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Abstract
In many thermal engineering problems involving high temperatures/high pressures, the bound-
ary conditions are not fully known since there are technical difficulties in obtaining such data
in hostile conditions. To perform the task of estimating the desired parameters, inverse prob-
lem formulations are required, which entail to performing some extra measurements of certain
accessible and relevant quantities. In this paper, justified also by uniqueness of solution condi-
tions, this extra information is represented by either local or non-local boundary temperature
measurements. Also, the development of numerical methods for the study of coefficient identifi-
cation thermal problems is an important topic of research. In addition, in order to decrease the
computational burden, meshless methods are becoming popular. In this article, we combine,
for the first time, the method of fundamental solutions (MFS) with a particle filter sequential
importance resampling (SIR) algorithm for estimating the time-dependent heat transfer coef-
ficient in inverse heat conduction problems. Two different types of measurements are used.
Numerical results indicate that the combination of MFS and SIR shows high performance on
several test cases, which include both linear and nonlinear Robin boundary conditions, in com-
parison with other available methods.

Keywords: Particle filter; method of fundamental solutions; inverse heat conduction; heat
transfer coefficient; Bayesian inference.

1 Introduction

In inverse transient heat transfer problems that are solved iteratively, we usually need a direct
problem solver that is fast and accurate. Therefore, the development of numerical methods
such as meshless methods, especially the method fundamental solutions (MFS) [1], attempting
to satisfy these two conditions, became an important task. The MFS is a collocation method
where no mesh needs to be generated, and this makes it relatively easy to program and com-
putationally inexpensive. The MFS possesses the same advantages as the boundary element

1



method (BEM), but in addition it does not require any boundary discretisation [2]. The limita-
tions are therefore the need for a fundamental solution being explicitly available and the extra
ill-conditioning that arises from its meshless character. The MFS has predominantly been
applied to stationary heat conduction problems governed by the Laplace, modified Helmholtz
or biharmonic PDEs [2–4] and it has produced accurate and stable results. The MFS for the
time-dependent linear parabolic heat equation was proposed in [5] and was investigated the-
oretically and computationally in [6]. From thereon, it has been used in many instances for
solving various inverse problems for the parabolic heat equation in one or two-dimensions in
fixed or moving boundary domains [7–9].

It is well-known that the heat transfer coefficient (HTC), which characterises the contri-
bution that an interface makes to the overall resistance of the heat conducting system, it is
one of the most important quantities to estimate in heat transfer. Prior to this study, for the
resolution of the inverse transient heat conduction problem concerning the determination of
the HTC, Masson et al. [10] and Yang et al. [11] applied the conjugate gradient iterative regu-
larization method to estimate the two-dimensional space-dependent HTC. However, especially
for nonlinear problems, such gradient methods of minimizing the least-squares gap between the
computed and measured data can get trapped in a local minimum and therefore they require
a good initial guess. An alternative methodology that can be considered, based on Bayesian
inference, [12, 13], has a number of distinctive attributes, e.g. it provides statistically mean-
ingful posterior error estimates. In the Bayesian approach to statistics, an attempt is made
to utilize all available information in order to reduce the amount of uncertainty present in an
inferential or decision-making process. As new information is obtained, it is combined with
previous information to form the basis for statistical procedures. The formal mechanism used
to combine the new information with the previously available information is known as Bayes’
theorem.

In the Bayesian framework, state estimation problems are often solved with the so-called
Bayesian filter, which requires relatively low computational demands compared to the Markov
chain Monte Carlo (MCMC) algorithm [14]. The most widely known Bayesian filter is the
Kalman filter (KF) [15], which is, however, limited to linear models with additive Gaussian
noise. Extensions of the KF were developed in the past for less restrictive cases by using lin-
earization techniques [12]. Similarly, sequential Monte Carlo methods have been developed in
order to represent the posterior density in terms of random samples and associated weights.
Such methods, usually denoted as particle filters among other designations found in the litera-
ture, do not require the restrictive hypotheses of KF. Hence, particle filters can be applied to
non-linear systems with non-Gaussian errors [12, 16–18].

In 1964, Hammersley and Hanscomb [19] presented a technique that used recursive Bayesian
filters, along with Monte Carlo simulations, known as Sequential Importance Sampling (SIS).
In this approach, the key idea is to represent the posterior probability function as a set of
random samples with associated weights, in order to calculate the estimates based on these
samples and weights. Three decades later, Gordon et al. [20] added an extra step, named
re-sampling, into the SIS method to avoid a problem known as degeneration of particles. This
filter is known as the Sequential Importance Re-sampling (SIR) algorithm [21,22].

In the present study, the objective is to evaluate the performance of the MFS+SIR filter for
estimating the time-dependent HTC ρ(t) at time t and to compare it with other methods, which
reported unrealistic negative and unstable results. Since we seek to determine a HTC that is
time-dependent only, as far as the inverse problem is concerned, the spatial dimensionality
of the domain is less relevant. Even so, the fact that the HTC is not treated as a constant
parameter offers a more realistic model to various practical applications such as nucleate boiling
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on cylinders, [23], or quenching experiments, [24]. We study the sequential estimation of the
time-dependent HTC in the inverse heat conduction problem introduced in section 2. The MFS
is used to solve the direct problem sequentially for the SIR filter, as described in sections 3 and
4. Numerical results presented and discussed in section 5 indicate that this combination shows
good performance in terms of robustness, stability and accuracy compared to other existing
methods. Finally, conclusions are made in section 6.

The mathematical formulation and analysis of this paper can also be extended to higher
dimensions, [25–28], and numerically analysed, in principle, using the same approach based on
the SIR particle filter combined with the MFS, [27]. Space-dependent thermal conductivity
can also be analysed with the MFS in case it is square-root harmonic, [29], or for a piecewise
homogeneous layered material, [30].

2 Mathematical formulation

In this section, we formulate the mathematical model for the inverse problem of determining
a time-dependent Robin HTC. Given a final time of interest tf > 0, and a one-dimensional
finite slab Ω = (0, 1), the aim is to find the pair (T (x, t), ρ(t)), where T (x, t) represents the
temperature for x ∈ Ω, t ∈ [0, tf ), and ρ(t) ≥ 0 is the time-dependent HTC satisfying:

∂T

∂t
(x, t) =

∂2T

∂x2
(x, t), (x, t) ∈ (0, 1)× (0, tf ), (1a)

T (x, 0) = T 0(x), x ∈ (0, 1), (1b)

−∂T

∂x
(0, t) + ρ(t)g(T (0, t)) = h0(t), t ∈ [0, tf ), (1c)

∂T

∂x
(1, t) + ρ(t)g(T (1, t)) = h1(t), t ∈ [0, tf ), (1d)

where g, T 0, h0 and h1 are given functions, and, for simplicity, the heat capacity and thermal
conductivity were taken to be constant and equal to unity, whilst the heat source was assumed
to be absent. In equations (1c) and (1d), the right-hand side functions h0 and h1 are usually
taken to be zero such that their homogeneous versions model the Newton’s or Stefan-Boltzman’s
law of boundary heat transfer with the environment. Under certain assumptions on the input
data, the direct problem given by (1) when ρ is known, can be shown to be well-posed [26,31].

In the inverse problem, in order to compensate for the unspecified HTC, we consider some
additional information given by [26,32,33] either the boundary temperature measurement,

Y (t) = T (1, t), t ∈ [0, tf ), (2)

or the non-local measurement

E(t) =

∫

∂Ω

Φ(T (x, t))ds(x) = Φ(T (0, t)) + Φ(T (1, t)), t ∈ [0, tf ), (3)

where Φ(T ) =
∫

g(T )dT is a primitive of the function g governing the linear (g(σ) = σ) or
nonlinear (e.g. radiative g(σ) = σ3|σ|) boundary heat transfer law [26]. Therefore, in the
linear case g(σ) = σ and Φ(T ) = T 2/2, whilst in the radiative nonlinear case g(σ) = σ3|σ| and
Φ(T ) = T 4|T |/5. Of course, E(t) represents a boundary integral involving the temperature
history over the boundary ∂Ω and it has more physical meaning in higher dimensions. In
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one-dimension, as calculated in (3), E(t) is just a known expression between the unknown
boundary temperatures at the ends x ∈ {0, 1} of the finite slab.

We finalise this section by mentioning that a typical practical application in which a time-
dependent HTC (defined in terms of the heat flux across a surface for a unit temperature
gradient) needs to be estimated occurs in the study of forced-convective flow boiling over the
outer surface of a heater tube, [34]. The nonlinear estimation of a temperature-varying HTC
has been considered elsewhere, [35].

3 The method of fundamental solutions (MFS)

Only a few MFS applications to time-dependent inverse problems can be found in the literature
and moreover, the MFS has rarely been used in conjunction with statistical methods [36]. The
fundamental solution of the one-dimensional heat equation (1a) is given by

F (x, t; y, τ) =
H(t− τ)
√

4π(t− τ)
e−(x−y)2/(4(t−τ)), (4)

where H is the Heaviside function, which is introduced to emphasize that the fundamental
solution is zero for t ≤ τ . Then, based on the MFS, an approximation to the solution T (x, t)
can be sought as, [6, 37],

TM(x, t) =
M
∑

m=−M+1

c(0)m F (x, t; y0, τm) +
M
∑

m=−M+1

c(1)m F (x, t; y1, τm), (x, t) ∈ [0, 1]× [0, tf ], (5)

where τm =
(2m−1)tf

2m
for m = −M + 1, ...,M, y0 = −h and y1 = 1 + h; h > 0 is the distance

from the source points to the boundary, and M represents the truncation level of an infinite
series expansion whose span is dense in the set of functions satisfying the heat equation (1a).
More on the linear independence and denseness in L2({0, 1} × (0, T )) of the set of functions
{F (x, t; y0, τm), F (x, t; y1, τm)} with (τm)m∈Z dense in (0, T ) can be found in [38]. We note that
the source points can also be placed at various space locations in the interval [0, 1] at fixed
time instant(s) outside the interval [0, tf ], see [37], but this selection is actually not needed.

In the direct problem (1a) - (1d), the HTC ρ(t) is known and only the coefficients c
(0)
m and

c
(1)
m for m = −M + 1, ...,M are unknown and have to be determined by imposing the initial
and boundary conditions (1b) - (1d). Therefore, selecting the times tk =

k·tf
M

for k = 0, ...,M
and the space points xl =

l
N+1

for l = 1, ..., N , we obtain the following system of (N +2M +2)
equations with 4M unknowns:

1
∑

i=0

M
∑

m=−M+1

c(i)m F (xl, 0; yi, τm) = T 0(xl), l = 1, ..., N, (6)

−
1
∑

i=0

M
∑

m=−M+1

c(i)m

∂F

∂x
(0, tk; yi, τm) + ρkg

(

1
∑

i=1

M
∑

m=−M+1

c(i)m F (0, tk; yi, τm)

)

= h0(tk),

k = 0, ...,M, (7)

1
∑

i=0

M
∑

m=−M+1

c(i)m

∂F

∂x
(1, tk; yi, τm) + ρkg

(

1
∑

i=1

M
∑

m=−M+1

c(i)m F (1, tk; yi, τm)

)

= h1(tk),

k = 0, ...,M, (8)
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where ρk = ρ(tk) for k = 0, ...,M . The above system can be written in a generic form as:

A(c) = r, (9)

where c = ((c
(0)
m )m=−M+1,...,M , (c

(i)
m )m=−M+1,...,M) is the vector of unknowns and r is a known

right-hand side vector containing the initial values (T 0(xl))l=1,...,N , and the boundary values
(h0(tk))k=0,...,M and (h1(tk))k=0,...,M . The nonlinear vectorial function A contains the funda-

mental solution (4) and its space derivative ∂F
∂x
(x, t; y, τ) = (y−x)H(t−τ)

4
√

π(t−τ)3
e−

(x−y)2

4(t−τ) .

In the inverse problem, the vector ρ = (ρ(tk))k=0,...,M is also unknown and the system of
Eqs. (6)–(8) is supplemented with the additional information (2) or (3) given by

1
∑

i=0

M
∑

m=−M+1

c(i)m F (1, tk; yi, τm) = Y (tk), k = 0, ...,M, (10)

or

Φ

(

1
∑

i=0

M
∑

m=−M+1

c(i)m F (0, tk; yi, τm)

)

+ Φ

(

1
∑

i=0

M
∑

m=−M+1

c(i)m F (1, tk; yi, τm)

)

= E(tk),

k = 0, ...,M. (11)

In this case, instead of Eq. (9) we have the extended version

Ã(c, ρ) = r̃, (12)

where the vector r̃ contains the vector r along with the discretized values in the right hand
side of Eq.(10) or Eq.(11), and Ã is the extended operator governing Eqs.(6)–(8) and Eq.(10)
or Eq.(11). Although, in principle, the deterministic least-squares minimization of (12) could
be performed using the Matlab toolbox optimization routine lsqnonlin, in this study we adopt
instead a Bayesian formalism, which in addition is able to provide statistically meaningful
posterior error estimates, as described in the next section, with its numerical results further
presented and discussed in Section 5.

4 The particle filter for the inverse problem

The solution of the inverse problem within the Bayesian framework is tackled in the form of
statistical inference using the posterior density, based on Bayes’ theorem. Let us consider the
measurement (2) (or its discretized version (10)), in the form of the data Y = (Yk)k=1,...,M ,
where Yk = Y (tk) for k = 1, ...,M . Since this data contains information about the vector of
unknowns ρ, it can be used to update ρ by determining the conditional probability distribution
of the unknown states ρ given the measurements Y . For each k = 1, ...,M , Bayes’ theorem is
stated as:

π(ρk|Y1, ..., Yk) =
π(Y1, ..., Yk|ρk)πprior(ρk)

π(Y1, ..., Yk)
, (13)

where π(ρk|Y1, ..., Yk) is the posterior density, which is the conditional density of the unknown
parameters given the measurements, πprior(ρk) is the prior density, which is the model for the
unknowns that reflects all the uncertainty of the parameters without the information conveyed
by the measurements, π(Y1, ..., Yk|ρk) is the likelihood function, which is the measurement model
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incorporating the related uncertainties, that is, the conditional density of the measurements
given the unknown parameters, and π(Y1, ..., Yk) is the marginal density of the measurements,
which plays the role of a normalizing constant. By assuming that the measurement errors
present in (2) or (3) are additive and independent Gaussian random variables, with zero mean
and known covariance matrix W , the likelihood function, for each k = 1, ...,M , is given by [12],

π(Y k|ρk) = (2π)−k/2|W |−1/2 exp

{

−1

2
(Y k − T k)

TW−1(Y k − T k)

}

, (14)

where |W | denotes the determinant of the matrix W , and we have denoted by Y k := (Yi)i=1,...,k

the vector of boundary temperature measurements (2) and T k := (T (1, ti; (ρj)j=1,...,k))i=1,...,k

the solution of the direct (forward) problem for given (ρj)j=1,...,k, up to the time t = tk. The
prior model for ρk, given by Eq.(15) below, is a normal distribution with mean ρk−1 and a
known standard deviation σρ.

4.1 State estimation problem

Non-stationary, or state estimation, inverse problems [12] may be defined in the form of evolu-
tion and observation models, comprising stochastic processes. In the nonlinear problem frame-
work, the parameter estimation procedure is often based on an approximation of the optimal
filter [39]. The extended Kalman filter and its various alternatives can give good results in
practice, but its estimates and the associated covariances are theoretically not the conditional
mean or the maximum a posteriori (MAP) estimates given the entire measurement history.
The particle filter offers a good alternative: in many practical cases giving better results, and
its theoretical properties are becoming increasingly well-understood [39, 40]. It is particularly
appealing to use particle filtering in order to estimate parameters in partially observed systems.
For a review, see [41] where a non-Bayesian approach that consists of minimizing a given cost
function, like the conditional least-squares criterion, or by maximizing the likelihood function,
was employed. This approach is usually performed in batch processes, but it can also be ex-
tended to recursive procedures. In [42], the authors proposed a Bayesian approach where an
augmented state variable, together with the unknown parameters are processed by a filtering
procedure. However, this method supposes that a prior law is given for the unknown param-
eters. Another possibility is to use particle filter algorithms that rely on deterministic values
of the model parameters. If these parameters are to be estimated simultaneously with the
state variables, one possibility is to apply the SIR filter by considering the parameters as state
variables with an evolution model, for example, in the form of a random walk process. The
parameters are then sequentially estimated along with the state variables. Such an approach
can result in accurate estimates of the parameters, even for physically complicated nonlinear
problems such as in fire propagation [43].

The present work applies the SIR filter to the estimation of the temperature evolution at
the space points ((xl)l=1,..,N) in addition to the boundary Robin HTC. Thus, the augmented
state vector of dimension N is given by xk = (T (xl, tk), ρ(tk))l=1,...,N for each k = 1, ...,M .
These variables are related by means of the mathematical model given in section 2, which has
to be solved for each sample particle sequentially, for k = 1, ....,M .

The estimation problem, through the particle filter, follows the procedure stated in [44].
For each k = 1, ...,M , it proceeds as follows: using the measured data Y k = (Yi)i=1,...,k, Npart

particles for the states {x(i)
k }

Npart

i=1 are drawn from a prior probability density function. Such
particles are propagated using the state evolution model and updated with the observation
model in order to give the measurement estimates {z(i)k }

Npart

i=1 of the data defined in either
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(2) or (3). Afterwards, a likelihood function assigns an importance weight, w
(i)
k ∼ π(z

(i)
k |Y k)

for i = 1, ..., Npart. The set of the updated states and corresponding weights {x(i)
k , w

(i)
k }

Npart

i=1

represents the approximation of the posterior density.
In the current inverse problem, the evolution model for the temperature is the numerical

approximation of the solution of the direct problem (1a)-(1d) through the MFS and the evolu-
tion model for the boundary Robin HTC is a random walk. We have the following evolution
and observation models:

ρk = ρk−1 + σρek, k = 1, ...,M, (15)

T (xl, tk) = MFS(T (xl, tk−1), ρk) + vk, k = 1, ...,M, l = 1, ..., N, (16)

zk = nk +

{

T (1, tk), in case of (2)
E(tk), in case of (3)

, k = 1, ...,M, (17)

where ek is a random variable drawn from a normal distribution with zero mean and unitary
standard deviation, vk and nk are process and measurement noises, respectively, and σρ is a
positive constant to be prescribed, as described later on in Section 5.1. The subscript k on ρ
indicates that the parameter will be sequentially estimated along with the state variables. To
initiate the above procedure we need to prescribe x0 = (T (xl, 0), ρ(0))l=1,...,N . This is achieved
by noting that at t = t0 = 0, we already know T (xl, 0) = T 0(xl) for l = 1, ..., N from (1b), and,
from the compatibility conditions between the data (1b) and (1c) at x = 0 and t = 0, we also
know ρ0 = ρ(0) = (h0(0) +

dT 0

dx
(0))/g(T 0(0)). The prior model for ρk is a normal distribution

with mean ρk−1 and a known standard deviation, which is given by equation (15).

4.2 Particle filter algorithm

The particle filter method is a Monte Carlo technique for the solution of state estimation prob-
lems, in which the posterior density is represented by a set of particles with associated weights.
In this regard, the Sequential Importance Sampling (SIS) algorithm estimates the posterior

probability distribution from a set of particles representative of the system variables [16, 45].
The prior distribution provides the necessary information for the initial step: it is the basis
for the first particle draw. The likelihood function is then used to compare the initial informa-
tion with the experimental measurements, and it incorporates more information, via particle
weights, in order to determine the posterior distribution. However, the sequential application
of the particle filter may result in a degeneracy phenomenon: after a few iterations, all but a
few particles have negligible weight. The degeneracy implies that a large computational effort
is devoted to update particles whose contribution to the approximation of the posterior proba-
bility distribution is practically zero [16,45]. This problem can be overcome with a resampling

step in particle filtering. Resampling involves a mapping of the random pair
{

x
(i)
k , wi

k

}

into
{

x
(i∗)
k , N−1

part

}

with uniform weights. It deals with the elimination of particles originally with

low weights and the replication of particles with high weights (x
(i∗)
k ). This can be performed

if the number of effective particles (particles with large weights) falls below a certain thresh-
old. Alternatively, resampling can also be applied indiscriminately at each instant tk, as in
the Sampling Importance Resampling (SIR) algorithm [22, 43, 44, 46, 47]. The SIR steps are
summarised as follows [16,45]:

Step 1. For i = 1, ..., N , draw new particles xk from the prior density π(xk|x(i)
k−1, ρk−1) and

then use the likelihood function to calculate the corresponding weights wi
k = π(Yk|x(i)

k ).

Step 2. Calculate the total weight Tw :=
∑N

i=1 w
i
k and then normalise the particle weights,
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i.e., for i = 1, ..., N , let wi
k ← wi

k/Tw.
Step 3. Resample the particles as follows:
Construct the cummulative sum of weights (CSW) by computing ci = ci−1+wi

k for i = 1, ..., N
starting from c0 = 0.
Let i = 1 and draw a starting point u1 from the uniform distribution U [0, N−1].
For j = 1, ..., N

Move along the CSW by defining uj = u1 + (j − 1)/N .
While uj > ci do i = i+ 1.

Assign sample x
(j)
k ← x

(i)
k .

Assign sample weight wj
k = 1/N .

5 Numerical results and discussion

In this section, we illustrate the efficiency and accuracy of the MFS combined with the par-
ticle filter SIR algorithm. To evaluate the filter performance, the credible intervals (CI) were
calculated using the quantile function in Matlab by considering the approximate (estimated)
posterior distribution. The maximum width of the credible interval (MWCI) [46] was deter-
mined by considering the entire period of time [0, tf ]. We have also used metrics such as, the
root-mean-square error (RMSEρ) and the relative error Rel(ρ) [32] in the HTC ρ, defined by

RMSEρ =

√

√

√

√

1

M

M
∑

k=1

(ρk − ρ̂k)2, Rel(ρ) =

√

∑M
k=1(ρk − ρ̂k)2
√

∑M
k=1 ρ

2
k

× 100%, (18)

where ρk is the true value of the HTC and ρ̂k is the estimated HTC. Such metrics are obviously
not practically available, but they can be used as performance indicators of the accuracy of
the particle filter and for comparison with other methods.

It is worth stating that a narrow MWCI indicates an apparent accuracy only and it should
be used with caution. A narrow width could also mean that the particles approximating the
posterior probability distribution are constrained to a small range of values, which may not
encompass the true solution. In this sense, when particle degeneration occurs, the width of the
credible interval decreases drastically since all but a few particle have negligible weight. If this
issue occurs frequently, the values of MWCI will be compromised and will lead to erroneous
conclusions about the estimation quality. One way to circumvent this negative effect is to
consider the effective sample size [16,48], that is, the number of particles with non-zero weight,
defined by Neffk =

1
∑Npart

i=1 (wi
k
)2
for k = 1, ...,M . If this is small it indicates severe degeneration

of the particle filter. Thus, this quantity was also evaluated, along with the MWCI, to ensure
the best performing particle filter is identified.

In this work, the simulated measurements were defined by (2) or (3), where additive noisy
errors were used:

Ya(tk) = Y (tk) + ǫk, k = 1, ...,M, (19)

Ea(tk) = E(tk) + ǫk, k = 1, ...,M, (20)

where (ǫk)k=1,...,M are random variables drawn from a Gaussian distribution with mean zero
and standard deviation

σ = p×
{

maxk=1,...,M |Y (tk)| , for (19),
maxk=1,...,M |E(tk)| , for (20),

(21)
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where p represents the percentage of noise. In general, Bayesian filters include a noise vector in
the state evolution model. However, there is not a straightforward way or formula to quantify
such uncertainties. One approach is to assign an uncertainty value based on how much we
know or trust the mathematical model, which could also consider measurement uncertainty
analysis and engineering judgment. However, in this section we have used the same value of
the measurement uncertainties, which was p% of the maximum value of the state, as given by
equation (21).

The computational studies for direct and inverse problems were performed in MATLAB on
a computer with Intel Core i5 processor and 4 GB RAM. The number of particles Npart was
set arbitrarily to be 50, 100 and 200, which led to average computational times of 270, 418 and
844 seconds, respectively, to filter the measurements sequentially. Forty percent of the total
computational time was spent on propagating the particles through the MFS.

5.1 Example 1

In this example, defined by Eqs.(1a)-(1d) and (2), we take tf = 1, T 0(x) = x2 + 1, h0(t) =
t(2t + 1), h1(t) = 2 + 2t(t + 1), the linear law g(T ) = T , and the boundary temperature
measurement (2) given by

T (1, t) = Y (t) = 2 + 2t, t ∈ [0, tf = 1). (22)

This is a benchmark test example already considered in [32], and is investigated here for
comparison purposes, with the analytical solution given by

T (x, t) = x2 + 2t+ 1 (23)

and
ρ(t) = t. (24)

The MFS was applied with M = 11, N = 2M − 2 = 20 and the source points uniformly
located on y0 = −1 and y1 = 2, i.e. h = 1. First, for verification, we have solved the direct
problem given by Eqs.(1a)- (1d) when the HTC is assumed known and given by (24). Figure
1 compares the analytical solution for T (x, 0.5) = x2 + 2, T (1, t) = 2 + 2t, T (0, t) = 2t + 1
and E(t) = (T 2(0, t) + T 2(1, t))/2 = (8t2 + 12t + 5)/2 with the corresponding MFS numerical
solutions obtained from (9). We can see that the MFS is very accurate in solving the direct
problem.

Next, we investigate the inverse problem (1a)–(1d) and (2) and, in particular, we undertake
an analysis of choosing the modelling parameter σρ in the random walk (15) for the HTC.
Let us consider the additive error measurement (19) with p = 1% noise. We have tested
three different standard deviations σρ ∈ {0.02, 0.2, 0.4} for the random walk (15) related to the
expected rate of change of the HTC. When sample impoverishment takes place, most of the
particles are eliminated during the resampling step. Arulampalam et al. [16] suggested that if
the effective sample size Neff is over 50% of Npart the degeneracy is not significant. We also
follow the lines of [22] in which Neff was used as an indicator of the ”optimal” value for σρ in
a heat transfer inverse problem concerned with the sequential estimation of an unknown heat
flux from experimental measurements.

Table 1 shows the results of the evaluation criteria, in which Neff [%] denotes the average
percentage relative error between the effective sample size and the total number of particles
obtained by the particle filter. Note that σρ = 0.02 gives low values of Neff [%] and MWCI,
and consequently inaccurate results because the evolution model (random walk) (15) for the
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HTC depends strongly on the prior information, i.e. the initial estimate of the particle filter.
This is typical with particle filters that are essentially MCMC-type algorithms which have
difficulties with small variances. Moreover, since the parameter space (or search field) of HTC
was not fully explored, this causes the particle filter to have Neff [%] smaller than 50%. It
was noted that sample impoverishment is substantial, because in this situation the width of
the credible interval is almost zero. When σρ was increased to 0.2 and then to 0.4, the filter
performance improved without sample impoverishment. For illustration, Figure 2 shows the
results obtained by the SIR filter with Npart = 200 and σρ ∈ {0.2, 0.4}. The filtered boundary
temperature measurements (19) contaminated with p = 1% noise are also included in Figures
2(c) and 2(d). Once the dynamic behavior of the random walk model improves, the filter is
able to draw particles close to the actual HTC with suitable performance. In the remainder of
this section we take σρ = 0.2 in (15).

Table 2 presents the results of the evaluation criteria obtained by the particle filter for
p = 5% noise in Eq.(19). It is worth remarking that there was no sample impoverishment as
Neff [%] was always greater than 50%.

Previously, Yan et al. [32], using a Bayesian MCMC inference approach, obtained the rela-
tive errors Rel(ρ) ∈ {3.84, 8.07}% for p ∈ {1, 5}% noise in Eq.(19), respectively. On the other
hand, see Tables 1 and 2 for σρ = 0.2 and Npart = 200, our SIR filter results give larger relative
errors of Rel(ρ) ∈ {7.22, 18.57}% for p ∈ {1, 5}% noise in Eq.(19), respectively. However, the
MCMC method of [32], which used all the time history measurements (2) or (3) globally, it has
also resulted in some negative values for the HTC which are physically unrealistic. The same
happened with the results of [49], obtained using the boundary element method (BEM), with
no positivity constraint or regularization imposed. However, neither negativity nor instability
happened with the particle filter which uses one measurement at a time in a sequential manner.
Therefore, eventhough the SIR filter has yielded results with a relative error twice as larger
than the MCMC method, it has demonstrated reasonably accurate and stable results without
unphysical negative estimates for the HTC. With reduced information, the credible interval
has comparable width to the results of [11] and in addition, the CPU time is relatively small.

The results in Tables 1 and 2 have been obtained for the boundary temperature measure-
ment (2) contaminated with additive noise (19). In Table 3 we present the results of the
evaluation criteria obtained using the particle filter for solving the inverse problem (1a)–(1d)
with the non-standard measurement (3) given by E(t) = (8t2 + 12t + 5)/2, contaminated
with additive noise (20). This is a benchmark test example, already considered in [33] with
the analytical solution given by Eqs. (23) and (24), and is investigated here for comparison
purposes.

Figures 2(a), 3(a) and 4(a), 4(b) show the estimated HTC ρ(t) from the particle filter
algorithm with σρ = 0.2 and Npart = 200 particles applied to the inversion of the data (19),
(20) contaminated with p = 1% and p = 5% additive noise, respectively. The corresponding
filtered data are plotted in Figures 2(c), 3(c) and 4(c), 4(d), respectively. In all Figures 2-4,
the credible intervals have been included.

Figures 5(a) and 5(b) show the variation of the MWCI for the SIR filter, comparing the
results obtained for p = 1% and p = 5% noise in the measurement (19) or (20). All results
presented in Figures 2-5 demonstrate that as the measured data becomes more accurate, i.e.
as p decreases from 5% to 1%, the MWCI decreases. They also indicate that measuring the
non-standard quantity (3) contains more information in the inverse problem than the standard
boundary temperature measurement (2), as the results obtained show smaller width of credible
intervals.
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5.2 Example 2

In the second example given by Eqs.(1a)-(1d) and (3), and considered before in [26], we take
tf = 1 and T 0(x) = x2, h0(t) = 16t4(t + 1), h1(t) = (1 + t)(1 + 2t)4 + 2, ρ(t) = 1 + t,
g(T ) = T 3 |T | corresponding to nonlinear radiation, and the measurements (3) given by E(t) =
12.8t5 + 16t4 + 8t2 + 2t+ 0.2. In this example, the direct problem has the analytical solution

T (x, t) = x2 + 2t. (25)

We apply the MFS with M = 12, N = M − 2 = 10 and the source points uniformly located on
y0 = −1, y1 = 2, i.e. h = 1. The MFS nonlinear system (9) is solved using the fsolve MATLAB
function routine, which uses the Levenberg-Marquardt method.

First, for the direct problem, Figure 6 shows the MFS solution compared to the analytical
solution for T (1, t), T (0, t) and E(T ), and accurate numerical results can be observed. The
errors are higher than those in Figure 1 for Example 1 because in Example 2 the direct problem
is nonlinear due to the nonlinearity of the HTC in the in the boundary conditions (1c) and
(1d).

Next, we present in Table 4 and Figure 7 the numerical results obtained by inverting the
data (3) contaminated with p ∈ {1%, 5%} additive noise (20). Compared to Table 3 of Example
1, it can be observed that the results of Table 4 reveal higher MWCI and lower Neff. Moreover,
it can be seen that the evaluation error criteria are consistent with the errors in the data and
the estimated HTC lies within a credible interval of reasonable width. Furthermore, the results
illustrated in Figure 7(b) reveal comparable accuracy with the numerical results presented in
Figure 2(e) of [26] obtained without regularization.

6 Conclusions

The MFS has become an important tool for the numerical solution of inverse problems [1]. In
this paper, we have combined the SIR particle filter algorithm and the MFS to estimate the
time-dependent HTC in inverse heat conduction problems. The governing boundary condition
of the third kind may be of a linear convective or nonlinear radiative Robin type. For a unique
solution, extra information was given by the temperature specification at one boundary point or
the nonlocal boundary integral observation (3). Compared to the numerical results produced by
other methods, the MFS+SIR has yielded comparable results in terms of accuracy, stability and
width of the credible intervals, with additional improved features such as CPU time efficiency
and preservation of the physical non-negativity of the HTC. These improvements have been
illustrated on smooth test examples with analytical solutions available. This way the input
data (2) and (3) for the inverse problem has been generated directly from the temperature
expressions (23) and (25) such that no inverse crime has been committed. On the other hand,
retrieving more severe HTCs presenting discontinuities may represent currently a limitation of
the MFS requiring further consideration in the future.
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Table Captions

Table 1. Results for various σρ for p = 1% noise in Eq. (19) for Example 1.
Npart σρ RMSEρ Rel(ρ)% MWCI Neff [%]

50 0.02 0.460 77.8 0.04 2.00
100 0.02 0.460 77.7 0.07 2.15
200 0.02 0.405 68.5 0.06 2.26
50 0.2 0.049 8.36 0.25 64.20
100 0.2 0.047 8.00 0.29 67.36
200 0.2 0.045 7.22 0.25 64.80
50 0.4 0.053 9.11 0.28 50.05
100 0.4 0.051 8.68 0.29 50.70
200 0.4 0.047 8.10 0.29 52.31

Table 2. Results for p = 5% noise in Eq.(19) with σρ = 0.2 for Example 1.
Npart RMSEρ Rel(ρ)% MWCI Neff [%]
50 0.118 19.93 0.67 77.53
100 0.110 18.72 0.59 73.82
200 0.109 18.57 0.55 75.29

Table 3. Results for p ∈ {1, 5}% noise in Eq.(20) with σρ = 0.2 for Example 1.
Npart p RMSEρ Rel(ρ)% MWCI Neff [%]
50 1% 0.0502 8.48 0.27 85.67
100 1% 0.045 7.73 0.27 85.56
200 1% 0.041 7.07 0.23 84.69
50 5% 0.074 12.54 0.65 58.43
100 5% 0.071 12.10 0.56 63.85
200 5% 0.057 9.65 0.59 61.17

Table 4. Results for p ∈ {1, 5}% noise in Eq.(20) with σρ = 0.2 for Example 2.
Npart p RMSEρ Rel(ρ)% MWCI Neff [%]

50 1% 0.068 4.46 0.67 63.26
100 1% 0.060 3.96 0.71 64.29
200 1% 0.056 3.66 0.70 64.64
50 5% 0.220 14.37 0.72 53.06
100 5% 0.203 13.26 0.82 54.80
200 5% 0.176 11.49 0.79 55.20
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Figure Captions
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Figure 1: The analytical and MFS numerical solutions for: (a) T (x, 0.5), (b) T (1, t), (c) T (0, t)
and (d) E(t), obtained when solving the direct problem for Example 1. Corresponding to the
results for T (x, 0.5), T (1, t), T (0, t) and E(t), the maximum pointwise relative errors between
the analytical and numerical MFS solutions are 0.5%, 0.2%, 0.3% and 0.01%, respectively.
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Figure 2: Estimated ρ(t) and the filtered boundary temperature measurements (19) contami-
nated with p = 1% noise, obtained using the particle filter with Npart = 200 particles for (a)
and (c) σρ = 0.2; (b) and (d) σρ = 0.4, for Example 1.
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Figure 3: Estimated ρ(t) and the filtered measurements (20) contaminated with p = 1% noise,
obtained using the particle filter with σρ = 0.2 and Npart = 200 particles, for Example 1.
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Figure 4: Estimated ρ(t) from the measurements (a) (19) or (b) (20) contaminated with p = 5%
noise, as filtered in (c) and (d), respectively, obtained using the particle filter with σρ = 0.2
and Npart = 200 particles, for Example 1.
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Figure 5: The variation of the MWCI over time for (a) p = 1% and (b) p = 5% noise in
Eq.(19) or Eq.(20), obtained using the particle filter with σρ = 0.2 and Npart = 200 particles,
for Example 1.
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Figure 6: The analytical and MFS numerical solutions for: (a) T (1, t), (b) T (0, t), (c) E(t),
obtained when solving the direct problem for Example 2. Corresponding to the results for
T (1, t), T (0, t) and E(t), the maximum pointwise relative errors between the analytical and
numerical MFS solutions are 4%, 2% and 0.2%, respectively.
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Figure 7: (a) Estimated ρ(t) from the measurements (20) with (a) p = 1% and (b) p = 5%
noise, as filtered in (c) and (d), respectively, along with (e) the variation of the MWCI over
time, obtained using the particle filter with σρ = 0.2 and Npart = 200 particles, for Example 2.
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