issue, 

e further apply an additional L 1 loss between the predicted and 

round-truth vertices. This term ( L 1 ) urges MR-Net to predict more 

ccurate vertices for the reconstructed cardiac mesh, and it is for- 

ulated: 

 1 = 

1 

M 

M ∑ 

i 

| p i − q i | , (8) 

here M is the number of points in the predicted mesh. p i and q i 

re coordinates of the i -th point in the predicted and target mesh, 

espectively. 

Therefore, the complete mesh loss L mesh we propose is as fol- 

ows, 

 mesh = L CD + L edge + L norm 

+ L Laplacian + λ0 × L 1 , (9)

here λ0 is a hyper-parameter that needs to be tuned empirically. 

As there are three outputs in MR-Net from coarse to fine, we 

ompute the mesh loss on all three outputs. Therefore, the final 

oss function L total is computed as follows, 

 total = λ1 L mesh 1 + λ2 L mesh 2 + λ3 L mesh 3 , (10) 

In the loss function, λ0 , λ1 , λ2 and λ3 are hyper-parameters 

hat weight the relative influence of each structural loss term, on 

he overall gradient backpropagated through the network to up- 

ate the constituent weights. These weights are also tuned empir- 

cally. 

. Experiments and results 

.1. Data and implementation 

All experiments conducted to validate MR-Net are performed 

sing 7,870 stacks of 2D contours, available from the manual de- 

ineation of SAX view cardiac MR images (at the end of systole and 

iastole), within the UKBB dataset. The spacing for cardiac MR im- 

ges in UKBB is 1 . 8 × 1 . 8 mm 

2 with a slice thickness of 8.0 mm
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nd a slice gap of 2 mm. Manual contouring was performed by 

 team of cardiac imaging experts ( Petersen et al., 2017 ) and 

he corresponding 3D bi-ventricular cardiac reference shapes were 

vailable from a previous study ( Attar et al., 2019 ). We randomly 

plit the dataset into training (6,0 0 0), validation (935) and test sets 

935). Each training sample comprises a source-target pair, where 

he former is the sparse 2D contour points to be reconstructed, 

hile the latter is the corresponding bi-ventricular surface mesh 

i.e. the target shape). We pre-process all source PCs to maintain 

he same cardinality (3,0 0 0 points used in all experiments) across 

ll samples. This is done by replicating points at random for sam- 

les with less than 3,0 0 0 points. The target mesh vertices however, 

ll have the same cardinality (i.e. 1,578 points) and consequently 

eed not be resampled. In the training dataset, all input PCs and 

arget mesh vertices are normalised before training the network, 

sing their centroid and radius (fixed as 10 0.0 0 mm). Therefore, all 

he PCs and meshes used for training are normalised to a sphere 

entred at (0,0,0) with a radius of 1. Correspondingly, during test- 

ng, the input PCs are also normalised before shape reconstruction, 

uch that the predicted meshes can be transformed to their origi- 

al size using the same values for the centroid and radius. 

We use the Adam optimiser, with a learning rate of 1 e −05 and a

atch size of 1 to train MR-Net, in all experiments conducted. The 

yper-parameters λ0 , λ1 , λ2 and λ3 for the total structural loss are 

,0 0 0, 0.1, 0.3 and 0.6 respectively, which are determined empiri- 

ally. Note that, these parameters are the same in all experiments. 

he network is implemented using Python and TensorFlow, and all 

xperiments are streamlined and executed on Tesla M60 GPUs, ac- 

essed over the MULTI-X platform 

1 ( de Vila et al., 2018 ). All net-

orks are trained until convergence on the training set. It takes ∼
0h to train MR-Net on data with complete contours, and ∼ 100h 

n training data of incomplete contours (as the training number is 

arger). Our source code will be available on the Github 2 following 

cceptance of this paper. 

.2. Comparison with the state-of-the-art 

To the best of our knowledge, no previous deep learning- 

ased method for mesh reconstruction from (stacked) contour 

Cs exists in literature. However, various techniques such as 

oint cloud up-sampling, point cloud segmentation and mesh 

econstruction from a single image could be modified to par- 

ially address the reconstruction problem. Consequently, we build 

hree baselines, using state-of-the-art networks for comparison, 

amely, PontNet++ ( Qi et al., 2017b ), PU-Net ( Yu et al., 2018 ), and

ixel2mesh ( Wang et al., 2018 ). PointNet++ is a popular network 

riginally proposed for point cloud classification and segmenta- 

ion. We build an encoder-decoder network based on its kernel 

lock, with a feature integration component, to obtain our base- 

ine network PointNet++. PU-Net is a state-of-the-art network for 

oint cloud up-sampling. We adapt it to point cloud reconstruction 

y incorporating a sampling layer at the end of the original net- 

ork. These two networks can predict PCs only with similar struc- 

ures to the ground-truth, but cannot recover the cardiac mesh as 

he order predicted points differ from the ground-truth. To com- 

are our approach with mesh reconstruction methods, we project 

he input PCs onto 2D images, and then reconstruct 3D cardiac 

eshes from them using Pixel2mesh ( Wang et al., 2018 ). In addi- 

ion to deep learning-based methods, we also compare our MR-Net 

ith two traditional point set registration methods, coherent point 

rift (CPD Myronenko and Song, 2010 ) and GMMREG ( Jian and Ve- 

uri, 2011 ), where the template mesh is the same as MR-Net and 
1 https://www.multi-x.org . 
2 https://github.com/cistib/MR-Net 

i
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t
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6 
he hyper-parameters are tuned based on samples from the train- 

ng and validation set. 

.2.1. Qualitative results 

A visual comparison of the generated reconstructions using the 

roposed method against the baseline networks is depicted in 

ig. 3 . For Pixel2mesh, CPD and our proposed MR-Net, both pre- 

icted meshes and the corresponding vertices (PCs) are presented, 

hile, only PCs are available for PointNet++ and PU-Net results. 

or GMMREG, only the mesh is presented, due to limited space. 

s shown in Fig. 3 , the PointNet++ and PU-Net reconstructions 

till contain several “contour-like” distributions of points and lack 

he inlet to the pulmonary artery at the top of the RV. The re- 

onstruction of Pixel2mesh just learns a coarse representation of 

he cardiac shape, and the corresponding mesh does not preserve 

i-ventricular topology and is thus significantly different from the 

round-truth. The main reason for this is that 2D projection causes 

 significant loss in information, resulting in erroneous reconstruc- 

ions. It is difficult for Pixel2mesh to reconstruct meshes with 

oles using 2D information only. Both traditional point set registra- 

ion methods, CPD and GMMREG can reconstruct smooth cardiac 

eshes, whilst preserving topology. In our task, the performance 

f CPD is better than GMMREG. However, the mesh obtained using 

PD is significantly different to the ground-truth mesh, failing to 

apture several local details (mainly on the top and bottom of the 

entricles). MR-Net can reconstruct evenly distributed PCs without 

ontour-like artefacts, while preserving bi-ventricular topology and 

etaining fine structural details such as the inlet to the pulmonary 

rtery. The reconstructed mesh is of high-quality and more closely 

atches the target shape, compared with the other approaches. 

his is further supported by the quantitative results summarised 

n the next section. 

.2.2. Quantitative results 

The reconstruction performance of MR-Net is also quantitatively 

valuated and compared with other baseline networks. Follow- 

ng previous shape reconstruction research ( Zhou et al., 2019; Li 

t al., 2019; Wang et al., 2018 ), reconstruction accuracy was mea- 

ured using CD, earth mover’s distance (EMD), Hausdorff distance 

HD) ( Li et al., 2019; Yu et al., 2018; Wang et al., 2018 ) and point

loud to point cloud (PC-to-PC) error ( Zhou et al., 2019; Wang 

t al., 2020 ), which could capture the distance between two PCs 

rom different perspectives. The CD, EMD, and HD are well-known 

etrics to evaluate the distance between two PCs, while PC-to-PC 

rror is computed as, 

P C−to−P C = 

1 

M 

M ∑ 

m =1 

√ 

3 ∑ 

i =1 

( p m,i − q m,i ) 
2 . (11) 

here p and q are vertices of predicted meshes and ground-truth, 

nd the M is the number of points in predicted meshes (in our 

xperiments is 1,578). For all evaluation metrics, lower values sig- 

ify better performance. The average reconstruction accuracy (ex- 

ressed as mean ±std) across all test samples is summarised in 

able 1 , for each approach, as mentioned earlier. Paired sample 

-tests were used to assess statistical significance, by comparing 

he reconstruction accuracy of each baseline network with that 

f MR-Net. MR-Net consistently outperformed the others, achiev- 

ng the best results across all metrics. Note that, CPD is also the 

ethod used to generate the ground-truth meshes (as mentioned 

n Attar et al. (2019) ), requiring a time-consuming process of tun- 

ng hyper-parameters for each sample. In this paper, for compari- 

on, we tune the hyper-parameters based on several samples from 

raining and validation set, and use the same hyper-parameters for 

ll testing samples. This is why the meshes obtained using CPD in 

https://www.multi-x.org
https://github.com/cistib/MR-Net
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Fig. 3. Qualitative results for our MR-Net and baseline networks viz. PointNet++, PU-Net, GMMREG, CPD and Pixel2mesh. In the second and third row, PCs and meshes 

computed using MR-Net, CPD and Pixel2mesh are presented. 

Table 1 

Quantitative comparison between MR-Net and the baseline networks using the CD, EMD, HD and PC-to-PC error. Sta- 

tistically significant differences in reconstruction accuracy are highlighted in bold. MR-Net (automatic) represents the 

mesh reconstruction results from contours extracted using automatic segmentation methods (see Section 3.4 ). 

Methods CD (mm) EMD (mm) HD (mm) εP C−to−P C (mm) Inference Time(s) 

PointNet + 13 . 03 ± 2 . 96 17 . 94 ± 2 . 07 17 . 04 ± 3 . 57 - < 0 . 1 

PU-Net 12 . 15 ± 2 . 88 14 . 94 ± 2 . 02 15 . 74 ± 3 . 37 - < 0 . 1 

Pixel2mesh 19 . 38 ± 5 . 54 25 . 27 ± 4 . 48 16 . 20 ± 3 . 30 50 . 63 ± 7 . 29 < 0 . 1 

CPD 12 . 10 ± 6 . 63 12 . 49 ± 5 . 46 13 . 05 ± 7 . 74 7 . 03 ± 2 . 94 37.45 

GMMREG 20 . 90 ± 7 . 18 17 . 58 ± 4 . 85 15 . 87 ± 3 . 04 8 . 36 ± 1 . 85 60.90 

MR-Net (No L1) 255 . 08 ± 94 . 54 36 . 61 ± 5 . 49 47 . 80 ± 7 . 35 39 . 12 ± 5 . 21 < 0 . 1 

MR-Net (Only L1) 6 . 14 ± 1 . 61 7 . 01 ± 1 . 48 8 . 10 ± 1 . 79 3 . 34 ± 0 . 65 < 0 . 1 

MR-Net (No PC feature) 6 . 84 ± 1 . 69 8 . 07 ± 1 . 64 8 . 78 ± 1 . 92 3 . 87 ± 0 . 65 < 0 . 1 

MR-Net (No 3D CNN) 80 . 71 ± 39 . 28 32 . 03 ± 7 . 27 29 . 63 ± 7 . 06 18 . 54 ± 2 . 68 < 0 . 1 

MR-Net 4.39 ± 1.48 5.05 ± 1.41 6.89 ± 1.88 2.48 ± 0.63 < 0 . 1 

MR-Net (automatic) 7 . 57 ± 3 . 59 8 . 19 ± 2 . 87 9 . 31 ± 2 . 86 3 . 45 ± 0 . 98 < 0 . 1 

MR-Net (small dataset) 6 . 89 ± 1 . 76 8 . 12 ± 1 . 71 8 . 83 ± 2 . 00 3 . 92 ± 0 . 79 < 0 . 1 
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his study are different to the target meshes (generated in a previ- 

us study ( Attar et al., 2019 )). As the inference of MR-Net is much

aster ( < 0 . 1 s vs 37.45/60.90 s) and more accurate than traditional

ethods, there is potential for its use in real-time applications. 

To further demonstrate the clinical potential and superiority of 

ur approach, we extract the corresponding segmentations from 

he predicted and ground-truth meshes (using the SAX-planes from 

he original cardiac MR images), and compute five clinical in- 

ices based on the obtained segmentation results - LV end-diastolic 

olume (LVEDV), end-systolic volume (LVESV), LV stroke volume 

LVSV), LV ejection fraction (LVEF) and LV myocardial mass (LVM) 

espectively. The clinical indices are shown in Table 2 (as topol- 

gy is not preserved in meshes predicted by pixel2mesh and MR- 

et(No L1), we did not include their clinical indices), where, values 

howing no statistically significant difference to the clinical indices 

omputed on the ground-truth meshes are highlighted in bold 

 p ≥ 0 . 05 ). While the meshes predicted by MR-Net incur an aver-

ge point-to-point error of 2 . 48 mm to the ground-truth, we found 

hat the computed clinical indices for MR-Net show no significant 

ifference to the latter. All other approaches investigated on the 

ther hand, show significant differences to the ground truth, in 
7 
erms of the clinical indices evaluated. This further demonstrates 

he superiority of our approach at preserving key clinical indices 

hat are routinely used to assess cardiac function. 

We also explore the performance of MR-Net when trained with 

 limited number of samples, as 6,0 0 0 samples are not easy to ob-

ain in real clinical applications. We randomly choose 200 sam- 

les from the original training set to train MR-Net and evaluate 

ts performance with the same test set. The results are shown in 

able 1 (MR-Net(small dataset)). These results indicate that MR-Net 

erforms well in the small data regime, and outperforms other 

tate-of-the-art methods which were trained on a significantly 

arger sample size (6,0 0 0). 

These quantitative results follow the visual assessment (cf. 

ection 3.2.1 ) of the bi-ventricular shapes reconstructed using each 

pproach. This highlights further the efficacy of our proposed MR- 

et for 3D shape reconstruction from stacked 2D contours. 

.3. Shape reconstruction from incomplete contours 

Typical artefacts encountered during cardiac MR image acqui- 

ition include missing slices between the base and apical of the 
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Table 2 

Clinical indices (LVEDV, LVESV, LVSV, LVEF, LVM) computed based on the segmentation obtained from the predicted 

meshes. Those clinical indices make no statistically significant difference to the ground-truth (GT) are highlighted in 

bold ( p ≥ 0 . 05 ). 

Methods LVEDV (ml) LVESV (ml) LVSV (ml) LVEF(%) LVM(g) 

CPD 77 . 66 ± 17 . 57 43 . 79 ± 11 . 86 33 . 87 ± 9 . 05 43 . 71 ± 7 . 09 161 . 71 ± 36 . 47 

GMMREG 84 . 33 ± 19 . 15 48 . 19 ± 12 . 04 36 . 14 ± 9 . 00 42 . 94 ± 5 . 23 175 . 96 ± 38 . 87 

MR-Net (Only L1) 132.63 ± 30.49 40.23 ± 15.55 92.40 ± 19.86 70.12 ± 5.87 85 . 81 ± 19 . 55 

MR-Net (No PC feature) 128 . 33 ± 29 . 13 38.88 ± 14.41 89 . 44 ± 19 . 27 70.05 ± 5.65 87.37 ± 19.16 

MR-Net (No 3D CNN) 80 . 70 ± 13 . 63 38.99 ± 16.47 41 . 71 ± 13 . 43 52 . 42 ± 17 . 37 56 . 40 ± 16 . 58 

MR-Net 131.69 ± 30.59 39.69 ± 12.71 92.00 ± 20.10 70.12 ± 4.33 88.36 ± 19.97 

MR-Net (automatic) 131 . 50 ± 30 . 81 39.76 ± 12.81 91 . 74 ± 20 . 28 70.01 ± 4.54 88 . 70 ± 20 . 15 

GT Clinical Indices 132 . 24 ± 30 . 25 39 . 61 ± 11 . 92 92 . 63 ± 20 . 24 70 . 27 ± 3 . 88 87 . 78 ± 20 . 26 

Table 3 

Quantitative results for our MR-Net with incomplete data (with 2–5 slices and original input). The -2 slices and -4 slices denote 

the results with contours removing one/two pair of apical and basal slices. 

Criterion 2 Slices 3 Slices 4 Slices 5 Slices -2 Slices -4 Slices Original Input 

CD (mm) 13 . 54 ± 14 . 65 7 . 94 ± 3 . 02 7 . 91 ± 3 . 36 6 . 97 ± 2 . 54 6 . 51 ± 1 . 98 9 . 97 ± 2 . 68 5.22 ± 1.78 

EMD (mm) 12 . 17 ± 4 . 93 8 . 78 ± 2 . 65 8 . 74 ± 2 . 79 7 . 92 ± 2 . 31 7 . 74 ± 2 . 03 9 . 13 ± 2 . 40 6.16 ± 1.75 

HD (mm) 11 . 83 ± 4 . 12 9 . 58 ± 2 . 83 9 . 34 ± 2 . 73 8 . 73 ± 2 . 40 9 . 00 ± 2 . 50 10 . 20 ± 2 . 89 7.48 ± 1.96 

εP C−to−P C (mm) 5 . 46 ± 2 . 44 3 . 94 ± 1 . 11 3 . 88 ± 1 . 12 3 . 55 ± 0 . 96 3 . 46 ± 0 . 84 4 . 07 ± 1 . 36 2.87 ± 0.73 
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eart, and low signal-to-noise (SNR) ratio in parts of the my- 

cardium, resulting in blurred boundaries for the left and right 

entricles. Correspondingly, these errors are propagated to the 

anually or automatically extracted contours from such image vol- 

mes, which might cause missing contours at intermediate points 

cross the heart. A 3D cardiac shape reconstruction framework ro- 

ust to the presence of such irregularities, would be of significant 

linical value as it would enable accurate quantification of cardiac 

unctional indices, despite such artefacts. For that reason, the ro- 

ustness of MR-Net to incomplete data in sparse 2D contours, used 

or 3D shape reconstruction, is also evaluated. 

Incomplete samples are generated by retaining the basal and 

pical contours and randomly removing contours between. This 

rocess is used to generate four new samples with 2 to 5 slices 

ach, for every sample in the original dataset. Additionally, to 

ackle the common issue encountered in routine CMR imaging, of 

issing apical/basal slices, two new samples with one/two pairs 

f base and apical slices missing are also generated. The result- 

ng dataset, comprising 42,0 0 0 training samples, is used to re-train 

R-Net and evaluate its robustness to incomplete data. 

The quantitative and qualitative results in Table 3 and Fig. 4 , re- 

pectively, indicate that MR-Net can generate accurate reconstruc- 

ions of cardiac shape even in the presence of missing information 

i.e. missing slices). 

In the extreme scenario (reconstruction from 2 slices), only bot- 

om and apical slices are given, our proposed MR-Net can still re- 

onstruct high-quality meshes, although small misalignments ex- 

sts between the reconstructed mesh and input contours. We ob- 

erve that the reconstruction performance progressively improves 

ith including more slices/contours, with a proportional decrease 

n the variance. When 5 slices are given for mesh reconstruction, 

he reconstruction performance is close to the results obtained us- 

ng a complete stack of slices, across all metrics. Although the re- 

onstruction accuracy of MR-Net for extreme scenarios is signifi- 

antly lower than that of the original input (unmodified 2D con- 

ours), the values summarised in Table 3 indicate its performance 

s still comparable to/better than the baseline networks’ perfor- 

ance on complete data (cf. Table 1 ). 

To further evaluate the robustness of our approach, we em- 

loyed the trained model to reconstruct meshes in the absence of 

pical and basal slices. As the apical and basal slices are essential 

o provide the network with contextual information regarding car- 

iac size, removing them significantly affects the quality of mesh 
a

8 
econstruction. Therefore, the results of removing apical and basal 

lices (-2 or -4 slices) are generally worse than removing the same 

umber of slices between the apical and basal slices. However, our 

pproach can still generate high-quality cardiac meshes with the 

asal/apical slices missing, as shown in Table 3 and Fig. 4 . 

The robustness of our approach to missing slices implies we 

an reconstruct high quality cardiac meshes using fewer annotated 

manually/semi-automatically) slices and from sparse SAX cine- 

R images. This provides avenues to reduce scan time in the fu- 

ure. Hence, the proposed approach could be of significant value 

n a clinical setting, especially for applications requiring real-time 

hape reconstruction (e.g. surgical navigation). 

.4. Shape reconstruction from autocontouring 

To further validate the robustness and efficacy of MR-Net in 

ealistic scenarios, in this section, we exemplify our method on 

hape reconstruction with contours extracted from automatic seg- 

entation results instead of manual segmentations. Compared to 

anual segmentation, automatic segmentation results may contain 

everal errors, posing a challenge for accurate 3D shape reconstruc- 

ion. To be viable for a real clinical setting, however, a shape recon- 

truction method should be able to cope with such errors and fa- 

ilitate accurate shape reconstruction from the original cardiac MR 

mages. 

For the samples in our testing dataset, the original MR images, 

he corresponding PCs of contours from manual segmentations and 

heir target meshes are all available. Therefore, we use a deep 

earning-based cardiac segmentation method ( Bai et al., 2018 ) to 

egment the original MR images, and then extract PCs of contours 

rom the segmentation results. Finally, we apply our pre-trained 

R-Net to reconstruct 3D cardiac meshes from them. As the target 

esh for every MR image is available, we compare the predicted 

eshes with the former (shown in Table. 1 and Fig. 5 ). 

As shown in Fig. 5 , there are small differences between the in- 

ut contours extracted from automatic segmentation results and 

anual segmentation results in terms of the number of contours, 

ocation and shape. However, even with those differences, our 

roposed MR-Net can still reconstruct accurate and high-quality 

eshes, achieving comparable performance to the reconstruction 

rom manually segmented contours. This is further demonstrated 

y the results in Table. 1 , where we see that mesh reconstruction 

ccuracy using automatically segmented contours (MR-Net (au- 
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Fig. 4. 3D cardiac shape reconstruction with incomplete input. The CD, EMD, HD and PC-to-PC error (denoted by PPE in the figure) are shown on the left-top with red, 

blue, yellow and green numbers, respectively. The mesh colours indicate the PC-to-PC error from the predicted meshes to target meshes (colours corresponding to distance 

between 0.00 mm and 4.00 mm are shown in the colour bar). 

Fig. 5. Samples of 3D cardiac shape reconstruction using automatic and manual annotated contours. Each row is one sample. Columns from left to right are: Manual 

annotated contours (MC), automatic annotated contours (AC), reconstructed 3D meshes from both AC and MC, and ground-truth. The metrics (between predicted meshes 

and ground-truth) and predicted meshes are presented like in Fig. 4 . 
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omatic)) is a little worse than the results of mesh reconstruc- 

ion from manual segmentation (MR-Net), but significantly better 

achieving an average 3.5 mm PC-to-PC error about the ground- 

ruth) than the other baseline networks investigated. During in- 

erence, MR-Net can reconstruct the shape of a sample is less 

han 0.1s on average, and ∼ 1s or less duration is required for 

he estimation of bi-ventricular contours using the deep learning- 

ased segmentation method. Therefore, with the automatic seg- 

entation method and MR-Net, we can reconstruct accurate, high- 

uality, 3D cardiac meshes from original cardiac MR images very 
9 
uickly ( ∼ 1s), which is adequate for their use in real-time 

pplications. 

Compared with traditional 3D cardiac shape reconstruction ap- 

roaches, MR-Net achieves a significant improvement in the in- 

erence time, without compromising the accuracy of the recon- 

tructed 3D shapes. Additionally, as demonstrated, the proposed 

pproach outperforms existing state-of-the-art deep learning ap- 

roaches in terms of shape reconstruction accuracy. Assisted by 

eep learning-based segmentation methods, MR-Net can be fur- 

her applied for the direct 3D shape reconstruction from original 
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Fig. 6. The results predicted by different versions of MR-Net, where the first and second rows are the meshes from two different orientations. 
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e

(

S

R/CT images. MR-Net can be applied to (1) guide other clini- 

al image tasks in return (e.g. segmentation and registration) as 

t provides a continuous shape in 3D space, (2) in several real- 

ime applications (e.g. surgical navigation), and (3) as an exten- 

ion of clinical tools for visualising the 3D shape of anatomical 

tructures. Although our proposed MR-Net can reconstruct highly 

imilar meshes to the ground-truth, currently, the reconstruction 

ccuracy is still constrained by the size of the 3D volume, which 

s the fundamental building block of PC-to-PC mapping. The re- 

onstruction accuracy can be further improved with larger volume 

e.g. 128 × 128 × 128 or 256 × 256 × 256 voxels) as the bridge for 

C-to-PC mapping. 

.5. Ablation study 

To analyse the contribution of different components in MR-Net, 

n ablation study is performed, as shown in Table 1, Table 2 and 

ig. 6 . MR-Net (No L1), MR-Net (Only L1), MR-Net (No PC feature), 

nd MR-Net (No 3D CNN) refer to training MR-Net without the L1 

oss, with just the L1 loss, without the PC feature extraction block, 

nd without the 3D CNN feature extraction block, respectively. MR- 

et achieves statistically significant improvements (evaluated using 

aired t-tests) to the aforementioned variations of MR-Net on all 

etrics ( p << 0 . 01 ). Comparing the results between MR-Net (No 

1) and MR-Net, we found that the L1 loss plays a key role in the

etwork training, without which the network fails to reconstruct 

ardiac shapes. The other losses (except L1 loss) bring marginal 

mprovements to the reconstruction accuracy, help better preserve 

ne structural details (viz. top and bottom of the right ventricle 

n Fig. 6 ) and facilitate generation of smoother meshes. Similarly, 

he lack of a PC feature extraction block weakens the reconstruc- 

ion accuracy of MR-Net, while, lack of a 3D CNN feature extraction 

lock significantly affects mesh reconstruction quality. Therefore, 

e can conclude that the L1 loss and 3D CNN feature extraction 

lock are the key contributors to the reconstruction accuracy of 

R-Net. The remaining components (other losses and the PC fea- 

ure extraction block) help further refine mesh reconstruction ac- 

uracy. 

. Conclusion 

A novel deep learning-based approach for 3D shape reconstruc- 

ion from stacked 2D contours is proposed in this study. Our ap- 

roach, MR-Net, can accurately reconstruct 3D shapes from sparse 

nd incomplete 2D contour data, outperforming three state-of-the- 

rt point cloud/mesh reconstruction networks. We further prove 

hat our proposed approach can reconstruct accurate 3D cardiac 

eshes using contours generated by an automatic segmentation 
10 
pproach. This demonstrates that our model is robust to the seg- 

entation errors induced by the latter. Using 2D automatic seg- 

entation methods and our MR-Net, it is possible to reconstruct 

igh-quality 3D cardiac meshes in real time. The versatile and ro- 

ust nature of the proposed framework highlights its potential for 

pplication in several diagnostic and interventional settings. MR- 

et is a supervised method, requiring ground-truth meshes during 

raining. To alleviate the burden of curating high-quality ground 

ruth meshes, which can be non-trivial in several applications, the 

roblem of shape reconstruction from sparse contour/point cloud 

ata can be tackled in an unsupervised manner. This could be 

chieved by approaching the problem in a manner similar to un- 

upervised deep learning-based image registration techniques, us- 

ng the template mesh as the moving image and the point clouds 

f contours as the fixed image. This will be the subject of future 

ork. 
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