UNIVERSITY OF LEEDS

This is a repository copy of BISSIAM: Bispectrum Siamese Network Based Contrastive
Learning for UAV Anomaly Detection.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179296/

Version: Accepted Version

Article:

Li, T, Hong, Z, Cali, Q et al. (3 more authors) (2021) BISSIAM: Bispectrum Siamese
Network Based Contrastive Learning for UAV Anomaly Detection. IEEE Transactions on
Knowledge and Data Engineering. ISSN 1041-4347

https://doi.org/10.1109/tkde.2021.3118727

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/




IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XX 2021 1

Bi1sSSIAM: Bispectrum Siamese Network Based
Contrastive Learning for UAV Anomaly Detection

Taotao Li, Zhen Hong, Member, IEEE, Qianming Cai, Li Yu, Member, IEEE,
Zhenyu Wen, Member, IEEE and Renyu Yang, Member, IEEE

Abstract—In recent years, a surging number of unmanned aerial vehicles (UAVs) are pervasively utilized in many areas. However, the
increasing number of UAVs may cause privacy and security issues such as voyeurism and espionage. It is critical for individuals or
organizations to manage their behaviors and proactively prevent the misbehaved invasion of unauthorized UAVs through effective
anomaly detection. The UAV anomaly detection framework needs to cope with complex signals in the noisy-prone environments and to
function with very limited labeled samples. This paper proposes BISSIAM, a novel framework that is capable of identifying UAV
presence, types and operation modes. BISSIAM converts UAVs signals to bispectrum as the input and exploits a siamese network
based contrastive learning model to learn the vector encoding. A sampling mechanism is proposed for optimizing the sample size
involved in the model training whilst ensuring the model accuracy without compromising the training efficiency. Finally, we present a
similarity-based fingerprint matching mechanism for detecting unseen UAVs without the need of retraining the whole model. Experiment
results show that our approach outperforms other baselines and can reach 92.85% accuracy of UAV type detection in unsupervised
learning scenarios. 91.4% accuracy can be achieved when BISSIAM is used for detecting the UAV type of the out-of-sample UAVs.

Index Terms—UAV anomaly detection, bispectrum, siamese network, unsupervised deep learning, contrastive learning.

1 INTRODUCTION

NMANNED aerial vehicles (UAVs), aka. drones have
U proliferated recently and widely adopted in numerous
industrial or commercial areas such as weather observation
[1], disaster management [2], agricultural irrigation [3], etc.
The advancement of such applications is mainly propelled
by diverse deep neural networks models [4], [5], [6], [7] and
massive-scale high performance computing [8], [9]. While
promising, security and privacy issues become the main
concerns in the traffic management for the safe presence
of UAVs in the airspace [10], [11]. Although the Federal
Aviation Administration (FAA) has established laws or poli-
cies, defining restricted areas for drone flights, surveillance
systems are struggling to keep up and yet ready for the
required anomaly detection, particularly when the skies are
crowded with a massive spike of UAVs. In such circum-
stances, anomalies are typically referred to as illegal UAV
intrusions and anomaly detection aims to effectively and
timely identify the UAV types and their flight patterns. To
address this, machine/deep learning models [12], [13], [14],
[15], [16] are employed to differentiate unknown or illegal
drones from the prior whitelist. However, there still exist
two interrelated problems:

Complex signal sources in noise-prone environments. Exist-
ing work typically collects and extracts UAV signals through
analyzing physical signals, such as acoustic [17], [18], radar
[19], [20], radio-frequency (RF) signal [21], [22], [23], [24],
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[25], [26]), or through camera-based target tracking from
video streaming [27], [28] or statistically monitoring net-
work traffic data [29], [30]. Acoustic-based approaches are
typically sensitive to environmental noises whilst the visual
quality of camera is subject to the surrounding conditions
such as building blockage, ambient lighting, etc. As opposed
to acoustic or vision based techniques, RF signals and traffic
data are far less susceptible to environmental factors. Never-
theless, commercial UAVs usually have exclusive communi-
cation channel with certain levels of encryption, leading to
unprecedented difficulties in acquisition and surveillance.
Hence, it is imperative to make the best use of RF signals
for anomaly detection in noise-prone environments.
Inadequate samples and limited labeled data. Most ap-
proaches assume a huge number of labeled samples ac-
quired and massively used in the supervised model train-
ing. However, this assumption can be hardly achieved in a
real adversary intrusion scenario, e.g., electronic monitoring
or radio hijacking [31] where intruding UAVs operates in
a non-cooperative mode within the target area, resulting in
the limited access to adequate and labelled samples [32].
This limitation also hinders the quality of unsupervised
deep learning models since they are highly dependent upon
a large number of samples and particularly ineffective in
detection out-of-sample entities (i.e., new UAVs beyond the
established model and pertaining datasets). Moreover, such
models are unsuitable for recognizing and processing RF
signal footprints due to its extremely high-dimensional
characteristics and time-domain signal dynamics. Given a
complex and dynamic environment, it is intricate to pre-
cisely capture the potential anomalies or unknown UAVs.
In this paper, we propose BISSIAM, an unsupervised con-
trastive learning framework based on bispectrum Siamese
networks for detecting the UAV intrusions, and the types
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and operation modes of the UAVs. Firstly, we transform the
RF signal into a bispectral amplitude-frequency by leverag-
ing a two-dimensional Fourier transform, which are then
transformed into grayscale map and embedded into the
Siamese network using an image augmentation strategy. We
consider both the symmetry loss of the bispectrum and the
cross category mutual information loss Lcar as the traing
objectives to improve the prediction performance of the
siamese network and substantially diminish the negative
impact of noises on the detection effectiveness. Secondly,
we devise a p-sampling based optimization mechanism for
selecting the optimal sample proportion involved in model
training while ensuring the accuracy of the trained model
without compromising the training efficiency. To tackle
the out-of-sample detection, we present a similarity-based
matching mechanism for pinpointing the proximity between
the unseen sample and existing ones, without retraining the
whole contrastive model. Experiments show that the bis-
pectral transform in our feature exaction can achieve more
than 85% accuracy even in an extremely noise environment
and outperform all other feature extractors. The proposed
approach can reach 92.85% accuracy of UAV type detection,
much higher than other baselines, in unsupervised learning
scenarios. When labelled data is available, using BISSIAM
to conduct supervised learning can increase the accuracy
of detecting the UAV type to 98.57% and the accuracy
of detecting the operation mode can also reach 92.31%,
which is far higher than other approaches. BISSIAM can also
achieve 91.4% accuracy when detecting the UAV type of the
out-of-sample UAVs.
This paper makes the following contributions:

o A bispectrum feature extraction from RF signals to be
embedded into a siamese network (§3.2).

o An unsupervised contrastive learning framework, with
both the symmetry loss of the bispectrum and cross-
categories mutual information loss considered, for
learning the numerical vector representation (§3.3).

o A novel sampling mechanism to balance the training
efficiency and accuracy during the training procedure
(83.4).

e An out-of-sample detection approach that exploits a
similarity-based matching algorithm to identify the
type of unseen UAVs (§3.5).

Organization. §2 discusses the motivation and main chal-
lenges. §3 outlines the overview of BISSIAM followed by the
detailed design of the key components. Experiment setup
and results are presented in §4 and §5, respectively. §6
discusses the related work before we conclude the paper
and future work in §7.

2 MOTIVATION AND CHALLENGES
2.1 Problem Definition

Problem Scope. Fig. 1 showcases a typical use scenario of
UAV surveillance system based on radio-frequency signals.
The system is deployed to constantly collect and analyze
the radio signals so that it can timely perceive any UAVs
approaching a target area and detect the types and flight
patterns of the intrusive UAVs. In the context of UAV
surveillance, any events of blacklisted UAVs and unknown

Approaching
UAV

&O

\ Y J
i UAV Rejection

Domain

Controller
Fig. 1. System scenario.

UAVs manifested in a given management domain are re-
garded as anomalies.

The procedure of anomaly detection can be regarded as
a series of prediction problem. Formally, we aim to take
as input features X' of existing UAVs, to forecast the UAV
presence (a binary prediction), the UAV type Y (a K pre-
diction) and the UAV operation mode (aka., flight patterns)
Y of drones (a K’ prediction). More specifically, the set of
UAV type labels can be defined as Y = {y1,¥2, ..., Yk, Ynon
while the set of UAV operation mode labels as V' =
V1,59, s¥ 5, ¥ non}, where ynon or y' . denotes the
background noise without any specific UAVs.

Considering the massive RF signal data, the framework
should differentiate the required signals in a real wireless
environment that contains background noises and other
interference from the co-existing radio users such as WiFi
and Bluetooth users. Hence, the extracted features X are
obtained on the basis of a collection of RF signals r(t) of
the UAV flight and the follow-up signal processing. Without
loss of generality, the received RF signal 7 (¢) can be defined
as:

Tk(t)R: o(ex(t)) + n(t)
—a 3 B (e +n(t) k=1,2,. K +1, M)

where e (t) is referred to as the emitted signal of the k-th
UAV controller. & and Re are the wireless channel fading
coefficient and the Taylor polynomial order, respectively,
while Sf ; denotes the i-th nonlinearity coefficient of the
k-th UAV controller. n(t) represents the white Gaussian
noise (WGN) with zero mean (ur = 0) and variance
o7. Thereafter, signal analysis and processing techniques
such as discrete Fourier transform (DFT), short-time Fourier
transform (STFT), Hilbert-Huang transform (HHT) are used
for obtaining effective features that can be understood by
and fed into the prediction models.
Research Challenges. This work addresses three primary
research challenges facing the UAV anomaly detection:
Labels are difficult to determine when tackling dynamic sig-
nals. The existing supervised learning algorithms rely on a
large number of manual labels and particularly a common
practice in image processing domain. Doing so on dynamic
signals is generally infeasible though — we can hardly deter-
mine the corresponding labels directly from observations or
signal analysis. For instance, as depicted in Fig. 2, the time-
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Fig. 2. Parrot AR Drone RF signal: (a) original signal in the On and Connected mode; (b) frequency domain diagram after DFT: double peaks at
2.4Ghz, the RF communication band; (c) time-frequency diagram after STFT: huge frequency variations over time.

domain diagram of the original Parrot AR Drone RF signal
(Fig. 2a) is converted into a frequency domain diagram
through DFT and STFT (Fig. 2b and 2c). However, no
UAV label information can be intuitively acquired, reserved
and calibrated in the process of DFT and STFT. The non-
cooperative mode in most intrusive UAVs also makes it
difficult to obtain sufficient high-quality labeled data and to
allow further the examination of the flight logs for any data
calibration. Therefore, it calls for an effective unsupervised
learning mechanism for coping with the characteristics of
RF signals.

A balance to strike between the sample size and the accuracy
of unsupervised learning. Although training upon massive
samples could intrinsically result in higher model pre-
cision, either sample collection or model construction is
time /resource-consuming and susceptible to model updates
that are norm rather than the exception in the ever-growing
presence of unseen UAVs. Hence, it is highly desirable to
learn from a moderate number of UAV samples to improve
the efficiency of model training and maintenance.

Out-of-sample anomaly detection. The surveillance system
is increasingly exposed to a variety of threats and attacks
from unknown UAVs, e.g., to photograph a new piece of
environment. General machine learning classification sys-
tems perform the detection task by setting a pre-determined
number of categories, e.g. using so ftmax for category prob-
ability calculation. The effectiveness of detecting unknown
drones is substantially susceptible to the misclassification.
Anomaly identification should allow forecasting new UAVs
and rapidly catching the up-to-date malicious intrusions.

2.2 Unsupervised Deep Learning

Traditional unsupervised learning techniques such as K-
means [12] cannot be easily applied in high-dimensional
data due to a catastrophe of dimension [33]. Recent work
on unsupervised deep learning is divided into the fol-
lowing notable aspects: generative learning, e.g., generat-
ing adversarial networks (GAN) [34], variational auto-
encoder (VAE) [35]) and contrastive learning such as simple
framework for contrastive learning of visual representations
(SimCLR) [36] and simple siamese (SimSiam) [37].
Generative models, mainly based on GAN and auto-
encoder (AE) architectures, aim to generate information
with high-level semantics from data to assist the unsuper-
vised categorization. For instance, information generating
adversarial networks (info-GAN) [14] can generate attribute

TABLE 1
Important Symbol Notations
Notation Description
ri(t) the k-th UAV RF signal
Y UAV label
Rk the third order cumulant of the signal r ()
BF bispectrum of the signal r (t)
X grayscale image of bispectrum
Sp a sample subset with the proportion p
T image transformation set
Z the collection of mapping vectors
\% the collection of encoding vectors
I(z,y) the mutual information of z and y
J cost function
w adjacency matrix to store the node similarity

information (like category, shape, size, etc.) from images.
However, GAN networks are prone to pattern collapse and
VAE heavily relies on the pre-training level of auto-encoder.
Generative models focus on complicated information de-
tails of the image, and hence the optimization is of even-
increasing difficulty. By contrast, contrastive learning lever-
ages the image comparison to bring features of analogous
classes much closer to each other so that similar samples
stay close to each other while dissimilar ones are far apart. In
a formalized manner, contrastive learning learns a mapping
function f and encodes the data z into a feature space f(z)
such that

Sim.(f(z), f(z7)) >> Sim.(f(z), f(z7)), @)

where " denotes a sample similar to z and 2~ denotes a
sample not similar to x, while Sim. represents the similarity
score. In effect, one only needs to ensure that the similarity
Sim.(f(z), f(z")) within the same class is much larger than
Sim.(f(x), f(x7)) of different classes. Contrastive learning
can observably outperform other supervised learning ap-
proaches on some datasets [36], [37], [38], [39].

This work will focuses on developing a rapid and sta-
ble unsupervised framework based on contrastive learning,
which is simpler and faster to optimize with more stable
accuracy as opposed to generative models.

3 PROPOSED APPROACH OF BISSIAM
3.1 Overview

We present a siamese network based contrastive learning
framework for unsupervised representation learning and
the subsequent anomaly detection. Fig. 3 depicts the de-
tailed pipelines of the framework.
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Fig. 3. The workflow of BISSIAM

Initially, the feature extraction module transforms the
original UAV RF signal into a bispectrum, via Fourier
transform, which is then fed into the model construction
(§3.2). We then devise the BISSIAM network, the corner-
stone of the contrastive learning framework, to generate
the encoded representation of UAV samples and learn the
UAV types and the flight patterns. By using the encoded
representations and few samples of drones with labels, the
pre-trained model will be fine-tuned and then used for the
in-sample anomaly detection (§3.3). Meanwhile, we propose
a sampling mechanism for minimizing the sample size
involved in model training while ensuring the accuracy of
the trained model. This can accelerate the model training
without compromising the model accuracy (§3.4). To tackle
the unseen UAVs, we present a similarity-based fingerprint
matching mechanism for pinpointing the proximity between
the unseen one and the encoded vectors of the existing sam-
ples, without the need for retraining the whole contrastive
learning model, which is time-consuming (§3.5). Table 1
demonstrates the symbolic definitions of variables used in
the following context.

3.2 Feature Extraction

Fourier transform. High-dimension and dynamicity of the
time domain signals complicate the procedure of learning
representation directly from raw signal data. To obtain the
spectrum, signal processing, e.g., fast Fourier transform
(FFT), is typically leveraged to extract the features from orig-
inal signals. Consequently, the spectrum of similar signals
will have similar features and can be easily recognized and
processed by a convolutional neural networks (CNN).

To make it clear, as shown in Fig 2a, we need to trans-
form over 10 million sampling points of the original time
domain signal 74 (¢) into the frequency domain signal ()
by one-dimensional Fourier transform as follows:

nn= [ et ®
where f, j and dt denote the frequency, the imaginary
symbol and the differential, respectively. However, one-
dimensional Fourier transformation usually comes with loss
of information and only retains the the information in the
frequency domain. The identification of RF signal is also
susceptible to White Gaussian Noise (WGN) widely man-
ifesting in the air [21] and one-dimensional Fourier trans-

form cannot eliminate the WGN, and hence has intrinsic
limitations.

Bispectrum feature extraction. To extract more frequency
domain features, we adopt a bispectrum B¥(f1, f2) based
on two-dimensional Fourier transform:

Bf(fl, f2) = / ngr(m1,mg)e_ﬂ"(flml+f2m2)dm1dm2,

my Jma (4)
where f; and f> denote the frequency bins which represent
the frequency domain information corresponding to the de-
lay m; and my in the time domains. R%,(m1,m2) indicates
the third order cumulant or the skewness, i.e., the degree of
symmetry between the signal distribution and the Gaussian
distribution A (y, 0?) of the signal r(¢):

RS, (my,ma) = E[re(t)ri(t + m1)re(t +ma)],  (5)

where E[e| denotes the math expectation and @ denotes the
conjugate operation.

In fact, the bispectrum provides more comprehensive
information as opposed to the general Fourier transform,
including the two-dimensional frequency domain (f1, f2)
of the crossover, and the skewness statistical properties
between the crossover frequencies. In particular, the bis-
pectrum can effectively mitigate the impression of WGN
because the WGN has a mean value of 0, which can be
filtered by the expectation operation E[e] in Eq. 5. Another
reason for using the bispectrum is because the two fre-
quency domain dimensions (f1, f2) and the frequency do-
main amplitude |B(f1, f2)| can be directly transformed into
grayscale maps and fed into a CNN. The frequency domain
amplitude characteristics |B(f1, f2)| can be calculated as
follows:

Lemma 1. If the k-th signal is a finite length sequence hy(t),
its bispectrum [32] is

Bi(f1, f2) = He(f1)Hy (f2)Hi (f1 + f2), 6)

where Hy(f) = 3" hi(t)e~ 927/t By Lemma 1 we can obtain
t

BE(f1, f2) = | BE(f1, f2)| e ok (F1:82),

Hy(f) = | Hy()] 392, @)

where ¢ (f1, f2) denotes the phase frequency. The ampli-
tude and phase can be calculated by:

|BE(f1, f2)| = [He(fO [Hi (f2)| [HR(f1 + f2)], ®)
or(f1, f2) = pu(f1) + r(f2) — wr(fi + f2).

We transform the obtained frequency-domain amplitude
complex matrix |Bf(f1, f2)| into a trainable grayscale map
z, = grayscale(| By (f1, f2)|) by gray-value processing. The
collection of gray map data X = {1, ..., zx} is eventually
generated and used for the model construction.

3.3 BIsSiaM Network: A Siamese Network Based Con-
trastive Learning Framework

Contrastive learning normally engages category similarity
and feature compression such as VAE to ensure that the
extracted features can be more useful for unsupervised
learning tasks. The conceptual contrastive learning can be
typically instantiated by a Siamese network [40] where two
same images are compared in two distinct paths — the
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Algorithm 1 Model Training of BISSTAM Network

Input: K + 1: the number of UAV classes
Epoch: the number of training iterations
Batch: training batch size
A: hyper-parameters
Ir: learning rate
0,0’: The parameters of the core network and clone
network
r(t): RF signal
T The set of image augmentation strategies
Output: Network parameters 6, 6’
1: for epoch = 1 to Epoch do

2: fori =1to Batch do
3: {t1,ta} ~Tand y; ~ Cat(K +1,p=1/(K + 1))
4 |Bi(f1, f2)| = 7i(t)
5. @< grayscale(|Bi(fi, f2))
6 2,35 « b (wh), la(h) |
7: 21 < Go(fo(x1)) and vi < Qo (21)
8: 25 < Gor (for (x3)) and v5 <+ Qo (23)
9: L£5(0,0") + Eq.10 with (vi, 25, v5, 21)
10: forj=0to 2do
11: y; < softmax(v;) // obtain the prediction cate-
gories
12: end for o
13: Lowar < Y I(z",y;) // calculated by Eq. 12

J
14: end for

15 ElLipo] « gy Ll (L1(0,0)) = Lor)
16: 0" < Eq. 14

17: 0,0' «+ 0* //parameters cloning

18: end for

19: return Network parameters 6, 6’

image augmentation can facilitate further the key feature
extraction of the same class without a focus on other class-
independent features. The key idea is to find the similarity
of the inputs by comparing the feature vectors of the twin
networks and ultimately compute the comparable vector
outputs. This section provides technical details of how we
construct, train and optimize the BISSIAM network. Alg. 1
describes the pseudo-code of the model construction and
training.

3.3.1 Siamese Network Design

Fig. 4 shows the detailed design of the Siamese Network.
The network consists of two neural networks — core network
and clone network, and we define the weights of the core
network and the clone network as 6 and €. The core
network encompasses a feature extractor fy (e.g., residual
network (ResNet) [41]), a projection multi-layer linear per-
ceptron (MLP) head Gy and a prediction MLP head @)y [38].
The clone network has exactly the same structure as the core
network, and its weights are also shared with 6.

We use bispectral grayscale maps X = {z1,...,2x} as
the input of the siamese network architecture. First, we
get a pair of augmented bispectral views x} = t1(zy)
and 77 = ts(zy) of the image zj by applying an image
augmentation set ¢ ~ 7T, such as image cropping or rota-
tion (Alg. 1 Lines 3-6). Then we feed the first augmented
bispectral views x} into the network fy and Gy to get

the mapping 21 2 Go(fo(x1)). After further calculation by
prediction MLP head @)y, we can get the vector encoding

vy 2 Qo(Go(fo(x}))). Similarly, the augmented views 7 are

Cross Mutual

yj = Softmax(V;)
Information

Loss

|
|
|
|
Symmetry | |
|
|
|
|

Fig. 4. The design of BisSIAM network based on the siamese network.
The network is trained by a combination of symmetry loss and cross
mutual information loss, where y;(j € {0,1,2}) corresponds to the
predicted labels of three images z¢, z1, z2 through linear classification
layers.
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Fig. 5. A high correlation between UAVs recognition accuracy and
category mutual information I(z,y) in BISSIAM.

fed into the cloning network and we can ultimately acquire

the encoding v = Qo (Gor(for(23))) (Alg. 1 Lines 7-8). We
swap the output vectors of the two bispectral images to
minimize the negative cosine similarity (Sim.):

U1 z22

S. . = —— t —
m (v1,22) ||Ul||2 H32||2’

©)
where ||e]|, is fa-norm.

Eventually, to identify the pertaining category, we add
a classifier layer (e.g., Softmax) between the vector en-
coding delivered by the siamese network and the cate-
gory label. Thereafter, we can predict the label, ie., ¥ =
{y1,92, .. Yyk41} : V — Y, which is similar to [15] (Alg. 1
Lines 10-12). To train the siamese network, we consider both
cross mutual information loss and symmetry loss (Alg. 1
Line 9 and Lines 13-17 and more details in §3.3.2).

The learnt model can be then used in the real-world
in-sample UAV anomaly detection. To better tweak the
prediction effectiveness and reflect the real categorization
based on the pre-trained siamese network, we further in-
vestigate a small number of labeled samples and associate
the estimated category labels Y with their real labels Y. e.

3.3.2 Model Training Objectives

Minimizing the symmetry loss. Inspired by [37], our pri-
mary training goal is to minimize the symmetry loss of the
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bispectrum £4(6,6’):

L£1(0,0") = %Sim.(m, z2) + %Sim.(vg, z1). (10)
By learning and comparing the output features, BISSIAM
can easily catch the main representation features of the
bispectral image, and the resultant representation features
(Z and V) can facilitate the execution of the downstream
tasks.

Similar to [37], [38], we wuse the stop-gradient

(stopgrad) operation and the encoded vector v;, instead
of nonlinear mapper z;, to prevent the collapse, ie.,
Sim.(v1, stopgrad(zz)). In contrastive learning approaches
that only use similar samples, the network learns the degen-
eracy occurs, i.e., the mapped features Z = {z;}¥_; of all
samples may be fixed as constants. stopgrad(zz) prevents
the gradient quadratic back-propagation of z; from an early
degradation of the network. The prediction head @)y is an
average prediction of the mapper feature z — similar to the
clustering centroid of K-means — that can make the network
develop in a correct learning direction [37].
Maximizing the cross category mutual information loss.
The cross-category mutual information I(z,y) is referred
to as the mutual information value between the predicted
category {yo, y1,y2} of the original bispectral map zo and
the augmented images {z1, z2}. As shown in Fig. 5, there is
a high correlation between I(x,y) and the prediction accu-
racy. We can also observe a varying trend of accuracy during
the learning process - an initial ramping-up with a decrease
before a stabilization, indicating a huge improvement room.
To further harvest the accuracy gain, we choose the cross
mutual information loss as an additional training objective
on the multiple augmented images.

To calculate I(z,y), we assume the prior of p(y;) for i €
{1,2, ..., K+1} follows the categorical distribution Cat(K +
1,p =1/(K+1)) (Alg. 1 Line 3). Thus, we introduce I (z, y;)
forany j € {0,1,2}:

I(z,y;) = Hly;] — Hly;|z],

where H][y;] is the entropy of y; and H[y;|z] is the condi-
tional entropy of y; given x.
We can then define the cross category mutual informa-
tionloss as Loy = Y, I(x,y;). Maximizing I(x,y;),
j€{0,1,2
can introduce the inglu{ence}of the original information x
in the pseudo label y; of the current different augmented
views. For I(z,y;), we derive the variational process as

(1D

I(z,y;) = H[y;] — Ep(ay,)[— log p(y;|2)]
=H[y;] + Eqmp(a) (K L(p(y;l2)[lq(y;l2))]
+ By mp(y; |2),o~p() 108 4(y;|2)]
> Hly;] + By, ~p(y;]),z~p(z) [log q(y;|)]
= Hly;] — Eprp(a) [Hlq(y;|2)]]

where K L(e) denotes the Kullback-Leibler divergence, and
q(y;|x) denotes the auxiliary distribution for estimating
p(y;|z). The design intention is to ensure the y; predicted
by ¢(y;|z) at each time to be a specific class. Hence a low
information entropy E, () [H[q(y;|)]]. Then, Hly;] can be
calculated by H[g(y)]. A larger H[g(y)] implicates a much
balanced distribution of the prediction category rather than
a skew categorization, and vice versa.

,» (12)

Putting them together. As the K L(p(y;|z)||¢(y;|z)) is non-
negative and the prior-distribution p(y;|z) is unknown, a
lower bound L o can be obtained for the full loss function
as follows:

min ﬁLBO: min £1 (9, 9/) - EC]VII
6,0’ 6,0’

— min — 1 S S D

=W Tl Tel 2Teh Tk, (13)
= 2 Hlg)] = AjEenp@) Hlg(ys|2)],
j€{0,1,2}

where the hyper-parameter ); is used for weighting
the cross mutual information loss. We use stochastic
gradient descent (SGD) to optimize the loss function
0*= argmin E[L1po):

0,6"

0* < SGD(Vg.¢,E[LLB0],0,0,1r), (14)

where Vj ¢/ and lr denote the gradient and learning rate,
respectively.

3.4 p-Sampling based Training Optimization

While the contrastive learning framework proposed in §3.3
can provision an elementary representation, the training
efficiency has yet been fully explored. In reality, training
with a huge number of samples is time-consuming and
resource-intensive, impeding the further integration with
real-world surveillance systems.

3.4.1

We aim to ascertain the most suitable proportion of all sam-
ples that can holistically balance the accuracy and training
efficiency, i.e., selecting a subset of all samples S, taking
up p proportion of the totality to minimize the overall cost
J(Sp). Presumably the cost can encompass the misclassifi-
cation (J;) and the involved cost of computation (Jz), ie.,
J(Sp) = J1 + Jo. Hence, the optimal sample proportion p*
that can minimize the J(S,) is:

Core Idea

p* = argmin J(S,). (15)

0<p<1

Essentially, p* indicates a proportion threshold which can

assure good enough accuracy, i.e., making valid predictions
with a balanced time-efficiency. Otherwise, if p # p* and
J(Sp) > J(Sp+) for p < p* < 1, Eq. 15 is proved to be not
converged.

3.4.2 Cost Breakdown

We firstly use J1(yp,yp) to define the model misclassifi-
cation. If g, : r,(t) — ¥, denotes the predicted label of
UAV signal r,(t) with sample proportion p, the cost can be
expressed as:

N XxXp

T (@ yp) = 1= Y 6(ys, map(iis))/ (N % p),

=1

(16)

where N denotes the sample number and map(e) maps
the predicted label y; to the ground truth label. The best
mapping can be found through the Kuhn-Munkres (KM)
algorithm [42]. § denotes the delta function is a piecewise
function — it equal to 1 when y; = map(y;), otherwise 0.

To specify the J, we consider two critical metrics —
the sample storage cost s, and the training time cost 7.
They are integrated into J2(S,) = Ja(sp,7p). sp can be
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Algorithm 2 p-Sampling Algorithm

Algorithm 3 Out-of-Sample UAV Detection

Input: D = {X,A,,..., Xn}:Bispectral grayscale image
dataset

fo,Go, Qo: Network model
p: Proportion of dataset
Epoch: Number of training iterations
(: Step

Output: p*: Optimal dataset proportion

1: forp=0to 1do

2 Sp ={Xi}tieq1,...Nxp} // obtain the sample subset
3: Sp=1p

4 for epoch = 1 to Epoch do

5: fori=1to N x pdo

6: Update the network fo, G, Qo

7: Calculate time consumption 7,

8: end for

9: if epoch > epoch™ then // await epoch™ until the

accuracy is stable

10: JPoM +Eq. 16
11: J5Pot « Eq. 17
12: end if
13: end for Evoct . .
14: T(Sp) = Bpoenepoci Soepoens (1777 + J57°)

15: p < p+ ¢ // update the sample proportion p by step ¢
16: end for
17: p* = argmin J(Sp)
0<p<1
18: return p*

simply estimated by the proportion of samples p given
that the storage space will be linearly increased with the
increment of samples. We employ E[7,] i.e., the iteration
training time on average, to approximate 7,. Putting them
together, J>(sp, 7) can be then calculated by:

1 Nxp i
7p+N><pZi:1 Tp-

Alg. 2 describes the key procedure of the p-sampling
mechanism for working out the most suitable sample pro-
portion. We conduct the proportional sampling with the
same p onto each categorized data and feed the sampled
data into the model training of BISSIAM network.

J2(8p, Tp) 17)

3.5 Out-of-Sample Detection by Fingerprint Matching

Inspired by [43], we present a new fingerprint matching ap-
proach to best identify the UAVs not included in the training
procedure. At the core of the rapid detection is to exploit and
ascertain the similarity between existing samples and the
new target. Alg. 3 outlines the key procedure of the out-of-
sample detection. To make it clear, we use vy, to generally
stand for any new UAV out of the BISSIAM model.

3.5.1

We store the vector encodings of all selected samples learnt
by BISSIAM representation learning (§3.3) with p-sampling
mechanism (§3.4) and use them as the origin fingerprints
of the known samples. To indicate the inherent category
that a sample tend to pertain to, we use clustering tech-
niques such as K-means to calculate the cluster centroid
and approximately categorize each individual sample. To
better quantify the relationship between any two samples,
we construct an undirected graph G, = {V,, E,} as the
fingerprint database, where V), is a collection of in-sample

UAV Fingerprint and Sample Distance Measure

Input: V = {v1,v2,...,un}: Node
Unew: New UAV node
p*: Optimal proportion of dataset
Output: ynew: The prediction class of vpew
L Vpr < {viticr1, nxpey // @ small number of encoding
vectors with a ratio of p
2: Gpx(Vp=, Epx) < Eq. 18 // constructing the fingerprint
database

3: forj=1to K+ 1do

4: fori=1to N xp” do

5: S(v{,G}.) + Eq. 19

6: ¢; = min S(v{,G}.) // ¢; denotes a lower bound
similarity for the j-th fingerprint

7: end for

8  S(vnew,Gl.) < Eq. 19

9: end for

10: y; < Eq. 20 // most likely category of the new node vncw
11: if  min S(vmw,G;*) > ¢; then

je{l,...,K+1}
12: Ynew = Yj // Known UAV
13: else
14: Ynew = Ynew // Unknown UAV
15: end if
16: return ynew

vector encodings (Line 2). The [;-distance of two node
encodings is used to measure the distance between v; and
v;, and to assign the weight of each edge ¢; ; € E):

eij = |lvi —vjll, - (18)

We can form a non-negative adjacency matrix W comprising
of e; ;. Obviously, a smaller value of e; ; indicates a closer
proximity and similarity between two samples; otherwise,
two nodes with far distance will have weak similarity and
hence high likelihood of different category.

3.5.2 Similarity-Based Matching and Detection

The next step is to calculate the similarity (S) between the
encoding vector of a new node v, and any other existing
node encodings. To quickly ascertain the closeness to a
fingerprint, we calculate the similarity on a per group basis
— the average Lo-norm distance and the similarity can be
obtained as follow:

1 N(GI)
=1- . P
N(G}) 2

where N (Gi) denotes the totality of encoded nodes within
G%, the j-th clustering group of the selected samples, and
v! represents the individual node encoding. We finally pick
up the group with the largest similarity as the most likely
category, which has the highest likelihood of analogous
behavior and UAV types (Line 10):

J
Unew — Uj

S('Uneun Gi))

;o (19
2

(20)

y; = argmax S(Unew,Gf,).
je{1,...K}

However, simply selecting the maximal similarity cannot
fully determine if it is an unknown UAV or not; Instead,
we use a threshold mechanism to rule out the unknown cases.
The threshold can be optimized by quantifying the distances
or similarity within a clustering group. Normally we use
the satisfactory minimum similarity (lower bound of the
similarity ¢"") associated with the farthest distance (upper



IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XX 2021 8

TABLE 2
Network Structure

Projection MLP Head Gy Feature Extractor fy
MLP 1024,ReLU,Batch Norm ResNet-50
MLP 512,ReLU, Batch Norm Prediction MLP Head Qy
MLP 512,ReLU,Batch Norm
MLP 1024, Batch Norm MLP 1024
TABLE 3
Configurations
Parameters Value
Step (¢) 0.02
Hyper-parameter () [0.5,0.5,0.5]
Number of UAVs (K) 3
Number of UAV operation modes(K") 9
Stabilization iteration point (epoch*) 80
Learning rate (Ir) 0.1
SGD Momentum 0.3

bound of the distance y%") as the required boundaries
(Line 6). This is based on an assumption that nodes within
a given category typically would not have distances larger
than the max distance. We will discuss how we determine
the threshold in the real-life problem solving in §5.5. For
simplicity, we use the similarity in the algorithm: only if the
similarity is greater than a given threshold ¢7, the predicted
label y; can be entitled to the UAV (Line 12); otherwise the
UAV will be regarded as a new intrusion (Line 14).
Furthermore, the fingerprint matching mechanism can
be theoretically applied in any categorization. However, a
larger K (e.g., operation modes) usually results in the sparse
sampling distribution and less samples within each indi-
vidual clustering class. As a result, a lower categorization
effectiveness would manifest. We will discuss this in §5.2.

4 EXPERIMENTAL SETUP
4.1 Software and Hardware

The BISSIAM detection framework is implemented by using
Python 3.8.3 and executed on a server running CentOS
7.3.1611, with Intel(R) Xeon Gold 5118 CPU@2.30GHz and
4 NVIDIA Tesla V100 GPUs. Table 2 depicts the detailed
configurations of the networks for the components while the
configuration of relevant parameters is shown in Table 3.

4.2 Datasets

We use the dataset [44] in the following experiments. Table
4 details its characteristics where 9 operation modes in total
are categorized across three types of UAVs (Parrot Bebop,
Parrot AR Drone and DJI Phantom 3). The RF signal data
is collected by using National Instruments USRP-2943 (NI-
USRP) device with a frequency of 40 MHz for the Wi-Fi
radio channel. The main frequency band of the channel is
approximately 2.4 GHz and normally no more than 5 GHz.
The dataset is 40.3GB with 400 signals and the duration of
each signal is 0.25 second while each signal includes 10
million sampling points. It is worth noting that the data
labeling usually involve substantial human labor in the
loop; most of the labels are delivered though reasoning
and intervention in later stages. Therefore, in more general-
purpose detection scenarios, the sample labels can be hardly
acquired very quickly and precisely.

4.3 Comparative Baselines

We compare our method with several SoTA unsupervised
algorithms, including traditional K-means [12] and other
deep learning approaches below:

e VaDE [13], an auto-encoder based method, that embeds
the category information into a VAE [35] by Gaussian
mixture model (GMM). We use the result of the auto-
encoder as the representation vectors to perform cluster-
ing for category prediction.

o info-GAN [14], a GAN [34] based method that incor-
porates latent code mutual information. In this paper,
we use the bispectral grayscale map as an adversarial
target for an unsupervised classification task via a prior
category latent codes.

e DAAE [15] that combines AAE [45] with the maximum
category mutual information. We use the category latent
code of AAE as the classification target.

e SimCLR [36] that implements contrastive learning by
using siamese networks [40]. We extract the features
by comparing two augmented images and perform a
classification task on the encoded vectors of the features.

e SimSiam [37] that extracts meaningful information and
prevents collapsing by using stop-gradient operation. The
acquired information will be used for the downstream
classification.

4.4 Methodology and Metrics

Methodology. We mainly consider three tasks in the evalua-
tion: UAV presence detection, UAV type detection, and UAV
operation mode detection. To construct the desired model,
70% of the dataset is used for training while the remaining
for test set. We firstly evaluate the effectiveness of the fea-
ture extraction via signal pre-processing (§5.1) and compare
the overall effectiveness of prediction among the proposed
approach and other baselines (§5.2). To be specific, we eval-
uate the effectiveness of i) supervised learning approaches
given the labels can be fully exploited, and ii) unsupervised
learning or semi-supervised learning approaches without
the reliance upon a large number of labelled data, which
is a more pervasive use case in the real-life UAV detection.
We then conduct several micro-benchmarks to examine how
different factors such as the parameter number of the model,
the number of iterations, etc. on the prediction effectiveness
(85.3). Furthermore, we investigate the benefit from the
proposed p-sampling mechanism (§5.4) and examine the
effectiveness of the proposed out-of-sample detection (§5.5).
Finally the detection time consumption is discussed (§5.6).

Metrics. We use accuracy (Acc), Precision, Recall, Fl1-score
and clustering accuracy (C-Acc) as our evaluation metrics:

zkeK TP, + T Ng

Acc = , 21
T ek TP+ FP + FN, + TN, @
. > orerx TPk
Precision = = , (22)
Y>orex TPy + FPy
_ ZkGK TPy
Recall = m, (23)
Fl—9x Precision x Recall (1)

Precision + Recall
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TABLE 4
Dataset Description
Category Samples | Ratio(%)
No Drone 820 * 10° 18.06
Bebop mode 1: On and connected 420 * 10° 9.25
Bebop mode 2: Hovering 420 % 106 9.25
Bebop mode 3: Flying 420 % 106 9.25
Bebop mode 4: Video recording 420 * 106 9.25
AR mode 1: On and connected 420 x 108 8.92
AR mode 2: Hovering 420 % 106 8.92
AR mode 3: Flying 420 % 106 8.92
AR mode 4: Flying and video recording | 420 x 108 8.92
Phantom mode 1: On and connected 420 * 10 9.26
N
C — Acc = 5(yi, map(§i)) /N, (25)

i=1
where T'Py,, TNy, F Py, F'Ny, denote the true-positives, true-
negatives, false-positives, and false-negatives of k-th cate-
gory, respectively.

5 EXPERIMENTAL RESULTS
5.1 Effectiveness of Feature Extraction

Observation. Fig. 6 showcases how the RF data, in the form
of different categories pertaining to the same UAV (e.g.,
the Parrot Behop Drone in this example), is extracted and
transformed into a trainable format. Observably, the signals
are randomly available over time and a substantial amount
of data will be aggregated within a short time period,
e.g., 10 million data points manifest within 0.25 second,
which demonstrates the infeasibility to feed all samples
into the model trainer. As shown in Fig. 7, through the
procedure of feature extraction depicted in §3.2, the raw
RF signals will be transformed into the bispectrum, which
can be represented by a bispectral amplitude-frequency
matrix |B(f1, f2)|128x128 and the equivalent grayscale map.
Its dimension is far lower than that of RF data, thereby
making it more suitable for the follow-up model training. In
addition, the bispectrum can offer more consistent features
— two peaks indicate the main band of the signal stays
in the 2.4 GHz Wi-Fi band - and overcome the uncertain
fluctuation manifesting in the orignal RF data.

Impact on the model accuracy. Apart from the functional
validation above, we further investigate the accuracy that
the proposed feature extraction can underpin compared
against other approaches, i.e., fast Fourier transform (FFT)
[22], STFT [26], and RF fingerprint embedding (RFFE) [32].
In particular, the FFT approach converts the values in the
frequency domain into grayscale images, while the STFT
directly uses time-frequency images for the following detec-
tion. The RFFE approach embeds the original RF signal into
an unsupervised network info-GAN.

As Signal-to-noise ratio (SNR) is a critical counter that
compares the level of desired signal with the level of envi-
ronment noise, we examine how the noise level impact on
the accuracy under different approaches. The varying SNR
can be achieved by adding WGN upon a low SNR and we
primarily use the method in [21]. More specifically, the SNR
of original signal (SN Ro,ignal) can be calculated as follow:

SN Rorignar = 10 x logyo(eianat )

T noise 2 T ;
Zt:Te |Tk (t)l / Ztiu I”‘k (t)lz )
T—Te Ty

(26)

=10 x log(

)

where Psignar and Py oise represent the power of signal and
noise while T}, and 7. denote the start and end point of
the signal transient, e.g., the signal emission, respectively.
The signal emission typically consumes a huge yet transient
energy and hence can be used for specifying the main signal
power Pg;gnqi. Furthermore, we apply WGN (n(t)) to the
signal to tune the SNR level as below:

n(t) = (SNRorignal - SNRt arget) X N(O, 1)7 (27)

where SN R; arg e: denotes the target SNR.

Fig. 8a and Fig. 8b demonstrate the prediction accuracy
comparison among different approaches in the UAV type
detection and operation mode detection. There is an obvious
ramping-up trend of the accuracy when the SNR soars,
i.e., the noise is gradually weakened. This phenomenon
is true for every case and BISSIAM outperforms all other
approaches. Most notably, BISSIAM can achieve at least 85%
accuracy for the UAV type recognition, even when the SNR
is at a noisy level (10dB), indicating the feature extractor
in BISSIAM can tolerate interference stemming from back-
ground noise. Similarly, BISSTAM can reach the highest accu-
racy as opposed to others in the operation mode detection.
STFT has the lowest effectiveness simply because the time-
frequency images usually experience dynamic changes over
time, shown in Fig. 2c, and therefore tend to lower the
prediction accuracy inevitably.

5.2 Effectiveness of the In-sample Detection

To evaluate the overall effectiveness of the in-sample
anomaly detection, we compare BISSIAM with both the
supervised and unsupervised learning approaches.
Comparison among supervised learning baselines. Table
5 presents the detailed performance comparison among the
comparative supervised models. Apparently, BISSIAM out-
performs the state-of-the-art methods in terms of Precision,
Recall, and F'1-score on different tasks. In particular, Table
6 outlines a similar observation of the accuracy (Acc) among
different approaches. Most notably, by using BISSIAM in
supervised learning, the accuracy of detecting the UAV type
can reach 98.57% and the accuracy can also retain 92%
when detecting the operation mode, which is far higher
than other approaches. Additionally, we demonstrate BIs-
SIAM can even work effectively when only a fraction of
the training set is used. When we cut down the usage
proportion to 1/3 (from 100% to 33%), BISSIAM can still
achieve over 91% accuracy for detecting the UAV types. This
indicates its competitive performance and high application
potential in resource-constrained training devices such as
edge servers or embedding devices. Nevertheless, to more
precisely distinguish the specific operation mode, the model
still have to involve a larger number of the available sample
data.

Comparison among unsupervised learning baselines. As
contrastive learning frameworks are based on unsupervised
learning, we further compare the performance of our so-
lution with a set of unsupervised learning approaches. To
be fair, the same classifier is applied in the UAV detection
component of all the comparative baselines. As shown in
Table 7, the accuracy of our model is much higher than other
baselines, achieving 92.85% and 57.4% when conducting the
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Fig. 6. Parrot Bebop RF signal (a) Mode 1 (Connected); (b) Mode 2 (Hovering); (c) Mode 3 (Flying); (d) Mode 4 (Video recording).
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Fig. 8. (a) C-Acc of UAV types (b) C-Acc of operation mode (c) Impact of the parameter size on C-Acc

TABLE 5
Supervised Accuracy Comparison: Precision, Recall and F1
Methods _ UAV Presence ___UAV Type _Operation Mode
Precision  Recall F1 Precision  Recall F1 Precision  Recall F1

DNN [22] 0.996 0.994 0.995 0.910 0.764 0.788 0.535 0.419 0.430
CNN [46] 0.998 0.995  0.997 0.913 0.817  0.846 0.589 0.555  0.551
DRNN [47] 0.999 0.999 0.998 0.908 0.817  0.846 0.589 0.555 0.551
XGBoost [23] 0.999 1.000  1.000 0.900 0.920  0.900 0.650 0.640  0.640
1D-CNN [25] - - 1.000 - - 0.910 - - 0.770
B1sS1AM (1%labels) 0.980 0976  0.975 0.939 0.901  0.880 0.948 0.311  0.200
BI1SSIAM (10%labels) 1.000 1.000 1.000 0.958 0.921 0.920 0.9058 0.630  0.533
BI1sS1AM (100%labels) 1.000 1.000 1.000 0.978 0.975 0.975 0.988 0.706  0.744

task of UAVs type detection and operation mode detec-
tion. Among the baselines, the performance of info-GAN
is the closest one to BISSIAM in the task of type detection.
However, the training of GAN network is prone to crashes
and thus usually time-consuming. Furthermore, in the task
of operation mode detection, DAAE can achieve relatively
higher accuracy against other baselines, but it highly relies
on the degree of the pre-training, i.e., it is first pre-trained
by the reconstruction error of the AE.

Discussion. It is not difficult to ascertain from Table 6 and
Table 7 that the supervised learning models tend to be more

accurate than the unsupervised learning models. Undoubt-
edly upfront human intervention is required though and,
in most real-life detection scenarios, the human labor is dif-
ficult or extremely expensive to acquire. This indicates the
necessity of conducting unsupervised learning particularly
if the algorithm level solution is integrated with a runtime
surveillance system. Where necessary, a compromise would
be involving some labeled samples in the model training
- e.g., adding the label proportion in Table 6 and Table
7. Consequently, the semi-supervised learning can somewhat
improve the training accuracy. The second finding is the ac-
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TABLE 6 data. This commitment is currently beyond the scope of this
Supervised Accuracy Comparison: Acc paper and will be left for future work.
usage % of UAV UAV Operation . _ -
Methods training-set | Presence | Type Mode 5.3 Micro-Benchmarking
DNN [22] 100% 99.70% 84.50% 46.80% In this subsection, we investigate the impact of different
CNN [46] 100% 99.80% | 85.80% 59.20% factors on the effectiveness of BISSIAM.
DRNN [47] 100% 99.90% 90.00% 56.00% .
XGBoost [23] 100% 99.96% | 90.73% 70.09% Impact of the parameter number. Fig. 8c shows the changes
1D-CNN [25] 100% 100% 94.60% 87.40% of accuracy when the size of model parameters grows. To
BISSIAM 100% 100% | 98.57% |  92.31% do so, we multiply the width of a ResNet-50 by a factor
BISSIAM 33.3% 100% 91.72% 5648% x1, x2, x4, and x5 [39]. Apparently, the accuracy ramps
TABLE 7 up when the number of model parameter gets larger. For
Accuracy of the unsupervised/Semi-supervised approaches instance, the accuracy of unsupervised learning for UAV
type and operation mode detection decreases by 7.56% and
Methods Arch. | ToplUAV Top1 5.55% against the maximum accuracy when the number
: Type Operation Mode parameters decreases to 24MB, respectively. Tuning the
BISSIAM (supervised) RN-50 98.57% 68.52% T - ’ J
Kemeans [12] RN50 18577 37.04% parameter size is critical to guarantee the desired accuracy
VaDE [13] AE 75.71% 42.59% — if the parameter size falls down to 24MB, the accuracy
info-GAN [14] GAN | 90.00% 46.30% will reduce to merely 84.29% and 51.85% for the two tasks,
DAAE [15] AE 87.14% 55.55% which are in some cases unacceptable
SimCLR [36] RN-50 |  84.29% 53.70% " A -ceptable.
SimSiam [37] RN-50 82.86% 50.00% Impact of the iterations. Fig. 9a illustrates the accuracy
BIsSIAM (unsupervised) | RN-50 | 92.85% 57.40% changes during the iterative process. Our approach can ul-
]fISSSIAM %ﬁ;lf%ells) Eﬁgg gggizf’ 2?%22? timately achieve 97.14% (average 92%) and 62.96% (average
ISSIAM (10%labels) - o2 = 57%) for the two tasks respectively. Fig. 9b and 9c visualize

curacy of operation mode detection is far from satisfied and
could be improved further. The accuracy results actually
derive from the inherent deficiency of the training data that
is unevenly-distributed among different categories. Some
may only have very few sample data that will directly
degrade the detection accuracy. While obtaining more high-
quality data would be beneficial to improve the operation
mode detection, this requires more effort in tracking and
benchmarking more UAVs and collecting their behavioural

the clustering of the encoding results via the {-SNE tool [43].
It is worth noting that the UAV type clustering is linearly
separable, and the background noise is accurately predicted
— our model can achieve 100% accuracy in detecting the
presence of UAVs. By contrast, the operation mode detection
is less linearly-separable. To improve the accuracy., one can
perform the type detection followed by the operation mode
amid similar UAVs in a cluster.

Impact of I(x,y;). Fig. 10 shows the effectiveness harvested
from the mutual information I(z,y;) for the three tasks.
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TABLE 8
Accuracy on Different Strategies
. Acc Acc
Proj. MLP  Pred. MLP UAV Type Operation Mode
Crop v - 81.43% 48.15%
- v 85.71% 53.70%
Rotation v - 91.43% 55.56%
- v 92.85% 57.40%

Apparently BISSIAM has a higher level of cross-category
mutual information I(z,y) due to the maximized Lo
in the design objective, thereby significantly improving the
overall accuracy, particularly of the UAV presence and type
detection (Fig. 10a and 10b).

Impact of the image augmentation strategies. We set the
image augmentation set as 7 = {Crop, Rotation}: Crop
[39] uses low-resolution cropping that covers only a small
part of the image with only a small computational cost.
and Rotation = {0°,90°,180°,270°} denotes the rotation
of the image at different angles [16]. As shown in Table
8, using rotation strategy of the images can achieve higher
accuracy, i.e., 92.85% and 57.40% for the two tasks, respec-
tively, against the crop strategy. This is because, unlike the
general life images, the bispectral image contains sequence
information for frequencies (fi, f2). If cropped, a loss of
sequence information will result in a degraded detection.
By contrast, the image rotation will not incur a loss of signal
information. Instead, it provides a different perspective to
facilitate the computer recognition and key information
capture.

Impact of the MLP heads. Table 8 also reveals the results
of adopting different types of MLP heads. prediction MLP
head (Pred. head) has observably better effectiveness than
the Projection MLP head (Proj. head) as the training of the
siamese network is guided by regarding the Pred. head
as the target. In fact, Pred. head is the average feature
prediction of Proj. [37] with more effective classification
information similar to the central mean of K-means.

5.4 p-Sampling Performance Evaluation

In this section, we evaluate the impact of sample propor-
tion p on the detection accuracy and ascertain the optimal
sample proportion p*. Fig. 11a shows the accuracy of two
detection tasks with different sample sizes and error bands.
BI1sSIAM with loss Lcasr can achieve a higher accuracy
performance against other model variants. The accuracy
gradually improves with the increment of the sample size
but the gain tends to be flattened when p reaches a certain
level. Meanwhile, the sample storage cost and training time
consumption also climb up when the samples increase.
Therefore, ideally, the proposed BISSIAM prefers to adopt
a moderate sample proportion that can not only keep the
sample size but maintain a competitive model accuracy.
Fig. 11b and Fig. 11c show the optimal p* finally chosen
by BISSIAM for the two detection tasks, i.e,, p = 0.31 for
type detection and p = 0.231 for operation mode detection.
This indicates BISSIAM only uses less than 1/3 samples but
achieves 91.72% and 56.48% detection accuracy.

5.5 Effectiveness of Out-of-sample Detection

Visualization of UAV fingerprints. Fig. 12a demonstrates
an instance of the fingerprint database. There are four

fingerprints and each individual fingerprint belonging to a
specific UAV is depicted with a distinct color: the red, black
and green ones represent the Parrot AR Drone, Parrot Bebop
and DJI Phantom 3, respectively, while the blue one denotes
the background noise.

Intra-class distance and the optimal threshold parameter.
The dataset used for the experiment includes three classes:
background noise, Parrot Bebop, and Parrot AR Drone,
and then set p* to be 0.31. Fig. 12b shows the cumulative
probability density function (CDF) of the intra-class distance
for each class. We can find that most of the between-node
distance in class 1 (background noise) and class 3 (Parrot
AR Drone) stays below 0.2, indicating a strong similarity
among different sample nodes and the fingerprint thus has a
good concentration without obvious outliers. However, the
distances within class 2 (Parrot Bebop) are observably more
diverse and patchy — 75% of the between-node distances
are no more than 0.306, while there are several groups of
outliers since three obvious jumps in the CDF, around the
distance 0.58, 0.7, and 0.81.

As discussed in §3.5.2, determining the optimal detection
threshold requires the exploration and exploitation of the
intra-class distances. As outliers rarely manifest in the class
1 and class 3, i.e., the smoothness in the CDF, it is reason-
able to choose the upper distance bound (y™“*) and the
corresponding lower similarity bound (¢™") as the target
thresholds. The situation is even more complicated for cases
such as class-2 where the outlier or problematic node is the
norm rather than the exception. Choosing the maximum
distance v5'** as the threshold of the class 2 will lead to
more outliers at edge included and wrongly categorized.
To exclude outliers from the similarity calculation whilst
including most sample nodes, it is much more rational to
reduce the v to a safe value. As a result, 7o is chosen
to be 0.306 to cover more than 75% sample nodes while
the upper distance bound ~{*** and ~5'** are adopted
as the final thresholds. The corresponding similarity value

7,1 = 1,2,3 is applied into Alg. 3. Fig. 12c also shows
the accuracy when the +y; varies the accuracy of detecting
new UAVs is 85.7% on average. For class 2, choosing a
parameter ranging from 0.306 to 0.5 can lead to the best
detection accuracy (overall 91.4%) - the range is aligned
with the plateau in the CDF where no more outliers will be
involved and categorized by the detection algorithm. The
accuracy will naturally diminish, once more faulty nodes
and outliers are included when the threshold ~; increases.

The overall accuracy is shown in Fig. 13. Simply using
the upper distance bound lead to the 85.7% accuracy of
UAV type detection, but it can be improved to 91.4% by
adopting the optimal threshold. Even more so, the accuracy
improvement of detection new UAVs is more significant
— the optimal threshold can result in 90% accuracy, 1.8x
increased against using the maximal distance.

Discussion. This indicates the necessity to fine-tune the
detection threshold when carrying out realistic detection
for the incoming unknown UAVs. However, the current
threshold mechanism could lead to a lack of generalization.
The focus of this work is to develop a novel unsupervised
learning for in-sample detection and will be further en-
hanced to underpin more robust out-of-sample detection.
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Fig. 11. Sample size evaluation results: (a) Effect of sample proportion on classification accuracy; (b) Cost function curve for drone type recognition;

(c) Cost function curve for operational mode recognition.
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TABLE 9
Time Consumption
Component Avg (s) Stddev (s)
Feature Extraction 1.269 +0.043
BisSiam Prediction 0.053 +0.095
Fingerprint Matching 0.007 +0.006

5.6 Detection Time Evaluation

Table 9 demonstrates the time consumption of a new UAV
detection taks and the specific time breakdown into the key
components of BISSIAM (outlined in Fig. 3). We mainly mea-
sure the average and stddev time of the feature extraction,
the vector encoding by BISSIAM network, and the finger-
print matching. Overall, the average time for a detection
is 1.329s. On the arrival of a new data sample, the feature
extraction takes the dominant proportion of time, 1.269s on
average, as opposed to other stages - encoding (0.053s on
average) and the final categorization (0.007s on average).

The experimental result demonstrate its potential use in a
(near) real-time anomaly detection scenarios.

In addition, the evaluation omits the data reading time in
the feature extraction; in realistic implementations, this can
be implemented in a fairly effective way, for example with
the aid of an exclusive hardware device such as USRP for
the radio reception. To mitigate the detection delay, BISS1AM
can also rely on high-performance hardware to process the
massive data or further reduce the sampling ratio.

6 RELATED WORK

Physical signal based UAV detection. Anwar et al. [17] col-
lected the sound signals from the environment and extracted
the features by using Mel frequency cepstral coefficients
(MFCC) and linear predictive cepstral coefficients (LPCC).
The support vector machine (SVM) was then used to classify
the UAVs. Seo et al. [18] used a STFT method to transform
the UAV sound signal into a spectrogram and used CNN to
perform a classification task. Thai et al. [27] used camera
to capture the flight video of the UAVs, and employed
optical flow to localize and track the flight trajectory of
the UAYV, through Harris detection and CNN, and finally
applied k-nearest neighbor (KNN) for UAV classification. As
a departure from the optical-based approaches, Rozantsev
et al. [28] stacked the motion windows of UAVs on several
consecutive frames and combined them with a regression
motion stabilization algorithm to achieve UAV track in low
light or almost invisible conditions. However, those sound
or optical-based approaches ignore the detectable range and
are largely limited by complex environmental conditions
such as high levels of noise and poor optical conditions.
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Network traffic based UAV detection. Bisio et al. [30]
leveraged statistical features of UAV traffic data as the UAV
fingerprints to achieve UAV authentication. [29] proposed
a ML-based framework for fast UAV detection over the
encrypted Wi-Fi communication; it extracted features purely
from the packet size and arrival time of encrypted Wi-
Fi communication, and designed a delay-aware approach
to enable the fast UAV detection with reduced latency.
Nevertheless, data privacy became the main concern [26]
and it is increasingly difficult to effectively access the target
network, as most of the commercial UAVs use proprietary
communication channels.

Radio signal based UAV detection. A large body of research
employ radar technology for the UAV anomaly detection.
Messina et al. [19] sampled the radar received echo (swept
frequency) and classified the UAVs with feature extraction
by high-pass filter and FFT. Zhang et al. [20] proposed
a dual-frequency radar classification scheme where radar
data was collected by K-band and X-band radar sensors
separately, followed by a STFT transform, and SVM was
finally used for the UAV classification. In addition, there
are many other work based on radio frequency (RF). [22]
released the available UAV RF dataset [44]. It additionally
performed Fourier transform analysis of the RF signal and
used DNNs for the UAV detection. Medaiyese et al. [23]
captured the low frequency spectrum of the RF signals from
the UAVs communication with a flight controller. The data
was then fed into an Extreme Gradient Boosting (XGBoost)
model as the input feature vector. Ezuma et al. [26] extracted
RF-based features with the aid of FFT, and, for the first time,
used a Markov-based model and a plain Bayesian decision
mechanism for detecting RF signals from any source. Zhao
et al. [24] improved the auxiliary classifier GANs (AC-
GAN) model by leveraging the Wasserstein GANs (WGAN)
model. It simplified the recognition steps and can be applied
in both indoor and outdoor environments. Ozturk et al. [21]
investigated the performance of UAV detection at the low
SNR. The models were trained by using both the time-series
image and the spectrogram image CNN classifiers, which
are illustrated more resilient to the noises. While these RF-
based approaches are promising to tackle UAV anomaly de-
tection, the proposed supervised learning models are highly
dependent upon massive labelled data. By contrast, this
work goes further to investigate an unsupervised learning
technique with only a fraction of the whole sample that can
mitigate the dependencies on sample sizes whilst retaining
a competitive model accuracy.

7 CONCLUSION

This paper presents BISSIAM, a novel learning framework
that can transform the UAV radar frequency signals into
learnable bispectrum, and learn the vector encoding through
a siamese network based contrastive learning model. The
vector encodings will be used for the downstreaming detec-
tion tasks such as UAV presence, UAV types and operation
modes. To achieve a rapid and effective out-of-sample detec-
tion, we exploit and ascertain the similarity between existing
samples and the new target. A similarity-based fingerprint
matching mechanism is devised to detect the unseen UAVs.
In the future, we will continue optimizing the accuracy

of operation mode prediction and consider the multi-label
recognition of multiple UAVs. We also plan to track and
benchmark more UAVs and collect their behavioural data
as the new datasets.
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