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Abstract 15 

Retrogradation behavior is an important physicochemical property of starch 16 

during storage. A fast and sensitive method was developed for determining the 17 

retrogradation degree (RD) in corn starch by mid-infrared (MIR), Raman 18 

spectroscopy and combination of MIR and Raman. MIR and Raman spectra were 19 

collected from different retrogradation starch and then processed by partial least-20 

squares (PLS), interval PLS (iPLS), synergy interval PLS (siPLS), and backward 21 

interval PLS (biPLS). Two different levels’ fusion data extracted from MIR and 22 

Raman spectra were analyzed by partial least-squares (PLS). The developed models 23 

demonstrated that both MIR and Raman techniques combined with chemometrics can 24 

be used to determine the RD in starch. The PLS model built by medium-level fusion 25 

approach achieved the most satisfied performance with a correlation coefficient of 26 

0.9658. Integrating MIR and Raman technique combined with chemometrics 27 

improved the prediction performance of RD in comparison with a single technique. 28 

Keywords: Retrogradation degree; Starch; Raman spectroscopy; MIR spectroscopy; 29 

Partial least-squares 30 

  31 
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Introduction 32 

Starch presented in an enormous variety of food products acts as the main 33 

materials to supply nutrition and energy, or as an additive to improve the quality of 34 

food. Starch retrogradation behavior is an important physicochemical property of 35 

starch during storage. Retrogradation could lead to deterioration of starch-based food 36 

during storage (Eliasson 2010), while retrogradation also could provide starch food 37 

with functional properties. Starch is beginning to retrograde after starch completely 38 

gelatinized. During retrogradation, molecular chains in starch begin to reassemble to 39 

develop an ordered structure (Ferrero et al. 1994). Generally, starch paste 40 

retrogradation is accompanied by gradual increases in rigidity and phase separation 41 

between polymer and solvent (Karim et al. 2000). Starch-based foods after 42 

retrogradation are indigestible by body enzymes and may make consumer suffer from 43 

indigestion (Hayakawa et al. 1997). Therefore, a number of steps were attempted to 44 

study and prevent retrogradation (Liu et al. 2007). As we all know, one kind of 45 

resistant starch called RS3 is the retrograded starch forming during cooling of 46 

gelatinized starch. As a new resource of dietary fiber, retrogradation starch can 47 

provide functional properties and find applications in a variety of foods (Karim et al. 48 

2000; Sajilata et al. 2006). Consumers prefer appropriate retrogradation to no 49 

retrogradation in starch-based products. Retrogradation is used to harden products and 50 

reduced products stickiness during the manufacturing process of breakfast cereals and 51 

parboiled rice (Karim et al. 2000). The retrogradation starch is often said that 52 
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retrogradation deteriorates the quality of starch food. It is equally true that the suitable 53 

retrogradation starch is a benefit to gastrointestinal digestion. Therefore, the 54 

retrogradation degree (RD) in starch is a very important index for monitoring the 55 

quality of starch foods. 56 

Various methods have been applied for studying retrogradation starch, such as 57 

rheological methods texture profile analysis (TPA) and rapid visco analyzer (RVA) 58 

(Mariotti et al. 2009; Olayinka et al. 2011), thermal analysis (differential scanning 59 

calorimetry (DSC), differential thermal analysis (DTA) and nuclear magnetic 60 

resonance (NMR))(Chang and Liu 1991). The most popular method is enzymatic 61 

methods based on acid or amylolytic enzymes (e.g. a-amylase and β-amylase etc.) for 62 

determining RD in starch. Normally, the RD is measured by determining residual non-63 

digestible starch which is not digested to glucose after incubation with amylolytic 64 

enzymes (Karim et al. 2000). These methods are complicate, laborious and time-65 

consuming. Rheological methods are used to evaluate the characteristics of 66 

retrogradation starch based on viscosity property, hardness and elasticity (Karim et al. 67 

2000). These properties can provide the qualitative description of starch 68 

retrogradation while the RD values was not determined specifically (Smits et al. 69 

1998). The enthalpy in the melting endotherm resulting from thermal analysis was 70 

used as the index for evaluation of starch retrogradation (Paker and Matak 2016). 71 

Samples detected by thermal analysis, enzymatic methods and rheological methods 72 

are not reusable by consumers (Chang and Liu 1991). Most NMR instruments are 73 
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expensive and not available in many labs or industries (Monakhova and Diehl 2016). 74 

Spectroscopic methods have been used in study of retrogradation as 75 

nondestructive methods, such as near-infrared (NIR) spectroscopy, mid-infrared 76 

(MIR) spectroscopy, Raman spectroscopy, and so on (de Peinder et al. 2008; Rocha et 77 

al. 2016; Thygesen et al. 2003). Each retrogradation starch has a unique and 78 

characteristic spectrum due to their particular molecular component and structure. 79 

NIR shows overtones and combination vibrations of the molecule when NIR beam 80 

irradiates into samples. The molecular bands observed in NIR spectra are very broad 81 

resulting in that it is difficult to ascribe specific bands to specific chemical 82 

components (Romano et al. 2016). Both MIR and Raman spectroscopy can generate 83 

bands linked to fundamental vibration and supply fingerprints of components that can 84 

be used for quantitative and qualitative characterization (Vankeirsbilck et al. 2002). 85 

They have been applied to characterize the molecular structural changes of 86 

retrogradation starch, and are conducive to comprehending the changes of amylose 87 

and amylopectin (Flores-Morales et al. 2012). However, there is no study about 88 

quantitative analysis of RD in starch by MIR, Raman and the combination of them. 89 

Different types of starch (from pure corn and cassava starch samples, as well with 90 

mixtures from both starch types) can be characterized usin by using Raman 91 

spectrscopy(Almeida et al. 2010). Besides Raman spectroscopy, MIR spectroscopy 92 

can also be used for quantitative analysis of RD in starch (Wu et al. 2016). Acting as 93 

complementary spectroscopic techniques, both types of measurements, Raman and 94 
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MIR, can provide different molecular vibrations. (Thygesen et al. 2003). Previous 95 

studies have demonstrated that data fusion technique based on MIR and Raman can 96 

increase the prediction ability of chemical components in food (Wu et al. 2016). . 97 

Therefore, the objectives of this paper were: (1) to use MIR, Raman 98 

spectroscopy and the combination of two techniques for investigating the 99 

retrogradation behavior in starch; (1) to establish a nondestructive and rapid method 100 

for measuring the quality, acceptability, and shelf-life of starch-containing foods. 101 

Materials and methods 102 

Retrogradation starch preparation 103 

Corn starch was purchased from Runzhou Starch Company in Zhenjiang. A 104 

solution of corn starch (1g) suspended in 19 ml of water was heated at 100℃ with 105 

constant stirring for 1 hour in order to make starch completely gelatinized. The 106 

gelatinized starch paste was stored for different time (0, 1, 2, 3, 4, 5, 10, 15, 20 days) 107 

at 4℃. After storage, retrogradation starch with different storage time was dried and 108 

kept in a desiccator. Sixteen samples for each retrogradation starch were prepared 109 

using same procedures. All samples were obtained from one independent 110 

gelatinization experiment. 111 

MIR and Raman spectroscopy 112 

The MIR spectra of retrogradation starch were collected by Nicolet 380 FT-IR 113 

spectrometer (Thermo Electron Corporation, USA) in the spectral range of 650 to 114 

4000 cm-1 at resolution of 2 cm-1 (Flores-Morales et al. 2012). Raman spectra were 115 
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recorded with DXR Laser micro-Raman spectrometer (Thermo Electron Corporation, 116 

USA) with 532 nm laser source. During collection of Raman spectra, time of 117 

integration is 5 seconds. For each spectrum, an average of 32 scans were performed at 118 

a resolution of 1 cm-1, over the 100-3200 cm-1 range (Xu et al. 2014). To obtain the 119 

most useful spectral information, multiple scans were performed in different points of 120 

the sample by moving the substrate on an X-Y stage. And the spectra from same 121 

sample were averaged into one spectra. Before collection, the Raman system was 122 

calibrated with a silicon semiconductor. The laser power irradiation over the samples 123 

was 4 mW. Finally, 144 and 144 spectra for MIR and Raman were obtained, 124 

respectively. 125 

Reference analysis of RD in starch 126 

The reference RD in starch was measured by the modified method of Tsuge et al 127 

(Di Paola et al. 2003). A solution of 25 mg retrogradation starch in 8 ml distilled water 128 

was placed into a test tube. 5 ml 0.1 mol L-1 phosphate buffer (pH 6.0, 0.3% NaC1) 129 

and 2 ml 3.5u ml-1 α-amylase solution was then placed into the test tube. After 130 

incubation for 1 hour at 37℃, the enzymatic reaction was stopped by adding 5ml of 4 131 

mol L-1 NaOH. The pH of the solution was adjusted to neutrality with 4 mol L-1 HC1 132 

and the volume was made up to100 ml with distilled water. 5 ml of iodine solution 133 

(0.2% I2-2% KI) was added to l0 ml of the digested solution, and made up to l00 ml 134 

with distilled water. The absorbance of solution at 625 nm was measured after 135 

standing for 20 min. The RD (%) is calculated from equation described by Tsuge et al. 136 
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The values of RD obtained would be used for the construction and validation of 137 

model (Kim et al. 1997). 138 

Data analysis 139 

Different pre-processing techniques (standard normal variate (SNV), mean 140 

centering (MC) and multiplicative scatter correction (MSC), Savitzky–Golay 141 

smoothing (SG)) were applied for eliminating baseline shift and scatter effects etc. By 142 

comparing results obtained from four preprocessing methods, SG is much better than 143 

SNV, MC and MSC (Chen et al. 2011). 144 

PCA was performed to show the clustering trend of retrogradation starch samples 145 

(Yeung and Ruzzo 2001). PCA is a well-known method for feature extraction in 146 

spectral analysis. It transforms the original independent variables into new variables 147 

(principal components (PCs)). The PCs are orthogonal and can be used as input 148 

variables for pattern recognition analysis (Haiyan et al. 2008). 149 

Partial least squares (PLS) is used extensively for it is able to cope with high-150 

dimensional data by extracting latent variables. So far, PLS has been widely used to 151 

build multivariate calibration models using the whole spectrum (WS) range (Lin et al. 152 

2016). Therefore, WS-PLS models based on MIR spectra or Raman spectra were 153 

established. In application of PLS algorithm, the optimum number of latent variables 154 

(LVs) are a critical parameter in calibration model. 155 

Interval variable selection algorithms (iPLS, siPLS, and biPLS) proposed based 156 

on the PLS method were used to eliminate uncorrelated variables to improve PLS 157 
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model performance(Chen et al. 2008). Literatures have discussion about the important 158 

variables selection or unimportant variables elimination(Zou et al. 2007; Ma et al. 159 

2017). The principles of interval variable selection algorithms were described in 160 

various papers(Ma et al. 2017). In iPLS algorithm, the RMSECV was calculated for 161 

every subinterval when the full spectrum was split into 40 intervals. The spectral 162 

region with the lowest RMSECV was chosen as the best interval for prediction of RD. 163 

In siPLS and biPLS algorithm, the combination of intervals with the lowest RMSECV 164 

is chosen(Chen et al. 2008). This enables us to select the best combination of 165 

intervals, generally providing better correlation coefficient (R) values and smaller 166 

prediction errors than iPLS(Nørgaard et al. 2000). 167 

PLS models based on fusion data extracted from MIR and Raman spectra were 168 

investigated. Fusion data were carried out basically at three level: low-level fusion, 169 

mid-level fusion and high-level fusion(Borràs et al. 2015). High-level fusion has often 170 

provided worse results than the other two levels(Nunes et al. 2016). Thus, low- level 171 

fusion and medium-level were investigated in this paper(Wu et al. 2016). Low-level 172 

fusion data consists of original variables of MIR and Raman after the preprocessing 173 

steps. Medium-level fusion extracts relevant features from MIR and Raman data 174 

separately and then merges them into a single matrix, which will be analyzed by 175 

chemometrics (Borràs et al. 2015). In this paper, the characteristic intervals of MIR 176 

and Raman were combined as fusion data which acted as input data for establishing 177 

models. 178 
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144 MIR spectra were divided into two subsets which were called calibration set 179 

and prediction set. The calibration set contained 90 spectra were used for establishing 180 

model, and remaining 54 spectra as prediction set were used to test the performance of 181 

predictive models. The 144 Raman spectra were processed like MIR spectra. In this 182 

study, WS-PLS, iPLS, siPLS and biPLS models based on MIR or Raman spectra were 183 

obtained. The low- and medium-level fusion approaches were applied to combine of 184 

MIR and Raman. In all models, optimum number of latent variables (LVs) were 185 

determined by root mean square error of cross-validation (RMSECV). The 186 

performance of the final models were evaluated in accordance with the correlated 187 

coefficient of determination (R), and RMSEP values (Varliklioz Er et al. 2016). The 188 

data were processed in MATLAB software version 7.10 (Math Works, Natick, MA, 189 

USA). 190 

Results and discussion 191 

RD in starch stored for different time 192 

Corn starch was completed gelatinized as described in the experimental section 193 

and then the starch pastes stored at 4 ℃ for 0, 1, 2, 3, 4, 5, 10, 15 and 20 days were 194 

dried. Finally, nine kinds of retrogradation starch were obtained and named 0, 1, 2, 3, 195 

4, 5, 10, 15 and 20 d. RD of retrogradation starch was determined by the enzymatic 196 

method based on α-amylase. Average values of RD for nine kinds of retrogradation 197 

starch were 15.87%, 45.64%, 67.21%, 77.39%, 85.30%, 91.05%, 94.91%, 97.07%, 198 

and 98.73% shown in Fig. 1. The stand deviations of each kind retrogradation starch 199 
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were 1.234, 1.322, 0.9814, 1.097, 1.501, 0.5618, 0.5222, 0.5189, and 0.3777. It is 200 

indicated that RD in starch increased with the storage time prolonged. RD at the first 201 

five days varied significantly from 15.81% to 85.30%. The speed of retrogradation 202 

was decreased gradually after 5 days. Particularly, the RD of 15 d and 20 d were 203 

similar. It can be concluded that the structure and component of retrogradation starch 204 

at 0, 1, 2, 3, 4 and 5 d alter dramatically while that at 10, 15, and 20 d alter slightly. 205 

 206 

Fig. 1 retrogradation degree of corn starch paste stored for 1, 2, 3, 4, 5, 10, 15 and 20 days 207 

Spectral analysis 208 

MIR and Raman spectroscopy can be used to detect properties of retrogradation 209 

starch, such as crystallinity and amorphization. Fig. 2 (a) shows the average MIR 210 

spectra of retrogradation starch stored for 0, 1, 2, 3, 4, 5, 10, 15, and 20 days. Fig. 2 211 

(b) shows average Raman spectra for the retrogradation starch samples with different 212 

storage time. 213 

MIR spectral patterns of retrogradation starch showed almost identical 214 

characteristic bands (Fig. 2 (a)). The characteristic bands mainly contain 756, 820, 215 
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850, 880, 928, 949, 994, 1022, 1067, 1077, 1133, 1150, 1181, 1241, 1340, 1506, 216 

1560, 1648, 1654, 1701, 2177, 2926, and 3275 cm-1. These bands mainly resulted 217 

from the vibrational modes of molecule in retrogradation starch. The bands around 218 

1600 cm-1 are attributed to amorphous region of starch (Smits et al. 1998). The band 219 

at 1506 cm-1 is influenced by the skeletal mode vibration of a-1, 4 glycosidic linkage 220 

(C–O–C). The bands at 1022 and 850 cm-1 are sensitive to changes in crystallinity.  221 

The nine Raman spectra for retrogradation starch also showed almost identical 222 

characteristic bands (Fig. 2 (b)). The main vibrational bands of each spectrum are 223 

similar because different samples contain the same main components 224 

(polysaccharide). The vibrational bands mainly included 373, 408, 437, 480, 577, 860, 225 

940, 952, 1051, 1082, 1126, 1260, 1338, 1382, 1462, 1518, 2116, 2870, 2908 cm-1. 226 

The band at 2908 cm-1 is related to the symmetrical and antisymmetric CH stretching. 227 

The unobvious and sharped characteristic band at 2870 cm-1 can be attributed to the 228 

amylose and amylopectin presented in starch(Kizil et al. 2002). The region between 229 

1200 and 1600 cm-1 contain a large supply of structural information. A majority of the 230 

bands in this region are due to coupled vibration involving hydrogen atoms. For 231 

instance, the band at 1462 is related to CH, CH2, and COH deformation. The feature 232 

at 1382 cm-1 corresponds to coupling of the CCH and COH deformation modes. The 233 

bands at 1260 and 1338 cm-1 can be mainly attributed to several vibrational modes, 234 

such as CO stretching, CC stretching, CCH deformation, COH deformation, and CCH 235 

deformation. The region between 1200 and 800 cm-1 is highly characteristic bands 236 
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owing to CO stretching, CC stretching and COC deformation modes, referring to the 237 

glycosidic bond (Mahdad-Benzerdjeb et al. 2007). This region is considered as the 238 

fingerprint or anomeric region, and is discussed with high frequency in the previous 239 

papers (Baranska et al. 2005; Nikonenko et al. 2005; Yang and Zhang 2009).The 240 

vibrations originating from glycosidic linkages can be observed in the 920-960 cm-1 241 

region. Particularly, the band observed at 940 cm-1 is assigned to the amylose α-1, 4 242 

glycosidic linkage. Raman spectra of retrogradation starch exhibited complex 243 

vibrational modes at low wavenumbers (below 800cm-1) due to the skeletal mode 244 

vibrations of the glucose pyranose ring. Among the Raman bands at 437, 480, 577, a 245 

strong band at 480 cm-1 portraying the rate of polymerization in polysaccharides is 246 

one of the prominent and important indication of the presence of pyranose ring due to 247 

skeletal vibration mode(Kizil et al. 2002). Characteristic vibrational bands found in 248 

retrogradation starch are shown in Table 1 for both IR and Raman. 249 

Each spectrum of retrogradation starch is unique owing to its particular 250 

component and structure. MIR peaks at 1047 and 1022 cm-1 have been used for 251 

investigating changes in starch structure (organized starch and amorphous starch) 252 

during starch retrogradation(Flores-Morales et al. 2012). Previous studies have shown 253 

the most useful Raman bands which reflect the characteristics of retrogradation starch. 254 

For instance, according to W.T. Winter et.al (Winter and Kwak 1987), intensity of the 255 

Raman band at 480 cm-1 and the half-bandwidths of Raman bands at 2800-3000 cm-1 256 

were used as excellent indexes for evaluating retrogradation starch. Besides the bands 257 
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discussed in the previous work (Kizil et al. 2002), the intensities and shapes of other 258 

characteristic bands are also relevant to the starch component and structure. However, 259 

these bands were ignored for determination of retrogradation of starch. Therefore, the 260 

more spectral feature will be applied for determining retrogradation starch in further 261 

analysis. 262 

 263 

Fig. 2 mid-infrared and Raman spectra of different retrogradation starch 264 
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Table 1 IR and Raman wavenumbers and their respective tentative assignments based on literature data 265 

General discrimination of Samples 266 

PCA was applied to MIR and Raman spectra to evaluate their ability to 267 

differentiate the retrogradation starch with different storage time. The scores plots of 268 

PCA for retrogradation starch stored 0, 1, 2, 3, 4, 5, 10, 15, 20 days were shown in 269 

Fig. 3 (a) and (b). Fig. 3 (a) shows the scores plot of PCA based on MIR spectra. The 270 

retrogradation starch samples were divided into two categories with some 271 

overlapping. The first one category located at the left of the scores plot contained 272 

retrogradation starch samples stored 0, 1, 2, 3 and 4 days. The starch samples stored 5, 273 

10, 15 and 20 days belonged to the second category located at the right of the scores 274 

plot. According to the RD determined by enzymatic method, the RD reached 85% 275 

when the starch was stored 4 days. The average growth rate of one day was 21.25%. 276 

The RD during the first four days increased rapidly. When the starch was stored for 20 277 

days the RD of starch achieved 99%. From the 5th to 20th day, the RD increased from 278 

85% to 99% with growth rate of 14%. The average growth rate of every day was 279 

IR (cm-1) Assignments Raman (cm-1) Assignments 

3275 S ν(OH)   

2926 M ν(CH) 2908 S ν(CH) 

1506 W COC 1462 M, 1518 W δ(CH) + δ(COH) + δ(CH2) 

1241 M δ(CH) + δ(OH) 
1338 S, 1260 M, 

1382 M 
δ (CH) 

1150 S ν(CO) + ν(CC) 1126 S δ(COH) + ν(CO) + ν(CC) 

1077 S, 1022 S ν(CO) + ν(OH) + ν(CC) 1051 M, 1082 M δ(COH) + ν(CO)+ ν(CC) 

994, 928 W γ(COOH) + δ(COO) 940 S, 952 S δ(COC) + δ(COH) + ν(CO) 

850 W δ(CCH) + δ(COH) + γ(COH) 860 W ν(COC) + ν(CCH) 

  577 W δ(CCO) + δ(CO) 

  437W, 480 S δ(CCO) + δ(CCC) 



16 

 

0.875%. The RD increased slowly. The starch retrogradation may be divided into two 280 

stages i.e. fast and slow stages. 281 

Fig. 3 (b) shows scores plot of PCA based on Raman spectra. All retrogradation 282 

starch samples were divided into three categories. The three categories were not 283 

completely separated. s. One of categories located at the middle of the scores plot 284 

contained retrogradation starch samples stored for 0, 1, 2, and 3d. The retrogradation 285 

starch samples stored 4 and 5 days belonged to the second category and the other 286 

retrogradation starch samples (stored 10, 15 and 20 day) constituted the third 287 

category. In the first category, the retrogradation starch stored for 0, 1and 3 d were 288 

separated well from the each other except of 2 d overlapping with 1d. According to 289 

the results by enzymatic method the RD of them were increased rapidly. The structure 290 

or component of retrogradation starch was very fast at the first three days. For the 291 

retrogradation starch samples stored for 4 and 5 days, the RD of them is increased 292 

more slowly than the retrogradation starch sample stored 0, 1, 2, and 3 d. The change 293 

of retrogradation starch was slow. The RD of retrogradation starch stored for 10, 15 294 

and 20 days showed subtle difference by enzymatic method indicating that starch 295 

changed very slowly. Structure and component of retrogradation starch were 296 

beginning to stabilize. The aggregation of starch samples maybe led by their similar 297 

component and structure. The starch retrogradation may be divided into three stage, 298 

i.e. fast, slow and stable stage. The stage retrogradation starch categories could be 299 

discriminated by PCA. Whereas, the specific RD in starch sample was not 300 
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determined. Therefore, the RD in starch would be determined in following research. 301 

 302 

Fig. 3 score plot of the first principal component (PC1) versus the second principal 303 

component (PC2) of different retrogradation starch samples: (a) MIR and (b) Raman 304 

Models for determining RD 305 

Results of models based on MIR or Raman spectra 306 

PLS, iPLS, siPLS and biPLS algorithm was used in this paper for establishing 307 
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models to determine RD in starch. The results of models based on MIR and Raman 308 

spectra were listed in Table 2. From Table 2, good performance was obtained from 309 

the PLS models based on MIR or Raman spectra. The prediction values of RD were 310 

between 10%~100%. The lowest RMSECV value (8.4) was achieved by biPLS 311 

model based on Raman spectra. The corresponding correlation coefficient (Rp) of 312 

prediction set was 0.9252 which achieved the best performance. The worst model 313 

was iPLS model with highest RMSECV of based on the single interval in Raman 314 

spectra. The optimal Raman spectral interval is the sixth interval in the spectral range 315 

of 407 and 485 cm-1 when the whole spectrum split into 40 intervals. The 316 

characteristic interval variables were attributed to skeletal mode in starch. The MIR 317 

biPLS model based on intervals numbered 2, 40, 28, 34, 17, 33, 37, 35, and 38 318 

achieved the best performance in all models of MIR. The selected intervals are 319 

located in the spectral ranges of 734-817, 3917-4000, 2911-2994, 3413-3497, 1989-320 

2072, 3330-3413, 3665-3749, 3497-3581, 3749-3832 cm-1 (Fig. 4 (a)). Fig. 4 (b) 321 

shows a correlation between RD measured by reference analysis and RD predicted 322 

by MIR biPLS in prediction set. For models of Raman, biPLS models also showed 323 

the best performance. The selected Raman intervals were numbered 1 2 5 6 9 10 15 324 

33 37 38, corresponding to the wavenumbers in the range of 100-254, 410-564, 718-325 

872, 1181-1258, 2570-2647, 2878-3033 cm-1 shown in Fig.5 (a). Fig. 5 (b) shows a 326 

correlation between RD measured by reference analysis and RD predicted by Raman 327 

biPLS in prediction set. 328 
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Comparing the models based on MIR and Raman spectra, models based on 329 

Raman spectra were better than models based on MIR spectra except iPLS model. 330 

IPLS algorithm caused a decline of the model performance when applied to Raman 331 

spectra in comparison with full spectrum PLS model. The superiority of Raman 332 

spectroscopy may be attributed to specificity and sensitivity (Yuan et al. 2017). The 333 

two methods do not offer the identical information about the molecular vibrations and 334 

structure. MIR spectroscopy probe the molecular vibrations when the electrical dipole 335 

moment changes, while Raman spectroscopy detect molecular vibrations according to 336 

the changes of electrical polarizability (Thygesen et al. 2003). The difference between 337 

them indicates that molecules tend to be more sensitive to Raman spectroscopy than 338 

to MIR spectroscopy. For instance, the C-C or C=C bond is more sensitive to Raman 339 

spectroscopy than to MIR spectroscopy. According to the characteristic vibrational 340 

bands for MIR and Raman found in food system, the skeletal mode of starch lead to 341 

specific vibrations in the Raman spectral regions located at 900-800 and 500-400 cm-1 342 

(Thygesen et al. 2003). MIR is strongly dependent on proper sample preparation and 343 

moisture content can seriously affect MIR spectra. Conversely, Raman is highly 344 

sensitive and do not require special sample treatment. 345 
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 346 

Fig. 4 (a): the efficient intervals of MIR variables selected by biPLS for predicting RD 347 

and (b): reference measured values versus MIR predictive values of RD predicted by 348 

biPLS in prediction set 349 
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 350 

 351 

Fig. 5 (a): the efficient intervals of Raman variables selected by biPLS for predicting RD and (b): 352 

reference measured values versus Raman predictive values of RD predicted by biPLS in prediction 353 

set. 354 

Results of models based on fusion data 355 

The validity of data fusion method has been demonstrated in the literature. Even 356 

though the performance of models based on MIR or Raman spectra is satisfied, the 357 

models based on information extracted from MIR and Raman spectra were still 358 

(b) 

(a) 
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established for verifying that Raman with aid of MIR would be better than Raman 359 

spectroscopy. 360 

As listed in Table 2, the prediction performance of PLS model based on low-361 

level data is not improved in comparison with that of models based on MIR or 362 

Raman. Our findings are in agreement with results obtained by other researchers 363 

(Nunes et al. 2016). This might be due to that the fusion data from MIR and Raman 364 

spectra contained too much redundant information which significantly result in 365 

decline of PLS model performance. 366 

To overcome too much redundant information, characteristic intervals of MIR 367 

and Raman which selected by biPLS in section 3.4.1 were merged as medium-level 368 

fusion data. The process of medium-level data fusion was shown in Fig. 6. As a result, 369 

PLS model based on characteristic intervals of MIR and Raman (medium-level fusion 370 

data) achieved a better performance with the highest Rp of 0.9658 than PLS model 371 

based on full raw variables (low-level fusion data). Low-level fusion is simple, just 372 

uses merge raw spectra. But high data volume may contain a large number of noise or 373 

irrelevant information. The performance of predictive models would be influenced by 374 

the negative information. Some limitation of low-level fusion can be partially 375 

overcome by medium-level fusion. Characteristic intervals can decrease the data 376 

volume and eliminate noise or irrelevant information. 377 

Retrogradation degree are determined only by Raman spectroscopy, and satisfied 378 

results are obtained. (Table 2). But by combining MIR and Raman spectroscopy, more 379 
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accurate and reliable models were obtained. The combination of MIR and Raman 380 

spectroscopy proved better in determination of retrogradation degree compared to 381 

single Raman spectroscopy. Though Raman spectroscopy and chemometric tools have 382 

been successfully used for exploratory analysis of pure corn, cassava starch samples 383 

and mixtures of both starches, as well as for the quantification of amylose content in 384 

corn and cassava starch samples (Almeida et al. 2010). Both MIR and Raman can 385 

generate bands linked to fundamental vibration and supply fingerprints of components 386 

that can be used for quantitative and qualitative characterization. Even though both 387 

methods probe molecular vibrations and structure, they do not provide exactly the 388 

same information (Thygesen et al. 2003). Raman spectroscopy detect molecular 389 

vibrations according to the changes of electrical polarizability. While MIR 390 

spectroscopy probe the molecular vibrations when the electrical dipole moment 391 

changes. They are complementary techniques for the study of molecular vibrations 392 

and structure. For example, the C-C group has a strong Raman scattering band in 393 

Raman spectra but weak absorption bands in the mid-infrared. O–H vibration is very 394 

strong in MIR, but very weak in Raman(Yang and Irudayaraj 2002). The intensities of 395 

characteristic bands in Raman and MIR spectra collected from same food are different 396 

and the information they contain are not identical (Flores-Morales et al. 2012). Due to 397 

their distinct advantages, data fusion, as an emerging technology, is an efficient way 398 

for the optimum utilization of data from different sources, and has been successfully 399 

used to the rapid measurement of retrogradation starch in this paper. Therefore, a 400 
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useful methods based on MIR and Raman spectroscopy were developed for 401 

determining retrogradation starch. 402 

 403 

Fig. 6 PLS model based on medium fusion data extracted from the MIR and Raman 404 

spectra. 405 

Table 2 the results of different predictive models 406 



25 

 

 407 

Conclusion 408 

The RD in starch stored for different storage time have been predicated by MIR 409 

and Raman spectroscopy combined with chemometrics. The PLS model based on 410 

medium-level fusion data of MIR and Raman spectra had the best prediction 411 

performance with correlation coefficient (R) of 0.9658. Retrogradation starch was 412 

obtained by chilling gelatinized corn starch for different time (0, 1, 2, 3, 4, 5, 10, 15, 413 

20 days). The low-level and medium-level fusion data extracted from MIR and 414 

Raman were also analyzed by PLS. In addition, The MIR and Raman spectra of 415 

retrogradation starch were analyzed by SG, PCA, PLS, iPLS, siPLS and biPLS for 416 

determination of RD in starch. The results demonstrated that the prediction 417 

performance of models for Raman are better than those based on the MIR except iPLS 418 

model. Variables selection improved the performance of PLS models. PLS model 419 

based on medium-level fusion data achieved the best performance in comparison with 420 

the models. Prediction of the RD in starch based on combination of MIR and Raman 421 

Spectra Models LV 
Calibration set  Prediction set 

RMSECV Rc RMSEP Rp 

MIR 

spectra 

WS-PLS 10 12.8 0.8956 16.2 0.8162 

iPLS 7 14.3 0.8538 16.5 0.8101 

siPLS 8 11.5 0.9016 15.1 0.8401 

biPLS 8 10.0 0.9258 14.2 0.8542 

Raman 

spectra 

WS-PLS 10 12.9 0.8924 15.9 0.8204 

iPLS 5 14.9 0.8433 17.1 0.808 

siPLS 7 10.0 0.9275 13.5 0.8806 

biPLS 8 8.4 0.9587 10.1 0.9252 

Fusion 

spectra 

low-PLS 12 7.2 0.9873 8.7 0.9573 

medium-
PLS 

7 7.0 0.9887 7.7 0.9658 
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spectroscopy are more accurately than that based on single technique. This indicates 422 

that the developed methodology may be able to forecast the quality, acceptability and 423 

shelf-life of starch products or starch-containing products easily damaged by starch 424 

retrogradation. 425 
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