

This is a repository copy of Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/179328/</u>

Version: Accepted Version

Article:

Zhihua, L, Xucheng, Z, Jiyong, S et al. (4 more authors) (2016) Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites. Sensors and Actuators B: Chemical, 226. pp. 553-562. ISSN 0925-4005

https://doi.org/10.1016/j.snb.2015.10.062

© 2015 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NoDerivs (CC BY-ND) licence. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the original authors. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Fig.1. Schematic and photo of the interdigitated Au electrode.

Fig.2. Schematic diagram of the experimental setup.

Fig.3. (a) Comparison of cyclic voltammograms of aniline electropolymerization in the absence (red line) and presence (black line) of NiTSPc; (b) Continuous cyclic voltammograms of aniline electropolymerization in the presence of NiTSPc for 5 cycles. Electrolyte: 0.5 M H₂SO₄, 50 mM aniline, 2 mM NiTSPc; scan rate: 20 mV/s; potential limit: -0.2-0.9 V.

Fig.4. (a) SEM images of the porous PANI/NiTSPc film deposited on IAE scanned for 1 cycle and (b) the details of the porous film; images of the (c) PANI/NiTSPc film and (d) pure PANI on IAE scanned for 5 cycles; AFM images of PANI/NITSPc films scanned for (e) 1 cycle and (f) 5 cycle; (g) EDS, (h) Raman spectrum and (i) FT-IR spectra of the PANI/NiTSPc composites.

Fig.5. Dynamic response of the sensor prepared in electrolyte containing (a) 0.5 mM, (b) 2mM and (c) 4 mM NiTSPc toward 1000 ppm NH₃; dependence of the (d) resistance and response, (e) response time and recovery time on NiTSPc concentration.

Fig.6. Dependence of the response and R_0 of the prepared sensors on (a) the applied potential limit and (b) the scan rate.

Fig.7. (a) Response transients and (b) the response of PANI/NiTSPc thin films exposed to NH_3 of different concentrations at 25 °C.

Fig.8. (a) Influence of humidity levels on the *R*, R_0 and response (*S*) of the prepared sensors exposed to 50 ppm NH₃; (b) the dynamic response transients of the sensor toward 1000 ppm NH₃ for 6 times.

Fig.9. Response transients of the PANI/NiTSPc sensor exposed to (a) 50 ppm and (b) 500 ppm NH₃ employing N₂ or dry air as the carrier gas at 25 $^{\circ}$ C.

Scheme 1. Proposed structure of PANI/NiTSPc composites and mechanism for interaction between PANI/NiTSPc and NH₃.