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Abstract 1 

The aim of this study was to demonstrate the capability of hyperspectral imaging (HSI) 2 

in rapidly predicting uniformity of vinegar cultural (fermentation substrate) during 3 

acetic solid-state fermentation (ASSF). The potential of HSI for predicting the total 4 

acid content (TAC), pH and moisture content (MC), whose distribution can 5 

characterize the uniformity of vinegar cultural, was investigated during ASSF. 6 

Spectral and image information of vinegar cultural was extracted from the region of 7 

interest (ROI), followed by standard Normal variate (SNV) to reduce the noise. 8 

Synergy interval PLS (siPLS) was used to select optimal wavelengths interval from 9 

the full spectral, and genetic algorithm (GA) was used to select optimal wavelength in 10 

the optimal interval. Besides, principal component analysis (PCA) was applied to 11 

select optimum characteristic images, and the first three principal component (PC) 12 

images were selected because PC1, PC2 and PC3 explained over 99.34% of variances 13 

of all spectral. Finally, PLS, LS-support vector machine (LS-SVM) and genetic 14 

algorithm (GA-PLS) were used to establish prediction model of uniformity indicators 15 

of vinegar cultural. The best model indicated high predictive capability with 16 

coefficient of determination (R2) of 0.78, 0.8 and 0.92 of TAC, pH and MC for the 17 

testing data set, respectively. TAC, pH and MC were used to calculate every pixel 18 

points on the vinegar cultural by the best model. The results indicate that HSI has 19 

considerable promise for predicting uniformity of the vinegar cultural during ASSF. 20 

Key words: Hyperspectral imaging technology; Solid-state fermentation; Uniformity; 21 

Synergy interval PLS; LS-support vector machine; Distribution  22 



1. Introduction 23 

Solid-state fermentation (SSF) is one of the typical representatives of the 24 

fermentation industry. It has continued to build up credibility in recent years in 25 

biotech industries due to its potential applications in the production of biologically 26 

active secondary metabolites, apart from feed, fuel, food, industrial chemicals and 27 

pharmaceutical products and has emerged as an attractive alternative to submerged 28 

fermentation 1. SSF of traditional Chinese vinegar is a mixed-culture refreshment 29 

process that proceeds for many centuries without spoilage 2. Traditional Chinese 30 

vinegars, also called cereal vinegars, are important seasoning in Chinese daily life 31 

through ages 3. They are typically fermented from cereals via multiple steps including 32 

starch saccharification, alcohol fermentation, and acetic solid-state fermentation 33 

(ASSF) 4. Among all the steps mentioned above, the last step (ASSF) is considered 34 

the most important one, because it is responsible for oxidizing ethanol into acetic acid, 35 

and also crucial for flavor compound formation. 36 

Zhenjiang aromatic vinegar is the representative product of this technique. It is 37 

made from glutinous rice, and the starch saccharification and alcohol fermentation 38 

steps are similar to the technique of rice wine in China 3. The ASSF is conducted by 39 

mixing alcohol mash with the wheat bran and rice hull in fermentation pots after 40 

saccharification and alcohol fermentation. The ASSF process is as followed: (1) the 41 

fermentation vinegar cultural (fermented substrate) of the 8th day from the last batch 42 

was taken as seed for the next round inoculation at the mass ratio of 1:13. (2) The rice 43 

hull is mixed with fermentation culture, which is loose and has very large interspace, 44 



can hold enough air for the aerobic microbial growth and metabolic activities. (3) 45 

Finally, the wheat bran was mixed with the rice hull and alcohol mash in fermentation 46 

pots. This step generally lasts about 20 days, and the vinegar cultural was stirred by 47 

the machine every day in order that the temperature and oxygen content is in the 48 

appropriate range. The uniformity of the vinegar cultural is very important during 49 

ASSF. Recently studies have mainly focused on the microbiology diversity, dynamics 50 

of the bacterial community and the change of the physical and chemical indicators in 51 

the ASSF of Chinese vinegars using sensors or chemical methods 1, 2, 5, 6. However, 52 

the uniformity of the vinegar cultural is still poorly researched. In the ASSF process, 53 

the workers often judge the uniformity of the vinegar cultural by experience and sense 54 

organ, which are the lack of scientific basis. If the uniformity of the vinegar cultural 55 

can’t be judged in time, the vinegar cultural will easily agglomerate or harden in the 56 

fermentation pots. The main reason is that the temperature can’t be released timely so 57 

that the local temperature is too high 7. Thus this study will focus on dissecting the 58 

uniformity about the formation and function of metabolites in vinegar cultural during 59 

SSF. 60 

The total acid content (TAC), pH value and moisture content (MC) are very 61 

important indicators during ASSF. Especially, it is worth noting that in 62 

physicochemical analysis the evaluation of TAC, pH values and MC have raised great 63 

attentions for both researchers. TAC plays a key role in determining the sensory 64 

properties and affects microbial growth 8. The pH value is regarded the one of the 65 

most important condition affecting microorganism growth, and microbial protein is 66 



synthesized during the SSF process. So this process variable must be monitored in 67 

time so that the process of SSF can be effectively optimized and controlled 8. For MC, 68 

if excessive levels are observed, water accumulates within the void spaces of the solid 69 

matrix resulting in oxygen limitation. In contrast, if the MC is insufficient, 70 

microorganism growth will be hindered 9. Their distribution can reflect the uniformity 71 

of the vinegar cultural during ASSF. If the solid form culture utilized in the production 72 

of vinegar is unevenly distributed this can influence the culture breed and metabolism. 73 

However, in ASSF, no existing electrode can record TAC, pH and MC on-line in a 74 

solid medium because of the lack of free water, thus its determination is 75 

time-consuming and labor-intensive. Therefore, a rapid and accurate analytical 76 

method is essential for monitoring these process variables to guarantee the quality and 77 

visualize the uniformity of the vinegar cultural during ASSF. A hyperspectral imaging 78 

(HSI) system, which consists of both a digital camera and a spectrograph, can acquire 79 

images with both high spatial and spectral resolution contents. Therefore, this system 80 

could be considered an extension of a video image analysis system with hundreds of 81 

narrow spectral bands along the spectral axis. With HSI, a spectrum for each pixel can 82 

be obtained and a gray scale or tonal image for each narrow band can be obtained 10. 83 

HSI may capture both spatial and biochemical information simultaneously so that the 84 

likelihood of predicting TAC, pH and MC accurately could be much greater. 85 

Furthermore, HSI could give the distribution of TAC, pH and MC in vinegar cultural. 86 

This study aimed at exploring the feasibility of HSI technique for predicting 87 

TAC, pH and MC of vinegar cultural. In addition, distribution maps were visualized 88 



using image processing algorithms to show spatial variation of TAC, pH and MC 89 

within vinegar cultural. The specific objectives were to (1) acquire hyperspectral 90 

images of examined vinegar cultural samples in the spectral range of 400-960 nm; (2) 91 

extract spectral information in the region of interest (ROI); (3) synergic interval PLS 92 

(siPLS) and genetic algorithm (GA) were used to select the optimum spectral 93 

variables; (4) principal component analysis (PCA) was applied to select optimum 94 

characteristic images; (5) build quantitative relationships using Partial least square 95 

(PLS), least squares support vector machine (LS-SVM) and GA-PLS; (6) develop 96 

image processing algorithms to generate prediction map for visualizing the spatial 97 

distribution of TAC, pH and MC within vinegar cultural to show the uniformity of the 98 

vinegar cultural. 99 

2. Materials and methods 100 

2.1 vinegar cultural samples 101 

Vinegar cultural samples were collected in June, 2015, from Jiangsu Hengshun 102 

Vinegar Industry Co., Ltd (Jiangsu, People’s Republic of China) located in the eastern 103 

coastal province of Jiangsu (31º 37´-32º 12´ northern latitude, 118º 58´-119º 27´ east 104 

longitude). Samples were prepared from three fermentation runs conducted at the 105 

factory site. For each fermentation trial, sampling was conducted in triplicate, with 106 

samples selected from the same depth in the fermentation vinegar culture.  107 

2.2 Image acquisition and pre-processing 108 

A hyperspectral imaging system (Fig. 1(a)) was used to acquire hyperspectral 109 

images of tested vinegar cultural in the wavelength range of 400-1000 nm. A scanning 110 



rate was selected to achieve a square pixel. The horizontal motorized platform whose 111 

movement speed was preset for 1.25mm/s automatically moved the sample to the 112 

pre-determined initial position. The number of scan lines was set at 618 lines /picture 113 

and the number of scans in each line was 1628 covering the spectral region of 114 

430–960 nm using a 618 pixel camera. Thus, a spatial block of a 1628 × 618 ×618 115 

image was created, which was represented by a 3-D image with x-axis, y-axis and 116 

λ-axis coordinate information. A single HSI for each sample was stored in a raw 117 

format before being processed. During data acquisition, the HSI system is sensitive to 118 

changes in ambient conditions such as temperature and humidity, accordingly, room 119 

temperature was kept at approximately 25 °C and 55% R.H. 120 

In Fig.1(c), to allow error correction and to obtain a relative reflectance, a dark 121 

image and a white image were obtained by covering the lens with a cap and taking an 122 

image from a white reference as described in reference 11. 123 

A rectangle region of interest (ROI) as 100 × 100 pixels was selected for each 124 

sample. The relative reflectance for each image was calculated by averaging the 125 

spectral responses of each pixel in the ROI. After averaging, 60 samples were 126 

obtained in this work. In Fig. 1(d), each spectrum was smoothed with Standard 127 

Normal Variate (SNV) to eliminate variations in the baseline promoted by light 128 

scattering of each spectrum. SNV is a very common pre-treatment in spectroscopy 10.  129 

Fig.1 130 

2.3 TAC, pH value and MC determination  131 

2.3.1 TAC measurement 132 



Ten gram vinegar cultural from ROI of each sample then was used for TAC 133 

determination. The reference measurement of TAC (in terms of acetic acid, g/100 g 134 

vinegar culture) was in accordance with the official analytical methods for vinegar in 135 

China (GB/T 5009.41-2003). First, each sample should hydrate in distilled water for 2 136 

hours before measuring. Then 20 m L of the diluents was mixed with 60 m L distilled 137 

water and titrated with 0.01 M Na OH standard to end point pH = 8.2. Finally, the 138 

volume of the consumed Na OH was recorded and TAC was computed according to 139 

the equation provided in GB/T 5009.41-2003. All chemical reagents used in the 140 

chemical analyses were of analytical grade.  141 

2.3.2 The pH value measurement 142 

Ten gram vinegar cultural from ROI of each sample then was used for pH 143 

determination. Distilled water (50mL) was added to 10 g sample and the mixture was 144 

agitated vigorously. After 30 min, the pH of the vinegar cultural was determined with 145 

a pH meter (PHS-3 C, Shanghai Precision and Scientific Instrument, China). 146 

2.3.3 MC measurement 147 

The thermogravimetric method was used to measure the MC of the vinegar 148 

culture. A thermogravimetric balance (HB 43S Halogen balance, Mettler Toledo, 149 

Greifensee, Switzerland) was used as a reference method. Vinegar culture samples of 150 

approximately 10 g were heated at a 105 ◦C desiccation temperature that remained 151 

constant during the analysis. The measurement stopped as soon as the mean weight 152 

loss per 90 s was lower than 1 mg. The thermogravimetric method precision is ± 0.1% 153 

of moisture. The samples were cooled in a dryer, weighed and moisture loss was 154 



calculated as a percentage. 155 

2.4. Multivariate data analysis 156 

After pre-process, the large spectral data contains lots of hidden information, 157 

which has a strong relationship with TAC, pH and MC prediction. Therefore, it is 158 

important to select a reliable modeling method to build a calibration model for 159 

quantitative analysis. Currently, there are a variety of modeling methods, such as PLS 160 

12, Least Squares-support vector machine (LS-SVM) 13, 14, multiple linear regression 161 

(MLR) 15, artificial neural network (ANN) 16, Genetic algorithm-PLS (GA-PLS) 17 162 

and other 18. In this study, PLS, LS-SVM and GA-PLS were applied to correlate 163 

spectra with reference values for quantitative determination of TAC, pH and MC in 164 

vinegar cultural, respectively. Besides, the selected most model was used to estimate 165 

the concentration of TAC, pH and MC in each pixel of vinegar cultural. The results 166 

could show the TAC, pH and MC distribution in vinegar cultural, which could reflect 167 

the uniformity of vinegar cultural during ASSF. 168 

2.4.1 Optimal wavelength interval selection 169 

To further extract the spectral information related to TAC, pH and MC in the 170 

vinegar culture, siPLS was used to select the optimum spectral variables in 171 

comparison with a reference 18. The siPLS algorithm is an all-possible 172 

interval-combinations procedure test based on all possible PLS of all subsets of 173 

intervals. The principle of this algorithm is to split the data set into a number of 174 

intervals (variable-wise) and to calculate all possible PLS model combinations of two, 175 

three or four intervals. The optimal combination of intervals and number of PCs were 176 



optimized by cross-validation and determined by the lowest root mean square error of 177 

cross validation (RMSECV).  178 

2.4.2 Optimal wavelength selection 179 

The acquired hyperspectral images are high dimensional, and thus suffer from 180 

the problem of multicollinearity during multivariate analysis. However, some 181 

wavelengths in the whole spectrum are irrelevant to TAC, pH and MC prediction, and 182 

removing these irrelevant wavelengths can promote the computation speed and make 183 

the model easier to be interpreted. There is no standard method to identify the optimal 184 

wavelengths from the full wavelengths, and many selection methods, such as 185 

independent component analysis (ICA) 19, principal component analysis (PCA) 20 and 186 

genetic algorithm (GA) 21, have been proposed in previous studies. 187 

In a simplified GA, there are at least five components: encoding, population 188 

initialization, individual selection, crossover, and mutation. Input spectral variables 189 

will be encoded with binary data: zeros and ones as chromosomes. GA requires a 190 

number of possible candidate solutions to start with. For instance, at first step, in the 191 

selected optimal wavelength interval, all spectral variables will be selected. Fitness of 192 

every chromosome will be evaluated using a predefined fitness function to determine 193 

whether it satisfies constraints. If it is satisfied, its output will be the selected results; 194 

if not, chromosomes with better fitness will be selected to “survive”. Then, from 195 

crossover and mutation, offspring will be generated (similar to the combination of 196 

bands). The fitness of every chromosome will be evaluated again. This step will be 197 

repeated until the fitness satisfies the predefined constraints 22. A subset of spectral 198 



variables sensitive to TAC, pH and MC will be obtained. 199 

2.4.3 Prediction model 200 

After selected the most wavelength, the PLS, LS-SVM and GA-PLS was used to 201 

rapidly predict TAC, pH and MC of the vinegar cultural, respectively.  202 

Among them, LS-SVM is a powerful tool and supervised learning method that 203 

can be used to classification or regression in nonlinear models. The SVM algorithm is 204 

based on the statistical learning theory and the structural risk minimization and 205 

typically achieves the convex optimization problems by solving the quadratic 206 

programs. The theory and more details of SVM and LS-SVM can be found in the 207 

literature 23. LS-SVM was used to rapidly predict TAC, pH and MC of the vinegar 208 

cultural during ASSF. 209 

GA-PLS 24 was proved that a large absolute PLS regression coefficient indicates 210 

an important variable in a model obtained for auto scaled data. The algorithm we have 211 

used for this study is specifically devoted to the problem of variable selection. Define 212 

the parameters of the GA-PLS: Maximum number of PLS components, 15, Number 213 

of runs, 100, the amount of evaluations, 200. The parameters were defined according 214 

to the Ref 17, 25. The details of the settings required are fully covered in the references. 215 

2.5. Image analysis 216 

2.5.1 Image segmentation 217 

After the hyperspectral images black and white corrected, the image was 218 

segmented by threshold value method. Image segmentation aimed to isolate vinegar 219 

cultural sample from its background as well as from undesirable pixels which exhibit 220 



abnormal reflectance values. Representative single-band reflectance images of the 221 

vinegar culture at nine selected wavelengths from 430 to 910 nm are shown in Fig. 222 

2(a) to illustrate the general pattern of the hyperspectral images and differences 223 

between the different spectral regions. The gray value difference is the biggest at the 224 

900 nm, the background can be isolated. To isolate vinegar cultural sample from the 225 

background, the two-peak method was used to determine the threshold size. The 226 

histogram of HSI was shown in Fig.2 (b). The image at wavelength 900 nm was 227 

segmented using a simple threshold at a level of 60. All pixels above this threshold 228 

were distinctly assigned to the background as shown in Fig.2 (c). The resulting 229 

segmented image was used as a mask to identify all pixels belonging to the vinegar 230 

cultural sample. 231 

Fig.2  232 

2.5.2 Extraction of optimum feature pictures by PCA 233 

Each sample has 618 images at every wavelength. PCA was used to reduce the 234 

hyperspectral data dimensions. The top three PCs (i.e. PC1, PC2, and PC3) issued 235 

from PCA were taken into account in the further analysis. The total accumulative 236 

contribution rate of variance of the raw spectral data for the 60 samples using the top 237 

three PCs was 99.34%. PC1, PC2 and PC3 images are shown in Figure 3, obtained by 238 

PCA. It also was found that the PC1 image provided the best representation of the 239 

original sample, because the variance contribution rate explained by PC1 image is the 240 

highest, reaching 95.68%. Thus, the dominant bands are determined according to the 241 

PC1 image in this work, and the three dominant bands with highest weight 242 

http://www.sciencedirect.com/science/article/pii/S0003267011011251#fig0015
http://www.sciencedirect.com/science/article/pii/S0003267011011251#fig0015


coefficients were selected by investigating all weighting coefficients. The three 243 

characteristic images at 598 nm, 684 nm and 858 nm are shown in Fig. 3(d–f). 244 

Fig.3  245 

2.6 Visualization of TAC, pH and MC of the vinegar cultural 246 

Compared with traditional spectroscopy, HIS has the advantage of providing 247 

spatial information, which can be used to visualize TAC, pH and MC in vinegar 248 

cultural by creating concentration images or maps. In the current study, an image 249 

processing algorithm was developed to transfer the optimized model to each pixel of 250 

the hyperspectral images for creating TAC, pH and MC distribution maps. The best 251 

model was used to calculate the TAC, pH and MC in each pixel of the vinegar cultural. 252 

The resulting distribution maps were displayed with a linear color scale (from blue to 253 

red), in which high TAC, pH and MC values were displayed in yellow/red while low 254 

TAC, pH and MC values were displayed in blue. By checking the color variation in 255 

the distribution maps, the predicted distribution of TAC, pH and MC within a vinegar 256 

cultural sample can be easily assessed.  257 

2.7. Software 258 

All image processing and data analysis procedures described above were 259 

executed using programs developed in Matlab 7.1 (MathWorks, Natick, MA, USA). 260 

Extraction of reflectance spectra from the hyperspectral images was finished using 261 

ENVI 4.3 (ITT Visual Information Solutions, Boulder, CO, USA). 262 

3. Results and discussion 263 

3.1. Measured TAC, pH and MC 264 



The descriptive statistics for the TAC, pH and MC of 60 vinegar cultural samples 265 

determined by reference methods above are summarized in Table.1. The mean, 266 

standard deviation (SD) and the range of TAC, pH and MC are shown in Table.1. All 267 

samples were divided into two sets. To avoid bias in subset selection, a 2:1 268 

calibration/ prediction division was adopted. All samples were sorted according to 269 

their respective y-value (viz. the reference measurement value of TAC, pH and MC). 270 

Then two spectra of every three samples were selected into the calibration set, so that 271 

finally the calibration set contains 40 spectra and 20 in prediction set. 272 

Table.1 273 

3.2 The result of the selected optimum interval and wave points 274 

After SNV preprocessing, the responses were further used to select the optimum 275 

spectral variables by siPLS algorithm. First, selected spectral regions were divided 276 

into equidistant subintervals, such as the 11, 12 … 29 and 30 intervals with the 277 

selected number of intervals being optimized by cross-validation. For TAC, the lowest 278 

RMSECV was achieved when the full spectra were split into 21 intervals and the 279 

optimum combinations of intervals were [6 11 14 16], the lowest RMSECV was 0.574 280 

mg /g, as shown in Table.2. For pH value, the combined intervals selected by siPLS 281 

are presented in Table.2, where four intervals [8 12 15 24] were selected, and the 282 

lowest RMSECV was 0.043. For MC, the combined intervals selected by siPLS were 283 

four intervals [10 13 17 19] were selected, and the lowest RMSECV was 4.61 g/g. The 284 

global optimum siPLS model was achieved with 15 subintervals and 4 PLS factors. 285 

Spectral region of specific interest, related to the absorption of certain components 286 



can improve the predictive ability compared to regressions using the whole spectral 287 

variables. GA was employed to select the most informative variables. All the 288 

parameters were set as follows: the number of iteration: 100, population initialization: 289 

50, probability of cross-over: 0.95, probability of mutation: 0.01. The selected 290 

optimum wavelength was as followed in Table.2. The eight wavelengths (850.95、291 

440.14、453.41、609.58、435.18、624.15、625.01、848.32、442.63 and 610.44 nm) 292 

were defined as the most relevant wavelengths in predicting TAC. Similarly, twelve 293 

wavelengths (731.29、722.60、555.02、729.55、726.08、604.44、568.61、595.04、294 

717.39、719.13、734.77 and 723.47) were selected for pH value and twelve 295 

wavelengths (544、546、531、535、575、832、835、840、849、895、896 and 901 296 

nm) were selected for efficient prediction of MC. By using only these particular 297 

wavelengths in building optimized PLS, LS-SVM and GA-PLS models in predicting 298 

the same constituents, the results as shown in Table. 3 revealed that the predictability 299 

of these models is still good, indicating the robustness of the developed models.  300 

Table.2  301 

3.3. Prediction of chemical constituents 302 

HSI systems acquire abundant spatial information while collecting spectral 303 

information. After siPLS and GA selected the variables, the independent variables of 304 

the model decreased from full spectral of 618 to below 12 variables. The prediction of 305 

the TAC, pH and MC of vinegar cultural samples were carried out by using PLS, 306 

LS-SVM and GA-PLS, respectively. The results as shown in Table.3 revealed that the 307 

predictability of these models. By comparing, TAC was predicted by the optimal 308 



model of GA-PLS with determination coefficient (R) of 0.86 with RMSEP of 0.713 309 

mg /g, pH and MC were predicted by the optimal model of the LS-SVM with 310 

determination coefficient of 0.803, 0.851 with RMSEP of 0.056 and 4.53 g/g, 311 

respectively. These results suggest that the prediction models optimized with 312 

leave-one-out cross-validation are representative and the models work accurately in 313 

unknown samples. Despite the accurate chemical reference methods used in this study, 314 

the current results indicate how the proposed method was suited as a practical 315 

replacement for the conventional chemical method with reasonable accuracy. The 316 

critical advantage of this method is that it is quite accurate and highly reproducible. 317 

However, the inhomogeneity of the vinegar cultural, which is of great importance 318 

with respect to the method of sampling, must be put into consideration. 319 

Table 3 320 

3.4. Distribution map of TAC, pH and MC in vinegar cultural 321 

As the major chemical indicators were successfully predicted from spectral data 322 

extracted from the images by employing multivariate analyses, HSI system provides 323 

another possibility to work in the spatial dimensions of the same images. Besides, HSI 324 

provides a good alternative with a profound consideration of the spatial dimensions of 325 

the examined sampled by considering the structure heterogeneity of the sample. In 326 

this way, the spectrum of any point in the sample can be used for calculating the 327 

concentrations of chemical constituents (e.g. TAC, pH or MC) because each pixel in 328 

the HSI has its own corresponding spectrum. Each constituent is displayed and 329 

mapped in different visual appearance according to its concentration. In this study, 330 



each constituent has different the optimal prediction model, which can be used to 331 

calculate each pixels point concentration.  332 

Fig. 4 shows the distribution on the vinegar cultural based on the optimum model, 333 

and is colored according to the band intensity indicating the relative content of the 334 

TAC, pH and MC of the vinegar cultural. The color bar was extended from a low 335 

content (in blue) to a high content (in red). The resulting false color mapping with 336 

intensity scaling was then used to display compositional contrast between pixels in the 337 

image. Obviously, the images can clearly visualize the TAC, pH and MC in the 338 

vinegar cultural. It was easy to recognize the uniformity of the vinegar cultural during 339 

ASSF.  340 

Fig.4 has higher concentration of TAC (7.72 mg/g) in the red region and has 341 

lower concentration (3.34 mg/g) in the blue region. The pH and MC have different 342 

distribution in different region. Therefore, the distribution map can rapidly reflect the 343 

uniformity of the vinegar cultural based on hyperspectral imaging technology and 344 

different algorithm. In fact, this result is extremely significant in evaluation of the 345 

uniformity of vinegar culture during SSF if implemented in a large scale production.  346 

It may be used to expose the hidden compositional information that other optical 347 

methods are not able to differentiate. Depending on the sample, this technique enables 348 

identification and characterization of the relative content of various main metabolites 349 

that are distributed within the vinegar cultural. Moreover, hyperspectral imaging 350 

produces detailed maps showing the TAC, pH and MC distribution in vinegar cultural 351 

sample. Study of this map of the sample can provide data on spatial localization of 352 



metabolites accumulation. Thus, HSI allows monitoring of the metabolites 353 

distribution and its changes in vinegar cultural. This may also be valuable for 354 

investigation of the uniformity of the vinegar cultural where metabolites are involved, 355 

such as the vinegar cultural fermentation state and the uniformity. 356 

Fig. 4 357 

4. Conclusion 358 

The results presented illustrate that HSI is a powerful tool for TAC, pH and MC 359 

analysis in vinegar cultural. These indicators can be detected in vinegar cultural 360 

samples non-destructively. After hyperspectral image acquisition and pre-processing, 361 

average spectral obtained from the ROI of vinegar cultural were used for model 362 

development. HIS technique has been successfully applied to rapidly predict the 363 

physical and chemical indicators of the vinegar cultural for simultaneous estimation 364 

of TAC, pH and MC during ASSF. The distribution map of the vinegar cultural has 365 

very good response the uniformity of the vinegar cultural. Thus, HSI allows 366 

monitoring of the main metabolite distribution and their changes during ASSF, which 367 

can reflect the uniformity of the vinegar culture. This may also be valuable for 368 

investigating many biological processes where TAC, pH and moisture are involved. 369 
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