

This is a repository copy of Imaging in diagnosis, outcome prediction and monitoring of large vessel vasculitis : a systematic literature review and meta-analysis informing the EULAR recommendations.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/179356/

Version: Published Version

## Article:

Duftner, C., Dejaco, C., Sepriano, A. et al. (3 more authors) (2018) Imaging in diagnosis, outcome prediction and monitoring of large vessel vasculitis : a systematic literature review and meta-analysis informing the EULAR recommendations. RMD Open, 4 (1). e000612.

https://doi.org/10.1136/rmdopen-2017-000612

#### Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don't have to license any derivative works on the same terms. More information and the full terms of the licence here: https://creativecommons.org/licenses/

#### Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

# RMD Open

Rheumatic & Musculoskeletal Diseases

# **ORIGINAL ARTICLE**

Imaging in diagnosis, outcome prediction and monitoring of large vessel vasculitis: a systematic literature review and meta-analysis informing the EULAR recommendations

Christina Duftner,<sup>1</sup> Christian Dejaco,<sup>2,3</sup> Alexandre Sepriano,<sup>4,5</sup> Louise Falzon,<sup>6</sup> Wolfgang Andreas Schmidt,<sup>7</sup> Sofia Ramiro<sup>4</sup>

#### ABSTRACT

Dispectives To perform a systematic literature review on imaging techniques for diagnosis, outcome prediction and disease monitoring in large vessel vasculitis (LVV) informing the European League Against Rheumatism recommendations for imaging in LVV.
 Methods Systematic literature review (until 10 March

2017) of diagnostic and prognostic studies enrolling >20 patients and investigating ultrasound, MRI, CT or positron emission tomography (PET) in patients with suspected and/or established primary LVV. Meta-analyses were conducted, whenever possible, obtaining pooled estimates for sensitivity and specificity by fitting random effects models.

Results Forty-three studies were included (39 on giant cell arteritis (GCA), 4 on Takayasu arteritis (TAK)). Ultrasound ('halo' sign) at temporal arteries (8 studies, 605 patients) and MRI of cranial arteries (6 studies, 509 patients) yielded pooled sensitivities of 77% (95% CI 62% to 87%) and 73% (95% CI 57% to 85%), respectively, compared with a clinical diagnosis of GCA. Corresponding specificities were 96% (95% Cl 85% to 99%) and 88% (95% CI 81% to 92%). Two studies (93 patients) investigating PET for GCA diagnosis reported sensitivities of 67%-77% and specificities of 66%-100% as compared with clinical diagnosis or temporal artery biopsy. In TAK. one study each evaluated the role of magnetic resonance angiography and CT angiography for diagnostic purposes revealing both a sensitivity and specificity of 100%. Studies on outcome prediction and monitoring disease activity/damage were limited and mainly descriptive. **Conclusions** Ultrasound and MRI provide a high diagnostic value for cranial GCA. More data on the role of imaging for diagnosis of extracranial large vessel GCA and TAK, as well as for outcome prediction and monitoring in LW are warranted.

### 

Large vessel vasculitis (LVV) is the most common form of primary vasculitis comprising (cranial and large vessel (LV)) giant cell arteritis (GCA), Takayasu arteritis

### Key messages

#### What is already known about this subject?

Imaging modalities including ultrasound (US), MRI, CT and <sup>18</sup>F-FDG positron emission tomography are frequently used for diagnosing large vessel vasculitis (LVV) in clinical practice. However, their diagnostic value is still questioned by several clinicians, especially by those with less experience in imaging.

#### What does this study add?

- US and MRI of the superficial temporal artery reveal a good performance for the diagnosis of cranial giant cell arteritis (GCA) with pooled sensitivities of 77% and 73%, respectively, as well as pooled specificities of 96% and 88%, respectively.
- Studies on the diagnostic accuracy of imaging in extracranial large vessel GCA and Takayasu arteritis are scarce.
- Studies on the role of imaging techniques for outcome prediction and monitoring of disease activity and damage of LVV are limited and mainly non-informative because of heterogeneous study design and of being mostly descriptive, not enabling reaching an inferential conclusion.

#### How might this impact on clinical practice?

- The results of this systematic literature review help clinicians to place the use of imaging in the diagnosis of LVV in their daily clinical practice.
- US and MRI of the temporal arteries can be accurately used in the diagnostic work-up of patients with a suspicion of cranial GCA, possibly avoiding the need for more invasive diagnostic techniques, such as a temporal biopsy.

(TAK) and idiopathic aortitis. Prompt diagnosis and treatment of LVV are important to prevent serious ischaemic complications such as visual loss in GCA, vascular

Sepriano A, *et al.* Imaging in diagnosis, outcome prediction and monitoring of large vessel vasculitis: a systematic literature review and metaanalysis informing the EULAR recommendations. *RMD Open* 2018;4:e000612. doi:10.1136/ rmdopen-2017-000612

To cite: Duftner C, Dejaco C,

► Prepublication history and additional material for this paper are available online. To view these files, please visit the journal online (http://dx.doi. org/10.1136/rmdopen-2017-000612).

ChristinD and ChristiaD are first co-authors.

Received 4 November 2017 Accepted 19 December 2017

Check for updates

For numbered affiliations see end of article.

#### **Correspondence to**

Dr Christina Duftner; christina.duftner@gmx.at

BMJ



stenosis/occlusion in TAK and aneurysm formation in idiopathic aortitis.<sup>1 2</sup> Temporal artery biopsy (TAB) has been the standard test to confirm the diagnosis of GCA<sup>3-5</sup>; although highly specific, biopsy is invasive and lacks sensitivity, with false-negative results in up to 61% of patients compared with a clinical diagnosis of GCA.<sup>6</sup> In addition, extracranial arteries are usually not accessible for histological assessment, and in extracranial LV-GCA, temporal arteries are spared in up to 40% of patients.<sup>78</sup> Consequently, GCA diagnosis often relies on the combination of clinical symptoms, elevated serum inflammatory markers and imaging findings.

The classification criteria for TAK focus on the detection of arterial stenosis and occlusions as detected by conventional angiography.<sup>9</sup> Conventional angiography, however, does not allow the delineation of vessel wall changes and bears the potential risk of complications, such as allergic reactions, haematoma, iatrogenic embolisation and arterial dissection. Therefore, angiography is being increasingly replaced by newer imaging modalities.<sup>2</sup>

Aortitis is common in GCA and TAK but rarely occurs as an isolated (idiopathic) disease.<sup>10</sup> The diagnosis of idiopathic aortitis is frequently based on radiological findings with inflammatory wall changes of the aorta because histological assessment is only possible if aortic aneurysms are operated.<sup>11</sup>

The role of imaging modalities including ultrasound (US), MRI, CT and <sup>18</sup>F-FDG positron emission tomography (PET) in LVV has been addressed in several studies over the last years. Imaging modalities, however, are not yet uniformly used for the diagnosis and monitoring of LVV in clinical practice. A European League Against Rheumatism (EULAR) project has therefore been undertaken to develop recommendations for the use of imaging in LVV in clinical practice.<sup>12</sup>

The aim of this systematic literature review (SLR) was to summarise the available evidence on the performance of imaging techniques on diagnosis, outcome prediction and monitoring of disease activity and damage in LVV, as well as technical aspects of imaging modalities in order to inform the EULAR task force developing these new recommendations.<sup>12</sup>

### METHODS

#### Literature search

In the first meeting of the EULAR task force, four key questions were framed according to the Population, Intervention, Comparator, Outcome (PICO) format.<sup>13</sup> These referred to the role of US, MRI, magnetic resonance angiography (MRA), PET±CT, CT or CT angiography (CTA) in diagnosis, outcome prediction and monitoring of LVV, as well as technical aspects for the different imaging techniques (online supplementary table S1a–d). The population of interest consisted of adult patients (≥18 years) with a suspected (for diagnostic studies and studies on technical aspects) and/or established primary LVV (ie, GCA, TAK and idiopathic aortitis; for

studies on monitoring, prognosis and technical aspects). For diagnostic accuracy of imaging, physician's clinical diagnosis (both at first assessment and also at first and follow-up assessments) and TAB were accepted as reference standards, and sensitivity and specificity of imaging were the outcomes of interest. For prognostic and monitoring studies, presence and absence of baseline imaging abnormalities (or also over the follow-up for monitoring studies) were considered as 'interventions' and 'comparator', respectively; outcomes of interest were those reflecting disease activity or damage. The task force did not specify these outcomes, because it was argued that the literature review would reveal relevant outcome parameters addressed in prospective studies.

Eligible studies were all full research articles of cohort studies with prospective design (excluding research letters, case–control and retrospective studies) involving >20 patients; both cross-sectional and longitudinal studies were included.

# Study selection, data extraction and assessment of risk of bias (RoB)

The SLR was conducted by two reviewers (ChristinD and ChristiaD) under the guidance of the methodologist (SR) and with the help of the statistician (AS), who performed the meta-analyses. The search strategy was developed by an experienced librarian (LF) (online supplementary text S1). MEDLINE (1946), Embase (1974) and the Cochrane Library (1993) databases were searched without language restrictions from their inception dates (noted in parentheses) until 10 March 2017.

The reviewers screened independently all titles and abstracts to identify potentially eligible studies that were then reviewed in full text. Papers fulfilling the inclusion criteria were proceeded to data extraction. Both reviewers independently retrieved data using a predefined data extraction sheet. The following data were extracted for diagnostic studies: studies' main characteristics (year of publication, setting, number of included patients, inclusion criteria, use of glucocorticoids (GC) before performance of imaging), patient characteristics (number (%) of females, patients' age), disease characteristics (number (%) of patients fulfilling clinical criteria for GCA or TAK, number (%) of patients with positive TAB, number (%) of patients with the LV-GCA subset), technical aspects (imaging devices used, elementary lesions and structures investigated, blinding of the index test to reference standard), index test (lesions identified in the index test that are analysed), reference standard, diagnostic performance (raw data to calculate sensitivity, specificity, positive likelihood ratio (LR+) and negative likelihood ratio (LR-)) and parameters required for the assessment of the RoB. For prognostic and monitoring studies, the following items were retrieved: study's aim, inclusion criteria, number of patients included, number (%) of patients with follow-up, period of follow-up, investigated structures, signs and time of change, prognostic factors and outcome-as explained above any outcome

reflecting disease activity or damage. For technical aspects, we extracted the study aim, number of included patients, inclusion criteria, number of patients finally diagnosed with GCA or TAK, investigated structures, different technical aspects being compared (intervention and comparator) and outcome (diagnostic performance or disease activity/damage, as appropriate) were detailed.

RoB of the studies was appraised independently by the same two reviewers who conducted the SLR. For studies on diagnostic accuracy, the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used comprising four domains: patient selection, index test, reference standard, as well as flow and timing. Each of these domains was evaluated as having a 'low', 'high' or 'unclear' RoB, whereas concerns about applicability were evaluated in the first three domains also as 'low', 'high' or 'unclear'. The Ouality In Prognosis Studies (OUIPS) tool was applied for the assessment of prognostic studies evaluating the following aspects: study participation and attrition, prognostic factor measurement, outcome measurement, study confounding as well as statistical analysis/reporting.14 15 Each QUIPS domain was rated as 'high', 'moderate', 'low' or 'unclear' RoB. For studies on monitoring and technical aspects, no RoB assessment was performed, because identified studies were mainly only descriptive (see below), hence no adequate RoB assessment could be performed. Discrepancies between reviewers regarding study selection, data extraction and RoB assessment were solved by discussion. A third reviewer (WAS) was involved in case no consensus could be achieved (n=2 studies).

#### Data analysis

Meta-analysis for diagnostic accuracy was performed whenever possible, that is, in case enough data stemming from homogeneous studies concerning imaging modality, reference standard (either clinical diagnosis or TAB as reference standards) and outcome assessment was available. For all other diagnostic accuracy studies as well as for prognostic and monitoring studies, individual results (of studies not included in the meta-analysis) are reported.

Pooled sensitivity and specificity were estimated by random-effects bivariate generalised binomial mixed models. This is the recommended analytical method for meta-analysis of diagnostic tests, since it estimates sensitivity and specificity together taking into account their correlation.<sup>16</sup> Parameter estimates from each model were used to derive the LR+ and LR– and 95% CIs. In case of limited data (here:  $\leq 3$  studies), the above-mentioned rule was relaxed, and univariate random-effects models were used by assuming no correlation between sensitivity and specificity.<sup>16</sup>

Sensitivity analyses were performed for diagnostic accuracy studies on US and MRI in GCA evaluating the effect of: (1) the quality of studies (excluding those with high RoB), (2) GC treatment before the index test (including

only those without GC treatment before imaging), (3) the use of imaging devices with high resolution (including only studies that used >12 MHz probes for US or 3T MRI machines), (4) target population (including only studies with a detailed description of what was meant by the 'suspicion' of GCA) and (5) reference standard (including only studies with clinical diagnosis confirmed after follow-up used as reference standard).

All analyses were conducted in Stata V.14. The Cochrane Collaboration's Review Manager Software V.5.3 was used to build forest plots.

#### RESULTS

Out of 8691 articles screened, 43 studies were finally included with some of these addressing more than one index test or key objectives (see flow chart in online supplementary figure S1). For GCA, 27 articles focused on the diagnostic accuracy,<sup>6 17-42</sup>5 studies on outcome prediction,<sup>43-47</sup> 13 on monitoring disease activity<sup>17 20 22 25 28 29 43-45 48-51</sup> and five on technical aspects.<sup>35 37 52-54</sup> For TAK, four studies were included with two studies addressing diagnostic accuracy,<sup>55 56</sup> and two studies evaluating the value of imaging for monitoring.<sup>57 58</sup> No study on isolated aortitis was identified.

#### **Diagnostic accuracy studies**

For GCA, most diagnostic accuracy studies focused on the role of US  $(n=17)^{6}$  <sup>17–32</sup> or MRI (n=8).<sup>33–40</sup> One study addressed the role of PET,<sup>41</sup> and another study examined the role of PET and CTA for GCA diagnosis.<sup>42</sup> In TAK, one study evaluated the role of MRA and another the role of CTA.<sup>55 56</sup>

#### Ultrasound

The main study—and patient—characteristics are summarised in table 1 with additional data and details on the RoB assessment described in online supplementary tables S2 and S6, respectively. Most US studies in GCA tested the 'halo' sign (n=16<sup>6 17-31</sup>) as a key elementary lesion defining vasculitis. Other US signs addressed (mostly in combination with the 'halo' sign) were stenosis (n=13<sup>6 17 18 20 22–30</sup>), occlusion (n=9<sup>6 17 22–26 28 30</sup>) and the 'compression' sign (n=2<sup>30 32</sup>).

Results of the meta-analysis on the diagnostic performance of the different US signs are summarised in table 2, and results of individual studies are shown in figure 1A,B.

Eight studies (n=605, three studies with low RoB)<sup>17 19 20 23 25 28 30 31</sup> investigated the value of the 'halo' sign in comparison with the clinical diagnosis of cranial GCA yielding a pooled sensitivity of 77% (95% CI 62% to 87%) and a specificity of 96% (95% CI 85% to 99%). A similarly good diagnostic performance was obtained when the 'halo' sign was compared with TAB as reference standard (seven studies, n=289, no study with low RoB).<sup>17-21 23 27</sup> Also, the evaluation of the combination of US signs defining vasculitis ('halo', stenosis or occlusion) in comparison with clinical diagnosis (three studies,

| Study ID                                   | n   | n Female (%) | Inclusion criteria                                                                                    | Reference standard                               | n Final diagn<br>GCA (%) | n TAB+ (%) | n LV-GCA | Investigated<br>structures                                                      | Elementary lesions                                      | RoB  |
|--------------------------------------------|-----|--------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|------------|----------|---------------------------------------------------------------------------------|---------------------------------------------------------|------|
| Schmidt <i>et al</i> <sup>17</sup>         | 112 | NR           | Suspected<br>GCA+PMR                                                                                  | ACR criteria or<br>TAB                           | 30 (27)                  | 21 (78)    | NR       | TA                                                                              | halo,<br>stenosis/occlusion,<br>halo/stenosis/occlusion | High |
| LeSar <i>et al</i> <sup>18</sup>           | 32  | 21 (66)      | Suspected GCA                                                                                         | ТАВ                                              | 7 (22)                   | 7 (100)    | NR       | ТА                                                                              | halo<br>stenosis<br>halo/stenosis                       | High |
| Nesher <i>et al</i> <sup>19</sup>          | 69  | NR           | Suspected GCA                                                                                         | Clinical diagn 6m or<br>TAB                      | 14 (20)                  | 9 (64)     | NR       | TA                                                                              | halo                                                    | High |
| Salvarani <i>et al<sup>20</sup></i>        | 86  | 55 (64)      | Suspected<br>GCA+PMR                                                                                  | ACR criteria or<br>TAB                           | 20 (23)                  | 15 (75)    | NR       | TA                                                                              | halo                                                    | High |
| Murgatroyd e <i>t al</i> <sup>21</sup>     | 26  | NR           | Suspected GCA                                                                                         | TAB                                              | 7 (27)                   | 7 (100)    | NR       | TA                                                                              | halo                                                    | High |
| Pfadenhauer and Weber <sup>22</sup>        | 67  | 51 (76)      | Suspected GCA                                                                                         | ACR criteria or<br>TAB                           | 40 (60)                  | 33 (83)    | NR       | TA, occipital                                                                   | halo/stenosis/occlusion                                 | High |
| Reinhard <i>et al<sup>23</sup></i>         | 83  | 49 (59)      | NR                                                                                                    | ACR crit or<br>TAB                               | 43 (52)                  | 33 (77)    | NR       | TA                                                                              | halo<br>occlusion                                       | High |
| Romera-Villegas <i>et al</i> <sup>24</sup> | 68  | 48 (71)      | Suspected GCA                                                                                         | TAB                                              | 22 (32)                  | 22 (100)   | NR       | ТА                                                                              | halo/stenosis/occlusion                                 | Low  |
| Karahaliou <i>et al<sup>25</sup></i>       | 55  | 30 (55)      | ESR >50 mm/h,<br>headache, jaw<br>claudication,<br>fever, PMR, TA<br>tenderness, visual<br>impairment | Clinical diagn 3m or<br>TAB                      | 22 (40)                  | 18 (82)    | NR       | ΤΑ                                                                              | halo<br>stenosis                                        | Low  |
| Pfadenhauer and Behr <sup>26</sup>         | 132 | NR           | Suspected<br>GCA+US*                                                                                  | Clinical diagn<br>(retrospectively<br>confirmed) | 132 (73)                 | 89 (75)    | NR       | TA, carotid,<br>vertebral,<br>periorbital                                       | halo/stenosis                                           | Mod  |
| Zaragozá-Garciá et al <sup>27</sup>        | 18  | 14 (61)      | Suspected GCA                                                                                         | TAB                                              | 5 (28)                   | 5 (100)    | NR       | TA                                                                              | halo<br>halo/stenosis                                   | High |
| Aschwanden <i>et al<sup>29</sup></i>       | 72  | 45 (63)      | Suspected GCA<br>suspected LV-<br>GCA (PET+,<br>ESR >50 mm/h,<br>age >50 years)                       | ACR criteria                                     | 38 (53)                  | 35 (95)    | 12       | TA, carotid,<br>vertebral,<br>subclavian,<br>axillary,<br>femoral,<br>popliteal | halo/stenosis                                           | Mod  |
| Habib <i>et al<sup>28</sup></i>            | 32  | 19 (59)      | ESR >50 mm/h,<br>headache, jaw<br>claudication,<br>fever, PMR, TA<br>tenderness, visual<br>impairment | Clinical diagn 3m or<br>TAB                      | 16 (50)                  | 15 (94)    | NR       | TA                                                                              | halo                                                    | Mod  |
| Aschwanden <i>et al<sup>30</sup></i>       | 80  | 55 (69)      | Suspected GCA                                                                                         | ACR criteria                                     | 43 (54)                  | 20 (53)    | NR       | ТА                                                                              | halo<br>stenosis<br>occlussion<br>compression           | Low  |

Continued

စာ

| Diamentopoulos et $a^{\beta_1}$ 88 54 (61) CRP >5 mg/<br>dL, headache,<br>jaw claudication,<br>tever PMR, TA<br>tenderness, visual<br>Aschwanden et $a^{(2)}$ 60 40 (67) CRP is a suilary<br>tenderness, visual<br>mpaiment<br>Aschwanden et $a^{(2)}$ 81 273 (72) Suspected GCA ACR criteria 24 (40) 13 (72) NR TA ompression<br>Luqmani et $a^{(2)}$ 81 273 (72) Suspected GCA Clinical diagn 6m or 257 (67) 101 (39) Yes TA, axillary halo/stenosis/occlusion Mod | Study ID                             | c   | n Female (%) | n Female (%) Inclusion criteria                                                                        | n Final di<br>Reference standard GCA (%) | n Final diagn<br>GCA (%) | n TAB+ (%) | n LV-GCA      | Investigated<br>structures | Elementary lesions      | RoB |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----|--------------|--------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------|------------|---------------|----------------------------|-------------------------|-----|
| t a/ <sup>32</sup> 60 40 (67) Suspected GCA ACR criteria 24 (40) 13 (72) NR TA ompression<br>381 273 (72) Suspected GCA Clinical diagn 6m or 257 (67) 101 (39) Yes TA, axillary halo/stenosis/occlusion<br>TAB (n NR)                                                                                                                                                                                                                                                | Diamantopoulos et al <sup>61</sup>   | 88  | 54 (61)      | CRP >5 mg/<br>dL, headache,<br>jaw claudication,<br>fever, PMR, TA<br>tenderness, visual<br>impairment | Clinical diagn 6m or<br>TAB              | 46 (52)                  | 26 (67)    | 17            | TA, carotids,<br>axillary  | halo                    | Low |
| 381 273 (72) Suspected GCA Clinical diagn 6m or 257 (67) 101 (39) Yes TA, axillary halo/stenosis/occlusion<br>TAB (n NR)                                                                                                                                                                                                                                                                                                                                             | Aschwanden <i>et al<sup>32</sup></i> | 60  | 40 (67)      | Suspected GCA                                                                                          | ACR criteria                             | 24 (40)                  | 13 (72)    | NR            | TA                         | ompression              | Low |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Luqmani <i>et al</i> <sup>6</sup>    | 381 | 273 (72)     | Suspected GCA                                                                                          | Clinical diagn 6m or<br>TAB              | 257 (67)                 | 101 (39)   | Yes<br>(n NR) | TA, axillary               | halo/stenosis/occlusion | Mod |

suggestive for LV-GCA in positron emission tomography; RoB, overall appraisal of risk of bias and concerns about applicability (arbitrarily defined) (high, in the case of concern on >5/10 risk of bias items

in case of concern on 4/10

or concern on 3/3 applicability items out of the QUADAS-2 tool; moderate, concern on  $\le 3/3$  risk of bias items and no concern about applicability); TA,

temporal artery/arteries; TAB+, patients with a positive histology suggesting vasculitis.

RoB items and/or concern on ≥1/3 applicability items out of the QUADAS-2 tool; low, in case of

n=560, no study with low RoB)<sup>6 17 22</sup> or TAB (five studies, n=611, one study with low RoB)<sup>6 17 22-24</sup> resulted in a similar diagnostic performance as the 'halo' sign alone. Sensitivity analyses for the diagnostic performance of the 'halo' sign (compared with clinical diagnosis of cranial GCA) as detailed above, revealed higher pooled sensitivities (86%-89%) than the main analysis and comparable or slightly lower specificities. The only exception was the analysis including only studies without GC treatment before the index test, which had a slightly lower sensitivity of 73% (table 3).

Two studies (n=140, both with low RoB),  $^{30.32}$  conducted by the same research group, investigated the 'compression' sign. The authors reported sensitivities of 77%–79% and a specificity of 100% of this sign compared with the clinical diagnosis of cranial GCA.

In three US studies<sup>6</sup><sup>29 31</sup> (n=541, one study with low RoB), extracranial arteries were examined. Only one of these addressed the effect of the examination of temporal plus axillary arteries on the diagnostic performance as compared with the assessment of temporal arteries alone. This study revealed an incremental change of sensitivity of 2% by the former compared with the latter approach.<sup>31</sup> Although 22 arteries were evaluated in the study by Aschwanden *et al*<sup>29</sup> a low sensitivity of 55% was observed for US ('halo' and stenosis) to detect vasculitis. No separate results for the diagnostic performance of US in patients with cranial and extracranial LV involvement were provided in that study.<sup>29</sup>

No study on US in TAK was identified.

#### Magnetic resonance imaging

All MRI studies addressed vessel wall thickening and contrast enhancement as signs of vasculitis in the superficial temporal and occipital arteries. Study characteristics are detailed in table 4, individual sensitivity and specificity data are reported in online supplementary table S3 and figure 1A,B and details of the RoB assessment are shown in online supplementary table S6.

Six MRI studies were included in the meta-analysis using clinical diagnosis<sup>33–35</sup> <sup>38–40</sup> (n=509, one with low RoB) and/or TAB<sup>33-35</sup> 37 38 40 (n=443, one with low RoB) as the reference standard (table 2). A pooled sensitivity of 73% (95% CI 57 to 85) and specificity of 88% (95% CI 81 to 92) was found comparing MRI with the clinical diagnosis of cranial GCA. When TAB was used as the reference standard, MRI yielded a sensitivity of 93% (95% CI 89 to 96) and a specificity of 81% (95% CI 73) to 87). Sensitivity analyses, as detailed in table 3, underlined the robustness of the main analysis. Of note, in all included MRI studies, patients were on treatment with GCs when the MRI was conducted. One study examined the role of the deep temporal arteries and the involvement of the temporal muscle for the diagnosis of GCA revealing a sensitivity of 42% and a specificity of 90% (online supplementary table S3).<sup>36</sup> This study was not included in the meta-analysis because the structures investigated were different from those of other studies. Table 2 Results of the meta-analysis (pooled estimates) for ultrasound and MRI signs of vasculitis in comparison with clinical diagnosis or temporal artery biopsy as reference standard for giant cell arteritis (GCA)

| Index test                      | Reference standard | Number of patients<br>(number of studies)              | LR+<br>(95% CI)   | LR-<br>(95% CI)  | Sensitivity<br>(95% CI) | Specificity<br>(95% Cl) |
|---------------------------------|--------------------|--------------------------------------------------------|-------------------|------------------|-------------------------|-------------------------|
| Ultrasound                      |                    |                                                        |                   |                  |                         |                         |
| 'Halo' sign*                    | Clinical diagnosis | 605 (eight studies) <sup>17 19 20 23 25 28 30 31</sup> | 19 (4.8 to 75.5)  | 0.2 (0.1 to 0.4) | 77 (62 to 87)           | 96 (85 to 99)           |
| 'Halo' sign±stenosis±occlusion† | Clinical diagnosis | 560 (three studies) <sup>6 17 22</sup>                 | 6.9 (3 to 16.1)   | 0.3 (0.1 to 0.6) | 78 (57 to 90)           | 89 (78 to 95)           |
| 'Compression' sign‡             | Clinical diagnosis | 140 (two studies) <sup>30 32</sup>                     | ‡                 | ‡                | ‡                       | ‡                       |
| 'Halo' sign*                    | TAB                | 289 (seven studies) <sup>17–21 23 27</sup>             | 4.3 (2.4 to 7.8)  | 0.4 (0.2 to 0.6) | 70 (56 to 81)           | 84 (73 to 91)           |
| 'Halo' sign±stenosis†           | TAB                | 50 (two studies) <sup>18 27</sup>                      | 8.4 (2.4 to 30.1) | 0.3 (0 to 1.6)   | 77 (23 to 97)           | 91 (75 to 97)           |
| 'Halo' sign±stenosis±occlusion* | TAB                | 611 (five studies) <sup>6 17 22–24</sup>               | 8.3 (2.5 to 27.4) | 0.2 (0.1 to 0.7) | 78 (48 to 93)           | 91 (70 to 98)           |
| MRI                             |                    |                                                        |                   |                  |                         |                         |
| MRI*                            |                    | 509 (six studies) <sup>33–35 38–40</sup>               | 5.9 (3.4 to 10.3) | 0.3 (0.2 to 0.5) | 73 (57 to 85)           | 88 (81 to 92)           |
| MRI*                            | TAB                | 443 (six studies) <sup>33–35 37 38 40</sup>            | 5 (3.2 to 7.8)    | 0.1 (0.1 to 0.1) | 93 (89 to 96)           | 81 (73 to 87)           |

\*Bivariate random-effects binomial generalised mixed model.

†Univariate random-effects models.

 $\pm$ Model fails to converge with both analytical methods.

'halo' sign ±stenosis, combination of 'halo' sign±stenosis as ultrasound signs suggestive for vasculitis; 'halo' sign±stenosis±occlusion, combination of halo±stenosis±occlusion as ultrasound signs suggestive for vasculitis; 'MRI, magnetic resonance imaging; wall thickening+contrast enhancement as MRI signs suggestive for vasculitis.

ACR, American College of Rheumatology; CI, confidence interval; clinical diagnosis, final diagnosis made according to the ACR criteria or physician diagnosis; LR, likelihood ratio; TAB, temporal artery biopsy.

#### US ("halo" sign)

| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    | TP                                                                                                                                  | ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EN                                                                                                                                                                                                                                                                                                               | TN                                                                                                                         | Sansitivity (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sec CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Specificity (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sensitivity (95% CI) | Specificity (95%)  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|
| Schmidt WA. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | 22                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                | 82                                                                                                                         | 0.73 (0.54.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sensitivity (95% Cl) | specificity (55%)  |
| Nesher G. 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    | 12                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                | 43                                                                                                                         | 0.86 [0.57,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                    |
| Salvarani C. 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    | 7                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                                                                                                                                                                                                                                                                                               | 52                                                                                                                         | 0.35 [0.15,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.79 [0.67, 0.88]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |
| Reinhard M. 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | 26                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                                                                                                                                                                                                                                                               | 40                                                                                                                         | 0.60 [0.44,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                    |
| Karahaliou M. 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    | 18                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  | 30                                                                                                                         | 0.82 [0.60,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.91 [0.76, 0.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |
| Habib HM. 2012<br>Aschwanden M. 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | 13<br>34                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                | 14<br>37                                                                                                                   | 0.81 [0.54, 0.79 [0.64,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                    |
| Diamantopoulos A. 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    | 44                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                | 40                                                                                                                         | 0.96 [0.85,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                |                                                                                                                            | 0.000 (0.000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0.2 0.4 0.6 0.8 1  | 0 0.2 0.4 0.6 0.8  |
| US ("halo" sign :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ± 51                                                               | ten                                                                                                                                 | os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is ±                                                                                                                                                                                                                                                                                                             | : 00                                                                                                                       | clusion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                    |
| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TP                                                                 | FF                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                | TN                                                                                                                         | Sensitivity (95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Specificity (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sensitivity (95% CI) | Specificity (95%   |
| Schmidt WA. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                 |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                | 76                                                                                                                         | 0.93 [0.78,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                    |
| Pfadenhauer K. 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33                                                                 |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                | 24                                                                                                                         | 0.82 [0.67,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.89 [0.71, 0.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |
| Luqmani R. 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 139                                                                | 23                                                                                                                                  | 3 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                               | 01                                                                                                                         | 0.54 [0.48,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.81 [0.73, 0.88]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0.2 0.4 0.6 0.8 1  | 0 0.2 0.4 0.6 0.8  |
| US ("compressio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    | ci                                                                                                                                  | an)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                    |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | тр                                                                 | -                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 П                                                                                                                                                                                                                                                                                                              |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Specificity (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Canality In the Ch   | Constitute (OFF)   |
| Study<br>Aschwanden M. 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34                                                                 |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                            | ensitivity (95%<br>0.79 [0.64, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Specificity (95% CI)<br>1.00 [0.91, 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sensitivity (95% CI) | Specificity (95% ( |
| Aschwanden M. 2013<br>Aschwanden M. 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34                                                                 |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 3                                                                                                                                                                                                                                                                                                              |                                                                                                                            | 0.79 [0.64, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00 [0.90, 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |
| 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  | -                                                                                                                          | 2.1 0 [0.00] 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0.2 0.4 0.6 0.8 1  | 0 0.2 0.4 0.6 0.8  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                    |
| MRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                  |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                            | To A to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The second states of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 C                |                    |
| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TP                                                                 | FP                                                                                                                                  | FN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  | Se                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Specificity (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sensitivity (95% CI) | Specificity (95%)  |
| Bley TA. 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                  | 1                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                               |                                                                                                                            | 0.89 [0.52, 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.92 [0.62, 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |
| Bley TA. 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                 | 1                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                                                                                               |                                                                                                                            | 0.81 [0.63, 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.97 [0.84, 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |
| Geiger J. 2010<br>Klink T. 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19<br>83                                                           | 4                                                                                                                                   | 9<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11<br>73                                                                                                                                                                                                                                                                                                         |                                                                                                                            | 0.68 [0.48, 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.73 [0.45, 0.92]<br>0.88 [0.79, 0.94]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                    |
| Siemonsen S. 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                                 | 10                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                |                                                                                                                            | 0.81 [0.72, 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.80 [0.28, 0.99]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |
| Rheaume M. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54                                                                 | 6                                                                                                                                   | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                                                                                                                                                               |                                                                                                                            | 0.39 [0.31, 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.8210.65 0.931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | · · · · · · · · ·  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0.2 0.4 0.6 0.8 1  | 0 0.2 0.4 0.6 0.8  |
| US ("halo" sign)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                    |
| US ("halo" sign)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | TP                                                                                                                                  | FP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FN                                                                                                                                                                                                                                                                                                               | TN                                                                                                                         | Sensitivity (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) Specificity (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                    |
| Study<br>Schmidt WA, 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | TP<br>16                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FN<br>5                                                                                                                                                                                                                                                                                                          | 24                                                                                                                         | 0.76 [0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) Specificity (95% Cl)<br>2] 0.92 [0.75, 0.99]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                    |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    | 16<br>6                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |                                                                                                                            | 0.76 [0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) Specificity (95% CI)<br>) 0.92 (0.75, 0.99)<br>0.92 (0.74, 0.99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                    |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | 16<br>6<br>7                                                                                                                        | 2 2 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>1<br>2                                                                                                                                                                                                                                                                                                      | 24<br>23<br>14                                                                                                             | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>Specificity (95% Cl)</li> <li>0.92 (0.75, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.61 (0.39, 0.80)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                    |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Salvarani C. 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    | 16<br>6<br>7<br>6                                                                                                                   | 2<br>2<br>9<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5<br>1<br>2<br>9                                                                                                                                                                                                                                                                                                 | 24<br>23<br>14<br>56                                                                                                       | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) Specificity (95% Cl)<br>] 0.92 (0.75, 0.99)<br>] 0.92 (0.74, 0.99)<br>] 0.61 (0.39, 0.80)<br>] 0.79 (0.68, 0.88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                    |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Salvarani C. 2002<br>Murgatroyd H. 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    | 16<br>6<br>7<br>6                                                                                                                   | 2<br>2<br>9<br>15<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>1<br>2<br>9<br>1                                                                                                                                                                                                                                                                                            | 24<br>23<br>14<br>56<br>13                                                                                                 | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.86 [0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.92<br>1.00<br>0.97<br>0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) Specificity (95% CI)<br>1 0.92 (0.75, 0.99)<br>1 0.62 (0.74, 0.99)<br>2 0.61 (0.39, 0.60)<br>1 0.79 (0.68, 0.88)<br>1 0.68 (0.43, 0.87)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                    |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Salvarani C. 2002<br>Murgatroyd H. 2003<br>Reinhard M. 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                  | 16<br>6<br>7<br>6<br>22                                                                                                             | 2<br>9<br>15<br>6<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>1<br>2<br>9<br>1<br>11                                                                                                                                                                                                                                                                                      | 24<br>23<br>14<br>56<br>13<br>14                                                                                           | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.86 [0.42<br>0.67 [0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.92<br>1.00<br>0.97<br>0.68<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>Specificity (95% CI)</li> <li>0.92 [0.75, 0.99]</li> <li>0.82 [0.74, 0.99]</li> <li>0.61 [0.39, 0.80]</li> <li>0.79 [0.68, 0.83]</li> <li>0.68 [0.43, 0.87]</li> <li>0.63 [0.68, 1.09]</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                    |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Salvarani C. 2002<br>Murgatroyd H. 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07                                                                 | 16<br>6<br>7<br>6                                                                                                                   | 2<br>2<br>9<br>15<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>1<br>2<br>9<br>1                                                                                                                                                                                                                                                                                            | 24<br>23<br>14<br>56<br>13                                                                                                 | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.86 [0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.92<br>1.00<br>0.97<br>0.68<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>Specificity (95% CI)</li> <li>0.92 [0.75, 0.99]</li> <li>0.82 [0.74, 0.99]</li> <li>0.61 [0.39, 0.80]</li> <li>0.79 [0.68, 0.83]</li> <li>0.68 [0.43, 0.87]</li> <li>0.63 [0.68, 1.09]</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | Specificity (95%   |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Salvarani C. 2002<br>Murgatroyd H. 2003<br>Reinhard M. 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | 16<br>6<br>7<br>6<br>22<br>4                                                                                                        | 2<br>9<br>15<br>6<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>1<br>2<br>9<br>1<br>11<br>1                                                                                                                                                                                                                                                                                 | 24<br>23<br>14<br>56<br>13<br>14                                                                                           | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.86 [0.42<br>0.67 [0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.92<br>1.00<br>0.97<br>0.68<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>Specificity (95% CI)</li> <li>0.92 [0.75, 0.99]</li> <li>0.82 [0.74, 0.99]</li> <li>0.61 [0.39, 0.80]</li> <li>0.79 [0.68, 0.83]</li> <li>0.68 [0.43, 0.87]</li> <li>0.63 [0.68, 1.09]</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sensitivity (95% CI) | Specificity (95%   |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Salvarani C. 2002<br>Murgatroyd H. 2003<br>Reinhard M. 2004<br>Zaragoza Garcia JM. 200<br>US ("thalo" sign :<br>Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    | 16<br>6<br>6<br>22<br>4<br>ten                                                                                                      | 2<br>9<br>15<br>6<br>1<br>1<br>1<br>0<br>5<br>FP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>1<br>2<br>9<br>1<br>11<br>1<br>1<br>1<br>5<br><b>is)</b>                                                                                                                                                                                                                                                    | 24<br>23<br>14<br>56<br>13<br>14<br>12                                                                                     | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.86 [0.42<br>0.67 [0.48<br>0.80 [0.28<br>0.80 [0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.92<br>1.00<br>0.97<br>0.68<br>1.00<br>0.82<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>Specificity (95% CI)</li> <li>0.92 (0.75, 0.99)</li> <li>0.92 (0.74, 0.93)</li> <li>0.61 (0.39, 0.80)</li> <li>0.79 (0.89, 0.83)</li> <li>0.68 (0.43, 0.87)</li> <li>0.63 (0.64, 1.00)</li> <li>0.92 (0.64, 1.00)</li> </ol> Specificity (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sensitivity (95% CI) | Specificity (95%)  |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Salvarani C. 2002<br>Murgatovyd H. 2003<br>Reinhard M. 2004<br>Zaragoza Garcia JM. 200<br>US ("fhalo" sign :<br>Study<br>Lesar CJ. 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ± 51                                                               | 16<br>6<br>6<br>22<br>4<br>ten<br>7                                                                                                 | 2<br>9<br>15<br>6<br>1<br>1<br>1<br><b>OS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>1<br>2<br>9<br>1<br>11<br>11<br>1<br>1<br><b>is)</b><br>5                                                                                                                                                                                                                                                   | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>TN<br>20                                                                         | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.86 [0.42<br>0.87 [0.48<br>0.80 [0.28<br>Sensitivity (9<br>0.58 [0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.92<br>1.00<br>0.97<br>0.68<br>1.00<br>0.82<br>0.99<br>5% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ol> <li>Specificity (95% CI)</li> <li>0.32 (0.75, 0.69)</li> <li>0.23 (0.74, 0.39)</li> <li>0.51 (0.39, 0.60)</li> <li>0.79 (0.66, 0.63)</li> <li>0.68 (0.43, 0.87)</li> <li>0.63 (0.64, 1.00)</li> <li>0.52 (0.64, 1.00)</li> <li>0.52 (0.64, 1.00)</li> <li>1.00 (0.83, 1.00)</li> <li>1.00 (0.83, 1.00)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sensitivity (95% CI) | Specificity (95%)  |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Salvarani C. 2002<br>Murgatroyd H. 2003<br>Reinhard M. 2004<br>Zaragoza Garcia JM. 200<br>US ("thalo" sign :<br>Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ± 51                                                               | 16<br>6<br>6<br>22<br>4<br>ten                                                                                                      | 2<br>9<br>15<br>6<br>1<br>1<br>1<br>0<br>5<br>FP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>1<br>2<br>9<br>1<br>11<br>1<br>1<br>1<br>5<br><b>is)</b>                                                                                                                                                                                                                                                    | 24<br>23<br>14<br>56<br>13<br>14<br>12                                                                                     | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.86 [0.42<br>0.67 [0.48<br>0.80 [0.28<br>0.80 [0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.92<br>1.00<br>0.97<br>0.68<br>1.00<br>0.82<br>0.99<br>5% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ol> <li>Specificity (95% CI)</li> <li>0.32 (0.75, 0.69)</li> <li>0.23 (0.74, 0.39)</li> <li>0.51 (0.39, 0.60)</li> <li>0.79 (0.66, 0.63)</li> <li>0.68 (0.43, 0.87)</li> <li>0.63 (0.64, 1.00)</li> <li>0.52 (0.64, 1.00)</li> <li>0.52 (0.64, 1.00)</li> <li>1.00 (0.83, 1.00)</li> <li>1.00 (0.83, 1.00)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sensitivity (95% CI) | Specificity (95%   |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Salvarani C. 2002<br>Murgatovyd H. 2003<br>Reinhard M. 2004<br>Zaragoza Garcia JM. 200<br>US ("fhalo" sign :<br>Study<br>Lesar CJ. 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ± <b>S1</b>                                                        | 16<br>6<br>6<br>22<br>4<br>ten<br>7<br>5                                                                                            | 2<br>9<br>15<br>6<br>1<br>1<br>1<br><b>OS</b><br><b>FP</b><br>0<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5<br>1<br>2<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>0                                                                                                                                                                                                                                                    | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>TN<br>20<br>10                                                                   | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.86 [0.42<br>0.87 [0.42<br>0.87 [0.42<br>0.80 [0.28<br>0.80 [0.28<br>0.80 [0.28<br>1.00 [0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.92<br>1.00<br>0.97<br>0.68<br>1.00<br>0.82<br>0.99<br>5% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ol> <li>Specificity (95% CI)</li> <li>0.32 (0.75, 0.69)</li> <li>0.23 (0.74, 0.69)</li> <li>0.51 (0.39, 0.60)</li> <li>0.79 (0.66, 0.63)</li> <li>0.68 (0.43, 0.87)</li> <li>0.63 (0.64, 1.00)</li> <li>0.52 (0.64, 1.00)</li> <li>0.52 (0.64, 1.00)</li> <li>1.00 (0.83, 1.00)</li> <li>1.00 (0.83, 1.00)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sensitivity (95% CI) | Specificity (95%)  |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Salvarani C. 2003<br>Margatoryd H. 2003<br>Renhard M. 2004<br>Zaragoza Garcia JM. 200<br>US ("halo" sign :<br>Study<br>US ("halo" sign :<br>Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ± 51                                                               | 16<br>6<br>6<br>22<br>4<br>ten<br>7<br>5<br>5                                                                                       | 2<br>9<br>15<br>6<br>1<br>1<br>1<br>0<br>0<br>5<br>FP<br>0<br>3<br>0<br>5<br>FP                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5<br>1<br>2<br>9<br>1<br>11<br>11<br>1<br>1<br>1<br>5<br>0<br>1<br>5<br>0<br>1<br>5<br>1<br>5<br>1<br>2<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>12<br>10<br>10<br>10                                                             | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.86 [0.42<br>0.67 [0.48<br>0.80 [0.28<br>0.67 [0.48<br>0.80 [0.28<br>0.56 [0.28<br>1.00 [0.48<br><b>:clusion</b> ]<br>Sensitivity (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , 0.92<br>, 1.00<br>, 0.97<br>, 0.68<br>, 1.00<br>, 0.82<br>, 0.99<br>5% CI<br>, 0.85<br>, 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ol> <li>Specificity (95% cl)</li> <li>0.92 (0.75, 0.39)</li> <li>0.92 (0.74, 0.39)</li> <li>0.93 (0.74, 0.39)</li> <li>0.93 (0.86, 0.83)</li> <li>0.96 (0.43, 0.67)</li> <li>0.33 (0.06, 1.00)</li> <li>0.32 (0.64, 1.00)</li> <li>1.00 (0.33, 1.00)</li> <li>0.77 (0.46, 0.39)</li> <li>0.77 (0.46, 0.39)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sensitivity (95% CI) | Specificity (95%)  |
| Study<br>Schmidt W4, 1997<br>Lesar CJ, 2002<br>Eabaran C, 2002<br>Murgatoryd H, 2003<br>Reinhard M, 2004<br>Zaragoza Garcia JM, 200<br>US ("halo" sign :<br>Study<br>Lesar CJ, 2002<br>Zaragoza Garcia JM, 200<br>US ("halo" sign :<br>Study<br>Study<br>Study Schmidt W, 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ± 51                                                               | 16<br>6<br>6<br>22<br>4<br>ten<br>7<br>5<br>5<br>ten<br>TP<br>7<br>5                                                                | 2<br>9<br>15<br>6<br>1<br>1<br>1<br>0<br>0<br>5<br>FP<br>0<br>3<br>0<br>5<br>FP<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5<br>1<br>2<br>9<br>1<br>11<br>11<br>1<br>1<br><b>is)</b><br><b>FN</b><br>5<br>0<br><b>is</b> ±<br><b>FN</b><br>1                                                                                                                                                                                                | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 0.76 [0.52<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.86 [0.42<br>0.67 [0.48<br>0.80 [0.28<br>1.00 [0.48<br>1.00 [0.48<br><b>Cclusion</b> ]<br>Sensitivity (9<br>0.55 [0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , 0.92<br>, 1.00<br>, 0.97<br>, 0.68<br>, 1.00<br>, 0.82<br>, 0.99<br>5% Cl<br>, 0.85<br>, 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ol> <li>Specificity (95% CI)</li> <li>0.92 (0.75, 0.09)</li> <li>0.92 (0.74, 0.99)</li> <li>0.91 (0.34, 0.69)</li> <li>0.79 (0.68, 0.88)</li> <li>0.68 (0.43, 0.37)</li> <li>0.93 (0.68, 1.00)</li> <li>0.92 (0.64, 1.0</li></ol> | Sensitivity (95% CI) | Specificity (95%)  |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Salvarani C. 2003<br>Reinhard M. 2003<br>Reinhard M. 2004<br>Zaragoza Garcia JM. 200<br>US ("halo" sign :<br>Study<br>Caragoza Garcia JM. 200<br>US ("halo" sign :<br>Study<br>Schmidt WA. 1997<br>Pradenhauer K. 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ± 51                                                               | 16<br>6<br>6<br>22<br>4<br>ten<br>7<br>5<br>5<br>ten<br>7<br>5<br>5                                                                 | 2<br>9<br>9<br>15<br>6<br>1<br>1<br>1<br>0<br>0<br>5<br>FP<br>0<br>3<br>0<br>5<br>FP<br>4<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5<br>1<br>2<br>9<br>1<br>11<br>1<br>1<br>1<br>1<br>1<br>5<br>0<br><b>is</b> )<br><b>is</b><br>5<br>1<br>5<br>0<br><b>is</b><br>5<br>1<br>2<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                             | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 0.76 [0.53<br>0.66 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.68 [0.42<br>0.67 [0.48<br>0.67 [0.48<br>0.60 [0.28<br>1.00 [0.48<br>1.00 [0.48<br>cclusion]<br>Sensitivity (9<br>0.55 [0.76<br>0.55 [0.76<br>0.55 [0.76<br>0.55 [0.76]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , 0.92<br>, 1.00<br>, 0.97<br>, 0.68<br>, 1.00<br>, 0.82<br>, 0.99<br>5% Cl<br>, 1.00<br>5% Cl<br>, 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ol> <li>Specificity (95% cT)</li> <li>0.92 (0.75, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.97 (0.68, 0.88)</li> <li>0.96 (0.43, 0.67)</li> <li>0.93 (0.68, 1.09)</li> <li>0.92 (0.64, 1.00)</li> <li>1.00 (0.03, 1.00)</li> <li>1.00 (0.03, 1.00)</li> <li>0.77 (0.46, 0.88)</li> <li>0.77 (0.46, 0.36)</li> <li>0.92 (0.64, 0.36)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sensitivity (95% CI) | Specificity (95%)  |
| Study<br>Schmidt W4, 1997<br>Lesar CJ, 2002<br>Na Marani C, 2002<br>Murgatroyd H, 2003<br>Reinhard M, 2004<br>Zaragoza Garcia JM, 200<br>US ("thalo" sign :<br>Study<br>Lesar CJ, 2002<br>Zaragoza Garcia JM, 200<br>US ("thalo" sign :<br>Study<br>Schmidt WA, 1997<br>Pfadenhauer K, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ± \$1                                                              | 16<br>6<br>222<br>4<br>ten<br>7<br>5<br>ten<br>7<br>5<br>5<br>ten<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>5<br>7<br>7<br>5            | 2<br>9<br>9<br>15<br>6<br>1<br>1<br>1<br>0<br>5<br>8<br>9<br>9<br>15<br>6<br>1<br>1<br>1<br>1<br>0<br>5<br>8<br>7<br>9<br>9<br>9<br>5<br>6<br>1<br>1<br>5<br>6<br>7<br>9<br>9<br>15<br>6<br>7<br>9<br>9<br>15<br>6<br>7<br>9<br>9<br>15<br>6<br>7<br>9<br>9<br>15<br>6<br>7<br>9<br>9<br>15<br>6<br>7<br>9<br>9<br>15<br>6<br>7<br>10<br>9<br>10<br>9<br>7<br>9<br>9<br>15<br>6<br>7<br>10<br>9<br>7<br>9<br>9<br>15<br>6<br>7<br>10<br>9<br>10<br>9<br>7<br>10<br>9<br>10<br>9<br>10<br>9<br>10<br>9<br>10<br>10<br>9<br>10<br>9 | 5<br>1<br>2<br>9<br>1<br>11<br>11<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>0<br><b>is</b> )<br><b>is</b> ±<br><b>FN</b><br>5<br>0<br><b>is</b> ±<br><b>FN</b><br>5<br>0<br><b>i</b>                                                                                                                       | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 0.76 [0.52<br>0.66 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.66 [0.42<br>0.67 [0.48<br>0.80 [0.28<br>1.00 [0.48<br>1.00 [0.48<br>5cclusion]<br>Sensitivity (9<br>0.95 [0.76<br>0.95 [0.76<br>0.91 [0.78<br>0.21 [0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , 0.92<br>, 1.00<br>, 0.97<br>, 0.68<br>, 1.00<br>, 0.82<br>, 0.99<br>5% CI<br>, 0.85<br>, 1.00<br>5% CI<br>, 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )         Specificity (95% CI)           1         0.92 (0.75, 0.99)           0.92 (0.74, 0.99)         0.91 (0.36, 0.69)           0.79 (0.66, 0.59)         0.79 (0.66, 0.59)           0.79 (0.66, 0.59)         0.79 (0.66, 0.59)           1         0.92 (0.64, 1.00)           0.92 (0.64, 1.00)         0.92 (0.64, 0.59)           1         1.00 (0.3, 1.00)           1         0.77 (0.46, 0.35)           0         Specificity (95% CI)           0         Specificity (95%, CI)           0         0.85 (0.65, 0.66)           1         0.02 (0.78, 1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sensitivity (95% CI) | Specificity (95%)  |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Murgatroyd H. 2003<br>Reinhard M. 2003<br>Reinhard M. 2004<br>Zaragoza Garcia JM. 200<br>US ("halo" sign :<br>Study<br>Lesar CJ. 2002<br>Zaragoza Garcia JM. 200<br>US ("halo" sign :<br>Study<br>Schmidt WA. 1997<br>Pfadenhauer K. 2003<br>Reinhard M. 2004<br>Romera-Wilegas A. 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ± <b>SI</b><br>07<br>± <b>SI</b>                                   | 16<br>6<br>222<br>4<br><b>ten</b><br>7<br>5<br><b>ten</b><br>7<br>5<br><b>ten</b><br>7<br>20<br>30<br>7<br>21                       | 2<br>2<br>9<br>15<br>6<br>1<br>1<br>1<br>1<br>0<br>S<br>FP<br>0<br>3<br>0<br>S<br>FP<br>4<br>6<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                          | 5<br>1<br>2<br>9<br>1<br>11<br>11<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>0<br><b>is</b> )<br><b>is</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b>                                                                               | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | 0.76 [0.5]<br>0.66 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.46 [0.14<br>0.67 [0.44<br>0.67 [0.48<br>0.68 [0.28<br>0.68 [0.28<br>1.00 [0.46<br>0.58 [0.28<br>1.00 [0.46<br>0.58 [0.28<br>0.59 [0.76<br>0.59 [0.76<br>0.59 [0.76<br>0.59 [0.76<br>0.59 [0.76<br>0.59 [0.76]<br>0.59 [0.76<br>0.59 [0.76]<br>0.59 [0.59]<br>0.59 [0.59]                                                                                                                                                                                                         | , 0.92<br>, 1.00<br>, 0.97<br>, 0.68<br>, 1.00<br>, 0.82<br>, 0.99<br>5% CI<br>, 0.85<br>, 1.00<br>5% CI<br>, 1.00<br>5% CI<br>, 1.00<br>5% CI<br>, 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ol> <li>Specificity (95% cT)</li> <li>0.92 (0.75, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.97 (0.68, 0.88)</li> <li>0.96 (0.43, 0.67)</li> <li>0.93 (0.68, 1.00)</li> <li>1.00 (0.03, 1.00)</li> <li>1.00 (0.03, 1.00)</li> <li>0.77 (0.46, 0.89)</li> <li>0.77 (0.46, 0.39)</li> <li>0.82 (0.65, 0.33)</li> <li>0.02 (0.65, 0.33)</li> <li>0.00 (0.78, 1.00)</li> <li>0.98 (0.08, 1.00)</li> <li>0.98 (0.08, 1.00)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sensitivity (95% CI) | Specificity (95%)  |
| Study<br>Schmidt W4, 1997<br>Lesar CJ, 2002<br>Na Jarran C, 2002<br>Neupatropt H, 2003<br>Reinhard M, 2004<br>Zaragoza Garcia JM, 200<br>US ("thalo" sign :<br>Study<br>Lesar CJ, 2002<br>Zaragoza Garcia JM, 200<br>US ("thalo" sign :<br>Study<br>Schmidt WA, 1997<br>Pfadenhauer K, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ± <b>SI</b><br>07<br>± <b>SI</b>                                   | 16<br>6<br>222<br>4<br><b>ten</b><br>7<br>5<br><b>ten</b><br>7<br>5<br><b>ten</b><br>7<br>20<br>30<br>7<br>21                       | 2<br>9<br>9<br>15<br>6<br>1<br>1<br>1<br>0<br>5<br>8<br>9<br>9<br>15<br>6<br>1<br>1<br>1<br>1<br>0<br>5<br>8<br>7<br>9<br>9<br>9<br>5<br>6<br>1<br>1<br>5<br>6<br>7<br>9<br>9<br>15<br>6<br>7<br>9<br>9<br>15<br>6<br>7<br>9<br>9<br>15<br>6<br>7<br>9<br>9<br>15<br>6<br>7<br>9<br>9<br>15<br>6<br>7<br>9<br>9<br>15<br>6<br>7<br>10<br>9<br>10<br>9<br>7<br>9<br>9<br>15<br>6<br>7<br>10<br>9<br>7<br>9<br>9<br>15<br>6<br>7<br>10<br>9<br>10<br>9<br>7<br>10<br>9<br>10<br>9<br>10<br>9<br>10<br>9<br>10<br>10<br>9<br>10<br>9 | 5<br>1<br>2<br>9<br>1<br>11<br>11<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>0<br><b>is</b> )<br><b>is</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b>                                                                               | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 0.76 [0.52<br>0.66 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.66 [0.42<br>0.67 [0.48<br>0.80 [0.28<br>1.00 [0.48<br>1.00 [0.48<br>5cclusion]<br>Sensitivity (9<br>0.95 [0.76<br>0.95 [0.76<br>0.91 [0.78<br>0.21 [0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , 0.92<br>, 1.00<br>, 0.97<br>, 0.68<br>, 1.00<br>, 0.82<br>, 0.99<br>5% CI<br>, 0.85<br>, 1.00<br>5% CI<br>, 1.00<br>5% CI<br>, 1.00<br>5% CI<br>, 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ol> <li>Specificity (95% cT)</li> <li>0.92 (0.75, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.97 (0.68, 0.88)</li> <li>0.96 (0.43, 0.67)</li> <li>0.93 (0.68, 1.00)</li> <li>1.00 (0.03, 1.00)</li> <li>1.00 (0.03, 1.00)</li> <li>0.77 (0.46, 0.89)</li> <li>0.77 (0.46, 0.39)</li> <li>0.82 (0.65, 0.33)</li> <li>0.02 (0.65, 0.33)</li> <li>0.00 (0.78, 1.00)</li> <li>0.98 (0.08, 1.00)</li> <li>0.98 (0.08, 1.00)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sensitivity (95% CI) | Specificity (95%)  |
| Study<br>Schmidt WA. 1997<br>Lesar CJ. 2002<br>Nesher G. 2002<br>Salvarani C. 2003<br>Reinhard M. 2003<br>Reinhard M. 2004<br>Zaragoza Garcia JM. 200<br>US ("halo" sign :<br>Study<br>Lesar CJ. 2002<br>Zaragoza Garcia JM. 200<br>US ("halo" sign :<br>Study<br>Schmidt WA. 1997<br>Pfadenhauer K. 2003<br>Reinhard M. 2004<br>Romera-Wilegas A. 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ± <b>SI</b><br>07<br>± <b>SI</b>                                   | 16<br>6<br>222<br>4<br><b>ten</b><br>7<br>5<br><b>ten</b><br>7<br>5<br><b>ten</b><br>7<br>20<br>30<br>7<br>21                       | 2<br>2<br>9<br>15<br>6<br>1<br>1<br>1<br>1<br>0<br>S<br>FP<br>0<br>3<br>0<br>S<br>FP<br>4<br>6<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                          | 5<br>1<br>2<br>9<br>1<br>11<br>11<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>0<br><b>is</b> )<br><b>is</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b>                                                                               | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | 0.76 [0.5]<br>0.66 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.46 [0.14<br>0.67 [0.44<br>0.67 [0.48<br>0.68 [0.28<br>0.68 [0.28<br>1.00 [0.46<br>0.58 [0.28<br>1.00 [0.46<br>0.58 [0.28<br>0.59 [0.76<br>0.59 [0.76<br>0.59 [0.76<br>0.59 [0.76<br>0.59 [0.76<br>0.59 [0.76]<br>0.59 [0.76<br>0.59 [0.76]<br>0.59 [0.59]<br>0.59 [0.59]                                                                                                                                                                                                         | , 0.92<br>, 1.00<br>, 0.97<br>, 0.68<br>, 1.00<br>, 0.82<br>, 0.99<br>5% CI<br>, 0.85<br>, 1.00<br>5% CI<br>, 1.00<br>5% CI<br>, 1.00<br>5% CI<br>, 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ol> <li>Specificity (95% cT)</li> <li>0.92 (0.75, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.97 (0.68, 0.88)</li> <li>0.96 (0.43, 0.67)</li> <li>0.93 (0.68, 1.00)</li> <li>1.00 (0.03, 1.00)</li> <li>1.00 (0.03, 1.00)</li> <li>0.77 (0.46, 0.89)</li> <li>0.77 (0.46, 0.39)</li> <li>0.82 (0.65, 0.33)</li> <li>0.02 (0.65, 0.33)</li> <li>0.00 (0.78, 1.00)</li> <li>0.98 (0.08, 1.00)</li> <li>0.98 (0.08, 1.00)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sensitivity (95% CI) | Specificity (95%)  |
| Study<br>Schmidt W4, 1997<br>Lesar CJ, 2002<br>Eavarant C, 2002<br>Murgatroyd H, 2003<br>Reinhard M, 2004<br>Zaragoza Garcia JM, 200<br>US ("fhalo" sign :<br>Study<br>Lesar CJ, 2002<br>Zaragoza Garcia JM, 200<br>US ("fhalo" sign :<br>Study<br>Schmidt W, 1997<br>Pfadenbauer K, 2003<br>Reinhard M, 2004<br>Romera-Villegas A, 2004<br>Romera-Villegas A, 2016<br>MRI<br>Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ± S1<br>07<br>± S1<br>4                                            | 16<br>6<br>7<br>6<br>6<br>222<br>4<br><b>ten</b><br>7<br>5<br><b>ten</b><br>7<br>20<br>30<br>7<br>21<br>7<br>4                      | 2<br>2<br>9<br>15<br>6<br>1<br>1<br>1<br>1<br>0<br>0<br>5<br>FP<br>4<br>6<br>0<br>1<br>88<br>FP                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5<br>1<br>2<br>9<br>1<br>11<br>11<br>1<br>1<br>1<br>1<br>5<br>0<br><b>is</b> )<br><b>is</b> ±<br><b>FN</b><br>1<br>3<br>26<br>4<br>27<br>TN                                                                                                                                                                      | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | 0.76 (0.53<br>0.86 (0.42<br>0.78 (0.40<br>0.40 (0.16<br>0.68 (0.42<br>0.77 (0.46 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45 (0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.92<br>(1.00<br>(0.97<br>(0.68<br>(1.00<br>(0.82<br>(0.85<br>(1.00<br>(0.99<br>(0.85<br>(1.00<br>(0.99<br>(0.85<br>(1.00<br>(0.99<br>(0.82<br>(0.39<br>(0.82<br>(0.82<br>(0.82)<br>(0.82)<br>(0.82)<br>(0.82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Specificity (95% CI)</li> <li>0.92 (0.75, 0.39)</li> <li>0.92 (0.74, 0.39)</li> <li>0.92 (0.74, 0.39)</li> <li>0.93 (0.68, 0.38)</li> <li>0.70 (0.68, 0.38)</li> <li>0.93 (0.68, 1.00)</li> <li>0.92 (0.64, 1.00)</li> <li>0.92 (0.64, 1.00)</li> <li>0.92 (0.64, 1.00)</li> <li>0.92 (0.64, 0.39)</li> <li>0.92 (0.64, 0.39)</li> <li>0.92 (0.64, 0.39)</li> <li>0.92 (0.64, 0.39)</li> <li>0.95 (0.65, 0.32)</li> <li>0.95 (0.68, 1.00)</li> <li>0.96 (0.63, 0.74)</li> <li>Specificity (95% CI)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sensitivity (95% CI) | Specificity (95%)  |
| Study         Schmidt WA, 1997           Schmidt WA, 1997         Lesar CJ, 2002           Nesher G, 2002         Sibarani C, 2003           Sibarani C, 2003         Reinhard M, 2004           Zaragoza Garcia JM, 2004         Lesar CJ, 2002           Lesar CJ, 2002         Zaragoza Garcia JM, 2004           US ("thalo" sign ::         Study           Lesar CJ, 2002         Zaragoza Garcia JM, 2004           US ("thalo" sign ::         Study           Schmidt WA, 1997         Fradenhauer K, 2003           Reinhard M, 2004         Romera-Wilega A, 2004           Lugmani R, 2016         MRI           Study         1           Biley TA, 2005         Study                                                                                                                                                                                                                                                                                                                                         | ± S1<br>)7<br>± S1<br>4                                            | 16<br>6<br>7<br>6<br>6<br>222<br>4<br><b>ten</b><br>7<br>5<br><b>ten</b><br>7<br>20<br>30<br>7<br>21<br>74                          | 2<br>2<br>9<br>15<br>6<br>1<br>1<br>1<br>0<br>S<br>FP<br>0<br>3<br>3<br>OS<br>FP<br>4<br>6<br>0<br>1<br>88<br>FN<br>0                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>1<br>2<br>9<br>1<br>11<br>11<br>1<br>1<br>1<br>1<br>5<br>0<br><b>is</b> )<br><b>is</b><br><b>:</b><br><b>is</b> )<br><b>FN</b><br>5<br>0<br><b>is</b><br>26<br>4<br>27<br>TN<br>3                                                                                                                           | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.40 [0.16<br>0.66 [0.42<br>0.67 [0.44<br>0.80 [0.28<br>0.58 [0.28<br>1.00 [0.48<br>0.58 [0.28<br>1.00 [0.48<br>0.58 [0.28<br>1.00 [0.48<br>0.59 [0.76<br>0.51 [0.76<br>0.55 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76 [0.76                                                                                                                                                                                                                                           | (0.92<br>(1.00<br>(0.97)<br>(0.68<br>(1.00<br>(0.82<br>(0.99)<br>(0.82<br>(0.99)<br>(0.99)<br>(0.99)<br>(0.95)<br>(1.00<br>(0.09)<br>(0.95)<br>(0.09)<br>(0.95)<br>(0.09)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0.95)<br>(0       | <ol> <li>Specificity (95% CI)</li> <li>0.92 (0.75, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.92 (0.66, 0.88)</li> <li>0.93 (0.06, 0.88)</li> <li>0.93 (0.06, 0.89)</li> <li>0.92 (0.64, 1.00)</li> <li>Specificity (95% CI)</li> <li>0.95 (0.65, 0.83)</li> <li>0.92 (0.65, 0.83)</li> <li>0.92 (0.65, 0.33)</li> <li>0.93 (0.88, 1.00)</li> <li>0.96 (0.65, 0.33)</li> <li>0.96 (0.75, 0.95)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sensitivity (95% CI) | Specificity (95%)  |
| Study<br>Schmidt W4, 1997<br>Lesar CJ, 2002<br>Namarani C, 2002<br>Negarani C, 2002<br>Murgatroyd H, 2003<br>Reinhard M, 2004<br>Zaragoza Garcia JM, 200<br>US ("thalo" sign :<br>Study<br>Lesar CJ, 2002<br>Zaragoza Garcia JM, 200<br>US ("thalo" sign :<br>Study<br>Schmidt WA, 1997<br>Pfadenhauer K, 2003<br>Reinhard M, 2004<br>Romera-Villegas A, 2004<br>Romera-Villegas A, 2006<br>MRI<br>Study 1<br>Bley TA, 2005<br>1<br>Bley TA, 2005<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ± S1                                                               | 16<br>6<br>7<br>6<br>6<br>222<br>4<br><b>ten</b><br>7<br>5<br><b>ten</b><br>7<br>21<br>74<br><b>TP</b><br>20<br>30<br>7<br>21<br>74 | 2<br>2<br>9<br>9<br>15<br>6<br>1<br>1<br>1<br>0<br>S<br>FP<br>0<br>3<br>3<br>OS<br>FP<br>4<br>6<br>0<br>1<br>88<br>FN<br>2                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>1<br>2<br>9<br>1<br>1<br>11<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>0<br>0<br><b>IS</b> )<br><b>IS</b> )<br><b>IS</b> )<br><b>IS</b> )<br><b>IS</b> )<br><b>IS</b> )<br><b>IS</b> )<br><b>I</b><br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | 0.76 [0.53<br>0.66 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.66 [0.42<br>0.67 [0.44<br>0.80 [0.28<br>0.67 [0.44<br>0.80 [0.28<br>0.65 [0.76<br>0.65 [0.76]<br>0.65 [0.76<br>0.65 [0.76]<br>0.65 [0.76 | (0.92<br>(1.00<br>(0.97)<br>(0.68<br>(1.00<br>(0.82<br>(0.85<br>(1.00<br>(0.85<br>(1.00<br>(0.85<br>(1.00<br>(0.99)<br>(0.99)<br>(0.99)<br>(0.99)<br>(0.99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Specificity (95% C1)</li> <li>0.92 (0.75, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.97 (0.05, 0.63)</li> <li>0.79 (0.05, 0.63)</li> <li>0.79 (0.05, 0.63)</li> <li>0.79 (0.05, 0.63)</li> <li>0.93 (0.64, 1.00)</li> <li>0.93 (0.64, 1.00)</li> <li>0.92 (0.64, 1.00)</li> <li>1.00 (0.33, 1.00)</li> <li>1.00 (0.33, 1.00)</li> <li>0.77 (0.46, 0.35)</li> <li>0.95 (0.65, 0.66)</li> <li>0.95 (0.65, 0.68)</li> <li>0.98 (0.68, 1.00)</li> <li>0.98 (0.68, 1.00)</li> <li>0.98 (0.68, 1.00)</li> <li>0.98 (0.68, 0.74)</li> <li>5.98 (0.68, 0.74)</li> <li>5.98 (0.68, 0.74)</li> <li>5.98 (0.63, 0.74)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sensitivity (95% CI) | Specificity (95%)  |
| Study         Schmidt WA 1997           Schmidt WA 1997         Lesar CJ 2002           Nesher CJ 2002         Nesher CJ 2002           Saharani CJ 2003         Murgatryd H 2003           Karagoza Garcia JM 2003         Garcia JM 2003           US ("thalo" sign :         Study           Lesar CJ 2002         Zaragoza Garcia JM 2003           Zaragoza Garcia JM 2004         Study           Lesar CJ 2002         Zaragoza Garcia JM 2004           Schmidt WA 1997         Fradenhauer K 2003           Fradenhauer K 2003         Reinhard M 2004           Komera-Wilegas A 2004         Lugmani R 2016           MIRI         Study         Study 2016           Study 2016         Geiger J 2010         Study 2016                                                                                                                                                                                                                                                                                        | ± S1                                                               | 16<br>6<br>7<br>6<br>6<br>22<br>4<br><b>ten</b><br>7<br>5<br><b>ten</b><br>7<br>21<br>74                                            | 2<br>2<br>9<br>9<br>15<br>6<br>1<br>1<br>1<br>0<br>0<br>5<br>FP<br>0<br>3<br>3<br>0<br>5<br>FP<br>4<br>6<br>0<br>1<br>8<br>8<br>8<br>FN<br>0<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                            | 5<br>1<br>2<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>0<br><b>IS</b> ±<br><b>FN</b><br>1<br>3<br>26<br>4<br>27<br><b>TN</b><br>3<br>8<br>2<br>2<br>7                                                                                                                         | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | 0.76 [0.53<br>0.66 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.66 [0.42<br>0.67 [0.44<br>0.67 [0.44<br>0.67 [0.44<br>0.67 [0.44<br>0.67 [0.44<br>0.67 [0.44<br>0.56 [0.26<br>0.56 [0.26<br>0.56 [0.26<br>0.56 [0.26<br>0.56 [0.26<br>0.56 [0.26<br>0.56 [0.26<br>0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56                                                                                                                                                                                                        | (0.92<br>(1.00<br>(0.97<br>(0.082<br>(1.00<br>(0.82<br>(0.82<br>(0.99<br>(0.99<br>(0.95<br>(1.00<br>(0.98<br>(0.98<br>(0.98<br>(0.98<br>(0.98<br>(0.98<br>(0.98<br>(0.98<br>(0.98<br>(0.98<br>(0.98)<br>(0.98<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.99)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0.98)<br>(0 | <ol> <li>Specificity (95% CI)</li> <li>0.92 (0.75, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.97 (0.68, 0.88)</li> <li>0.96 (0.43, 0.67)</li> <li>0.93 (0.06, 1.00)</li> <li>0.92 (0.64, 1.00)</li> <li>1.00 (0.83, 1.00)</li> <li>1.00 (0.83, 1.00)</li> <li>0.77 (0.46, 0.89)</li> <li>0.82 (0.65, 0.83)</li> <li>0.02 (0.65, 0.83)</li> <li>0.08 (0.65, 0.8</li></ol> | Sensitivity (95% CI) | Specificity (95%)  |
| Study         Schmidt WA, 1997           Schmidt WA, 1997         Lesar CJ, 2002           Nesher G, 2002         Nesher G, 2003           Reinhard M, 2004         Zaragoza Garcia JM, 200           US ("thalo" sign :         Study           Lesar CJ, 2002         Zaragoza Garcia JM, 200           US ("thalo" sign :         Study           Lesar CJ, 2002         Zaragoza Garcia JM, 200           US ("thalo" sign :         Study           Schmidt WA, 1997         Pfadenhauer K, 2003           Pfadenhauer K, 2004         Romera-Villegas A, 2004           Romar R, 2016         Study           Sterintard M, 2007         1           Stery         1           Stery         1           Biter TA, 2005         1           Biter TA, 2007         1           Oeiger-J, 2010         1           Origer-J, 2010         1                                                                                                                                                                            | ± S1<br>07<br>± S1<br>4<br>4<br>FP 1<br>5<br>19<br>10<br>38        | 16<br>6<br>7<br>6<br>6<br>22<br>4<br><b>ten</b><br>7<br>5<br><b>ten</b><br>7<br>21<br>7<br>4<br><b>ten</b><br>7<br>21<br>7<br>4     | 2<br>2<br>9<br>9<br>15<br>6<br>1<br>1<br>1<br>0<br>S<br>FP<br>0<br>3<br>3<br>OS<br>FP<br>4<br>6<br>0<br>1<br>88<br>FN<br>0<br>2<br>1<br>5                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>1<br>2<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | 0.76 [0.53<br>0.86 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.68 [0.42<br>0.77 [0.44<br>0.80 [0.28<br>0.58 [0.28 [0.28<br>0.58 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.28 [0.2                                                                                                                                                                                                                                                                                                                                                                                                                | , 0.92<br>, 1.00<br>, 0.97<br>, 0.68<br>, 1.00<br>, 0.82<br>, 0.85<br>, 1.00<br>, 0.85<br>, 1.00<br>, 0.85<br>, 1.00<br>, 0.99<br>, 0.95<br>, 0.85<br>, 1.00<br>, 0.99<br>, 0.95<br>, 0.85<br>, 1.00<br>, 0.99<br>, 0.97<br>, 0.98<br>, 0.99<br>, 0.97<br>, 0.98<br>, 0.99<br>, 0.99<br>, 0.97<br>, 0.99<br>,           | <ul> <li>psecificity (85% cl)</li> <li>0.92 (0.75, 0.98)</li> <li>0.92 (0.76, 0.98)</li> <li>0.92 (0.76, 0.98)</li> <li>0.93 (0.96, 0.88)</li> <li>0.93 (0.96, 0.88)</li> <li>0.93 (0.96, 0.88)</li> <li>0.93 (0.96, 0.89)</li> <li>0.92 (0.64, 1.00)</li> <li>1.00 (0.93, 1.00)</li> <li>0.95 (0.65, 0.96)</li> <li>0.95 (0.65, 0.96)</li> <li>0.95 (0.65, 0.96)</li> <li>0.98 (0.88, 1.00)</li> <li>0.98 (0.88, 1.00)</li> <li>0.98 (0.88, 1.00)</li> <li>0.99 (0.63, 0.74)</li> <li>0.99 (0.63, 0.74)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sensitivity (95% CI) | Specificity (95%)  |
| Study         Schmidt WA. 1997           Schmidt WA. 1997         Lesar CJ. 2002           Nesher G. 2002         Nesher G. 2002           Salvarani C. 2002         Salvarani C. 2003           Reinhard M. 2003         Reinhard M. 2004           US ("halo" sign :         Study           Lesar CJ. 2002         Zaragoza Garcia JM. 2007           US ("halo" sign :         Study           Study         Schmidt WA. 1997           Pfadenhauer K. 2003         Reinhard M. 2004           Komera-Wilegas A. 2006         Lugmani R. 2016           MIRI         Study         1           Stey TA. 2005         1           Piley TA. 2005         1           Franke P. 2011         1           Piley TA. 2005         1 | ± SI<br>07<br>± SI<br>4<br>4<br>(P) 1<br>5<br>19<br>10<br>98<br>25 | 16<br>6<br>7<br>6<br>6<br>22<br>4<br><b>ten</b><br>7<br>5<br><b>ten</b><br>7<br>21<br>74                                            | 2 2 9 9 15 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5<br>1<br>2<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>0<br><b>IS</b> ±<br><b>FN</b><br>1<br>3<br>26<br>4<br>27<br><b>TN</b><br>3<br>8<br>2<br>2<br>7                                                                                                                         | 24<br>23<br>14<br>56<br>13<br>14<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | 0.76 [0.53<br>0.66 [0.42<br>0.78 [0.40<br>0.40 [0.16<br>0.66 [0.42<br>0.67 [0.44<br>0.67 [0.44<br>0.67 [0.44<br>0.67 [0.44<br>0.67 [0.44<br>0.67 [0.44<br>0.56 [0.26<br>0.56 [0.26<br>0.56 [0.26<br>0.56 [0.26<br>0.56 [0.26<br>0.56 [0.26<br>0.56 [0.26<br>0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56 0.57 [0.56                                                                                                                                                                                                        | (0.92<br>(1.00<br>(0.97<br>(0.68<br>(1.00<br>(0.82<br>(0.85<br>(1.00<br>(0.82<br>(0.85<br>(1.00<br>(0.85<br>(1.00<br>(0.99<br>(0.85<br>(1.00<br>(0.99<br>(0.99<br>(0.95<br>(0.85<br>(1.00<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99<br>(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)(0.99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>psecificity (95% CI)</li> <li>0.92 (0.75, 0.39)</li> <li>0.92 (0.74, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.92 (0.74, 0.99)</li> <li>0.92 (0.86, 0.88)</li> <li>0.93 (0.86, 0.88)</li> <li>0.93 (0.86, 0.89)</li> <li>0.93 (0.86, 1.00)</li> <li>0.92 (0.86, 0.89)</li> <li>0.92 (0.86, 0.89)</li> <li>0.92 (0.86, 1.00)</li> <li>0.92 (0.86, 1.00)</li> <li>0.92 (0.86, 1.00)</li> <li>0.92 (0.86, 1.00)</li> <li>0.98 (0.88, 1.00)</li> <li>0.98 (0.88, 1.00)</li> <li>0.99 (0.83, 0.74)</li> <li>0.99 (0.83, 0.74)</li> <li>0.90 (0.7, 0.39)</li> <li>0.91 (0.76, 0.43)</li> <li>0.91 (0.76, 0.43)</li> <li>0.92 (0.77, 0.34)</li> <li>0.93 (0.86, 1.00)</li> <li>0.91 (0.76, 0.34)</li> <li>0.91 (0.76, 0.34)</li> <li>0.92 (0.77, 0.34)</li> <li>0.93 (0.86, 1.00)</li> <li>0.94 (0.95, 0.51)</li> <li>0.95 (0.176, 0.43)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sensitivity (95% CI) | Specificity (95%)  |

**Figure 1** (A) Diagnostic performance of different ultrasound (US) signs of vasculitis and MRI studies in comparison with clinical diagnosis as reference standard. (B) Diagnostic performance of different US signs of vasculitis and MRI studies in comparison with temporal artery biopsy as reference standard. TP, true positives; FP, false positives; FN, false negatives; TN, true negatives.

No study was identified addressing the role of MRI for the evaluation of extracranial LV-GCA.

One study<sup>55</sup> (n=30, low RoB) investigated MRA for the diagnosis of TAK using conventional angiography as the reference standard (see table 4 and online supplementary tables S3 and S6 for further details). A sensitivity of 100% (95% CI 76 to 100) and a specificity of 100% (95% CI 63 to 100) for MRA was reported.

#### <sup>18</sup>F-FDG positron emission tomography

Only two studies<sup>41 42</sup> (n=93, one study with low RoB<sup>42</sup>) focused on the diagnostic performance of 18F-FDG-PET for the diagnosis of extracranial LV-GCA yielding sensitivities of 67%-77% and specificities of 66%-100%, using TAB or a clinical diagnosis after 6 months as reference standards, respectively. The study by Lariviere *et al*<sup>42</sup> (n=24, low RoB), reporting a specificity of 100%, applied

a semiquantitative approach (aortic-to-blood pool uptake ratio) for the evaluation of <sup>18</sup>F-FDG vessel wall uptake (table 5 and online supplementary table S4 for further study details, online supplementary table S6 for RoB assessment).

#### CT angiography

The study by Lariviere *et al* mentioned above<sup>42</sup> (n=25, with low RoB) evaluated the roles of PET and CTA within the same population. CTA revealed a sensitivity of 73% (95% CI 45 to 92) and a specificity of 78% (95% CI 40 to 97) using the clinical diagnosis of GCA after 6 months as reference standard.

For the diagnosis of TAK, one study<sup>56</sup> (n=25, with low RoB) examined the role of CTA reporting a sensitivity of 100% (95% CI 76 to 100) and a specificity of 100% (95% CI 40 to 100) compared with conventional angiography (table 5 and online supplementary tables S5 for further study details, online supplementary table S6 for RoB assessment).

# Outcome prediction, monitoring disease activity and damage and technical aspects of imaging techniques

Description of observations without inferences in monitoring studies (n=11) and studies on technical aspects (n=5) as well as heterogeneity in study design, outcomes and technical settings of prognostic studies (n=5) precluded any meta-analysis. Main study characteristics and findings are summarised in online supplementary tables S7–S10.

Five studies investigated the role of US,<sup>43</sup> <sup>44</sup> <sup>18</sup>F-FDG-PET<sup>45 46</sup> or CT<sup>47</sup> for outcome prediction in GCA (online supplementary table S7) with none of them being appraised at low RoB (online supplementary table S8). GCA characteristic US lesions at baseline did not predict a relapse,<sup>44</sup> and the risk of ischaemic complications was similar in patients with temporal and extracranial LV involvement.<sup>43</sup> The response of <sup>18</sup>F-FDG-uptake to GC therapy (at 3 and 6 months) was not associated with the risk of relapse<sup>45</sup>; however, baseline <sup>18</sup>F-FDG-uptake at the aorta predicted aortic dilatation during long-term disease course according to one study.<sup>46</sup> For TAK, no study was identified addressing the role of imaging for outcome prediction.

For GCA, 13 studies were found investigating the role of imaging for monitoring disease activity and damage.<sup>17</sup> <sup>20</sup> <sup>22</sup> <sup>25</sup> <sup>28</sup> <sup>29</sup> <sup>43</sup>-<sup>45</sup> <sup>48-51</sup> Ten US studies (197 patients, follow-up range: 1–41 months) reported that the 'halo' sign at temporal arteries was no longer detected in the majority of patients after 2–4 weeks of GC therapy,<sup>17</sup> <sup>20</sup> <sup>22</sup> <sup>25</sup> <sup>28</sup> <sup>29</sup> <sup>43</sup> <sup>44</sup> <sup>48</sup> <sup>49</sup> whereas at larger arteries, vessel wall swelling persisted in two thirds of patients according to CT and US studies.<sup>43</sup> <sup>51</sup> Additionally, the occurrence of new vasculitic US lesions was reported in up to 10% of GCA patients despite GC treatment.<sup>43</sup> <sup>18</sup>F-FDG uptake in the wall of extracranial LVs was comparable in GCA patients in full remission and those with a relapse.<sup>45</sup> In TAK, US and MRI were also not helpful

Table 3 Sensitivity analyses for diagnostic studies on ultrasound ('halo' sign) and MRI in comparison with clinical diagnosis for cranial giant cell arteritis (GCA) as reference standard

|                                                    | Number of nationto                                        | LR+                | LR-              | Sonoitivity             | Specificity             |
|----------------------------------------------------|-----------------------------------------------------------|--------------------|------------------|-------------------------|-------------------------|
|                                                    | Number of patients<br>(number of studies)                 | (95% CI)           | LR-<br>(95% CI)  | Sensitivity<br>(95% CI) | Specificity<br>(95% Cl) |
| Ultrasound                                         |                                                           |                    |                  |                         |                         |
| Halo versus clinical<br>diagnosis (main analysis)* | 605 (eight<br>studies) <sup>17 19 20 23 25 28 30 31</sup> | 19 (4.8 to 75.5)   | 0.2 (0.1 to 0.4) | 77 (62 to 87)           | 96 (85 to 99)           |
| Excluding high RoB studies*†                       | 255 (four studies) <sup>25 28 30 31</sup>                 | 16 (7.3 to 35.2)   | 0.2 (0.1 to 0.3) | 86 (76 to 93)           | 95 (89 to 98)           |
| Studies without GC*                                | 156 (four studies) <sup>19 20 25 28</sup>                 | 4.0 (2.6 to 6.2)   | 0.3 (0.2 to 0.7) | 73 (49 to 89)           | 82 (75 to 87)           |
| Studies with high resolution device*‡              | 292 (four studies) <sup>19 25 30 31</sup>                 | 13.8 (3.9 to 48.2) | 0.1 (0.1 to 0.3) | 87 (77 to 93)           | 94 (79 to 98)           |
| Suspected diagnosis well-defined§                  | 175 (three studies) <sup>25 28 31</sup>                   | 11.5 (4.5 to 29.2) | 0.1 (0.1 to 0.3) | 89 (76 to 95)           | 92 (83 to 97)           |
| Longitudinal studies§                              | 244 (four studies) <sup>19 25 28 31</sup>                 | 7.5 (3.4 to 16.8)  | 0.1 (0.1 to 0.3) | 88 (77 to 94)           | 88 (78 to 94)           |
| MRI                                                |                                                           |                    |                  |                         |                         |
| MRI versus clinical<br>diagnosis (main analysis)*  | 509 (six studies) <sup>33–35 38–40</sup>                  | 5.9 (3.4 to 10.3)  | 0.3 (0.2 to 0.5) | 73 (57 to 85)           | 88 (81 to 92)           |
| Excluding high RoB<br>studies*†                    | 446 (five studies) <sup>33 34 38–40</sup>                 | 6.8 (3.6 to 13)    | 0.3 (0.1 to 0.6) | 75 (56 to 88)           | 89 (82 to 93)           |
| Studies with high resolution device*‡              | 260 (four studies) <sup>33 35 39 40</sup>                 | 3.8 (2 to 7.5)     | 0.4 (0.2 to 0.8) | 68 (44 to 85)           | 82 (69 to 91)           |
| Suspected diagnosis§                               | 270 (three studies) <sup>33 34 38</sup>                   | 8.7 (5 to 15.2)    | 0.2 (0.1 to 0.3) | 82 (74 to 87)           | 91 (84 to 95)           |
| Longitudinal studies§                              | 411 (three studies) <sup>34 38 40</sup>                   | 7.5 (4.9 to 11.7)  | 0.3 (0.2 to 0.4) | 75 (65 to 84)           | 90 (85 to 93)           |

\*Bivariate random-effects binomial generalised mixed model.

†High RoB was defined, in the case of concern on ≥5 RoB items or all 3/3 applicability items out of the QUADAS-2 tool.

‡High resolution devices were defined as >12 MHz probes for ultrasound or 3T MRI machines.

§Univariate random-effects models.

longitudinal studies, studies with clinical diagnosis after follow-up as reference standard; LR, likelihood ratio; QUADAS-2, Quality

Assessment of Diagnostic Accuracy Studies-2; RoB, risk of bias; suspected diagnosis, studies with detailed definition of suspicion of giant cell arteritis included; without GC, studies without glucocorticoid treatment before performance of ultrasound.

to discriminate between active disease and remission<sup>57 58</sup> (see online supplementary table S9 for details on monitoring studies).

All five studies (two on MRI, three on  ${}^{18}\text{F-FDG-PET})^{35}$   ${}^{37}$   ${}^{52-54}$  on technical requirements, settings and operational procedures were performed in GCA patients and are summarised in online supplementary table S10.

#### DISCUSSION

This SLR confirms the good performance of US and MRI for the diagnosis of cranial GCA. The 'halo' sign (US) and increased vessel wall thickness in combination with contrast enhancement (MRI) of superficial temporal arteries, respectively, were the most relevant imaging findings suggesting GCA. Data on imaging for diagnosis of extracranial LV disease remain limited.

The diagnostic performance of US was better in the current than in previous meta-analyses with a higher sensitivity  $(77\% \text{ vs } 55\%-69\%)^{59-61}$  but similar specificity  $(96\% \text{ vs } 89\%-94\%)^{59-61}$  for diagnosis of cranial GCA, which possibly relies on the fact that we included more recent, high-quality studies. A recent SLR conducted

by Buttgereit et al identified many of the same studies described in this work; however, that SLR focused on imaging modalities in GCA and PMR (omitting papers on TAK), spared CT and only reported diagnostic values of individual studies rather than providing meta-analysed estimates on sensitivity and specificity.<sup>62</sup> This is a clear addition of our SLR, together with also covering outcome prediction as well as monitoring disease activity/damage, not addressed in previous SLRs. The sensitivity analyses of the meta-analysis suggest that technical aspects and the definition of study entry criteria have all an impact on the sensitivity of US. Expertise with vascular US (as in any other diagnostic test) is another factor that may influence its diagnostic properties. We could not assess this factor, since all studies were conducted by expert groups. GC treatment before an imaging test has been demonstrated to reduce the sensitivity of the respective imaging modality.<sup>6</sup> <sup>63</sup> Our results do not seem to confirm this observation since the 'halo' was less sensitive for diagnosis of cranial GCA when pooling studies in which patients had not been treated with GCs before US was performed as compared with the main analysis. This finding, however, was largely influenced by a single

| Study ID                             | n   | n female (%) | Inclusion criteria                                                                            | Reference standard                                                                    | n Final diagn<br>GCA/TAK(%) | n TAB+<br>(%) | n LV-GCA | Investigated<br>structures                                            | Elementary lesions                                                                                       | RoB  |
|--------------------------------------|-----|--------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------|---------------|----------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|
| GCA                                  |     |              |                                                                                               |                                                                                       |                             |               |          |                                                                       |                                                                                                          |      |
| Bley <i>et al</i> <sup>33</sup>      | 21  | 11 (52)      | Headache, jaw claudication,<br>TA tenderness/induration/pulse<br>decrement, visual impairment | ACR criteria or<br>TAB                                                                | 9 (43)                      | 5 (56)        | NR       | TA, occipital                                                         | Wall thickening+contrast enhancement score <sup>1-4</sup>                                                | Low  |
| Bley <i>et al</i> <sup>34</sup>      | 64  | 31 (48)      | Headache, TA tenderness, visual<br>impairment, increased APR                                  | Clinical diagn 6 m or<br>TAB                                                          | 31 (48)                     | 21 (78)       | NR       | TA, occipital                                                         | Wall<br>thickening+contrast enhancement<br>score (0–3)                                                   | Low  |
| Geiger <i>et al</i> <sup>35</sup>    | 43  | 30 (70)      | Suspected GCA*                                                                                | ACR criteria or<br>TAB                                                                | 28 (65)                     | 11 (73)       | NR       | TA, occipital                                                         | Wall<br>thickening+contrast enhancement<br>score (0–3)                                                   | High |
| Veldhoen <i>et al<sup>36</sup></i>   | 99  | 68 (69)      | Suspected GCA, TAB, MRI deep TA, temporal muscle                                              | ТАВ                                                                                   | 61 (62)                     | 61 (100)      | NR       | Deep TA, temporal muscle                                              | Wall thickening+contrast<br>enhancement<br>(artery wall/temporal muscle)                                 | High |
| Franke et al <sup>37</sup>           | 55  | 34 (62)      | Suspected GCA*                                                                                | ТАВ                                                                                   | 14 (25)                     | 14 (100)      | NR       | TA, occipital                                                         | Wall<br>thickening+contrast enhancement<br>score (0–3)                                                   | Mod  |
| Klink <i>et al<sup>38</sup></i>      | 185 | 125 (68)     | Headache, TA tenderness/pulse, APR<br>+MRI and FU available                                   | Clinical diagn 6 m or<br>TAB                                                          | 102 (55)                    | 62 (63)       | NR       | TA, occipital                                                         | Wall<br>thickening+contrast enhancement<br>score (0–3)                                                   | High |
| Siemonsen <i>et al</i> <sup>39</sup> | 25  | 21 (84)      | Suspected GCA                                                                                 | ACR criteria or<br>TAB                                                                | 20 (80)                     | 9 (90)        | NR       | TA, occipital,<br>intracranial                                        | TA, occipital<br>[wall<br>thickening+contrast enhancement,<br>score (0-3)]<br>intracranial (enhancement) | Mod  |
| Rhéaume et al <sup>40</sup>          | 171 | 126 (74)     | Suspected GCA+TAB                                                                             | ACR criteria<br>(retrospectively<br>confirmed) or<br>TAB or clinical diagn<br>FU (NR) | 137 (80)                    | 31 (23)       | NR       | TA, occipital                                                         | Wall<br>thickening+contrastenhancement<br>score (0-3)                                                    | Mod  |
| TAK                                  |     |              |                                                                                               |                                                                                       |                             |               |          |                                                                       |                                                                                                          |      |
| Yamada et al <sup>55</sup>           | 30  | 27 (90)      | Suspected TAK                                                                                 | Conventional angiography                                                              | 20 (67)                     | NA            |          | Aorta,<br>brachiocephalic<br>trunk, subclavian,<br>carotid, vertebral | Luminal changes (stenosis, occlusion, dilatation, aneurysms)                                             | Low  |

\*Suspected GCA according to the ACR criteria, no further details described.

ACR, American College of Rheumatology; APR, acute phase reactants; diagn, diagnosis; FU, follow-up; GCA, giant cell arteritis; LV, large vessel; m, months; mod, moderate; MRI, magnetic resonance imaging; n, number of finally included patients in analysis; NA, not applicable; n female, number of females; n final diagn GCA, number of patients finally diagnosed with GCA; NR, not reported; n LV-GCA, number of GCA patients with large vessel involvement; n TAB+, number of positive temporal artery biopsy results in finally diagnosed GCA patients; RoB, overall appraisal of risk of bias and concerns about applicability (arbitrarily defined) (high, in the case of concern on ≥5/10 risk of bias items or concern on 3/3 applicability items out of the QUADAS-2 tool; moderate, in case of concern on 4/10 risk of bias items and/or concern on ≥1/3 applicability items out of the QUADAS-2 tool; moderate, in case of concern on 4/10 risk of bias items and/or concern on ≥1/3 applicability; items out of the QUADAS-2 tool; moderate, in case of concern on 4/10 risk of bias items and/or concern on ≥1/3 applicability; items out of the QUADAS-2 tool; moderate, in case of concern on 4/10 risk of bias items and/or concern on ≥1/3 applicability; items out of the QUADAS-2 tool; how, in case of concern on ≤3/3 RoB and no concern about applicability); Pat, finally included number of patients in analysis; TA, temporal artery/arteries; TAB+, patients with a positive histology suggesting vasculitis.

OP

**Table 5** Main characteristics of diagnostic studies on <sup>18</sup>F-FDG positron emission tomography (18F-FDG PET) and CT angiography (CTA) in extracranial large vessel giant cell arteritis (GCA) and Takayasu arteritis (TAK)

|                                  |    |              |                                                                     | Reference             | n Final diagn | n TAB+   | n LV- |                                                                          |                                                                                         |     |
|----------------------------------|----|--------------|---------------------------------------------------------------------|-----------------------|---------------|----------|-------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----|
| Study ID                         | n  | n Female (%) | Inclusion criteria                                                  | standard              | GCA (%)       | (%)      | GCA   | Investigated structures                                                  | Elementary lesions                                                                      | RoB |
| <sup>18</sup> F-FDG PET          |    |              |                                                                     |                       |               |          |       |                                                                          |                                                                                         |     |
| GCA                              |    |              |                                                                     |                       |               |          |       |                                                                          |                                                                                         |     |
| Blockmans et al <sup>41</sup>    | 69 | 38 (55)      | Age ≥45 years,<br>ESR ≥40mm/h, headache,<br>fever, PMR, weight loss | ТАВ                   | 13 (19)       | 13 (100) | NR    | Aorta, carotid,<br>subclavian, femoral,<br>popliteal, tibial             | Contrast enhancement<br>(score (0–3)/vascular bed)                                      | Mod |
| Lariviere et al <sup>42</sup>    | 24 | 16 (67)      | Suspected GCA+TAB                                                   | Clinical diagn<br>6 m | 15 (63)       | 6 (40)   | NR    | Aorta, supra-aortic<br>branches, iliac, femoral                          | Contrast enhancement<br>(SUV <sub>max</sub> vascular bed/<br>SUV <sub>mean</sub> blood) | Low |
| CTA                              |    |              |                                                                     |                       |               |          |       |                                                                          |                                                                                         |     |
| GCA                              |    |              |                                                                     |                       |               |          |       |                                                                          |                                                                                         |     |
| Lariviere et al <sup>42</sup>    | 24 | 16 (67)      | Suspected GCA+TAB                                                   | Clinical diagn<br>6 m | 15 (63)       | 6 (40)   | NR    | Aorta, supra-aortic<br>branches                                          | Wall thickening score (0-3)                                                             | Low |
| TAK                              |    |              |                                                                     |                       |               |          |       |                                                                          |                                                                                         |     |
| Yamada <i>et al<sup>56</sup></i> | 25 | NR           | Suspected TAK                                                       | CA                    | 20 (80)       | NA       |       | Aorta, brachiocephalic<br>trunk, subclavian,<br>carotid, pulmonary trunk | Luminal changes<br>wall thickening<br>(>1 mm)+luminal changes                           | Low |

CA, conventional angiography; diagn, diagnosis; ESR, erythrocyte sedimentation rate; LV, large vessel; m, months; mod, moderate; n, number of finally included patients in analysis; NA, not applicable; n female, number of females; n final diagn GCA, number of patients finally diagnosed with GCA; NR, not reported; n LV-GCA, number of GCA patients with large vessel involvement; n TAB+, number of positive temporal artery biopsy results in finally diagnosed GCA patients; PMR, polymyalgia rheumatica; RoB, overall appraisal of risk of bias and concerns about applicability (arbitrarily defined) (high, in the case of concern on  $\geq$ 5/10 RoB items or concern on 3/3 applicability items out of the QUADAS-2 tool; moderate, in case of concern on 4/10 RoB items and/or concern on  $\geq$ 1/3 applicability items out of the QUADAS-2 tool, low, in case of concern on  $\leq$ 3/3 risk of bias items and no concern about applicability); Sens, sensitivity; Spec, specificity; SUV, standardised uptake value; TAB+, patients with a positive histology suggesting vasculitis.

study with high RoB and, by exclusion of that particular study, US was more sensitive to diagnose cranial GCA in patients without GCs as compared with the main analysis (83% vs 77%).

The observation that the combination of the US signs 'halo', stenosis and occlusion had a similar sensitivity to the 'halo' sign alone can be explained by the fact that in GCA, vascular stenosis or occlusion is usually caused by inflammatory wall swelling, which is the morphological correlate of the 'halo' sign.<sup>6 17 22-24</sup>

The 'compression' sign, another key elementary US lesion for cranial GCA, revealed a good diagnostic performance in two studies.<sup>30 32</sup> Both studies, however, were published by the same research group and were not completely independent since five patients (Aschwanden M, personal communication) were included in both studies.

The pooled sensitivity (73%) and specificity (88%) of MRI was lower than that of US (77% and 96%, respectively) when the clinical diagnosis was used as the reference standard, while MRI had a higher sensitivity (93% vs 70%) and a similar specificity (81% vs 84%) to sonography when both modalities were compared with TAB. This indirect comparison must be interpreted with caution, because the different test performances are likely also influenced by variations in study design and data analysis. In most MRI studies, for example, TAB was performed in selected cases with high suspicion of GCA only, while in US studies, the majority of patients underwent a TAB. A retrospective study comparing US and MRI directly reported a similar sensitivity (69% and 67%, respectively) and specificity (both with 91%) for both techniques,<sup>64</sup> whereas a prospective direct comparison of both modalities is still missing.

Although PET is commonly used in patients with suspected extracranial LVV, fever of unknown origin or other systemic illnesses, the SLR identified only two prospective studies on this imaging modality<sup>41 42</sup> reporting highly discordant results: in the study of Blockmans et al, data from patients with TAB proven GCA, and PMR with <sup>18</sup>F-FDG uptake in LVs were both considered as GCA cases. This creates 'ground' for circular reasoning given that the test under investigation had also been part of the reference standard.<sup>41</sup> Recalculating the PET data for TAB positive GCA patients yielded a sensitivity of 77% and specificity of 66%, which might be an underestimation of the true diagnostic value of PET, because TAB is frequently false negative in patients with extracranial LV-GCA.<sup>7</sup> Besides, the study by Lariviere et al, which applied the clinical diagnosis after follow-up of 6 months as reference standard, showed a specificity of PET of 100%.<sup>42</sup> This divergence underlines that the performance of a diagnostic test is strongly influenced by the reference standard and that such a standard is urgently needed for extracranial LVV in order to facilitate future studies in the field.

Extracranial large arteries are involved in up to 80% of patients with GCA.<sup>8 48 65 66</sup> In one US study, sensitivity

improved by only 2%, when axillary arteries were investigated in addition to temporal arteries, with similar specificity.<sup>31</sup> Since no other studies were available, the diagnostic gain of evaluating different vascular beds with imaging in addition to cranial arteries remains therefore unclear. Additional studies are warranted to clarify whether a standardised hierarchical approach to assess different vascular territories (eg, temporal, carotid, subclavian and axillary arteries) with US or other imaging modalities improves the diagnostic certainty of cranial and extracranial LV-GCA to an extent that justifies the increased clinical effort. The relatively low sensitivity of 55% for US assessment of 22 arteries reported in the study by Aschwanden et al is probably explained by the fact that one-third of patients had extracranial LV-GCA and that the American College of Rheumatology (ACR) criteria were applied as the reference standard. The ACR criteria mainly capture patients with cranial GCA.<sup>29</sup>

In TAK, both studies on MRA and CTA revealed excellent sensitivities and specificities using conventional angiography as the reference standard. These studies, however, were small, included (partially) the same patients and there was a long interval between MRA/ CTA and angiography.<sup>55 56</sup> Future studies on the diagnostic performance of imaging techniques in TAK are thus warranted, and there is a need for a novel reference standard, given that conventional angiography is highly invasive.

Current evidence on the role for imaging modalities for outcome prediction, as well as for monitoring disease activity and damage in LVV is limited. Although a response of vessel wall alterations to GC treatment was detected in both, cranial and extracranial LV-GCA and TAK,  $^{17\ 20\ 22\ 25\ 28\ 29\ 43-45\ 48-51\ 57\ 58}$  neither imaging findings at baseline nor during follow-up were clearly associated with a disease relapse or any other outcome. Besides, monitoring studies were mainly descriptive and without clear inferences, thus precluding drawing a clear conclusion from them that could be of further information for an SLR like ours. The decision to include these studies in the current SLR was solely based on content knowledge, while from a methodological point of view, this decision is obviously arguable. Now, 15 studies on monitoring are included in this SLR, as we were inclusive, and facing a scarcity of studies, tried to retrieve from the literature any information on the value of imaging for monitoring LVV. However, we could have also been somewhat more restrictive by only including studies that analysed any association between the imaging for monitoring and other outcomes (eg, relapse); if this was the case, no eligible study would have been found in the literature. The development of standard tools for monitoring disease activity and damage in LVV is urgently needed and might facilitate further research on the evaluation of the role of imaging for disease monitoring and outcome prediction.

Studies on minimal technical requirements, settings and operational procedures for the evaluation of patients with cranial and extracranial LV-GCA are also scarce.

#### **RMD** Open

The quality of imaging devices is obviously a critical issue, because poor equipment may easily lead to misclassification of patients<sup>67</sup> and because heterogeneity in the quality of imaging devices renders comparison between studies difficult. To avoid this type of bias in our meta-analysis, we performed a sensitivity analysis focusing on studies using high-quality US machines only which resulted, as expected, in a higher sensitivity as compared with the main analysis (87% vs 77%), thus confirming the important role of using high-quality imaging devices.

In summary, this SLR confirms the good performance of US and MRI of the superficial temporal arteries for diagnosis of cranial GCA. More data on imaging techniques in LV-GCA and TAK are needed, as well as on the role of imaging for outcome prediction, monitoring and technical aspects of LVV, as current studies on these aspects are not conclusive. Based on the results of this SLR, EULAR recommendations for the use of imaging modalities in LVV in daily clinical practice have been developed.

#### Author affiliations

<sup>1</sup>Department of Internal Medicine, Clinical Division of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria

<sup>2</sup>Rheumatology Service, South Tyrolean Health Trust, Hospital of Bruneck, Bruneck, Italy

<sup>3</sup>Department of Rheumatology and Immunology, Medical University Graz, Graz, Austria

<sup>4</sup>Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands

<sup>5</sup>NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal

<sup>6</sup>Center for Behavioral Cardiovascular Health, Columbia University Medical Center, New York City, New York, USA

<sup>7</sup>Medical Centre for Rheumatology Berlin-Buch, Immanuel Krankenhaus Berlin, Berlin, Germany

**Contributors** Study concept and design: ChristinD, ChristiaD, SR and WAS; data collection: ChristinD and ChristiaD; statistical analysis and data interpretation: AS, ChristinD, ChristiaD, SR and WAS; ChristinD prepared the first version of the manuscript. All authors revised the manuscript critically for important intellectual content and gave final approval of the version to be published.

Funding Funding was provided by the European League Against Rheumatism.

Competing interests None declared.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

**Open Access** This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/ licenses/by-nc/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

#### REFERENCES

- Salvarani C, Pipitone N, Versari A, et al. Clinical features of polymyalgia rheumatica and giant cell arteritis. Nat Rev Rheumatol 2012;8:509–21.
- Direskeneli H. Clinical assessment in Takayasu's arteritis: major challenges and controversies. *Clin Exp Rheumatol* 2017;35(Suppl 103):189–93.
- 3. Hall S, Persellin S, Lie JT, *et al*. The therapeutic impact of temporal artery biopsy. *Lancet* 1983;2:1217–20.

- Mukhtyar C, Guillevin L, Cid MC, et al. EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis 2009;68:318–23.
- Hunder GG, Bloch DA, Michel BA, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 1990;33:1122–8.
- Luqmani R, Lee E, Singh S, *et al.* The role of ultrasound compared to biopsy of Temporal Arteries in the Diagnosis and Treatment of Giant Cell Arteritis (TABUL): a diagnostic accuracy and cost-effectiveness study. *Health Technol Assess* 2016;20:1–238.
- Brack A, Martinez-Taboada V, Stanson A, et al. Disease pattern in cranial and large-vessel giant cell arteritis. *Arthritis Rheum* 1999;42:311–7.
- Schmidt WA, Seifert A, Gromnica-Ihle E, et al. Ultrasound of proximal upper extremity arteries to increase the diagnostic yield in large-vessel giant cell arteritis. *Rheumatology* 2008;47:96–101.
- Arend WP, Michel BA, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum 1990;33:1129–34.
- Schmidt WA. Role of ultrasound in the understanding and management of vasculitis. *Ther Adv Musculoskelet Dis* 2014;6:39–47.
- Cinar I, Wang H, Stone JR. Clinically isolated aortitis: pitfalls, progress, and possibilities. *Cardiovasc Pathol* 2017;29:23–32.
- Dejaco C, Ramiro S, Duftner C, et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. *Ann Rheum Dis* 2018. doi: 10.1136/annrheumdis-2017- 212649. [Epub ahead of print 22 Jan 2018].
- Sackett DL, Richardson WS, Rosenberg W, et al; Evidence Based Medicine-How to Practice and Teach EBM. London: Churchill Livingstone, 1997.
- Whiting PF, Rutjes AWS, Westwood ME, et al. Research and Reporting Methods Accuracy Studies. Ann Intern Med 2011;155:529–36.
- Hayden JA, Côté P, Bombardier C. Evaluation of the quality of prognosis studies in systematic reviews. *Ann Intern Med* 2006;144:427–37.
- Takwoingi Y, Guo B, Riley RD, *et al.* Performance of methods for meta-analysis of diagnostic test accuracy with few studies or sparse data. *Stat Methods Med Res* 2017;26.
- Schmidt WA, Kraft HE, Vorpahl K, et al. Color duplex ultrasonography in the diagnosis of temporal arteritis. N Engl J Med 1997;337:1336–42.
- LeSar CJ, Meier GH, DeMasi RJ, *et al.* The utility of color duplex ultrasonography in the diagnosis of temporal arteritis. *J Vasc Surg* 2002;36:1154–60.
- Nesher G, Shemesh D, Mates M, et al. The predictive value of the halo sign in color Doppler ultrasonography of the temporal arteries for diagnosing giant cell arteritis. J Rheumatol 2002;29:1224–6.
- Salvarani C, Silingardi M, Ghirarduzzi A, et al. Is duplex ultrasonography useful for the diagnosis of giant-cell arteritis? Ann Intern Med 2002;137:232–8.
- 21. Murgatroyd H, Nimmo M, Evans A, *et al*. The use of ultrasound as an aid in the diagnosis of giant cell arteritis: a pilot study comparing histological features with ultrasound findings. *Eye* 2003;17:415–9.
- Pfadenhauer K, Weber H. Duplex sonography of the temporal and occipital artery in the diagnosis of temporal arteritis. A prospective study. *J Rheumatol* 2003;30:2177–81.
- Reinhard M, Schmidt D, Hetzel A. Color-coded sonography in suspected temporal arteritis-experiences after 83 cases. *Rheumatol Int* 2004;24:340–6.
- Romera-Villegas A, Vila-Coll R, Poca-Dias V, et al. The role of color duplex sonography in the diagnosis of giant cell arteritis. *J Ultrasound Med* 2004;23:1493–8.
- 25. Karahaliou M, Vaiopoulos G, Papaspyrou S, *et al.* Colour duplex sonography of temporal arteries before decision for biopsy: a prospective study in 55 patients with suspected giant cell arteritis. *Arthritis Res Ther* 2006;8:R116.
- Pfadenhauer K, Behr C. The contribution of ultrasound of the craniocervical arteries to the diagnosis of giant cell arteritis. *Clin Ophthalmol* 2007;1:461–70.
- Zaragozá García JM, Plaza Martínez A, Briones Estébanez JL, *et al.* [Value of the Doppler-ultrasonography for the diagnosis of temporal arteritis]. *Med Clin* 2007;129:451–3.
- Habib HM, Essa AA, Hassan AA. Color duplex ultrasonography of temporal arteries: role in diagnosis and follow-up of suspected cases of temporal arteritis. *Clin Rheumatol* 2012;31:231–7.
- Aschwanden M, Kesten F, Stern M, *et al.* Vascular involvement in patients with giant cell arteritis determined by duplex sonography of 2x11 arterial regions. *Ann Rheum Dis* 2010;69:1356–9.

# <u>6</u>

- Aschwanden M, Daikeler T, Kesten F, et al. Temporal artery compression sign – a novel ultrasound finding for the diagnosis of giant cell arteritis. *Ultraschall Med* 2013;34:47–50.
- Diamantopoulos AP, Haugeberg G, Hetland H, et al. Diagnostic value of color Doppler ultrasonography of temporal arteries and large vessels in giant cell arteritis: a consecutive case series. Arthritis Care Res 2014;66:113–9.
- Aschwanden M, Imfeld S, Staub D, et al. The ultrasound compression sign to diagnose temporal giant cell arteritis shows an excellent interobserver agreement. *Clin Exp Rheumatol* 2015;33(2 Suppl 89):S113–5.
- Bley TA, Weiben O, Uhl M, *et al.* Assessment of the cranial involvement pattern of giant cell arteritis with 3T magnetic resonance imaging. *Arthritis Rheum* 2005;52:2470–7.
- Bley TA, Uhl M, Carew J, et al. Diagnostic value of high-resolution MR imaging in giant cell arteritis. AJNR Am J Neuroradiol 2007;28:1722–7.
- Geiger J, Bley T, Uhl M, et al. Diagnostic value of T2-weighted imaging for the detection of superficial cranial artery inflammation in giant cell arteritis. J Magn Reson Imaging 2010;31:470–4.
- Veldhoen S, Klink T, Geiger J, et al. MRI displays involvement of the temporalis muscle and the deep temporal artery in patients with giant cell arteritis. *Eur Radiol* 2014;24:2971–9.
- Franke P, Markl M, Heinzelmann S, et al. Evaluation of a 32-channel versus a 12-channel head coil for high-resolution post-contrast MRI in giant cell arteritis (GCA) at 3T. Eur J Radiol 2014;83:1875–80.
- Klink T, Geiger J, Both M, et al. Giant cell arteritis: diagnostic accuracy of MR imaging of superficial cranial arteries in initial diagnosis-results from a multicenter trial. *Radiology* 2014;273:844–52.
- Siemonsen S, Brekenfeld C, Holst B, et al. 3T MRI reveals extra- and intracranial involvement in giant cell arteritis. AJNR Am J Neuroradiol 2015;36:91–7.
- Rhéaume M, Rebello R, Pagnoux C, et al. High-Resolution Magnetic Resonance Imaging of Scalp Arteries for the Diagnosis of Giant Cell Arteritis: Results of a Prospective Cohort Study. Arthritis Rheumatol 2017;69:161–8.
- Blockmans D, Stroobants S, Maes A, et al. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med 2000;108:246–9.
- Lariviere D, Benali K, Coustet B, et al. Positron emission tomography and computed tomography angiography for the diagnosis of giant cell arteritis: A real-life prospective study. *Medicine* 2016;95:e4146.
- Schmidt WA, Moll A, Seifert A, et al. Prognosis of large-vessel giant cell arteritis. *Rheumatology* 2008;47:1406–8.
- De Miguel E, Roxo A, Castillo C, *et al*. The utility and sensitivity of colour Doppler ultrasound in monitoring changes in giant cell arteritis. *Clin Exp Rheumatol* 2012;30(1 Suppl 70):S34–8.
- Blockmans D, de Ceuninck L, Vanderschueren S, et al. Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum 2006;55:131–7.
- Blockmans D, Coudyzer W, Vanderschueren S, et al. Relationship between fluorodeoxyglucose uptake in the large vessels and late aortic diameter in giant cell arteritis. *Rheumatology* 2008;47:1179–84.
- 47. García-Martínez A, Arguis P, Prieto-González S, *et al.* Prospective long term follow-up of a cohort of patients with giant cell arteritis screened for aortic structural damage (aneurysm or dilatation). *Ann Rheum Dis* 2014;73:1826–32.
- Schmidt WA, Natusch A, Möller DE, et al. Involvement of peripheral arteries in giant cell arteritis: a color Doppler sonography study. *Clin Exp Rheumatol* 2002;20:309–18.

- Pérez López J, Solans Laqué R, Bosch Gil JA, et al. Colour-duplex ultrasonography of the temporal and ophthalmic arteries in the diagnosis and follow-up of giant cell arteritis. *Clin Exp Rheumatol* 2009;27(1 Suppl 52):S77–82.
- Both M, Ahmadi-Simab K, Reuter M, et al. MRI and FDG-PET in the assessment of inflammatory aortic arch syndrome in complicated courses of giant cell arteritis. *Ann Rheum Dis* 2008;67:1030–3.
- Prieto-González S, García-Martínez A, Tavera-Bahillo I, et al. Effect of glucocorticoid treatment on computed tomography angiography detected large-vessel inflammation in giant-cell arteritis. A prospective, longitudinal study. *Medicine* 2015;94:e486.
- Hautzel H, Sander O, Heinzel A, et al. Assessment of large-vessel involvement in giant cell arteritis with 18F-FDG PET: introducing an ROC-analysis-based cutoff ratio. J Nucl Med 2008;49:1107–13.
- Martínez-Rodríguez I, del Castillo-Matos R, Quirce R, et al. Comparison of early (60 min) and delayed (180 min) acquisition of 18F-FDG PET/CT in large vessel vasculitis. *Rev Esp Med Nucl Imagen Mol* 2013;32:222–6.
- Martínez-Rodríguez I, Martínez-Amador N, Banzo I, et al. Assessment of aortitis by semiquantitative analysis of 180-min 18F-FDG PET/CT acquisition images. *Eur J Nucl Med Mol Imaging* 2014;41:2319–24.
- Yamada I, Nakagawa T, Himeno Y, *et al.* Takayasu arteritis: diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. *J Magn Reson Imaging* 2000;11:481–7.
   Yamada I, Nakagawa T, Himeno Y, *et al.* Takayasu arteritis:
- Yamada I, Nakagawa T, Himeno Y, *et al.* Takayasu arteritis: evaluation of the thoracic aorta with CT angiography. *Radiology* 1998;209:103–9.
- 57. Fan W, Zhu J, Li J, *et al.* Ultrasound morphological changes in the carotid wall of Takayasu's arteritis: monitor of disease progression. *Int Angiol* 2016;35:586–92.
- Sun Y, Ma L, Ji Z, et al. Value of whole-body contrast-enhanced magnetic resonance angiography with vessel wall imaging in quantitative assessment of disease activity and follow-up examination in Takayasu's arteritis. *Clin Rheumatol* 2016;35:685–93.
- Karassa FB, Matsagas MI, Schmidt WA, et al. Meta-analysis: test performance of ultrasonography for giant-cell arteritis. Ann Intern Med 2005;142:359–69.
- Ball EL, Walsh SR, Tang TY, et al. Role of ultrasonography in the diagnosis of temporal arteritis. Br J Surg 2010;97:1765–71.
- Arida A, Kyprianou M, Kanakis M, et al. The diagnostic value of ultrasonography-derived edema of the temporal artery wall in giant cell arteritis: a second meta-analysis. *BMC Musculoskelet Disord* 2010;11:44.
- Buttgereit F, Dejaco C, Matteson EL, et al. Polymyalgia rheumatica and giant cell arteritis. JAMA 2016;315:2442–58.
- Hauenstein C, Reinhard M, Geiger J, et al. Effects of early corticosteroid treatment on magnetic resonance imaging and ultrasonography findings in giant cell arteritis. *Rheumatology* 2012;51:1999–2003.
- 64. Bley TA, Reinhard M, Hauenstein C, *et al.* Comparison of duplex sonography and high-resolution magnetic resonance imaging in the diagnosis of giant cell (temporal) arteritis. *Arthritis Rheum* 2008;58:2574–8.
- Czihal M, Zanker S, Rademacher A, et al. Sonographic and clinical pattern of extracranial and cranial giant cell arteritis. Scand J Rheumatol 2012;41:231–6.
- Czihal M, Tatò F, Rademacher A, et al. Involvement of the femoropopliteal arteries in giant cell arteritis: clinical and color duplex sonography. J Rheumatol 2012;39:314–21.
- Puppo C, Massollo M, Paparo F, et al. Giant cell arteritis: a systematic review of the qualitative and semiquantitative methods to assess vasculitis with 18F-fluorodeoxyglucose positron emission tomography. *Biomed Res Int* 2014;2014:1–11.