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Abstract  14 

A noise-free bacterial colony counting method that can identify noises with similar 15 

colors/shapes of colonies was proposed for food quality assessment. Noises were 16 

produced using food fragments (sausage, bacon, and millet fragments) sterilized at high 17 

temperatures. Agar plates with colonies and food fragments in/on agar medium were 18 

used to acquire hyperspectral image data. Firstly, spectral features corresponding to the 19 

colony cluster regions and the background regions (agar medium and food fragments) 20 

were extracted from hyperspectral images. A cluster segmenting calibration model that 21 

is able to identify colony clusters and background regions was developed based on the 22 

spectral features. Secondly, spectral features of colony centers and colony borders were 23 

extracted. A colony separating calibration model that can separate single colony from 24 

clusters (comprised multiple colonies contacting each other) was developed based on 25 

the spectral features. Thirdly, each pixel of an agar plate hyperspectral image was 26 

identified using the established calibration models, therefore the colonies on the agar 27 

plate can be counted. Results shown that the proposed method got good correlation 28 

(R2= 0.9998) with the standard colony count method. The identification of the noises 29 

caused by food fragments with similar colors/shapes of colonies is the outstanding 30 

performance of the proposed method. 31 

Keywords: colony, counting, hyperspectral imaging technology, noise-free, spectral 32 

feature, chemometrics 33 
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1 Introduction 35 

The method of colony counting using solid agar plates has been widely employed 36 

to quantitatively measure viable microbial cells for food quality assessment1. The 37 

colony counting method involves smearing the diluted bacterial suspension of food 38 

products on solid agar plate2. As each viable cell on the plate grows and then forms a 39 

single colony, the number of viable microbial cells in food products can be evaluated 40 

by counting the colonies3. Colony counting provide essential indicators about 41 

probiotics that reflect food nutrition, or harmful organisms that affect food safety4-6. 42 

Actually, many reference methods or national standards concerning food quality related 43 

to various organisms is based on this type of colony counting7-9. Conventional colony 44 

counting is manually performed by well-trained operators, so it is low throughput, 45 

laborious and time-consuming in practice10. 46 

To alleviate the disadvantages associated with manual counting, various 47 

automated colony counting methods using computer vision have been proposed11-13. 48 

Basically, an image capture system were designed to collect a 2-dimensional color or 49 

gray-scale images of the agar plate. Then color features or text features of the colony 50 

were extracted from the image and employed to distinguish colony cluster from the 51 

background, to separate single colony from clusters composed of touching colonies, 52 

and to provide the colony counting results automatically. These kind of automated 53 

counting methods can obtain good results as long as interference noise, such as various 54 

food fragments, do not appear in the agar plate2,16. 55 

Unfortunately, it is really difficult to prepare pure samples of target cells without 56 

containing any food fragments. As a result, the food fragments maybe wrongly 57 

identified as normal colony by computer vision. Researchers have reported that it is 58 

difficult to prepare pure samples of target microbial cells without residual food 59 

fragments14. Technicians worked in government institution of Disease Control and 60 

Prevention also reported that food fragments appeared at/in agar medium frequently15. 61 

As the color and shape of food fragments maybe quite similar to that of normal colonies, 62 

food fragments are easily wrongly identified as colonies by computer vision, and even 63 

by well-trained employees in practice.  64 



Time-lapse imaging technology, and the use of triphenyl tetrazolium chloride 65 

(TTC) have been employed to reduce/eliminate the influence of the food fragments with 66 

colors similar to that of colonies. Time-lapse imaging technology collects a series of 67 

images to record the dynamic growth of colonies from a single-cells. As the signals of 68 

food fragments can be captured prior to the colony, so this method is able to clearly 69 

distinguish colonies from the food fragments16. However, it requires to repeat the image 70 

acquisition many times during the colony culture, and a complex plate holder that can 71 

automatically transport agar plate from incubation area to the imaging area has to be 72 

installed. Researches figured out that TTC can be used as an indicator because only 73 

colonies containing living cells can be marked with red color. The use of TTC 74 

significantly increases the contrast between the colonies and the background, and 75 

segment of colonies becomes pretty much easy17. However, GuoMei et al. reported that 76 

TTC affected the growth of microbial cells, which indicated errors would be caused by 77 

the use of TTC in the stage of colony growth18. 78 

A new idea, separating colonies from their background based on spectral features 79 

caused by changes in chemical composition, was proposed in this study. Many research 80 

have demonstrated that spectral features were sensitive to the chemical components of 81 

biological samples; and spectral techniques, such as ultraviolet spectrum (UV)19, visible 82 

spectra (VIS)20, near infrared spectra (NIR)21 and mid infrared spectra (MIR)22 have 83 

been used for quantitative and qualitative analysis of chemical composition in various 84 

biological samples successfully. Obviously, there are changes in the chemical 85 

composition between colony area and agar medium, between colony area and food 86 

fragments, and between colony center area and colony border area. So it is reasonable 87 

that spectral features were employed to identify colonies and the food fragments with 88 

colors similar to that of colonies. 89 

In order to carry out the new idea, it is essential to obtain spectral data of the whole 90 

agar plate pixel by pixel, so hyperspectral imaging technology was employed to record 91 

the whole agar plate pixel by pixel. Unlike conventional spectral technologies relies on 92 

spot measurement, such as UV, VIS, NIR and MIR, hyperspectral imaging technology 93 

combines conventional spectroscopy and imaging techniques to acquire a spectrum for 94 



each pixel in the 2-dimensional image of an object23,24. There is the case in which the 95 

chemical composition of the whole sample must to be evaluated, and it is essential to 96 

acquire both spectral data and spatial data from the sample surface at the same time. 97 

Hyperspectral imaging technology meets these requirements perfectly and has been 98 

successfully used for full assessment of chlorophyll, flavonoids, moisture, soluble 99 

solids and other chemical composition in various biological samples25-29. It is 100 

reasonable to assume that the differences in chemical composition caused by colonies, 101 

agar medium, and various noise can be characterized by hyperspectral imaging 102 

technology. 103 

As mentioned above, this study was aimed at the development of a noise-free, 104 

high-precision method for automatic colony counting. The agar plates with colonies 105 

and food fragments were employed to acquire hyperspectral image data. Spectral 106 

features corresponding to colonies and backgrounds were employed to count colonies 107 

automatically. The performance of the proposed method were compared with that of 108 

computer vision, and the practical feasibility of the proposed method was also discussed. 109 

 110 

2 Materials and methods 111 

2.1 Preparation of agar plates containing colonies and noise 112 

As an initial model system, nonpathogenic Bacillus Subtilis (CGMCC 1.8886) was 113 

obtained from China General Microbiological Culture Collection Center (Beijing, 114 

China). Food fragments of sausage, bacon, and millet (Kaiyuan supermarket in Jiangsu 115 

University) with shapes similar to those of colonies were prepared to cause noise in 116 

agar plate. After sterilization at high temperatures using an autoclave (DSX-117 

280B,ShangHai Shenan Medical Instrument Factory, China), 15 ml of Luria-Bertani 118 

agar medium (1% tryptone, 0.5% yeast extract, 1% NaCl, and 2% agar) maintained at 119 

47 °C was transferred to a petri dish With a diameter of 90 mm, and food fragments 120 

were added to the cooled agar medium. So an agar plate with food fragments on/in the 121 

agar medium can be obtained. Various dilutions of B. subtilis were prepared in Hanks’ 122 

Balanced Salt Solution, and 100 μL of the diluted bacteria were spotted onto multiple 123 

areas of an agar plate. Then agar plates were placed in an incubator (HWHS-150, 124 



Wanfeng Instrument manufacturing Co. Ltd., China) and cultured for 24 h at 37 °C. 125 

The agar plates containing clusters of colonies and food fragments in/on the agar 126 

medium were prepared for hyperspectral image data collection, as shown in Figure 1.  127 

 128 

 129 

Figure 1 the sectional view of an ager plate with bacterial colonies and food fragments on/in agar 130 

medium 131 

2.2 Hyperspectral image data measurement 132 

A line-scanning hyperspectral imaging system with the Vis/Nir wavelength range 133 

of 400-1000 nm was employed to acquire hyperspectral images of the prepared agar 134 

plates in the reflectance mode. The hyperspectral imaging system consists of a line-135 

scanning spectrograph (ImSpector, VI0E, Spectra Imaging Ltd., Finland), a CMOS 136 

camera (BCi4-U-M-20-LP, Vector International, Belgium), a illuminator (Fiber-Lite 137 

PL900-A, Dolan-Jenner Industries Inc., USA), a conveyer (Zolix TS200AB, Zolix. 138 

Corp., China), an enclosure (ZJgrt, Great Ltd., China), a data acquisition and pre-139 

processing software (Spectra Cube, Auto Vision Inc., USA), and a computer 140 

(HPdx2390MT, Hewlett-Packard, China). Detailed information about hyperspectral 141 

image collection can be found in our previous study30. 142 

2.3 Hyperspectral image data analysis 143 

After hyperspectral image measurement, the agar plate was digitized with pixels 144 

that contain spectra data, so the spectral features of each pixel can be employed to 145 

segment colonies from background and split colony clusters.  146 

With the aid of hyperspectral imaging system, the 3-dimensional (3D) data cube 147 

of agar plate was acquired as shown in Fig 2. In Fig. 2 (a), x axis and y axis indicate 148 

the pixel location, λ axis indicates the wavelength of every single image. The significant 149 
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advantage of the 3D data cube is that it contains both spectral data and image data of 150 

an agar plate. On the one hand, the 3D data of an individual pixel (x equals to xj ∈[1, 151 

1024], y equals to yk ∈[1, 1024] and λ equals to all the values in the range of [430，152 

960]) is extracted from the whole 3D data cube as shown in Fig. 2 (b). Then all the 153 

signal values of the pixel are presented in a curve in order of their wavelengths, and the 154 

spectral information of the pixel (xj, yk) can be obtained as shown in Fig. 2 (c). On the 155 

other hand, the agar plate image at a specific wavelength λr ∈[430，960] (x equals to 156 

all the values in the range of [1, 1024] and y equals to all the values in the range of [1, 157 

1024]) can also be extracted from the 3D data cube as shown in Fig. 2 (d). In fact, the 158 

whole surface of the agar plate can be digitized accurately with the aid of the pixels in 159 

Fig. 2 (a), and the sample properties at every single pixel can be determined rapidly 160 

with the aid of its spectral information. This makes it possible to identify colony areas 161 

and background areas using their spectral features.  162 

 163 

 164 

Figure 2 agar plate hyperspectral image data cube 165 

In order to reduce the complexity the hyperspectral data, chemometrics methods 166 

were employed to facilitate the establishment of calibration models. Genetic algorithm 167 

(GA) is employed to select the most informative wavelength regions from the large 168 

hyperspectral image data31-33, Principal component analysis (PCA) is employed to 169 

extract the spectral features from the hyperspectral image data of the selected 170 

wavelength regions34,35, K-nearest neighbors (KNN) is employed to build calibration 171 
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models for colony counting36,37. 172 

 173 

2.4 count of microbial colonies 174 

The count of microbial colonies includes three main steps: (1) build cluster 175 

segmenting calibration model, (2) build colony separating calibration model, and (3) 176 

colony count. The flow chart of these steps is shown in Fig. 3.  177 

2.4.1 Build cluster segmenting calibration model 178 

Firstly, cluster/background spectra were extracted. A square region of interest (ROI) 179 

of 10×10 pixels was defined within the cluster and background areas (including agar 180 

medium, sausage fragments, bacon fragments, and millet fragments), then the mean 181 

spectral data of the cluster and background areas was extracted for further data analysis. 182 

Secondly, calibration models for cluster segmentation were build. GA and PCA were 183 

used to extract the spectral features of cluster /background pixel from the calibration 184 

data set, and KNN was used to build segment models by correlating the spectral features 185 

with their origins (cluster area or background area) of pixels. The calibration models 186 

were optimized by spectral features of the prediction set. Thirdly, the optimal 187 

calibration model was validated by an independent testing data set. The Se and Sp of 188 

the predicted results were calculated and were used to estimate the capability of the 189 

optimal calibration model. 190 

 191 

2.4.2 Build colony separating calibration model 192 

Colony centers are expected to be apart even though the borders of two colonies 193 

are contacting each other, so more than 2 colonies overlapping with each other could 194 

be counted separately by identifying colony centers. Spectral features of colony centers 195 

and colony borders were extracted and employed to build identification models for 196 

identifying colony centers, as shown in Fig. 3.197 



 198 

Figure 3 Process flowchart for counting microbial colonies in agar plate 199 
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Firstly, colony center/border spectra were extracted. A square region of interest 200 

(ROI) of 5×5 pixels was defined within the colony center and border regions in 201 

hyperspectral images; then the mean spectral data of the ROI was extracted. Secondly, 202 

calibration models for colony separating were build. GA and PCA were used to extract 203 

the spectral features of center/border pixel from the calibration data set, and KNN was 204 

used to build identification models by correlating the spectral features with their origins 205 

(colony center area or colony border area) of pixels. The calibration models were 206 

optimized by spectral features of the prediction set. Thirdly, the optimal calibration 207 

model was validated by an independent testing data set. The Se and Sp of the predicted 208 

results were calculated and were used to estimate the capability of the optimal 209 

calibration model. 210 

 211 

2.4.3 Colony count 212 

In the cluster segmenting calibration model, the relationship between spectral 213 

features and colony/background areas has been established. In the colony separating 214 

calibration model, the relationship between spectral features and colony center/border 215 

areas has been established. With the aid of the optimal segment model and the optimal 216 

identification model, microbial colonies in agar plates can be counted based on the 217 

spectral features recorded in the 3D hyperspectral data cube, as show in Fig. 3. 218 

Firstly, spectra data of each pixel in the hyperspectral image of an agar plate with 219 

colonies and noises were extracted. Secondly, the cluster areas on the hyperspectral 220 

image were segmented. The spectral features of each pixel were substituted in the 221 

optimal cluster segmenting calibration model, and then all the pixels were divided 222 

into cluster and background areas so that the cluster areas on the agar plate can be 223 

segmented. Thirdly, the overlapping colonies were separated. The spectral data of 224 

pixels belonging to the cluster areas were substituted in the optimal colony separating 225 

calibration model, and then all the pixels were divided into colony center and border 226 



areas so that the colonies contacting with the others can be separated. With the aid of 227 

the separated colony centers, all the colonies on the agar plate can be counted. The 228 

number of the colony centers was considered as that of colonies in the agar plate due 229 

to that each colony own only one colony center. 230 

 231 

2.5 Software 232 

The hyperspectral images of agar plates were collected using SpectralCube 233 

(ImSpector, image, Auto Vision Inc., USA). All the hyperspectral image processing 234 

methods were performed in Matlab V.7.4 (The Mathworks, Natick, USA). The PCA 235 

procedure used in this paper is the algorithm contained in Matlab. The source code of 236 

the GA algorithm and KNN algorithm was developed based on the demo code 237 

presented in the published book38. 238 

 239 

3 results and discussion 240 

3.1 investigation of optical features produced by agar plate 241 

An agar plate containing microbial colonies, sausage/sausage/ millet fragments 242 

and agar medium were employed to acquire color image and hyperspectral image, and 243 

the spectral/image optical features of colonies and food fragments in color or 244 

hyperspectral images were investigated, as shown in Fig. 4.  245 

Computer vision method based on two-dimension images at R/G/B wavelengths 246 

has been widely used for colony count, so the color image of the agar plate was 247 

collected, as shown in Fig. 4(a). The gray images of the color image at R/G/B 248 

wavelengths were shown in Fig. 4(b-c). In Fig. 4(b-c), there is high contrast in gray 249 

levels between colonies and agar medium regions and slightly lower contrast between 250 

colonies centers and borders. This is agreement with the published papers reporting 251 

that colonies can be segment from agar medium with proper threshold gray value 252 

while it is difficult to separate single colony from colony clusters using computer 253 

vision. In Fig. 4(b-c), it can be also find that gray levels in colony regions are very 254 

close to that of food fragment regions, and sometimes the colony region and food 255 



fragment region get the same gray level as marked in the figures. This indicates that it 256 

is very difficult to identify colonies from those fragments using conventional color 257 

imaging analysis.  258 

The mean spectral data of the colonies and non-colonies particles were extracted 259 

from the hyperspectral images of agar plates, as shown in Fig. 4(e). As shown in Fig. 260 

4 (e), the spectral curve of microbial colony is quite different from that of agar 261 

medium in the wavelength range of 390-560 nm. The spectral curve of microbial 262 

colony and agar medium have similar trends in wavelength range of 610-960 nm, 263 

while the spectral readings of microbial colony is different from that of agar medium. 264 

In Fig 4(e), it can be also find that the spectral curve of colony is also different from 265 

that of food fragments in/on agar medium. Changes in spectral readings and spectral 266 

curves are caused by differences in type and quantity of chemical component between 267 

colonies and non-colonies particles, as many published papers reported that spectral 268 

information is sensitive to chemical components in biochemical samples. This results 269 

indicate that changes in spectral reading between colonies and non-colonies particles 270 

indicate that spectral features can be employed to segment colonies from its 271 

background.  272 

The mean spectral data of colony centers and colony edges were extracted from 273 

the hyperspectral images of agar plates, as shown in Fig. 4(f). As shown in Fig. 4 (d), 274 

spectral curves of colony centers and colony borders have similar trends in 275 

wavelength range of 430-960 nm, the spectral readings of colony centers are different 276 

from that of colony edges, especially in the wavelength ranges of 530-570 nm, 730-277 

770 nm and 830-880 nm. Changes in spectral readings are caused by differences in 278 

quantity of colony cells between colony centers and colony edges. In fact, differences 279 

in quantity of colony cells also cause symmetric gradation of gray levels from the 280 

colony border to its center, which is the fundament to separate single colony from 281 

colony clusters using human eyes or computer vision systems. Changes in spectral 282 

reading between colony centers and colony edges indicate that spectral features can be 283 

employed to separate single colony from colony clusters. 284 

 285 



 286 

 287 

Figure 4 spectral/image features of agar plate. (a) Color image of an agar plate; (b) R 288 

gray image of the color image; (c) G gray image of the color image; (d) B gray image 289 

of the color image; (e) the mean spectra data of the colonies and non-colonies 290 

particles; (f) the mean spectra data of the colony center and colony edge. 291 

 292 

3.2 building cluster segmenting calibration model 293 

90 spectrums belonging to colonies, 90 spectrums belonging to food fragments, 294 

and 60 spectrums belonging to the agar medium were extracted from the 295 

hyperspectral images. Spectrums of colonies were in the foreground category, 296 
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spectrums of food fragments and agar medium were in the background category. The 297 

spectra data of the foreground/background samples and their categories were 298 

employed to build colony areas segment model, as described in section 2.4.1.  299 

GA, PCA and KNN algorithms were employed to build colony areas 300 

segmentation models. In this study, the parameters used in GA algorithm were set as 301 

following: number of max generations (Maxgen) was equal to 60, crossover 302 

probability (Pc) was equal to 0.50, mutation probability (Pm) was equal to 0.05, 303 

population size (Popsize) was equal to 60, the length of a chromosome (Chrolen) was 304 

equal to 40, the average probability of variables selected in chromosomes of the 305 

initialized population (Pinit) was equal to 10%. The fitness values (Fvalue) was the 306 

identification rates (Ir) of KNN model. Foreground samples were defined as 307 

“positives”, and background samples were defined as “negatives”. Details of optimal 308 

calibration models with spectra data and chemometrics methods were described in 309 

section 2.3. 310 

The capability of optimal calibration modes for segmentation of an unknown 311 

sample was tested by an independent testing set. So 60 spectrums belonging to 312 

colonies, 60 spectrums belonging to food fragments, and 60 spectrums belonging to 313 

the agar medium were extracted from the hyperspectral images and used to construct 314 

the testing data set. With different spectral treatment, the results of the calibration 315 

model were summarized in Table 1. The identification rates of the calibration data set, 316 

prediction data set and testing data based on raw spectra were 95.63%, 92.50% and 317 

91.67%, respectively. The identification rates of the calibration data set, prediction 318 

data set and testing data based on SNV pretreatment were 98.75%, 96.25% and 319 

95.56%, respectively. Compared with the raw spectral without any pretreatment, SNV 320 

pretreatment can enhance the performance of calibration model, this indicating that 321 

the scattering effects and baseline shifts contribute a part of the unwanted variations 322 

in the raw spectra.  323 

Compared with the results based on SNV pretreatment, the calibration model 324 

based on GA wavelength selection got better results. The identification rates of the 325 

testing data set based on GA wavelength selection were 99.44%, which means the 326 



calibration model based on GA wavelength gets high capability for segmentation of 327 

an unknown sample. The identification results based on GA wavelength selection also 328 

indicated that the spectral features corresponding to foreground/background samples 329 

were characterized successfully by the optimized identification model.  330 

 331 

Table 1 results of the cluster segmenting calibration models 332 

 333 

3.3 building colony separating calibration model 334 

90 spectrums belonging to colony center regions, and 90 spectrums belonging to 335 

colony border regions were extracted from the hyperspectral images. Spectrums of 336 

colony center regions were in the foreground category, spectrums of colony border 337 

regions were in the background category. The spectra data of the 338 

foreground/background samples and their categories were employed to build colony 339 

areas segment model, as described in section 2.4.2. Similar to the date processing in 340 

section 3.2, the GA, PCA and KNN algorithms were also employed to optimize 341 

colony center identification model. The same GA parameters (Maxgen, Pc, Pm, 342 

Popsize, Chrolen, Pinit, Ir, Fvalue) in Section 3.2 were used in this section. 343 

Foreground samples were defined as “positives”, and background samples were 344 

defined as “negatives”. Details of optimal calibration models with spectra data and 345 

chemometrics methods were described in section 2.3. 346 

The capability of optimal calibration model for segmentation of an unknown 347 

sample was also tested by an independent testing set. So 30 spectrums belonging to 348 

colony center regions, and 30 spectrums belonging to colony border regions were 349 

extracted from the hyperspectral images and used to construct the testing data set. 350 

 351 

Spectra 
treatment 

Calibration results Validation results Testing results 

Ir Se Sp Ir Se Sp Ir TP FN TN FP Se Sp 

Raw spectra 95.63 96.67 95.00 92.50 93.33 92.00 91.67 55 5 110 10 91.67 91.67 

SNV 
pretreatment 98.75 100 98.00 96.25 96.67 96.00 95.56 57 3 115 5 95.00 95.83 

GA wavelength 
selection 

100 100 100 100 100 100 99.44 60 0 119 1 100 99.17 



With different spectral treatment, the results of the calibration model were 352 

summarized in Table 2. The identification rates of the calibration data set, prediction 353 

data set and testing data based on raw spectra were 92.50%, 90.00% and 88.33%, 354 

respectively. The identification rates of the calibration data set, prediction data set and 355 

testing data based on SNV pretreatment were 95.00%, 93.33% and 91.67%, 356 

respectively. Compared with the results based on raw spectral, the performance of 357 

calibration model has been enhanced after SNV pretreatment. The identification rates 358 

of the calibration data set, prediction data set and testing data based on GA 359 

wavelength selection were 98.33%, 95.00% and 93.33%, respectively. It could be 360 

found that the best identification results obtained after GA wavelength selection, 361 

which indicated the spectral features corresponding to colony center/border 362 

characterized successfully by the optimized identification model. 363 

 364 

Table 2 results of the colony separating calibration models 365 

 366 

 367 

3.4 count of bacterial colonies  368 

Agar plates with 76 colonies (as shown in Fig. 5 (a)), agar medium, and 13 food 369 

fragments in/on agar medium were employed to collect hyperspectral images using 370 

the method described in section 2.2. The spectral data of each pixel in the 371 

hyperspectral image were extracted and employed for colony count, which mainly 372 

include segmentation of colony areas from background, separating single colony from 373 

clusters, and colony count, as described in section 2.4.3.  374 

 375 

 376 

Spectra 
treatment 

Calibration results Validation results Testing results 

Ir Se Sp Ir Se Sp Ir TP FN TN FP Se Sp 

Raw spectra 92.50 96.67 88.33 90.00 90.00 90.00 88.33 27 3 26 4 90.00 86.67 

SNV 
pretreatment 95.00 96.67 93.33 93.33 93.33 93.33 91.67 28 2 27 3 93.33 90.00 

GA wavelength 
selection 

98.33 100 96.67 95.00 96.67 93.33 93.33 29 1 27 3 96.67 90.00 



3.4.1 Segmentation of colony areas from the background 377 

After hyperspectral image collection, the hyperspectral image date of the agar 378 

plate was obtained as shown in Fig. 5(c). The spectral data of each pixel in the 379 

hyperspectral image were employed to segment colony areas from the background. 380 

The same spectral features used in the segmenting model were extracted and 381 

substituted into the optimal calibration model to predict the category that every pixel 382 

belongs to. The gray level of a pixel was set to “1” if the pixel was divided into 383 

foreground category (the pixel belongs to colony regions) by the optimal segment 384 

model, and the gray level of a pixel was set to “0” if the pixel was divided into 385 

background category (the pixel belongs to food fragments or agar medium regions). 386 

The binary image of the agar plate after colony segment using the optimal segment 387 

model was shown in Fig. 5 (e). The two dimension gray image of the agar plate was 388 

collected as shown in Fig. 5(b), and the binary image of the agar plate after colony 389 

segment using conventional computer vision with threshold values (150, 200) was 390 

also presented in Fig. 5 (d).  391 

In Fig. 5(d), it could be found that 4 food fragments (marked with red square) 392 

appear in the foreground region after conventional computer vision processing, which 393 

means the four food fragments were wrongly segmented as colonies. This results are 394 

caused by that the grayscales of the food fragments are quite close to that of colonies 395 

at R, G, B bands, and it is very difficult to set a threshold value to differentiate 396 

colonies from food fragments. In Fig. 5(e), it could be found that only colonies appear 397 

in the foreground region after colony segment using hyperspectral features, and all the 398 

food fragments were identified as background successfully. This results indicated that 399 

hyperspectral features are able to differentiate colonies from food fragments even 400 

though the color of food fragments are similar to that of colonies. 401 



 402 

Figure 5 colony count using hyperspectral imaging technology and conventional 403 

(a) 

(b) (c) 

(d) (e) 

(f) (g) 



computer vision. (a) An agar plate with colonies and food fragments. (b) Gray image 404 

data of the agar plate. (c) Hyperspectral image data of the agar plate. (d) The binary 405 

image of the agar plate after colony segment using conventional computer vision. (e) 406 

The binary image of the agar plate after colony segment using the optimal segment 407 

model. (f) The binary image of the touching colonies after colony separation using 408 

conventional computer vision. (g) The binary image of the touching colonies after 409 

colony separation using colony separating model. 410 

 411 

3.4.2 Identification of colonies contacting or overlapping with each other 412 

After colony area segmentation, the spectral data of each pixel in the colony 413 

areas were employed to identify colony centers. The same spectral features used in the 414 

colony separation model were extracted and substituted into the optimal calibration 415 

model to predict the category that every pixel belongs to. The gray level of a pixel 416 

was set to “1” if the pixel was divided into foreground category (the pixel belongs to 417 

colony center) by the optimal segment model, and the gray level of a pixel was set to 418 

“0” if the pixel was divided into background category (the pixel belongs to colony 419 

border). The binary image of the agar plate after colony segment using the optimal 420 

segment model was shown in Fig. 5 (g). The binary image of the agar plate after 421 

colony segment using conventional computer vision with the watershed algorithm was 422 

also presented in Fig. 5 (f).  423 

There are 9 colony clusters containing two or three colonies, as shown in Fig. 424 

5(a). In Fig. 5(f), it could be found that colonies in 5 clusters were separated 425 

successfully, and 4 clusters (marked with red circle) were wrongly identified as single 426 

colonies. This results are caused by that the grayscales of the food fragments are quite 427 

close to that of colonies at R, G, B bands, and it is very difficult to set a threshold 428 

value to differentiate colonies from food fragments. In Fig. 5(f), it could be found that 429 

colonies in 8 clusters were separated successfully, and only one clusters (marked with 430 

red circle) was wrongly identified as single colonies. This results indicated that 431 

hyperspectral features are more powerful than conventional computer vision in 432 



separation colonies in colony clusters.  433 

 434 

3.4.3 Colony count 435 

After segmentation of colony areas from the background and identification of 436 

colonies contacting or overlapping with each other, colonies on the agar plated can be 437 

counted. The spot image of the recognized colonies processed using conventional 438 

computer vision was shown in Fig. 5(f), the spot image of the recognized colonies 439 

processed using the proposed method based on hyperspectral features was shown in 440 

Fig. 5(g). The agar plate (Fig. 5 (a)) were used to determine the reference value of 441 

colony number by human vision with a magnifying glass and the reference value of 442 

colony number is 76. In Fig. 5(f), the computer vision count error is caused by that 4 443 

food fragments were segmented as colonies in Fig. 5(d) and 4 multi-colony clusters 444 

were identified as single colonies in Fig. 5(f). In Fig. 5(g), colony number obtained 445 

using conventional computer vision is 75, the count error is caused by that 1 multi-446 

colony cluster with two colonies was identified as single colonies in Fig. 5(g). 447 

Compared with the conventional computer vision method, the proposed method based 448 

on hyperspectral features is more powerful to count colonies on agar plates. 449 

The capability of the proposed method for different colony numbers was tested. 450 

20 agar plates with various colony concentrations and food fragments were 451 

determined using hyperspectral imaging technology, computer vision method and 452 

human vision at the same time. The correlation between hyperspectral imaging 453 

method and human vision method are shown in Fig. 6. As shown in Fig. 6, an 454 

excellent value of correlation efficiency was obtained in the hyperspectral imaging 455 

method. The hyperspectral imaging method was demonstrated as a reliable method 456 

that can count microbial colonies to the same level as the human vision count method. 457 



 458 

Figure 6 the correlation of colony count results determined by hyperspectral 459 

imaging method and human vision method 460 

 461 

3.5 discussion 462 

Errors caused by colony count will be amplified hundred or thousand times in 463 

converting colony numbers to the total number of microbial cells in food products, as 464 

the extraction of food samples need to be diluted by hundred or thousand times in 465 

colony cultivation. The automated colony count method mainly focuses on how to 466 

provide reliable results in colony detection. There are some cases in which error occurs 467 

during automated colony counting. In the presence of noises caused by various food 468 

fragments, the noises maybe identified as normal colony, and the numbers of colonies 469 

determined by automated colony count method is higher than the truth value. The 470 

microbiological safety risk on food products will be overestimated in this case. In the 471 

presence of a cluster comprised multiple colonies, the cluster maybe identified as a 472 

single colony, and the numbers of colonies determined by automated colony count 473 

method is lower than the truth value. The microbiological safety risk on food products 474 

will be underestimated in this case. So distinguishing the colonies from the noise and 475 

separation colonies from the cluster are the key steps to ensure the precision of colony 476 

counting.  477 

Usually, conventional computer vision collects color images of an agar plate, then 478 



colonies were segmented and counted from the background according to colors/shapes 479 

features. Conventional computer vision is effective to agar plates with high gray 480 

contrast between colony and its background, or without food fragments producing 481 

noises in color images. The proposed method extract spectral features of colony and its 482 

background to segment and count colonies, so it presented good performance in 483 

identifying food fragments with similar color/shapes to colonies, or separating single 484 

colony from clusters. As researches in school and technicians in government institution 485 

of Disease Control and Prevention reported that food fragments appear at/in agar 486 

medium frequently. Compared with conventional computer vision, the proposed 487 

method could produce more reliable results in practice for food quality assessment.  488 

Complex chemometrics methods are necessary in building calibration models, 489 

which makes the data processing complex, while the data processing in colony count 490 

using the established calibration models is quite simple in the proposed method. Usually, 491 

wavelength selection chemometrics methods are employed to select the most 492 

informative wavelengths correlating with the samples and pattern recognition 493 

chemometrics methods are employed to establish the correlation ships between selected 494 

spectra data (or spectral features) and sample qualities. These data processing in 495 

building calibration models can’t be skipped due to the complex interaction between 496 

detecting lights and food samples. However, the use of the established calibration 497 

models for predicting sample qualities is very simple. As the step 3 in Fig. 3, the main 498 

data processing for colony count includes extract spectral features from the raw data 499 

and substitute the spectral features to the established calibration models. The data 500 

processing can be completed using an ordinary computer without any chemometrics 501 

procedures. 502 

 503 

4 conclusion  504 

A new noise free method was proposed to count microbial colonies for food 505 

quality assessment using hyperspectral imaging technology. Agar plates with 506 

microbial colonies and various food fragments with similar colors/shapes to colonies 507 

were employed to collect hyperspectral image data. The spectral features of 508 



colonies/food fragments, colony centers/borders were extracted from the 509 

hyperspectral images and employed to build calibration models for segmenting 510 

colonies from the background, separating single colony from clusters. With the aid of 511 

the calibration models, each pixel of an agar plate hyperspectral image can be 512 

identified according to their spectral features. Results shown that the proposed method 513 

got good correlation (R2= 0.9998) with human vision method widely employed as 514 

national standards. Compared with conventional computer vision method, the 515 

proposed method is effective to identify the noised caused by food fragments with 516 

similar colors/shapes to colonies. It could be concluded that the proposed method can 517 

detect microbial colonies to the same level as the standard method and is therefore of 518 

practical importance. 519 
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