

This is a repository copy of Determination of Retrogradation Degree in Starch by Midinfrared and Raman Spectroscopy during Storage.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/179324/</u>

Version: Accepted Version

Article:

Hu, X, Shi, J, Zhang, F et al. (6 more authors) (2017) Determination of Retrogradation Degree in Starch by Mid-infrared and Raman Spectroscopy during Storage. Food Analytical Methods, 10 (11). pp. 3694-3705. ISSN 1936-9751

https://doi.org/10.1007/s12161-017-0932-0

© 2017, Springer Science Business Media New York. This is an author produced version of an article published in Food Analytical Methods. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Determination of retrogradation degree in starch by Mid-				
2	infrared and Raman spectroscopy during storage				
3	Xuetao Hu ^a , Jiyong Shi ^{a, c, d} , Fang Zhang ^a , Xiaobo Zou ^{a,c, *} , Mel Holmes ^{b, c} , Wen				
4	Zhang ^a , Xiaowei Huang ^a , Xueping Cui ^a , Jin Xue ^a				
5	^a Key Laboratory of Modern Agriculture Equipment and Technology, School of Food				
6	and Biological Engineering, Jiangsu University, Zhenjiang 212013, China				
7	^b School of Food Science and Nutrition, the University of Leeds, Leeds LS2 9JT, United				
8	Kingdom				
9	^c Joint Laboratory of China-UK on food nondestructive sensing, Jiangsu University,				
10	Zhenjiang 212013, China				
11	^d Contributed equally to this work				
12	*Corresponding author.				
13	Tel: +86 511 88780085; Fax: +86 511 88780201				
14	Email address: zou_xiaobo@ujs.edu.cn (Xiaobo Zou)				

15 Abstract

16	Retrogradation behavior is an important physicochemical property of starch
17	during storage. A fast and sensitive method was developed for determining the
18	retrogradation degree (RD) in corn starch by mid-infrared (MIR), Raman
19	spectroscopy and combination of MIR and Raman. MIR and Raman spectra were
20	collected from different retrogradation starch and then processed by partial least-
21	squares (PLS), interval PLS (iPLS), synergy interval PLS (siPLS), and backward
22	interval PLS (biPLS). Two different levels' fusion data extracted from MIR and
23	Raman spectra were analyzed by partial least-squares (PLS). The developed models
24	demonstrated that both MIR and Raman techniques combined with chemometrics can
25	be used to determine the RD in starch. The PLS model built by medium-level fusion
26	approach achieved the most satisfied performance with a correlation coefficient of
27	0.9658. Integrating MIR and Raman technique combined with chemometrics
28	improved the prediction performance of RD in comparison with a single technique.
29	Keywords: Retrogradation degree; Starch; Raman spectroscopy; MIR spectroscopy;
30	Partial least-squares

32 Introduction

Starch presented in an enormous variety of food products acts as the main 33 materials to supply nutrition and energy, or as an additive to improve the quality of 34 food. Starch retrogradation behavior is an important physicochemical property of 35 starch during storage. Retrogradation could lead to deterioration of starch-based food 36 during storage (Eliasson 2010), while retrogradation also could provide starch food 37 with functional properties. Starch is beginning to retrograde after starch completely 38 gelatinized. During retrogradation, molecular chains in starch begin to reassemble to 39 develop an ordered structure (Ferrero et al. 1994). Generally, starch paste 40 41 retrogradation is accompanied by gradual increases in rigidity and phase separation between polymer and solvent (Karim et al. 2000). Starch-based foods after 42 retrogradation are indigestible by body enzymes and may make consumer suffer from 43 44 indigestion (Hayakawa et al. 1997). Therefore, a number of steps were attempted to study and prevent retrogradation (Liu et al. 2007). As we all know, one kind of 45 resistant starch called RS3 is the retrograded starch forming during cooling of 46 gelatinized starch. As a new resource of dietary fiber, retrogradation starch can 47 provide functional properties and find applications in a variety of foods (Karim et al. 48 2000; Sajilata et al. 2006). Consumers prefer appropriate retrogradation to no 49 retrogradation in starch-based products. Retrogradation is used to harden products and 50 reduced products stickiness during the manufacturing process of breakfast cereals and 51 parboiled rice (Karim et al. 2000). The retrogradation starch is often said that 52

53	retrogradation deteriorates the quality of starch food. It is equally true that the suitable			
54	retrogradation starch is a benefit to gastrointestinal digestion. Therefore, the			
55	retrogradation degree (RD) in starch is a very important index for monitoring the			
56	quality of starch foods.			
57	Various methods have been applied for studying retrogradation starch, such as			
58	rheological methods texture profile analysis (TPA) and rapid visco analyzer (RVA)			
59	(Mariotti et al. 2009; Olayinka et al. 2011), thermal analysis (differential scanning			
60	calorimetry (DSC), differential thermal analysis (DTA) and nuclear magnetic			
61	resonance (NMR))(Chang and Liu 1991). The most popular method is enzymatic			
62	methods based on acid or amylolytic enzymes (e.g. <i>a-amylase</i> and β -amylase etc.) for			
63	determining RD in starch. Normally, the RD is measured by determining residual non-			
64	digestible starch which is not digested to glucose after incubation with amylolytic			
65	enzymes (Karim et al. 2000). These methods are complicate, laborious and time-			
66	consuming. Rheological methods are used to evaluate the characteristics of			
67	retrogradation starch based on viscosity property, hardness and elasticity (Karim et al.			
68	2000). These properties can provide the qualitative description of starch			
69	retrogradation while the RD values was not determined specifically (Smits et al.			
70	1998). The enthalpy in the melting endotherm resulting from thermal analysis was			
71	used as the index for evaluation of starch retrogradation (Paker and Matak 2016).			
72	Samples detected by thermal analysis, enzymatic methods and rheological methods			
73	are not reusable by consumers (Chang and Liu 1991). Most NMR instruments are			

74	expensive and not available in many labs or industries (Monakhova and Diehl 2016).
75	Spectroscopic methods have been used in study of retrogradation as
76	nondestructive methods, such as near-infrared (NIR) spectroscopy, mid-infrared
77	(MIR) spectroscopy, Raman spectroscopy, and so on (de Peinder et al. 2008; Rocha et
78	al. 2016; Thygesen et al. 2003). Each retrogradation starch has a unique and
79	characteristic spectrum due to their particular molecular component and structure.
80	NIR shows overtones and combination vibrations of the molecule when NIR beam
81	irradiates into samples. The molecular bands observed in NIR spectra are very broad
82	resulting in that it is difficult to ascribe specific bands to specific chemical
83	components (Romano et al. 2016). Both MIR and Raman spectroscopy can generate
84	bands linked to fundamental vibration and supply fingerprints of components that can
85	be used for quantitative and qualitative characterization (Vankeirsbilck et al. 2002).
86	They have been applied to characterize the molecular structural changes of
87	retrogradation starch, and are conducive to comprehending the changes of amylose
88	and amylopectin (Flores-Morales et al. 2012). However, there is no study about
89	quantitative analysis of RD in starch by MIR, Raman and the combination of them.
90	Different types of starch (from pure corn and cassava starch samples, as well with
91	mixtures from both starch types) can be characterized usin by using Raman
92	spectrscopy(Almeida et al. 2010). Besides Raman spectroscopy, MIR spectroscopy
93	can also be used for quantitative analysis of RD in starch (Wu et al. 2016). Acting as
94	complementary spectroscopic techniques, both types of measurements, Raman and

95	MIR, can provide different molecular vibrations. (Thygesen et al. 2003). Previous			
96	studies have demonstrated that data fusion technique based on MIR and Raman can			
97	increase the prediction ability of chemical components in food (Wu et al. 2016)			
98	Therefore, the objectives of this paper were: (1) to use MIR, Raman			
99	spectroscopy and the combination of two techniques for investigating the			
100	retrogradation behavior in starch; (1) to establish a nondestructive and rapid method			
101	for measuring the quality, acceptability, and shelf-life of starch-containing foods.			
102	Materials and methods			
103	Retrogradation starch preparation			
104	Corn starch was purchased from Runzhou Starch Company in Zhenjiang. A			
105	solution of corn starch (1g) suspended in 19 ml of water was heated at 100°C with			
106	constant stirring for 1 hour in order to make starch completely gelatinized. The			
107	gelatinized starch paste was stored for different time (0, 1, 2, 3, 4, 5, 10, 15, 20 days)			
108	at 4°C. After storage, retrogradation starch with different storage time was dried and			
109	kept in a desiccator. Sixteen samples for each retrogradation starch were prepared			
110	using same procedures. All samples were obtained from one independent			
111	gelatinization experiment.			
112	MIR and Raman spectroscopy			
113	The MIR spectra of retrogradation starch were collected by Nicolet 380 FT-IR			
114	spectrometer (Thermo Electron Corporation, USA) in the spectral range of 650 to			
115	4000 cm ⁻¹ at resolution of 2 cm ⁻¹ (Flores-Morales et al. 2012). Raman spectra were			

116	recorded with DXR Laser micro-Raman spectrometer (Thermo Electron Corporation,		
117	USA) with 532 nm laser source. During collection of Raman spectra, time of		
118	integration is 5 seconds. For each spectrum, an average of 32 scans were performed at		
119	a resolution of 1 cm ⁻¹ , over the 100-3200 cm ⁻¹ range (Xu et al. 2014). To obtain the		
120	most useful spectral information, multiple scans were performed in different points of		
121	the sample by moving the substrate on an X-Y stage. And the spectra from same		
122	sample were averaged into one spectra. Before collection, the Raman system was		
123	calibrated with a silicon semiconductor. The laser power irradiation over the samples		
124	was 4 mW. Finally, 144 and 144 spectra for MIR and Raman were obtained,		
125	respectively.		

126 Reference analysis of RD in starch

The reference RD in starch was measured by the modified method of *Tsuge* et al 127 (Di Paola et al. 2003). A solution of 25 mg retrogradation starch in 8 ml distilled water 128 was placed into a test tube. 5 ml 0.1 mol L^{-1} phosphate buffer (pH 6.0, 0.3% NaC1) 129 and 2 ml 3.5u ml⁻¹ α -amylase solution was then placed into the test tube. After 130 incubation for 1 hour at 37°C, the enzymatic reaction was stopped by adding 5ml of 4 131 mol L^{-1} NaOH. The pH of the solution was adjusted to neutrality with 4 mol L^{-1} HC1 132 and the volume was made up to100 ml with distilled water. 5 ml of iodine solution 133 (0.2% I₂-2% KI) was added to 10 ml of the digested solution, and made up to 100 ml 134 with distilled water. The absorbance of solution at 625 nm was measured after 135 standing for 20 min. The RD (%) is calculated from equation described by Tsuge et al. 136

137	The values of RD obtained would be used for the construction and validation of
138	model (Kim et al. 1997).

139 Data analysis

- 140 Different pre-processing techniques (standard normal variate (SNV), mean
- 141 centering (MC) and multiplicative scatter correction (MSC), Savitzky–Golay
- smoothing (SG)) were applied for eliminating baseline shift and scatter effects etc. By
- 143 comparing results obtained from four preprocessing methods, SG is much better than
- 144 SNV, MC and MSC (Chen et al. 2011).
- 145 PCA was performed to show the clustering trend of retrogradation starch samples
- 146 (Yeung and Ruzzo 2001). PCA is a well-known method for feature extraction in
- spectral analysis. It transforms the original independent variables into new variables
- 148 (principal components (PCs)). The PCs are orthogonal and can be used as input
- 149 variables for pattern recognition analysis (Haiyan et al. 2008).
- 150 Partial least squares (PLS) is used extensively for it is able to cope with high-
- dimensional data by extracting latent variables. So far, PLS has been widely used to
- build multivariate calibration models using the whole spectrum (WS) range (Lin et al.
- 153 2016). Therefore, WS-PLS models based on MIR spectra or Raman spectra were
- 154 established. In application of PLS algorithm, the optimum number of latent variables
- (LVs) are a critical parameter in calibration model.
- 156 Interval variable selection algorithms (iPLS, siPLS, and biPLS) proposed based
- 157 on the PLS method were used to eliminate uncorrelated variables to improve PLS

158	model performance(Chen et al. 2008). Literatures have discussion about the important
159	variables selection or unimportant variables elimination(Zou et al. 2007; Ma et al.
160	2017). The principles of interval variable selection algorithms were described in
161	various papers(Ma et al. 2017). In iPLS algorithm, the RMSECV was calculated for
162	every subinterval when the full spectrum was split into 40 intervals. The spectral
163	region with the lowest <i>RMSECV</i> was chosen as the best interval for prediction of RD.
164	In siPLS and biPLS algorithm, the combination of intervals with the lowest <i>RMSECV</i>
165	is chosen(Chen et al. 2008). This enables us to select the best combination of
166	intervals, generally providing better correlation coefficient (R) values and smaller
167	prediction errors than iPLS(Nørgaard et al. 2000).
168	PLS models based on fusion data extracted from MIR and Raman spectra were
169	investigated. Fusion data were carried out basically at three level: low-level fusion,
170	mid-level fusion and high-level fusion(Borràs et al. 2015). High-level fusion has often
171	provided worse results than the other two levels(Nunes et al. 2016). Thus, low-level
172	fusion and medium-level were investigated in this paper(Wu et al. 2016). Low-level
173	fusion data consists of original variables of MIR and Raman after the preprocessing
174	steps. Medium-level fusion extracts relevant features from MIR and Raman data
175	separately and then merges them into a single matrix, which will be analyzed by
176	chemometrics (Borràs et al. 2015). In this paper, the characteristic intervals of MIR
177	and Raman were combined as fusion data which acted as input data for establishing
178	models.

179	144 MIR spectra were divided into two subsets which were called calibration set
180	and prediction set. The calibration set contained 90 spectra were used for establishing
181	model, and remaining 54 spectra as prediction set were used to test the performance of
182	predictive models. The 144 Raman spectra were processed like MIR spectra. In this
183	study, WS-PLS, iPLS, siPLS and biPLS models based on MIR or Raman spectra were
184	obtained. The low- and medium-level fusion approaches were applied to combine of
185	MIR and Raman. In all models, optimum number of latent variables (LVs) were
186	determined by root mean square error of cross-validation (RMSECV). The
187	performance of the final models were evaluated in accordance with the correlated
188	coefficient of determination (R), and RMSEP values (Varliklioz Er et al. 2016). The
189	data were processed in MATLAB software version 7.10 (Math Works, Natick, MA,
190	USA).

191 **Results and discussion**

192 **RD** in starch stored for different time

193 Corn starch was completed gelatinized as described in the experimental section 194 and then the starch pastes stored at 4 °C for 0, 1, 2, 3, 4, 5, 10, 15 and 20 days were 195 dried. Finally, nine kinds of retrogradation starch were obtained and named 0, 1, 2, 3, 196 4, 5, 10, 15 and 20 d. RD of retrogradation starch was determined by the enzymatic 197 method based on α -amylase. Average values of RD for nine kinds of retrogradation 198 starch were 15.87%, 45.64%, 67.21%, 77.39%, 85.30%, 91.05%, 94.91%, 97.07%, 199 and 98.73% shown in Fig. 1. The stand deviations of each kind retrogradation starch were 1.234, 1.322, 0.9814, 1.097, 1.501, 0.5618, 0.5222, 0.5189, and 0.3777. It is
indicated that RD in starch increased with the storage time prolonged. RD at the first
five days varied significantly from 15.81% to 85.30%. The speed of retrogradation
was decreased gradually after 5 days. Particularly, the RD of 15 d and 20 d were
similar. It can be concluded that the structure and component of retrogradation starch
at 0, 1, 2, 3, 4 and 5 d alter dramatically while that at 10, 15, and 20 d alter slightly.

Fig. 1 retrogradation degree of corn starch paste stored for 1, 2, 3, 4, 5, 10, 15 and 20 days
Spectral analysis

206

MIR and Raman spectroscopy can be used to detect properties of retrogradation starch, such as crystallinity and amorphization. Fig. 2 (a) shows the average MIR spectra of retrogradation starch stored for 0, 1, 2, 3, 4, 5, 10, 15, and 20 days. Fig. 2 (b) shows average Raman spectra for the retrogradation starch samples with different storage time.

MIR spectral patterns of retrogradation starch showed almost identical
characteristic bands (Fig. 2 (a)). The characteristic bands mainly contain 756, 820,

216	850, 880, 928, 949, 994, 1022, 1067, 1077, 1133, 1150, 1181, 1241, 1340, 1506,
217	1560, 1648, 1654, 1701, 2177, 2926, and 3275 cm ⁻¹ . These bands mainly resulted
218	from the vibrational modes of molecule in retrogradation starch. The bands around
219	1600 cm ⁻¹ are attributed to amorphous region of starch (Smits et al. 1998). The band
220	at 1506 cm ⁻¹ is influenced by the skeletal mode vibration of a-1, 4 glycosidic linkage
221	(C–O–C). The bands at 1022 and 850 cm ⁻¹ are sensitive to changes in crystallinity.
222	The nine Raman spectra for retrogradation starch also showed almost identical
223	characteristic bands (Fig. 2 (b)). The main vibrational bands of each spectrum are
224	similar because different samples contain the same main components
225	(polysaccharide). The vibrational bands mainly included 373, 408, 437, 480, 577, 860,
226	940, 952, 1051, 1082, 1126, 1260, 1338, 1382, 1462, 1518, 2116, 2870, 2908 cm ⁻¹ .
227	The band at 2908 cm ⁻¹ is related to the symmetrical and antisymmetric CH stretching.
228	The unobvious and sharped characteristic band at 2870 cm ⁻¹ can be attributed to the
229	amylose and amylopectin presented in starch(Kizil et al. 2002). The region between
230	1200 and 1600 cm ⁻¹ contain a large supply of structural information. A majority of the
231	bands in this region are due to coupled vibration involving hydrogen atoms. For
232	instance, the band at 1462 is related to CH, CH ₂ , and COH deformation. The feature
233	at 1382 cm ⁻¹ corresponds to coupling of the CCH and COH deformation modes. The
234	bands at 1260 and 1338 cm ⁻¹ can be mainly attributed to several vibrational modes,
235	such as CO stretching, CC stretching, CCH deformation, COH deformation, and CCH
236	deformation. The region between 1200 and 800 cm ⁻¹ is highly characteristic bands

237	owing to CO stretching, CC stretching and COC deformation modes, referring to the
238	glycosidic bond (Mahdad-Benzerdjeb et al. 2007). This region is considered as the
239	fingerprint or anomeric region, and is discussed with high frequency in the previous
240	papers (Baranska et al. 2005; Nikonenko et al. 2005; Yang and Zhang 2009). The
241	vibrations originating from glycosidic linkages can be observed in the 920-960 cm ⁻¹
242	region. Particularly, the band observed at 940 cm ⁻¹ is assigned to the amylose α -1, 4
243	glycosidic linkage. Raman spectra of retrogradation starch exhibited complex
244	vibrational modes at low wavenumbers (below 800cm ⁻¹) due to the skeletal mode
245	vibrations of the glucose pyranose ring. Among the Raman bands at 437, 480, 577, a
246	strong band at 480 cm ⁻¹ portraying the rate of polymerization in polysaccharides is
247	one of the prominent and important indication of the presence of pyranose ring due to
248	skeletal vibration mode(Kizil et al. 2002). Characteristic vibrational bands found in
249	retrogradation starch are shown in Table 1 for both IR and Raman.
250	Each spectrum of retrogradation starch is unique owing to its particular
251	component and structure. MIR peaks at 1047 and 1022 cm ⁻¹ have been used for
252	investigating changes in starch structure (organized starch and amorphous starch)
253	during starch retrogradation(Flores-Morales et al. 2012). Previous studies have shown
254	the most useful Raman bands which reflect the characteristics of retrogradation starch.
255	For instance, according to W.T. Winter et.al (Winter and Kwak 1987), intensity of the
256	Raman band at 480 cm ⁻¹ and the half-bandwidths of Raman bands at 2800-3000 cm ⁻¹
257	were used as excellent indexes for evaluating retrogradation starch. Besides the bands

discussed in the previous work (Kizil et al. 2002), the intensities and shapes of other
characteristic bands are also relevant to the starch component and structure. However,
these bands were ignored for determination of retrogradation of starch. Therefore, the
more spectral feature will be applied for determining retrogradation starch in further
analysis.

Fig. 2 mid-infrared and Raman spectra of different retrogradation starch

IR (cm ⁻¹)	Assignments	Raman (cm ⁻¹)	Assignments
3275 S	<i>v</i> (OH)		
2926 M	<i>v</i> (CH)	2908 S	<i>v</i> (CH)
1506 W	COC	1462 M, 1518 W	$\delta(CH) + \delta(COH) + \delta(CH_2)$
1241 \	I $\delta(CH) + \delta(OH)$	1338 S, 1260 M,	S (CU)
1241 M		1382 M	ð (CH)
1150 S	v(CO) + v(CC)	1126 S	$\delta(\text{COH}) + v(\text{CO}) + v(\text{CC})$
1077 S, 1022 S	v(CO) + v(OH) + v(CC)	1051 M, 1082 M	$\delta(\text{COH}) + v(\text{CO}) + v(\text{CC})$
994, 928 W	γ (COOH) + δ (COO)	940 S, 952 S	$\delta(\text{COC}) + \delta(\text{COH}) + v(\text{CO})$
850 W	$\delta(\text{CCH}) + \delta(\text{COH}) + \gamma(\text{COH})$	860 W	v(COC) + v(CCH)
		577 W	$\delta(\text{CCO}) + \delta(\text{CO})$
		437W, 480 S	$\delta(\text{CCO}) + \delta(\text{CCC})$

Table 1 IR and Raman wavenumbers and their respective tentative assignments based on literature data

266 General discrimination of Samples

265

267	PCA was applied to MIR and Raman spectra to evaluate their ability to
268	differentiate the retrogradation starch with different storage time. The scores plots of
269	PCA for retrogradation starch stored 0, 1, 2, 3, 4, 5, 10, 15, 20 days were shown in
270	Fig. 3 (a) and (b). Fig. 3 (a) shows the scores plot of PCA based on MIR spectra. The
271	retrogradation starch samples were divided into two categories with some
272	overlapping. The first one category located at the left of the scores plot contained
273	retrogradation starch samples stored 0, 1, 2, 3 and 4 days. The starch samples stored 5,
274	10, 15 and 20 days belonged to the second category located at the right of the scores
275	plot. According to the RD determined by enzymatic method, the RD reached 85%
276	when the starch was stored 4 days. The average growth rate of one day was 21.25%.
277	The RD during the first four days increased rapidly. When the starch was stored for 20
278	days the RD of starch achieved 99%. From the 5 th to 20 th day, the RD increased from
279	85% to 99% with growth rate of 14%. The average growth rate of every day was

0.875%. The RD increased slowly. The starch retrogradation may be divided into twostages i.e. fast and slow stages.

282	Fig. 3 (b) shows scores plot of PCA based on Raman spectra. All retrogradation
283	starch samples were divided into three categories. The three categories were not
284	completely separated. s. One of categories located at the middle of the scores plot
285	contained retrogradation starch samples stored for 0, 1, 2, and 3d. The retrogradation
286	starch samples stored 4 and 5 days belonged to the second category and the other
287	retrogradation starch samples (stored 10, 15 and 20 day) constituted the third
288	category. In the first category, the retrogradation starch stored for 0, 1 and 3 d were
289	separated well from the each other except of 2 d overlapping with 1d. According to
290	the results by enzymatic method the RD of them were increased rapidly. The structure
291	or component of retrogradation starch was very fast at the first three days. For the
292	retrogradation starch samples stored for 4 and 5 days, the RD of them is increased
293	more slowly than the retrogradation starch sample stored 0, 1, 2, and 3 d. The change
294	of retrogradation starch was slow. The RD of retrogradation starch stored for 10, 15
295	and 20 days showed subtle difference by enzymatic method indicating that starch
296	changed very slowly. Structure and component of retrogradation starch were
297	beginning to stabilize. The aggregation of starch samples maybe led by their similar
298	component and structure. The starch retrogradation may be divided into three stage,
299	i.e. fast, slow and stable stage. The stage retrogradation starch categories could be
300	discriminated by PCA. Whereas, the specific RD in starch sample was not

Fig. 3 score plot of the first principal component (PC1) versus the second principal

305 Models for determining RD

306 Results of models based on MIR or Raman spectra

307 PLS, iPLS, siPLS and biPLS algorithm was used in this paper for establishing

308	models to determine RD in starch. The results of models based on MIR and Raman
309	spectra were listed in Table 2. From Table 2, good performance was obtained from
310	the PLS models based on MIR or Raman spectra. The prediction values of RD were
311	between 10%~100%. The lowest <i>RMSECV</i> value (8.4) was achieved by biPLS
312	model based on Raman spectra. The corresponding correlation coefficient (R_p) of
313	prediction set was 0.9252 which achieved the best performance. The worst model
314	was iPLS model with highest RMSECV of based on the single interval in Raman
315	spectra. The optimal Raman spectral interval is the sixth interval in the spectral range
316	of 407 and 485 cm ⁻¹ when the whole spectrum split into 40 intervals. The
317	characteristic interval variables were attributed to skeletal mode in starch. The MIR
318	biPLS model based on intervals numbered 2, 40, 28, 34, 17, 33, 37, 35, and 38
319	achieved the best performance in all models of MIR. The selected intervals are
320	located in the spectral ranges of 734-817, 3917-4000, 2911-2994, 3413-3497, 1989-
321	2072, 3330-3413, 3665-3749, 3497-3581, 3749-3832 cm ⁻¹ (Fig. 4 (a)). Fig. 4 (b)
322	shows a correlation between RD measured by reference analysis and RD predicted
323	by MIR biPLS in prediction set. For models of Raman, biPLS models also showed
324	the best performance. The selected Raman intervals were numbered 1 2 5 6 9 10 15
325	33 37 38, corresponding to the wavenumbers in the range of 100-254, 410-564, 718-
326	872, 1181-1258, 2570-2647, 2878-3033 cm ⁻¹ shown in Fig.5 (a). Fig. 5 (b) shows a
327	correlation between RD measured by reference analysis and RD predicted by Raman
328	biPLS in prediction set.

329	Comparing the models based on MIR and Raman spectra, models based on
330	Raman spectra were better than models based on MIR spectra except iPLS model.
331	IPLS algorithm caused a decline of the model performance when applied to Raman
332	spectra in comparison with full spectrum PLS model. The superiority of Raman
333	spectroscopy may be attributed to specificity and sensitivity (Yuan et al. 2017). The
334	two methods do not offer the identical information about the molecular vibrations and
335	structure. MIR spectroscopy probe the molecular vibrations when the electrical dipole
336	moment changes, while Raman spectroscopy detect molecular vibrations according to
337	the changes of electrical polarizability (Thygesen et al. 2003). The difference between
338	them indicates that molecules tend to be more sensitive to Raman spectroscopy than
339	to MIR spectroscopy. For instance, the C-C or C=C bond is more sensitive to Raman
340	spectroscopy than to MIR spectroscopy. According to the characteristic vibrational
341	bands for MIR and Raman found in food system, the skeletal mode of starch lead to
342	specific vibrations in the Raman spectral regions located at 900-800 and 500-400 cm ⁻¹
343	(Thygesen et al. 2003). MIR is strongly dependent on proper sample preparation and
344	moisture content can seriously affect MIR spectra. Conversely, Raman is highly
345	sensitive and do not require special sample treatment.

Fig. 5 (a): the efficient intervals of Raman variables selected by biPLS for predicting RD and (b):
 reference measured values versus Raman predictive values of RD predicted by biPLS in prediction
 set.

355 Results of models based on fusion data

The validity of data fusion method has been demonstrated in the literature. Even though the performance of models based on MIR or Raman spectra is satisfied, the models based on information extracted from MIR and Raman spectra were still established for verifying that Raman with aid of MIR would be better than Ramanspectroscopy.

361	As listed in Table 2, the prediction performance of PLS model based on low-
362	level data is not improved in comparison with that of models based on MIR or
363	Raman. Our findings are in agreement with results obtained by other researchers
364	(Nunes et al. 2016). This might be due to that the fusion data from MIR and Raman
365	spectra contained too much redundant information which significantly result in
366	decline of PLS model performance.
367	To overcome too much redundant information, characteristic intervals of MIR
368	and Raman which selected by biPLS in section 3.4.1 were merged as medium-level
369	fusion data. The process of medium-level data fusion was shown in Fig. 6. As a result,
370	PLS model based on characteristic intervals of MIR and Raman (medium-level fusion
371	data) achieved a better performance with the highest R_p of 0.9658 than PLS model
372	based on full raw variables (low-level fusion data). Low-level fusion is simple, just
373	uses merge raw spectra. But high data volume may contain a large number of noise or
374	irrelevant information. The performance of predictive models would be influenced by
375	the negative information. Some limitation of low-level fusion can be partially
376	overcome by medium-level fusion. Characteristic intervals can decrease the data
377	volume and eliminate noise or irrelevant information.
378	Retrogradation degree are determined only by Raman spectroscopy, and satisfied
379	results are obtained. (Table 2). But by combining MIR and Raman spectroscopy, more

380	accurate and reliable models were obtained. The combination of MIR and Raman
381	spectroscopy proved better in determination of retrogradation degree compared to
382	single Raman spectroscopy. Though Raman spectroscopy and chemometric tools have
383	been successfully used for exploratory analysis of pure corn, cassava starch samples
384	and mixtures of both starches, as well as for the quantification of amylose content in
385	corn and cassava starch samples (Almeida et al. 2010). Both MIR and Raman can
386	generate bands linked to fundamental vibration and supply fingerprints of components
387	that can be used for quantitative and qualitative characterization. Even though both
388	methods probe molecular vibrations and structure, they do not provide exactly the
389	same information (Thygesen et al. 2003). Raman spectroscopy detect molecular
390	vibrations according to the changes of electrical polarizability. While MIR
391	spectroscopy probe the molecular vibrations when the electrical dipole moment
392	changes. They are complementary techniques for the study of molecular vibrations
393	and structure. For example, the C-C group has a strong Raman scattering band in
394	Raman spectra but weak absorption bands in the mid-infrared. O-H vibration is very
395	strong in MIR, but very weak in Raman(Yang and Irudayaraj 2002). The intensities of
396	characteristic bands in Raman and MIR spectra collected from same food are different
397	and the information they contain are not identical (Flores-Morales et al. 2012). Due to
398	their distinct advantages, data fusion, as an emerging technology, is an efficient way
399	for the optimum utilization of data from different sources, and has been successfully
400	used to the rapid measurement of retrogradation starch in this paper. Therefore, a

401 useful methods based on MIR and Raman spectroscopy were developed for

402 determining retrogradation starch.

404 Fig. 6 PLS model based on medium fusion data extracted from the MIR and Raman

- 405 spectra.
- 406
 Table 2 the results of different predictive models

Success	Madala	11/	Calibration set		Prediction set	
Spectra	widdels	LV -	RMSECV	Rc	RMSEP	Rp
	WS-PLS	10	12.8	0.8956	16.2	0.8162
MIR	iPLS	7	14.3	0.8538	16.5	0.8101
spectra	siPLS	8	11.5	0.9016	15.1	0.8401
	biPLS	8	10.0	0.9258	14.2	0.8542
	WS-PLS	10	12.9	0.8924	15.9	0.8204
Raman	iPLS	5	14.9	0.8433	17.1	0.808
spectra	siPLS	7	10.0	0.9275	13.5	0.8806
	biPLS	8	8.4	0.9587	10.1	0.9252
Engine	low-PLS	12	7.2	0.9873	8.7	0.9573
spectra	medium- PLS	7	7.0	0.9887	7.7	0.9658

408 Conclusion

409	The RD in starch stored for different storage time have been predicated by MIR
410	and Raman spectroscopy combined with chemometrics. The PLS model based on
411	medium-level fusion data of MIR and Raman spectra had the best prediction
412	performance with correlation coefficient (R) of 0.9658. Retrogradation starch was
413	obtained by chilling gelatinized corn starch for different time (0, 1, 2, 3, 4, 5, 10, 15,
414	20 days). The low-level and medium-level fusion data extracted from MIR and
415	Raman were also analyzed by PLS. In addition, The MIR and Raman spectra of
416	retrogradation starch were analyzed by SG, PCA, PLS, iPLS, siPLS and biPLS for
417	determination of RD in starch. The results demonstrated that the prediction
418	performance of models for Raman are better than those based on the MIR except iPLS
419	model. Variables selection improved the performance of PLS models. PLS model
420	based on medium-level fusion data achieved the best performance in comparison with
421	the models. Prediction of the RD in starch based on combination of MIR and Raman

422	spectroscopy are more accurately than that based on single technique. This indicates
423	that the developed methodology may be able to forecast the quality, acceptability and
424	shelf-life of starch products or starch-containing products easily damaged by starch
425	retrogradation.
426	Acknowledgement
427	The authors gratefully acknowledge the financial support provided by the
428	National Key Research and Development Program of China (No. 2016YFD0401104),
429	the National Science and Technology Support Program (No. 2015BAD17B04, No.
430	2015BAD19B03), the National Natural Science Foundation of China (No. 61301239,
431	31671844), China Postdoctoral Science Foundation (No. 2013M540422, No.
432	2014T70483, No. 2016M590422), Science Foundation for Postdoctoral in Jiangsu
433	Province (No. 1301051C), International Science and Technology Cooperation Project
434	of Jiangsu Province (No. BZ2016013), Suzhou Science and Technology Project (No.
435	SNG201503), International Science and Technology Cooperation Project of Zhenjiang
436	(No. GJ2015010), Research Foundation for Advanced Talents in Jiangsu University
437	(No. 13JDG039) and Priority Academic Program Development of Jiangsu Higher
438	Education Institutions (PAPD).
439	Compliance with Ethical Standards
440	Conflict of Interest The authors declare that they have no conflict of interest.
441	Ethical Approval This article does not contain any studies with human participants or

442 animals performed by any of the authors.

443 **Informed Consent** Informed consent is not applicable for the nature of this study.

444 **Reference**

445 Almeida MR, Alves RS, Nascimbem LBLR, Stephani R, Poppi RJ, de Oliveira LFC (2010) Determination of 446 amylose content in starch using Raman spectroscopy and multivariate calibration analysis 447 Analytical and Bioanalytical Chemistry 397:2693-2701 doi:10.1007/s00216-010-3566-2 448 Baranska M, Schulz H, Baranski R, Nothnagel T, Christensen LP (2005) In Situ Simultaneous Analysis of 449 Polyacetylenes, Carotenoids and Polysaccharides in Carrot Roots Journal of Agricultural and 450 Food Chemistry 53:6565-6571 doi:10.1021/jf0510440 451 Borràs E, Ferré J, Boqué R, Mestres M, Aceña L, Bust o O (2015) Data fusion methodologies for food 452 and beverage authentication and quality assessment - A review Analytica Chimica Acta 453 891:1-14 doi:http://dx.doi.org/10.1016/j.aca.2015.04.042 454 Chang S-M, Liu L-C (1991) Retrogradation of Rice Starches Studied by Differential Scanning Calorimetry 455 and Influence of Sugars, NaCl and Lipids Journal of Food Science 56:564-566 456 doi:10.1111/j.1365-2621.1991.tb05325.x 457 Chen H, Pan T, Chen J, Lu Q (2011) Waveband selection for NIR spectroscopy analysis of soil organic 458 matter based on SG smoothing and MWPLS methods Chemometrics and Intelligent 459 Laboratory Systems 107:139-146 doi:http://dx.doi.org/10.1016/j.chemolab.2011.02.008 460 Chen Q, Zhao J, Liu M, Cai J, Liu J (2008) Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms Journal of Pharmaceutical and Biomedical 461 462 Analysis 46:568-573 doi:http://dx.doi.org/10.1016/j.jpba.2007.10.031 463 de Peinder P, Vredenbregt MJ, Visser T, de Kaste D (2008) Detection of Lipitor® counterfeits: A 464 comparison of NIR and Raman spectroscopy in combination with chemometrics Journal of 465 Pharmaceutical and Biomedical Analysis 47:688-694 doi:http://dx.doi.org/10.1016/j.jpba.2008.02.016 466 467 Di Paola RD, Asis R, Aldao MAJ (2003) Evaluation of the Degree of Starch Gelatinization by a New 468 Enzymatic Method Starch - Stärke 55:403-409 doi:10.1002/star.200300167 469 Eliasson AC (2010) Gelatinization and retrogradation of starch in foods and its implications for food 470 quality. In: Skibsted LH, Risbo J, Andersen ML (eds) Chemical deterioration and physical 471 instability of food and beverages. Woodhead Publishing Limited, Oxford, U.K., pp 296-323 472 Ferrero C, Martino MN, Zaritzky NE (1994) Corn Starch-Xanthan Gum Interaction and Its Effect on the 473 Stability During Storage of Frozen Gelatinized Suspension Starch - Stärke 46:300-308 474 doi:10.1002/star.19940460805 475 Flores-Morales A, Jiménez-Estrada M, Mora-Escobedo R (2012) Determination of the structural 476 changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize 477 tortillas Carbohydrate Polymers 87:61-68 478 doi:http://dx.doi.org/10.1016/j.carbpol.2011.07.011 479 Haiyan Y, Xiaoying N, Yibin Y, Xingxiang P (2008) Non-invasive determination of enological parameters 480 of rice wine by Vis-NIR spectroscopy and least-squares support vector machines. Paper 481 presented at the 2008 Providence, Rhode Island, June 29 – July 2, 2008, St. Joseph, Mich., 482 Hayakawa K, Tanaka K, Nakamura T, Endo S, Hoshino T (1997) Quality Characteristics of Waxy

483	Hexaploid Wheat (Triticum aestivum L.): Properties of Starch Gelatinization and
484	Retrogradation Cereal Chemistry Journal 74:576-580 doi:10.1094/CCHEM.1997.74.5.576
485	Karim AA, Norziah MH, Seow CC (2000) Methods for the study of starch retrogradation Food Chem
486	71:9-36 doi:http://dx.doi.org/10.1016/S0308-8146(00)00130-8
487	Kim J-O, Kim W-S, Shin M-S (1997) A Comparative Study on Retrogradation of Rice Starch Gels by DSC,
488	X-Ray and $lpha$ -Amylase Methods Starch - Stärke 49:71-75 doi:10.1002/star.19970490207
489	Kizil R, Irudayaraj J, Seetharaman K (2002) Characterization of Irradiated Starches by Using FT-Raman
490	and FTIR Spectroscopy Journal of Agricultural and Food Chemistry 50:3912-3918
491	doi:10.1021/jf011652p
492	Lin Y-W, Deng B-C, Wang L-L, Xu Q-S, Liu L, Liang Y-Z (2016) Fisher optimal subspace shrinkage for block
493	variable selection with applications to NIR spectroscopic analysis Chemometrics and
494	Intelligent Laboratory Systems 159:196-204
495	doi:http://dx.doi.org/10.1016/j.chemolab.2016.11.002
496	Liu H, Yu L, Chen L, Li L (2007) Retrogradation of corn starch after thermal treatment at different
497	temperatures Carbohydrate Polymers 69:756-762
498	doi:http://dx.doi.org/10.1016/j.carbpol.2007.02.011
499	Ma H-I, Wang J-w, Chen Y-j, Cheng J-I, Lai Z-t (2017) Rapid authentication of starch adulterations in
500	ultrafine granular powder of Shanyao by near-infrared spectroscopy coupled with
501	chemometric methods Food Chem 215:108-115
502	doi:http://dx.doi.org/10.1016/j.foodchem.2016.07.156
503	Mahdad-Benzerdjeb A, Taleb-Mokhtari IN, Sekkal-Rahal M (2007) Normal coordinates analyses of
504	disaccharides constituted by d-glucose, d-galactose and d-fructose units Spectrochimica Acta
505	Part A: Molecular and Biomolecular Spectroscopy 68:284-299
506	doi:http://dx.doi.org/10.1016/j.saa.2006.11.032
507	Mariotti M, Sinelli N, Catenacci F, Pagani MA, Lucisano M (2009) Retrogradation behaviour of milled
508	and brown rice pastes during ageing Journal of Cereal Science 49:171-177
509	doi:http://dx.doi.org/10.1016/j.jcs.2008.09.005
510	Monakhova YB, Diehl BWK (2016) Authentication of the origin of sucrose-based sugar products using
511	quantitative natural abundance 13C NMR Journal of the Science of Food and Agriculture
512	96:2861-2866 doi:10.1002/jsfa.7456
513	Nørgaard L, Saudland A, Wagner J, Nielsen JP, Munck L, Engelsen SB (2000) Interval Partial Least-
514	Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-
515	Infrared Spectroscopy Applied Spectroscopy 54:413-419
516	Nikonenko NA, Buslov DK, Sushko NI, Zhbankov RG (2005) Spectroscopic manifestation of stretching
517	vibrations of glycosidic linkage in polysaccharides Journal of Molecular Structure 752:20-24
518	doi:http://dx.doi.org/10.1016/j.molstruc.2005.05.015
519	Nunes KM, Andrade MVO, Santos Filho AMP, Lasmar MC, Sena MM (2016) Detection and
520	characterisation of frauds in bovine meat in natura by non-meat ingredient additions using
521	data fusion of chemical parameters and ATR-FTIR spectroscopy Food Chem 205:14-22
522	doi:http://dx.doi.org/10.1016/j.foodchem.2016.02.158
523	Olayinka OO, Olu-Owolabi BI, Adebowale KO (2011) Effect of succinylation on the physicochemical,
524	rheological, thermal and retrogradation properties of red and white sorghum starches Food

525	Hydrocolloids 25:515-520 doi:http://dx.doi.org/10.1016/j.foodhyd.2010.08.002
526	Paker I, Matak KE (2016) Influence of pre-cooking protein paste gelation conditions and post-cooking
527	gel storage conditions on gel texture Journal of the Science of Food and Agriculture 96:280-
528	286 doi:10.1002/jsfa.7091
529	Rocha JTC et al. (2016) Sulfur Determination in Brazilian Petroleum Fractions by Mid-infrared and
530	Near-infrared Spectroscopy and Partial Least Squares Associated with Variable Selection
531	Methods Energy & Fuels 30:698-705 doi:10.1021/acs.energyfuels.5b02463
532	Romano G, Nagle M, Müller J (2016) Two-parameter Lorentzian distribution for monitoring physical
533	parameters of golden colored fruits during drying by application of laser light in the Vis/NIR
534	spectrum Innovative Food Science & Emerging Technologies 33:498-505
535	doi:http://dx.doi.org/10.1016/j.ifset.2015.11.007
536	Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant Starch–A Review Comprehensive Reviews in Food
537	Science and Food Safety 5:1-17 doi:10.1111/j.1541-4337.2006.tb00076.x
538	Smits ALM, Ruhnau FC, Vliegenthart JFG, van Soest JJG (1998) Ageing of Starch Based Systems as
539	Observed with FT-IR and Solid State NMR Spectroscopy Starch - Stärke 50:478-483
540	doi:10.1002/(SICI)1521-379X(199812)50:11/12<478::AID-STAR478>3.0.CO;2-P
541	Synytsya A, ČopíKová J, Matějka P, Machovič V (2003) Fourier transform Raman and infrared
542	spectroscopy of pectins Carbohydrate Polymers 54:97-106
543	Thygesen LG, Løkke MM, Micklander E, Engelsen SB (2003) Vibrational microspectroscopy of food.
544	Raman vs. FT-IR Trends in Food Science & Technology 14:50-57
545	doi:http://dx.doi.org/10.1016/S0924-2244(02)00243-1
546	Vankeirsbilck T, Vercauteren A, Baeyens W, Van der Weken G, Verpoort F, Vergote G, Remon JP (2002)
547	Applications of Raman spectroscopy in pharmaceutical analysis TrAC Trends in Analytical
548	Chemistry 21:869-877 doi:http://dx.doi.org/10.1016/S0165-9936(02)01208-6
549	Varliklioz Er S, Eksi-Kocak H, Yetim H, Boyaci IH (2016) Novel Spectroscopic Method for Determination
550	and Quantification of Saffron Adulteration Food Analytical Methods:1-9 doi:10.1007/s12161-
551	016-0710-4
552	Winter WT, Kwak YT (1987) Rapid-scanning Raman spectroscopy: a novel approach to starch
553	retrogradation Food Hydrocolloids 1:461-463 doi:http://dx.doi.org/10.1016/S0268-
554	005X(87)80041-3
555	Wu Z, Xu E, Long J, Pan X, Xu X, Jin Z, Jiao A (2016) Comparison between ATR-IR, Raman, concatenated
556	ATR-IR and Raman spectroscopy for the determination of total antioxidant capacity and total
557	phenolic content of Chinese rice wine Food Chem 194:671-679
558	doi:http://dx.doi.org/10.1016/j.foodchem.2015.08.071
559	Xu W, Liu X, Xie L, Ying Y (2014) Comparison of Fourier Transform Near-Infrared, Visible Near-Infrared,
560	Mid-Infrared, and Raman Spectroscopy as Non-Invasive Tools for Transgenic Rice
561	Discrimination Transactions of the Asabe 57:141-150
562	Yang L, Zhang L-M (2009) Chemical structural and chain conformational characterization of some
563	bioactive polysaccharides isolated from natural sources Carbohydrate Polymers 76:349-361
564	doi:http://dx.doi.org/10.1016/j.carbpol.2008.12.015
565	Yeung KY, Ruzzo WL (2001) Principal component analysis for clustering gene expression data
566	Bioinformatics 17:763-774 doi:10.1093/bioinformatics/17.9.763

- 567 Yuan J et al. (2017) A rapid Raman detection of deoxynivalenol in agricultural products Food Chem
- 568 221:797-802 doi:http://dx.doi.org/10.1016/j.foodchem.2016.11.101
- 569 Zou X, Zhao J, Li Y (2007) Selection of the efficient wavelength regions in FT-NIR spectroscopy for
- 570 determination of SSC of 'Fuji' apple based on BiPLS and FiPLS models Vibrational
- 571 Spectroscopy 44:220-227 doi:http://dx.doi.org/10.1016/j.vibspec.2006.11.005
- 572
- 573