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Graph Neural Networks (GNNs) have been widely used for the representation learning of various structured graph data,
typically through message passing among nodes by aggregating their neighborhood information via different operations.
While promising, most existing GNNs oversimplified the complexity and diversity of the edges in the graph, and thus inefficient
to cope with ubiquitous heterogeneous graphs, which are typically in the form of multi-relational graph representations. In this
paper, we propose RIOGNN, a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph
Neural Network architecture, to navigate complexity of neural network structures whilst maintaining relation-dependent
representations. We first construct a multi-relational graph, according to the practical task, to reflect the heterogeneity of
nodes, edges, attributes and labels. To avoid the embedding over-assimilation among different types of nodes, we employ a
label-aware neural similarity measure to ascertain the most similar neighbors based on node attributes. A reinforced relation-
aware neighbor selection mechanism is developed to choose the most similar neighbors of a targeting node within a relation
before aggregating all neighborhood information from different relations to obtain the eventual node embedding. Particularly,
to improve the efficiency of neighbor selecting, we propose a new recursive and scalable reinforcement learning framework
with estimable depth and width for different scales of multi-relational graphs. RIoGNN can learn more discriminative
node embedding with enhanced explainability due to the recognition of individual importance of each relation via the
filtering threshold mechanism. Comprehensive experiments on real-world graph data and practical tasks demonstrate the
advancements of effectiveness, efficiency and the model explainability, as opposed to other comparative GNN models.
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1 INTRODUCTION

The advancement of Graph Neural Networks (GNNs) enables the effective representation learning for a variety
of areas [104] including bioinformatics, chemoinformatics, social networks, natural language processing [76,
78], social events [5, 75, 77], recommender system [83], spatial-temporal traffic [30, 80], computer vision and
physics [3] where graphs are primarily the denotation. GNN models are proved to reach the performance target
over massive datasets — citation networks [81, 91], biochemical networks [74, 123], social networks [5, 19],
knowledge graph [58, 85, 109], commodity networks [79], API call networks [37], etc. — on different tasks,
such as node classification [12, 32, 49, 73, 96], node clustering [43, 72], link prediction [48, 52, 114], graph
classification [18, 74, 92, 111], etc. At the core of GNNs is to operate various aggregate functions [32, 49, 96, 107]
on the graph structure by passing node features to the neighbors; each node aggregates the feature vectors
of its neighbors for computing and updating its new feature vector. Empirically, iterations of aggregation or
message passing come into a node embedding vector — a numerical capture of both structural information
within the node’s multi-hop neighborhood and the attribute information — empowered by the label propagation
mechanisms [29, 57, 122].

Heterogeneous graphs are ubiquitous in real-world systems; a graph typically consists of nodes with multiple
types and multi-relational edges between nodes. For example, in Yelp spam review data [84], there are heteroge-
neous nodes (e.g., businesses, reviews, users, etc.) and relations (e.g., posted by the same user, under the same
product with the same star rating, and under the same product posted in the same month between two reviews).
However, existing iterative aggregation mechanisms of GNNs have yet to elaborately consider the diversity of
semantic relations and the usability of the proposed models. Homogeneous GNNs such as GraphSAGE [32],
GCN [49], GAT [96], GIN [107] ignore or simplify the diversity and complexity of the nodes and edges in practical
networks, which is inadequate to represent the heterogeneity of data. To solve the above problem, relational
GNN s [71, 85, 121] are proposed but fail to capture multiple hop or complex relations. Sampling-based heteroge-
neous GNNs guided by hand-crafted meta-paths [101], meta-graphs [108] and meta-schema [36] are solely based
on data types and their structured connections. This drawback substantially impedes the generalization of such
heterogeneous GNNss in practical fine-grained tasks — e.g., fraud detection [1, 14], disease diagnosis [20], etc. -
where it is infeasible or inefficient to externalize the inherent entity relations through meta-structures such as
meta-path, meta-graph and meta-schema. Take the detection and diagnosis of diabetes and its suspected diseases,
based on the MIMIC-III dataset [44], as an example. Observably, a portion of patients with diabetes tends to have
symptoms that cause glaucoma, while glaucoma patients do not often experience issues in blood sugar, insulin
and other test indicators. Accordingly, one can easily define explicit relations such as having hyperglycemia score
in the blood test, having high proteinuria scores in urine test, having symptoms of glaucoma in vision test, having
high intraocular in pressure test, etc., between any two patients. It is far more useful to specify relations based
on common attributes shared by entities, and less dependent upon strict entity connections as opposed to the
meta-structure based approaches which have to leverage complicated automated generation technology [68] or
manual experience [6, 39, 62]. Hence, it is more effective to explore and exploit the explicit relations, stemming
from task-specific characteristics, for carrying out downstream applications.

In an attempt to extend GNNs for supporting heterogeneous graph embedding, many approaches rely on a
combination of sophisticated neural networks [100]. For instance, HetGNN [113] aggregates multi-modal features
from heterogeneous neighbors by combining bi-LSTM, self-attention, and types combination. RSHN [121] utilizes
coarsened line graph neural network (CL-GNN) along with the message passing neural network (MPNN) to learn
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node and edge type embedding simultaneously. HGT [41] leverages type dependent parameters based mutual
attention, message passing, residual connection, target-specific aggregation function, etc. MAGNN [22] makes
use of meta-path sampling, intra-meta-path and inter-meta-path aggregation technologies to embed a node with
the targeted type. Nevertheless, they lack the analysis of more practical or fine-grained application tasks and
require strong domain knowledge to build the complex neural network structures. The usability of the proposed
GNN model should also be designed in a more convenient way.

To this end, we propose RtoGNN, a novel Reinforced, recurslve and scalable neighbOrhood selection guided
multi-relational Graph Neural Network, to navigate complexity of customized neural network structures whilst
maintaining relation-dependent representations. For domain task driven graph representation learning, we
introduce multi-relational graph to reflect the heterogeneity of nodes, edges, attributes and labels. Herein, a
relation is referred to as a specific type of edge between two nodes, connected with each other through explicit
common attributes or implicit semantics, e.g., two products released in the same month, two movies directed by
the same director, etc. Departing from heterogeneous information network (HIN) [87], the multi-relational graph
is able to flexibly characterize and explicitly differentiate the edge types without the need for specifying semantic
connectivity between any two nodes strictly following entity-associated meta-structures. For a given relation, we
can conduct the sampling procedure upon the original graph for extracting neighbors for each node in the graph.

To diminish the complexity of neural network units, RIoOGNN optimizes the process of neighbor selection
when aggregating neighbor information for a center node embedding. To avoid the embedding over-assimilation
among different types of nodes, we first employ a label-aware neural similarity measure to ascertain the most
similar neighbors based on node attributes. Particularly, this is achieved by a neural classifier that transforms the
supervised signals (e.g., high-fidelity annotated labels) and original node features to calculate the node similarity.
To follow up, we carry out a relation-aware neighbor selection to choose the most similar neighbors of a targeting
node within a reinforced relation before aggregating all neighborhood information from different relations to
obtain the eventual node embedding. To improve the neural classifier training efficiency, we optimize the filtering
threshold within each relation through RSRL, a novel Recursive and Scalable Reinforcement Learning framework
with estimatable depth and width for different scales of a heterogeneous graph in a recursive manner. Specifically,
we exploit two general relation-aware RSRL methods — using both discrete and continuous strategies — for
pinpointing the optimal number of neighbors of different relations. The discrete and continuous approaches
can generally provide more choices in the face of different datasets and application scenarios. RSRL not only
facilitates to learn discriminative node embeddings, but also makes the model more explainable as we can
recognize the individual importance of each relation via the filtering thresholds. RSRL-based relation-aware
neighbor selector can be integrated with any mainstream reinforcement learning models [31, 35, 50, 86, 103] and
neighbor aggregation functions [32, 96] used for specific scenarios.

We integrate the aforementioned techniques with the vanilla GNN as a layer of RToGNN and devise multi-
layered R1oGNN to learn high-order node representations according to the specific requirements of downstream
tasks. This paper mainly targets those tasks with node-level embedding and learns the multi-relation node
representation in a semi-supervised manner. We evaluate the effectiveness, efficiency and explainability of
R10GNN by applying it to two tasks of fraud detection and diabetes detection, using Yelp, Amazon and MIMIC-III
datasets. Experiments assess how RIoGNN underpins downstream tasks including transductive node-classification,
inductive node-classification and node clustering. Results show that RToGNN significantly improves various
downstream tasks over state-of-the-art GNNs as well as dedicated heterogeneous models by 0.70%—-32.78%.
We show that our RSRL framework not only boosts the learning time by up to 4.52x, but also achieves 4.90%
improvement in node classification. We also evaluate the sensitivity of RIoOGNN to hyper-parameters in the above
tasks. Finally, we carry out a series of case studies to showcase how RSRL automatically learns the importance
and engagement of implicit relations in different tasks. The source code and datasets are publicly available at
https://github.com/safe-graph/RioGNN.
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The contributions of this work are summarized as follows:

o The first task-driven GNN framework based on multi-relational graphs, making the best use of relational
sampling, message passing, metric learning and reinforcement learning to guide neighbor selection within
and across different relations.

o A flexible neighborhood selection framework that employs a reinforced relation-aware neighbor selector
with label-aware neural similarity neighbor measures.

o A recursive and scalable reinforcement learning framework that learns the optimized filtering thresholds
via estimable depth and width for different scales of graphs or tasks.

e The first study on the explainability of multi-relational GNNs from the perspective of importances of
different relations.

We expand upon our preliminary work [15], by extending CAmouflage-REsistant GNN (CARE-GNN) model
exclusively for fraud detectors against camouflaged fraudsters to a more general architecture underpinning a
wide range of practical tasks. Specifically, the improvements encompass: 1) giving a full version of definition,
motivation and aim of multiple relation graph neural networks under different practical tasks; expanding the label-
aware similarity neighbor measure from one layer to multiple layers to select the similar neighbors; 2) proposing
a novel recursive and scalable reinforcement learning framework to optimize the filtering threshold for each
relation along with the GNN training process in a general and efficient manner, instead of the previous Bernoulli
Multi-armed Bandit method; 3) leveraging both discrete and continuous strategies to find the optimal neighbors
of different relations to be selected under the reinforcement learning framework; 4) carrying out extensive
experiments on three representative and general-purpose datasets, not limited to the fraud detection scenario.
Furthermore, more in-depth experimental results are discussed to demonstrate the effectiveness and efficiency
of the proposed architecture. We supply the variances of the results of multi-relational graph representation
learning. We also showcase the explanation of importances of different relations from a new perspective based
on the filtering threshold of the proposed RSRL framework.

The paper is structured as follows: Section 2 outlines the preliminaries and the problem formulation, and
Section 3 describes the technical details involved in RtoGNN. Experimental setup and results are discussed
in Section 4 and Section 5, respectively. Section 7 presents the related work before we conclude the paper in
Section 8.

2 BACKGROUND AND OVERVIEW
2.1 Problem Definition

In this section, we firstly define the multi-relational graph and multi-relational GNN. All important notations in
this paper are summarized in Table 1.

Definition 2.1. Multi-Relational Graph (MR-Graph). MR-Graph is defined as G = {”V, X, {8r}|f:1, Y},

where V is the set of nodes {vs,...,v,}, and n is the number of nodes in the graph. Each node v; has a d-
dimensional feature vector x; € R and X = {xy, ..., X, } represents a set of all node features. e{j = (v;,05) € &,
is an edge between v; and v; with a relation r € {1,--- , R}, where R is the number of relations. Note that an edge

can be associated with multiple relations, and there are R different types of relations. Y is the set of labels for
each node in V.

The multi-relational graph directly uses the elements to be classified as nodes, and the key relations of elements
with different labels are used as multiple connections, which can be widely used in challenging classification
tasks. It is worth noting that, departing from HIN, the multi-relational graph is able to flexibly characterize
and explicitly differentiate the edge types without the need for specifying semantic connectivity between any
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two nodes strictly following entity-associated meta-structures. We exemplify its applicability by two real-world
applications and compare the difference between the MR-Graph based modeling and the HIN-based approach:
Spam Review Detection. Spam reviews are referred to as those fabricated reviews posted to products or
merchants with the intent of promoting their targets. Fraud detection has to identify spam reviews from organic
ones. As spam comments add some special characters or simulate benign email behaviors (such as one user
who posts spam emails while maintaining a certain frequency of organic comments) to avoid being found out,
this brings challenges to distinguishing spam comments. We consider the comments with different labels as
nodes, and different representative interactions as different types of connections to build a multi-relational graph,
thereby transforming this problem into a two-classification problem. As shown in Figure 1(a), an MR-Graph
example depicts the organic reviews, spam reviews and their interactions extracted from the e-commerce review
data [70, 84]. We extracted representative interactions between two reviews that are closely associated with
the fraudulent behavior, and represented them as different types of edges — Belonging to the same user, Having
the same star rating, Targeting the same product posted in the same month, Belonging to the same word count

Table 1. Notations.

Symbol | Definition
G;V;E; X | Graph; Node set; Edge set; Node feature set
Yp; Y | Label for node v; Node label set
r; R | Relation; Total number of relations
I;L | GNN layer number; Total number of layers
b; B | Training batch number; Total number of batches
e; E | Training epoch number; Total number of epochs
Virain;Vp | Nodes in the training set; Node set at batch b
Sr(l) Edge set under relation r at the I-th layer
hz(,l) The embedding of node v at the I-th layer
hf,’) The embedding of node v under relation r at the I-th layer
DD (v,0”) | The distance between node v and v’ at the I-th layer
S (v,v’) | The similarity between node v and o’ at the I-th layer
py) € P | The filtering threshold for relation r at the I-th layer
RLF( | The Reinforcement Learning Forest at the [-th layer
RLT,(I) The Reinforcement Learning Tree for relation r at the I-th layer
RLr(l) @ | The Reinforcement Learning Module for relation r at the I-th layer in d-th depth
W,(l) ™| The width of Reinforcement Learning Tree for relation r at the I-th layer in d-th depth
D,(l) The depth of Reinforcement Learning Tree for relation r at the I-th layer
aﬁl) € A | RL action space;
s(Dr(l)(d))(e) RL state for relation r at the I-th layer in d-th depth when the epoch is e
gy) @) | RL reward for relation r at the I-th layer in d-th depth when the epoch is e
fr(l) @7 | RL iterative function for relation r at the I-th layer in d-th depth when the epoch is e
er (v) | Nodeset after RL filtering for relation r at the I-th layer
AGGSI) Intra-relation aggregator for relation r at the I-th layer
AGGc(zll)l Inter-relation aggregator at the I-th layer
z, | Final embedding for node v

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 39. Publication date: October 2021.



39:6 « H.Pengetal

:] User
() Product
[ ciy
) Star
:] Identity
:] Review

Clothes
Los Angeles

Reviews 1

Belong to the same user

Belong to the same number of stars
. Belong to the same product

— = Belong to the same word count level
Sooomooo00 Contains special characters

— -« — - - — Located in the same city

C] Organic Review [:] Spam Review
Relational Fraud Detection Graph

(a) An MR-Graph example for fraud review detection.
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Fig. 1. Graph Modeling in Fraud Review Detection.
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graph, reproduced from [62].

(a) An MR-Graph for diabetes and disease detection.

Fig. 2. Graph Modeling in Disease Diagnosis.

level, Containing special characters and Targeting products located in the same city. As an alternative, traditional
HIN-based modeling (Figure 1(b)) pays more attention to the relations outlined by structured connections.
Disease Diagnosis. In the task of disease diagnosis, diabetes, stroke, and glaucoma are common diseases
in middle-aged and elderly people, and their early symptom recognition is very important. However, because
these three diseases have similar symptoms, it is difficult to distinguish patients in clinical practice. For example,
the symptoms of stroke include loss of vision, sudden weakness and tingling sensations, which are similar to
symptoms in patients with type II diabetes. In addition, one of the early symptoms of diabetes is blurred vision
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caused by changing fluid levels. Therefore, the eyes may change shape, disturbing the focusing ability of the
eyes. Although this visual impairment may indicate diabetes, it is also true in glaucoma patients. Here, taking the
patient as the node of the multi-relational graph and connecting the patients with different similar symptoms into
different types of edges can convert the task into a multi-classification task. Figure 2(a) illustrates an MR-graph
of patients for disease diagnosis. We believe to model and represent the relationship between the following types
of patients: with "headache" symptoms, with "blurred vision" symptoms, with "hyperglycemia" test results, with
"hypertension" test results, with a history of "metazolamide”, etc. are more helpful for the diagnosis of diabetes and
its suspected diseases of patients. Even, there may be multiple relationships between two patients. For example,
Patient 5 and Patient 8 have two relationships of with "blurred vision" symptoms and with "hypertension” test results
in common. Meanwhile, previous HIN-based Electronic Health Records (EHR) modelings [6, 39, 62] focused on
the correlation and fusion of different attributes or types of data, and the corresponding methods are suitable for
the diagnosis of all kinds of diseases. Moreover, there is a lack of fine-grained analysis of certain definite diseases.
We also give an illustration of the heterogeneous Electronic Health Records graph in Figure 2(b).

Definition 2.2. Multi-Relational GNN. Graph neural network (GNN) is a deep learning framework to embed
graph-structured data via aggregating the information from its neighboring nodes [25, 32, 49, 96]. Based on
Definition 2.1, we can then outline a unified formulation of the Multi-Relational GNN from the perspective of
multi-layer neighbor aggregation according to different relations. For a central node v, the hidden or aggregated

embedding of node v at I-th layer is referred to as hz(,l):
hy = o(hy ™ @ AGGP ((h]V : (0.0)) € &), ()

where 851) denotes the edges under the relation r at the [-th layer, and hz(f_rl) indicates to the aggregated embedding
of neighboring node v” under relation r. AGG denotes the aggregatic;n function that maps the neighborhood
information from different relations into a vector, e.g., mean aggregation [32] and attention aggregation [96].
@ is the operator that combines the information of node v and its neighboring information through either
concatenation or summation [32]. We initialize the node embedding hz(,o) with the input d-dimensional feature
vector x. The GNN is trained with partially labeled nodes with binary classification loss functions. Instead of
directly aggregating the neighbors for all relations, we separate the aggregation part as intra-relation aggregation
and inter-relation aggregation process. During the intra-relation aggregation process, the embedding of neighbors
under each relation is aggregated simultaneously. Then, the embeddings for each relation are combined during
the inter-relation aggregation process. Finally, the node embeddings at the last layer are used for predictions.

2.2 Problem Scope and Challenges

In practical applications, we model multi-relation graphs, and take actual problems as node classification tasks in
a semi-supervised learning manner. After constructing a multi-relational graph according to domain knowledge,
e.g., Spam Review Detection in Figure 1(a), Disease Diagnosis in Figure 2(a), etc., a multi-relational GNN can be
trained. However, when we train more discriminative, effective and explainable node embedding, there are three
main challenges facing the Multi-Relational GNNs:

How to cope with misbehaved nodes during neighbor aggregation in GNNs (Challenge 1). The input
node features X, often extracted based on heuristic methods such as TF-IDF, Bag-of-Words, Doc2Vec, etc., are
susceptible to such misbehavior as adversarial attacks, camouflages [15, 89], or simply imprecise feature selection.
Consequently, the numerical embedding of a central node tends to be assimilated by misbehaved neighboring
nodes. For instance, in the spam review detection task, adversarial or camouflaged behaviors are non-negligible
noises that drastically reduce the accuracy of feature representation learning by GNNs. Either feature [16, 53]
or relational [46, 119] camouflages could similarize the features of misbehaved and benign entities, and further
mislead GNNs to generate uninformative node embeddings. In the medical disease diagnosis task, textual attribute
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based feature selection may not be able to extract high-level or fine-grained semantics, and thus easily lead
to imprecise node characteristics. Hence, these issues necessitate an effective similarity measure to filter the
neighbors before applying into any GNNs.

How to adaptively select the most suitable neighbor nodes based on the similarity measure (Chal-
lenge 2). Data annotation is expensive for most practical problems, and we cannot select all similar neighbors
under each relationship through data labeling. The method of directly regarding the filtering threshold as a hyper-
parameter [61, 112] is no longer valid for multiple relationship graphs with numerous noisy or misbehaved nodes.
First, different relationships have different feature similarity and label similarity. Secondly, different relationships
have different precision requirements for the filtering threshold. Therefore, an adaptive sampling mechanism
must be designed so that the optimal number of similar neighbors can be selected for specific relationship
requirements in a dynamic environment.

How to efficiently learn and optimize the filtering threshold in a continuous manner (Challenge 3).
Our preliminary work [15] adopts the Bernoulli multi-armed bandit framework [94] with a fixed strategy to
strengthen the learning of the filtering threshold. However, it is substantially limited by the observation range of
the state and manually-specified strategies, and hence the final convergence result of the filtering threshold tends
to be locally optimal. In addition, for maintaining the prediction accuracy, in the face of large-scale datasets, it
is imperative to reduce the adjustment step size of the filtering threshold or use continuous action space. This
procedure will undoubtedly expand the action space, leading to an increased number of convergence periods and
a huge growth of calculation, possibly with a loss of accuracy. This issue therefore necessitates an automatic and
efficient reinforcement learning framework that can quickly obtain sufficient and high-quality solutions.

3 METHODOLOGY

Figure 3 depicts the RIoGNN’s overall architecture consisting of three key modules — label-aware similarity mea-
surement (Section 3.1), similarity-aware neighbor selector (Section 3.2), and relation-aware neighbor aggregator
(Section 3.3). In addition, we describe the overall algorithm and optimization in Section 3.4.

3.1 Label-aware Neural Similarity Measure

Compared with unsupervised similarity metrics like Cosine Similarity [110] or Neural Networks [110], many
practical problems like financial fraud, disease diagnosis, etc., require extra domain knowledge (e.g., high-fidelity
data annotations) to identify anomaly instances. To this end, we design a parameterized node similarity measure,
i.e., label-aware neural similarity measure, using supervision signals from domain experts. AGCN [54] employs a
Mahalanobis distance plus a Gaussian kernel, while DIAL-GNN [10] adopts the parameterized cosine similarity.
NSN [56] unitizes bilinear similarity based inner product and hyperspherical learning strategies. However, all of
them have non-negligible time complexity O(kd), where k denotes the average degree of nodes, often very high
in real-world graphs, and d represents the feature dimension. This leads to a loss of efficiency when discriminating
the node representation learning.

Inspired by GraphMix [97], with a combination of Fully-Connected Network (FCN) and linear regularization,
we adopt an FCN as the node label predictor at each layer of RtoGNN, and use the /;-distance between the
prediction results of two nodes as the measure of the in-between similarity. It is a simple and efficient regularizer
for semi-supervised node classification using GNNs. At the [-th layer, when calculating the distance between
one intermediate node v and one of its neighbors v” under relation r, i.e., the edge (v,0") € &,, we take their
embedding in the previous layer h(!™?) as input, and apply the non-linear activation function o (we use tanh in
our work). The distance between v and v’ is the [;-distance of two embeddings:

DD (0,0") = [|o(FCNPRI™) — o(FCNDRID) . (2)
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Fig. 3. RIoGNN architecture.

Thus, the similarity of the two nodes can be defined as:
SO (0,0 =1- DD (v,0). (3)

The time complexity of our approach can be reduced from O(kd) to O(d). In general, the computational cost
is low because for each node in the node set V, we do not use the combined embedding of its k neighbors with
d-dimensional features to measure similarity like LAGCN [7], but only consider the label predicted by FCN based
on its own feature.

To train similarity measure with a direct supervision signal from the labels, we define the cross entropy loss of
the FCN in the [-layer as:

£ = > ~log(y - o(FCND (). @)
veV

Further, we define the cross entropy loss of label-aware similarity measure for the entire network as:

L

Lsimi = Z Lél,zm ©)

I=1

During the training process, the similarity measure parameters of FCNs are directly updated through the loss
function. It ensures that similar neighbors can be quickly selected within a few batches and facilitates to regularize
the GNN training process.

In this subsection, we propose a label-aware similarity detection method for the first challenge in Sec. 2.2. This
method is based on node labels to effectively avoid interference caused by bad node camouflage in actual scenes,
and reduces the complexity of similarity, which provides a stable basis for subsequent neighbor filtering.
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3.2 Similarity-aware Adaptive Neighbor Selector

To select appropriate neighbors adaptively, we design a similarity-aware neighbor selector to filter misbehaved
nodes stemming from adversarial behaviors or inaccurate feature extraction. More specifically, for each central
node, the selector utilizes Top-p Sampling along with adaptive filtering thresholds to construct similar neighbors
under each relation. Since the filter thresholds for different relations at different layers tend to be dynamically
updated during the training phase, we propose RSRL, a recursive and scalable reinforcement learning framework
to optimize the filtering threshold for each relation in an efficient manner.

3.2.1 Top-p Sampling. Before aggregating the information from both central node v and its neighborhood, we
perform a Top-p sampling to filter the dissimilar neighbors according to different relations. A filtering threshold
pL € [0,1] for relation r at the I-th layer indicates the selection ratio from all neighbors. For instance, all neighbor
nodes under the relation r are retained if p, is 1. More specifically, during the training phase, for a node v in one
batch under the relation r, we first calculate a set of similarity scores {S’(v,v)} by using Eq. 3 at I-th layer where
the edge (v,0") € EL. We then rank the neighbors of each central node v in descending order, based on {S(v,0’)},
and take the top p! - |{5(v,0’)}| neighbors as the selected ones, i.e., N'(v), at the I-th layer. The residual nodes
will be discarded at the current batch and not attend the following aggregation process within the layer.

1) Observe the current state and reward:
State = s; Reward =1
NN \“ N 2) Update RL function:
NN N RL « (State = s, Action = 0.5, Reward = r)
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Fig. 4. One layer Reinforcement Learning Forest.

3.2.2  RSRL Framework. Previous work [61, 112] regards the filtering threshold as a hyper-parameter, which
is no longer valid for multi-relational graph with numerous noisy or misbehaved nodes. To solve this, our
preliminary work [15] adopted the Bernoulli multi-armed bandit framework [94] with a fixed learning strategy
and dynamically updated the filtering threshold. However, the effectiveness of this approach is largely impeded

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 39. Publication date: October 2021.



Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural Networks « 39:11

by the limited observation range of states and the manually-specified strategy. As a result, the final convergence
outcome of the filtering threshold tends to be local optimal. In the face of larger-scale datasets, the maintenance
of the prediction accuracy also needs to reduce the adjustment step size of the filtering threshold. This process
will increase the number of convergence epochs, and bring in an increase in the amount of calculation and a loss
of accuracy.

Overview. To address these problems, we propose a novel Recursive and Scalable Reinforcement Learning
framework RSRL, upon traditional Reinforcement Learning based approaches [21, 51, 63], to not only update
strategies through the learning environment but also the recursive structure can be used to quickly and accurately
meet the accuracy requirements of different relations. Figure. 4 depicts the forest-based learning architecture.
The specific process of a tree in each epoch is shown on the right, where s and r respectively represent the state
and reward after the previous epoch, and a (the example in the figure is 0.5) represents the predicted action in
the current epoch. We formulate RSRL as an L-layer Reinforcement Learning (RL) Forest, and define the I-th
layer forest as:

I 1)(d)y,DY
RLFY = (RLTVYR | = ({RLP YD IR (6)

r=1s
RLF" actually indicates the process of obtaining the best relational filtering threshold combination at the
I-th layer. Each relation independently constructs a RL Tree RLT" with an adaptive depth p = [log, k-1
and a width Wr(l)(d) = a—ld. a is the weight parameter of depth first and breadth first, and k, is the maximum
number of neighbors contained in the node in relation r. RLT" performs a Reinforcement Learning RLP@ for
filtering the threshold with an accuracy W,(l) @) at each depth. At the I-th layer, RLT,(I) acquires the best filtering
threshold pﬁl) @ of neighbor nodes with higher accuracy than the previous depth of relation r through multiple
RL recursively, until the threshold for maximum accuracy requirements is found at the depth Dr(l).
The RLTr(l) recursive process is expressed as:

(O (d) (O(d)
n@ R ey W n-1ny  Wr
D B qpn L Ty By, ”)
where pil) @ represents the optimal proportion of neighbor nodes in the relation r to be discarded when the

depth of the RL tree is d in the I-th layer. The learning range of the RL module of each depth is the value within

w
2

maximum depth Dfl) , we obtain the final filtering threshold pil) of the relation r in the I-th layer. Considering
that the complexity has a linear relationship with the size of the action space [17], this process carries out a
precision recursion on RL actions and can reduce the time from O(k,) to O(a log,, k), where € (1,k,) and k,
is the maximum node degree under relation r.

Details of RL Process. We express an RL module as a Markov Decision Process MDP < A, S,R, F > for the
filtering threshold of a relation. A and S are the action space and state space, respectively; R is the reward function,
and F is the iteration functions and termination conditions. To better deal with datasets with different sizes and
diverse scenarios, we break down our solution into two distinct categories: Discrete Reinforcement Learning
(D-RL) and Continuous Reinforcement Learning (C-RL).

+ of the filter threshold pﬁl)(d_l) selected by the previous depth. When the recursive process reaches the

_ (1) (d) _
o Action: We define the action space A ofRLr(l) @ by collecting all actions aﬁl) @ ¢ {pﬁl) (@-1)_ W’T, p,(l) @1

(@)
W’Z } when the relation 7 is at the depth d of the I-th layer. The discrete scheme D-RL divides the action

space into « discrete actions on average. In the continuous scheme C-RL, the action space in d-th depth is a

+

continuous floating point number with the width of Wr(l) @ The compatibility of the two types of action
space can effectively adapt to a variety of reinforcement learning algorithms. Due to the low precision
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requirements of the filtering threshold for small and medium-scale datasets, discretization of actions can
reduce the number of action explorations [47] while meeting the basic accuracy requirements, which
ensures efficient access to high-performance areas. For the dataset with large-scale neighbors, a large
number of discrete actions that meet the high-precision requirements will affect the learning effect [17].
We propose to generalize the filtering threshold to the continuous action space to improve the accuracy of
large-scale data sets by reducing the spatial range multiple times.

o State: Since it is impossible to directly perceive the classification loss of GNN as the environment state,
we calculate the average node distance of each epoch as the state through the distance measure of label
perception (Eq. (2)). In the [-th layer of the e-th epoch, the state s of relation r in the d-th depth is:

2 (ooyegdiae DY (0,0

(D(d)(e) _

5 - 5D@@) ’ )
where Sr(l)(d)(e) is the set of edges filtered in the [-th layer and d-th depth of the e-th epoch under relation
r.

e Reward: For each relation, the goal is to ascertain a filtering threshold pfl)(d) so that the selected neighbor

node and the central node are as close as possible. We therefore use the similarity (Eq. (3)) as the decisive
factor within the reward function. In the I-th layer of the e-th epoch, the reward g of relation r to d-th
depth is:

Z (U,U,) ES:‘I) () S(l) (U’ U/) (E)

W@ _ .
Ir =7 s D@, )
{

9)

where 7 is the weight parameter, and the meaning of 851)(0{)(6) is the same as the definition in the state.

o Iteration and Termination: Before starting each epoch, RL observes the state s£l> @) of the environment

after the previous epoch of action aﬁl) (@(e=1) and obtains a reward gﬁl) @e-), They are then used to update
the iterative function (broadly refers to the function of strategy iteration or value iteration process of

L@

reinforcement learning) f. The iterative function of each R is as follows:

FO@ (D@D (D@6 D@ (D) D@ e (10)

Then we can use the iterative function to predict the action a from the current state s, which is the filtering
threshold:

pDE© _ D@ _ (D) (D@ (11)
Here, for the output of the action, the activation function of the classification type is used to represent
them in D-RL, such as softmax. And in C-RL, we use the activation function of the return value type to
represent them, such as tanh. Since what we propose is a general framework applicable to a variety of
reinforcement learning algorithms, the specific definition of the iterative function depends on the actual
algorithm. We test the applicability of the RSRL framework to various mainstream reinforcement learning
algorithms in Sec. 5.3. To improve the equalization efficiency, we assume the RL will be terminated as long
as the same action appears three times in a row at the current accuracy er(l)(d). Specifically, in the I-th
layer of the e-th epoch, the termination conditions of relation r in the d-th depth are defined as follows:

{(pP DD _ pDDED — gype D - Rl,where ¢ > 2.

(12)
(PP @O _ 0@y O@ye R heree > 2.

i=e—1
We formally define this deep switching condition or termination condition as deep switching number = 3,
and discuss parameter sensitivity in Section 5.5.
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To acquire better training results, we use white-box methodology to test the results synchronously during
the training process, and verify whether the convergence value is optimal for this round before starting a new
round of RL for the same relation. If the value is negative, the filtering threshold with better performance in the
historical version will be reviewed in the new round of optimization as the basis for the new round of action
range. For this backtracking mechanism, we will conduct a sensitivity experiment in Section 5.5.

In this subsection, we overcome the second and third challenges mentioned in Sec. 2.2. Specifically, we use the
similarity measure in the previous subsection to perform Top-p sampling for neighbors of each relation. Based on
reinforcement learning, we use the agent to interact with the environment to make different relations to obtain
different threshold combinations. This adaptive method is free from the help of data annotation. Furthermore, in
order to meet the accuracy requirements of different relations while ensuring accuracy, we propose a recursive
framework for optimization.

3.3 Relation-aware Weighted Neighbor Aggregator

Based on the selection of similar neighbors for each relation, the next step is to aggregate all these neighbor
information among relations, for a comprehensive embedding. Previous methods employ attention mecha-
nisms [27, 33, 59, 98] or weighting parameters [60] to learn the relation weights during the aggregating procedure.
To reduce the computational cost whilst retaining the relation importance information, we directly use the

optimal filtering threshold pﬁl) learned by the RSRL process as the inter-relation aggregation weights. Formally,
for central node v, under relation r at the [-th layer, the intra-relation neighbor aggregation can be defined as
follows:

h) = ReLU(AGG" ({8 h!™" : v’ € N (0)})), (13)

where @ denotes the embedding bitwise summation operation for mean aggregator AGGr(I), and N/ (v) refers to
the set of top p;l) nodes obtained by Eq. (10) under relation r at the [-th layer. The purpose of the intra-relation
neighbor aggregation for the central node v is to aggregate all neighborhood information under the relation r at
the previous layer into the embedding vector hz(,lz

To follow up, we define inter-relation aggregation as below:

hY) = ReLU (W)™ ® AGG" ({& (p" - hD}IR,))), (14)
where hz(,lz indicates the intra-relation neighbor embedding at the I-th layer and AGG? can be any type of

aggregator. Here we directly use the pfl) optimized by the RSRL framework as the aggregation weight, and
conduct experiments on other types of aggregation methods in Section 5.1.1 and Section 5.2.1.

In this subsection, in order to better deal with improper nodes to respond to Challenge 1 in Sec. 2.2, we divide
the aggregation process into inter-relation and intra-relation, and use filtered neighbor nodes and filter thresholds
of different relations to strengthen the influence of benign nodes during aggregation.

3.4 Put Them Together

We denote the final embedding of node v as z, = hz(,L), which is the output of RToGNN at the last layer. We also
define the loss function of GNN in node classification task as the cross-entropy loss function:

Lonn = ), ~log(y, - o(MLP? (2,)). (15)
veV
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Algorithm 1: REMGNN: Reinforced Neighborhood Selection Guided Multiple Relation GNN.

Require: An undirected multi-relational graph with node features and labels: G = {(V, X, {8,}|f:1, Y};
Number of layers, batches, epochs: L, B, E; Parameterized similarity measures: {S(l) G, -)}|IL:1;
Filtering thresholds: P = {pil), .. .,pg)}|lL:1; Intra-R aggregators: {AGG(Z)}|5=1,VI e{1,...,L};
Inter-R aggregators: {AGGﬁl)},Vl e{1,...,L};
)
RL Module: {77 },Vr € {1,..., R}, VI € {1,...,L}.
Ensure :Vector representations z,, Vo € Vyy4in.
1 // Initialization
0 L0 (0) _ (0) _
2 hy «x,,YoeV;p,~ =05d," =0,&E =& Vre{l,...,R}
s {pP e 0,11}, Vre{1,...,RL VI € {1,...,L}
4 // Training process of the proposed RioGNN
5 fore=1,---,Edo
6 forb=1,---,Bdo

7 forl=1,---,Ldo

8 Léilr)ni «—Eq.(4) // Cross entropy loss of label-aware similarity measure
9 forr=1,---,Rdo

10 S (,0") «— Eq. (3), Y(0,0") € 87,

11 // Edge set under relation r at the 1-th layer

12 851) <« top-p sampling (Section 3.2.1);

13 hf,lz «—Eq. (13) Vo € V}, // Intra-relation aggregator

14 B hz(,l) «— Eq. (14) Vo € V}; // Inter-relation aggregator

15 Z, — hz(,L),Vv € Vy; // Batch node embeddings

16 Lonn < Eq. (15); // Cross-entropy loss function of GNN

17 | Lroonn < Eq. (16); // Final loss function of RioGNN

18 // RSRL Module: Markov Decision Process for filtering threshold

19 for/=1,---,Ldo

20 forr=1,---,Rdo

21 if dr(l) < DrY then

22 // Judgement of the termination condition

23 if Eq. (12) is False then

24 sr(l)(d)(”,gﬁl)(d)(e*l) «— Eq. (8) and Eq. (9) // Calculate state and reward
25 ﬁ(l>(d)(e) «— Eq. (10); // Update RL iterative function

26 // the recursive process of optimal proportion of neighbor nodes
. pP@DE _gg (17), 0@ ¢ (pNE-D _ w’pp(wl) + w}

28 else

29 t dfl) =d,(l) +1;// Update the depth of Reinforcement Learning Tree
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Together with the loss function of node classification and the loss function of the similarity measure in Eq. 4, we
define the final loss function of RtoGNN as follow:

L
LriooNN = LoNN + A Z £ 4 Ad1O][2, (16)

Simi
I=1

where A; and A, are the weight parameters, and ||®||, is the L2-norm of all model parameters.

Finally, based on the aforementioned study, Algorithm 1 outlines the training process of the proposed RIoGNN
which takes any given input multiple relation graph built upon a real-world practical problem. We employ the
mini-batch training technique [28] to cope with excessively large real-world graphs. We initialize the parameters of
the label-aware similarity module, relation-aware neighbor select module, and relation-aware neighbor aggregator
module, before training the RoGNN model at each epoch. For each batch of nodes, we first compute the neighbor
similarities using Eq. (4) and then leverage the top-p sampling to filter the neighbors. Thereafter, we compute
the intra-relation embeddings (by using Eq. (13)) and inter-relation embeddings (by using Eq. (14)), and define
the loss functions (by using Eq. (16)) for the current batch. In the RSRL module, we allocate H RL modules in
sequence according to the maximum depth for each layer of each relation. In each RL module, each epoch will
observe the environment state via Eq. (8) and get the reward via Eq. (9). Then the algorithm updates the iterative
function through Eq. (10) and predict the filtering threshold via Eq. (11) of the current epoch through the updated
iterative function. When an RL module reaches the convergence condition through Eq. (12) without targeting the
maximum depth, we will recursively proceed to the next depth RL until all RL modules complete.

Time Complexity of RtoGNN. The overall time complexity of Algorithm 1 is O(|&| - max({« log, kr}|§:1)),
where |E| is the number of edges, « is the weight parameter of depth first and breadth first, and k; is the maximum
number of neighbors contained in the node in relation r. Here, O(|&|) is the time complexity in one epoch.
Specifically, the similarity measure (Line 10 in Algorithm 1) and aggregation (Line 13-15 in Algorithm 1) take a
total of O(|&E|d + |"V|(Ed +d)) = O(|E|), where k is the average node degree and |V| is the number of nodes.
The RSRL module (Line 21-29 in Algorithm 1) takes O(|E|d) = O(]|E|). Each cross-entropy loss function (Line 8
and Line 16 in Algorithm 1) takes O(|V]). In addition, the number of epochs is affected by the action space of
reinforcement learning, and the number of epochs required to achieve convergence is related to the action space
with the greatest demand among several relations max({« log, kr}|f=1).

4 EXPERIMENTAL SETUP

In the following two sections, we conduct experiments to evaluate and test RoGNN. The experimental setup
mainly revolves around the following six questions:

e Q1: How do we build multi-relational graphs in different scenarios (Section 4.2)?

o Q2: The effectiveness, efficiency and explainability of RIoOGNN in fraud detection tasks (Section 5.1).

o Q3: The effectiveness, efficiency and explainability of RIoGNN in disease detection tasks (Section 5.2).

e Q4: How do different task requirements match the universal RSRL framework (Section 5.3)?

e Q5: How does our model perform in clustering tasks and inductive learning (Section 5.2.1, Section 5.1.1
and Section 5.4)?

e Q6: Discussion of hyper-parameter sensitivity and effects on the model (Section 5.5).

4.1 Experimental Settings

We implement RtoGNN with Pytorch. All experiments are running on Python 3.7.1, and a NVIDIA V100 NVLINK
GPU with 32GB RAM. The operating system is Ubuntu 20.04.2. To improve the training efficiency and avoid
overfitting, we employ mini-batch training and under-sampling techniques to train RtoGNN and other baselines.
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Specifically, under each mini-batch, we randomly sample the same number of negative instances as the number
of positive instances.

4.2 Datasets and Graph Construction

We build different multi-relational graphs for experiments in two task scenarios and three datasets. Table 2 lists
various statistical information of different dataset nodes and relationships. In addition to the number of nodes
and the proportion of noisy nodes (Fraud%, Diabetes%) in different scenarios, we also give the number of edges
with different relations. For each relationship in each dataset, we calculate the feature similarity of adjacent nodes
based on the Euclidean distance (range 0 to 1) of the feature vector of adjacent nodes, and normalize the average
feature similarity. The last column of Table 2 shows the average label similarity of each relationship, which is
calculated based on whether two connected nodes have the same label.

Table 2. Dataset and graph statistics.

#Nodes . Avg. Feature Avg. Label

Dataset | g 1d% / Diabetes) toiation  #Edges Sigmilarity Siriﬂarity
R-U-R 49,315 0.83 0.90
Yelp 45,954 R-T-R 573,616 0.79 0.05
(14.5%) R-S-R 3,402,743 0.77 0.05
ALL 3,846,979 0.77 0.07
U-P-U 175,608 0.61 0.19
Amazon 11,944 U-S-U 3,566,479 0.64 0.04
(9.5%) U-V-U 1,036,737 0.71 0.03
ALL 4,398,392 0.65 0.05
V-AV 152,901,492 0.62 0.54
28,522 V-DV 19,183,922 0.63 0.54
MIMIC-TII (49.9%) V-PV 149,757,030 0.63 0.54
V-M-V 15,794,101 0.65 0.51
ALL 337,636,545 0.63 0.53

4.2.1 Fraud Detection Task. We perform binary classification tasks, spam review detection and fraudulent user
detection on the Yelp dataset and Amazon dataset, respectively.

Yelp: is collected from the internal dataset published by Yelp.com, the largest business reviewing site in the
United States. We use a subset of the YelpChi dataset collected and used by [70]. This subset contains 45,954 user
reviews of hotels and restaurants in the Chicago area. The reviews have been filtered (spam) and recommended
(legal) by Yelp. In addition to containing information about the relations between users and products, the dataset
also contains various metadata, including the text content of the review, timestamp, and star rating. We use 32
manual features including the ranking order of all product reviews, the absolute rating deviation from the product
average, whether it is the only review of the user, the percentage of all uppercase words, the percentage of uppercase
letters, the length of the review, the ratio of first-person pronouns, the ratio of exclamatory sentences, and subjective
Word ratio, ratio of objective words, etc. used in [84] as the original node features of the Yelp dataset. For specific
relations, since previous research [70, 84] has shown opinion fraudsters (i.e., spammers) are connected in terms
of users, products, review text, and time, we use reviews as nodes in the graph and design three relations:

e R-U-R: it connects reviews posted by the same user.
e R-T-R: it connects two reviews under the same product posted in the same month.
e R-S-R: it connects reviews under the same product with the same star rating (1-5 stars).
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Amazon: is a subset of Amazon’s product dataset [67]. The Amazon dataset contains more than 34,000
consumer reviews, from which we extracted 11,949 product reviews under the musical instrument category. In
addition, similar to [116], we mark users with useful voting rates greater than 80% as benign entities, and users
with useful voting rates less than 20% as fraudulent entities. In terms of node feature selection, we use 25 manual
features including the number of rated products, the length of the user name, the number and ratio of each rating
level given by the user, the ratio of positive and negative reviews, the user’s rating, the total number of useful and
useless votes obtained by the user, the ratio of useful votes and useless votes, and Average value, median of useful and
useless votes, minimum and maximum number of useful and useless votes, number of days between the user’s first
and last rating, same date indicator, comment text sentiment, etc. used in [116] as the original node function of
the Amazon data set. For specific relations, we design three kinds of relations for the multi-relational graph, as
shown below:

e U-P-U: it connects users reviewing at least one same product.

e U-S-V: it connects users having at least one same star rating within one week.

e U-V-U: it connects users with the top 5% mutual review text similarities (measured by TF-IDF) among all
users.

4.2.2 Diagnosis of diabetes mellitus task. We perform the binary classification task of diagnosis of diabetes
mellitus on the processed MIMIC-III dataset resources.

MIMIC-III: is a publicly available dataset [26, 45] consisting of health records of 46,520 intensive care unit (ICU)
patients over 11 years. We have extracted a total of 28,522 patient visits, and each record contains information
such as age, diagnosis, microbiology, procedures, corpus, etc. We use a subset of the MIMIC-III dataset collected
and used by [62], and construct our multi-relational graph for our task based on that. For each patient and visit,
there is a unique ID to track its corresponding information. According to the diagnostic codes, we mark the
medical records as diabetic or non-diabetic. Ages are split into groups using threshold 15, 30 and 64 as suggested
in [64]. Procedures and diagnoses are mapped into corresponding ICD-9-CM codes. Microbiology tests with
culture-positive results are mapped into the names of organisms. We use the above four fields to form different
relationships among visit nodes to construct a heterogeneous graph. Based on previous medical representation
learning, we obtain the feature representation of each node based on the medical corpus obtained from the
admission record. Due to the complexity of the medical knowledge field, we appropriately enlarge the selection
range of the relationship to further test the filtering performance of our RSRL Framework for camouflaged
neighbors. For specific relations, since the previous work [6] has described the concept of different fields in detail,
we design four kinds of relations for the multi-relational graph based on it, as shown below:

e V-A-V: it connects visits in the same age category.

e V-D-V: it connects visits having the same diagnoses.

e V-P-V: it connects visits with at least one same procedure code.

e V-M-V: it connects visits with at least one same microbiology code.

4.2.3  Evaluation of Datasets. We measure different datasets from the four metrics of node distribution, edge
distribution, and feature similarity and label similarity. It can be observed that in fraud detection tasks, Yelp
and Amazon have only 14.5% and 9.5% of fraud nodes, while mimic has a more balanced ratio. In addition, the
different relations of the three datasets all have different number levels and uneven edge distribution. In addition,
in the Yelp and Amazon datasets, edges with different relations have balanced feature similarity, but existing
edges have higher feature similarity and lower label similarity. For instance, the average feature similarity of
R-T-R is 0.79, but the label similarity is only 0.05. This shows that the fraudsters successfully pretends to be
in benign entities and needs a more effective way to identify it. In general, these characteristics challenge the
model’s ability to learn from data sets in different situations. Specifically, Yelp and Amazon focus on the ability
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to challenge uneven data sets. Mimic focuses more on the ability of filtering high-density neighbor nodes. The
relation matrix of MIMIC under each relation is denser, one order of magnitude higher than that of Yelp and
Amazon.

4.3 Baselines and Variations

4.3.1 Baselines. To verify the effectiveness of RtoGNN in mitigating mutual interference between similar tasks
and the model, we compare it with traditional and latest GNN baselines under semi-supervised learning settings.
For all baseline models, we use the open-source implementations.

The first three models are compared as traditional GNN baselines.

o GCN [49]: is a representative of the spectral graph convolution method, which sets up a simple and well-
behaved hierarchical propagation rule for neural network models. This rule runs directly on the graph, and
uses the first-order approximation of the Chebyshev polynomial to complete an efficient graph convolution
architecture.

o GAT [96]: is a neural network architecture combined with the attention mechanism that runs on graph-
structured data. It uses masked self-attentional layers to give importance to the edges between nodes, help
the model learn structural information, and assign different weights to different nodes in the neighborhood
without expensive calculations and pre-definitions.

o Graph-SAGE [32]: is a representative non-spectrogram method. For each node, this method provides a
general inductive framework that samples and aggregates its local neighbors’ features to generate the
embedding instead of training a separate embedding. It improves the scalability and flexibility of GNNs.

The second ten baselines are the latest GNN models that handle multi-relational data or the datasets used in
this article.

e RGCN [85]: is a relational GCN model that uses Gaussian distribution as the hidden layer node feature
representation, and relies on the attention mechanism to automatically assign the weight of each neighbor
to aggregate neighbor information.

e GeniePath [59]: is a scalable graph neural network model used to learn the adaptive receptive domain of
neural networks defined on permutation invariant graph data. Through the breadth and depth exploration
of an adaptive path layer, the model can sense the importance of neighboring nodes and extract and filter
signals gathered from the neighborhood.

e Player2Vec [118]: is an AHIN representation learning model that maps the attribute heterogeneous
information network (AHIN) to a multi-view network, encodes the correlation between users described by
different design meta-paths, and uses the attention mechanism to fuse embeddings from each view to form
the final node representation.

o SemiGNN [98]: is a semi-supervised attention graph neural network, in which a hierarchical attention
mechanism is designed. Neighborhood information is integrated through node-level attention, and multi-
view data is integrated through view-level attention, resulting in better accuracy and interpretability.

e GAS [53]: uses both a heterogeneous graph and a homogeneous graph to capture the local and global
context of a comment, and is a meta-path based heterogeneous GCN model. In our scenario, meta-paths
are enumerated from relations.

e FdGars [99]: constructs a single homogeneous graph based on multiple relations and employs GNNs to
aggregate neighborhood information. Compared with our work, this model lacks neighborhood selection.

e GraphConsis [61]: is a model that combines context embedding with nodes, filters inconsistent neighbors
and generates corresponding sampling probabilities. The embeddings of sampled nodes from each relation
are fused using a relation attention mechanism.
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Table 3. Comparison of main functions of different variants.

Models Multi-layer RL Module Action Space Recursion Inter-AGG
R10GNN 4 v AC Discrete v Threshold
BIO-GNN X BMAB Discrete v Threshold
ROO-GNN X AC Discrete X Threshold

RIO-Att X AC Discrete v Attention

RIO-Weight X AC Discrete v Weight
RIO-Mean X AC Discrete v Mean
R1oGNN X AC Discrete v Threshold

e HAN [101]: is a hierarchical attention network aggregating neighbor information via different meta-paths.
Although the input data is heterogeneous, meta-paths are symmetrical in our scenario (i.e., the end nodes
are of the same type), thus the model is regarded as a homogeneous model.

o GCT [13]: is a basic model for learning the implicit EHR structure using Transformer. Using statistical data
to guide the structure learning process solves the problem that existing methods require complete docking
structure information. Specifically, they use the attention mask and prior knowledge to guide self-attention
to learn the hidden EHR structure, and they can learn the underlying structure of the EHR together even
when the structural information is missing.

o HSGNN [62]: is a heterogeneous medical graph-based semi-supervised graph neural network, which
combines both meta-path instance based similarity matrices and self-attention mechanism.

The third two baselines are the latest Reinforcement Learning guided GNN models. We respectively use the
raw heterogeneous graph and the proposed multi-relation graph as the input of these models.

o GraphNAS [24]: enables automatic search of the suitable graph neural architecture via reinforcement
learning. This model uses a recurrent network to generate variable-length strings that describe the archi-
tectures of graph neural networks, and then trains the recurrent network with reinforcement learning to
maximize the expected accuracy of the generated architectures.

e Policy-GNN [51]: is a meta-policy framework that adaptively learns an aggregation policy to sample
diverse iterations of aggregations for different nodes. To accelerate the learning process, we also use a
buffer mechanism to enable batch training and parameter sharing mechanism to decrease the training cost.

The last baseline is from the preliminary version of this article.

o CARE-GNN [15]: A layer of label-perceived similarity measure is used to find information-rich neighboring
nodes. Then the Bernoulli Multi-armed Bandit (BMAB) mechanism is used to explore the optimal number
of neighbors for each relationship.

Among those baselines, GCN, GAT, GraphSAGE, and GeniePath runs on the homogeneous graph (i.e., Relation
ALL in Table 2), where all relations are merged together. GraphNAS? and Policy-GNN¥ runs on the raw
heterogeneous graph. Other models run on the multi-relational graph. On the multi-relational graph, they process
information from different relations in their methods.

4.3.2 Variations. We have implemented many variants of the RoGNN model. The configurations of different
variants are shown in Table 3. In detail, the setting of the model variants mainly revolves around the key
mechanisms of the three modules: Label-aware Similarity Measure, Similarity-aware Neighbor Selector, and
Relation-aware Neighbor Aggregator.

The first one given is a variation of the unexpanded multi-layer version of the Label-aware Similarity Measure
section.
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® R1I0GNN ,;: It uses the Actor-Critic (AC) algorithm with a discrete strategy to recursively select the filter
thresholds of different relationships, and uses the filter thresholds as relation weights to aggregate neighbors
between different relations. But the Label-aware Similarity Measure uses a 2-layer structure for neighbor
selection.

The next two methods are variants according to the Similarity-aware Neighbor Selector module.

e BIO-GNN: This variant is a method with the single-layer similarity-aware neighbor selection and uses
filtering thresholds for aggregation between relations. But the Bernoulli Multi-armed Bandit (BMAB)
algorithm of discrete strategy is used to recursively select the filtering threshold of relations.

® ROO-GNN: This variant is a method with the single-layer similarity-aware neighbor selection and uses
filtering thresholds for aggregation between relations. But the Actor-Critic algorithm of discrete strategy is
used to directly select the filter threshold of relationships. This method can be regarded as a non-recursive
(one-depth) version of RToGNN.

The difference between the following three variants is reflected in the aggregation method between different
relations of Relation-aware Neighbor Aggregator.

o RIO-Att: This variant uses single-layer similarity perception for neighbor selection, and uses the Actor-
Critic algorithm with a discrete strategy to recursively select the filter thresholds of different relations. But
it chooses the method of Attention [96] when aggregating neighbors between different relations.

e RIO-Weight: This variant uses single-layer similarity perception for neighbor selection, and uses the
Actor-Critic algorithm with a discrete strategy to recursively select the filter thresholds of different relations.
But it chooses the method of Weight [60] when aggregating neighbors between different relations.

e RIO-Mean: This variant uses single-layer similarity perception for neighbor selection, and uses the Actor-
Critic algorithm with a discrete strategy to recursively select the filter thresholds of different relations. But
it chooses the method of Mean [32] when aggregating neighbors between different relations.

4.3.3  RL Variations. In order to better discuss the adaptability of the framework of this article to a variety of
reinforcement learning algorithms, we conducted experiments on two action spaces (discrete and continuous) of
different reinforcement learning algorithms.

The first three reinforcement learning models are based on discrete action spaces. That is, in the process
of constructing the reinforcement learning forest, a discrete filtering threshold is used as the action type of
reinforcement learning.

e AC [50]: Actor-Critic (AC) method combines the advantages of the value-based method and policy-based
method. The value-based method is used to train the Q function to improve the sample utilization efficiency.
The policy-based method is used to train the strategy, which is suitable for discrete and continuous action
spaces. This kind of method can be regarded as an extension of the value-based method in the continuous
action space, or as an improvement of the policy-based method to reduce the sampling variance.

o DON [69]: Deep Q-Learning (DQN) is a temporal-difference, value-based and off-policy reinforcement
learning method. DQN approximately solves the dimensional disaster problem of Q-Learning method in the
face of high-dimensional state and action through the function approximation. In addition, the traditional
Q-Learning method uses samples with time series for single-step update, and the Q value is updated by
the sample continuity. DQN uses random data for gradient descent due to trial and error to collect a large
number of samples, which can break the correlation between data.

e PPO [86]: Proximal Policy Optimization (PPO) restricts the update step size on the basis of Policy Gradient
(PG) to prevent policy collapse and make the algorithm rise more steadily.
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The next four reinforcement learning models are based on continuous action spaces. That is, in the process
of constructing the reinforcement learning forest, a continuous filtering threshold is used as the action type of
reinforcement learning.

e AC [50]: We use the AC method to conduct variation experiments in both discrete action space and
continuous action space.

e DDPG [55]: Deep Deterministic Policy Gradient (DDPG) is an off-policy algorithm for continuous control
developed by DeepMind, which is more sample efficient than PPO. DDPG trains a deterministic policy, that
is, only one optimal action is considered in each state.

o SAC [36]: Soft Actor-Critic (SAC) is an off-policy algorithm developed for Maximum Entropy Reinforcement
learning. Compared with DDPG, Soft Actor-Critic uses stochastic policy, which has certain advantages
over deterministic policies. Soft Actor-Critic has achieved outstanding results in the public benchmark and
can be directly applied to real robots.

e TD3 [23]: Twin Delayed Deep Deterministic policy gradient (TD3) is a temporal-difference, policy based
and policy gradient reinforcement learning method. TD3 is an optimized version of DDPG. It uses two sets
of networks to estimate the Q value, and the relatively smaller one is used as the update target.

4.4  Model Training

We use unified embedding size (64), batch size (1024 for Yelp, 256 for Amazon and MIMIC-III), learning rate
(0.01), the similarity loss weight (1; = 2), L2 regularization weight (A, = 0.001) for all the models. Except for the
comparative experiments specifically explained, other experiments that are not explained all use a 40% training
ratio, under-sampling ratio 1 : 1, deep switching number 3, weight parameter of depth first and breadth first
a as 10, and a single-layer similarity perception structure with backtracking. For the reinforcement learning
model, we use gamma (0.95), learning rate (0.001) as unified parameters and buffer capacity (5), batch size (1)
as parameters for DDPG, DON, SAC and TD3. We conduct the sensitivity study for deep switching number,
backtracking setting, under-sampling ratio in Section 5.5. In addition, we also discuss weight parameter of depth
first and breadth first in Section 5.3, and training ratio in Section 5.1 and Section 5.2.

4.5 Evaluation Metrics

We utilize ROC-AUC (AUC) [95] and Recall to evaluate the overall performance of all classifiers. AUC is computed
based on the relative ranking of prediction probabilities of all instances, which could eliminate the influence of
imbalanced classes. The Recall is defined as:

TP
Recall = ——, (17)
TP+ FN
where TP is True Positive, FN is False Negative. The AUC is defined as:
1 m—1
AUC = 2 Z(xm = x3) (Ui + Y1), (18)

i=1

where y is True Posotive Rate (TPR = %), x is False Positive Rate (FPR = %). And FP is False Positive,
TN is True Negative.

In the clustering task, we use Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) as the
performance indicators. The ARI is defined as:

0T = (3@ 2,601/

ARl = —— - e ,
2 [2:G) = 26D = [2:G9) 2;GD1/(G)

(19)
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where each n;; represents the number of nodes located in class; and cluster; at the same time, g; is the number of
the nodes in class; and b; is the number of the nodes in cluster;. The NMI is defined as:

I(w;C)

Y i) v

(20)
where I is mutual information, H is entropy.

In inductive learning, in order to better measure the effectiveness, we add the F1 indicator to measure after the
two indicators of AUC and Recall. F1 is defined as:

Precision - Recall

F1=2 (21)

Precision + Recal’

TP

TPLFP> TP is True Positive, FP is False Positive.

where Precision =

5 RESULT AND DISCUSSION
5.1 Overall Evaluation of Fraud Detection Task

5.1.1 Accuracy Analysis. In this section, we conduct experiments to evaluate the accuracy of the fraud detection
task on Yelp and Amazon datasets. We report the best test results of RIoGNN, baselines and variants in five
hundred epochs. It can be observed from the results that RoGNN performs better than other baselines and
variants under most training ratios or indicators. This indicates the feasibility of RIoGNN in fraud detection
scenarios.

Single-relations vs. Multi-relations. Table 4 shows the results of baseline experiments built on different
types of graphs for the fraud detection task. To solve the diversity and heterogeneity of complex networks
in actual fine-grained applications, we consider introducing a neural network with a multi-relational graph
structure instead of a single relation structure. However, from the results of some of the baselines in the table,
although GCN, GAT, GraphSAGE and GeniePath models run on a single relation graph, they are better than
RGCN, Player2Vec and SemiGNN in terms of accuracy of the Yelp dataset, which are run on the multi-relational
graphs. The observation above shows that the previous multi-relational GNNs are not suitable for constructing
multi-relational graphs in the fraud detection task. Similar phenomena manifest in the Amazon dataset. Besides,
GraphConsis, FdGars, CARE-GNN and R1oGNN significantly outperform other models by 8.60%-32.78% over
Yelp and Amazon datasets. This is because these four models sample the neighbors according to node features
before aggregating them, indicating that the impurity neighbors will interfere with the aggregation process and
the fraud detection task has a strong demand for neighbor sampling optimization. CARE-GNN and R1oGNN have
improved the AUC of 3.51%-21.65%, compared with the performance of GraphConsis and FdGars. This is because
R10GNN can better use internal relations to solve downstream application problems through parameterized
similarity measures and adaptive sampling thresholds, which shows that automated sampling has a significant
improvement effect on fraud detection tasks. The more remarkable result is that the proposed RtoGNN model
improves the accuracy of 5.90% and 10.41% compared with CARE-GNN. It verifies the advantage of combining
the label-aware neighbor similarity measure and the Recursive and Scalable Reinforcement Learning framework,
which can effectively break through the limitations of the CARE-GNN state observation range and manually
specified strategies. Meanwhile, RIOGNN has a promising effectiveness on fraud detection tasks.

Heterogeneous vs. Multi-relation. In order to further analyze the accuracy of the multi-relational graph,
we conduct heterogeneous graph experiments and multi-relational graph experiments on the latest GNN model
guided by reinforcement learning. From the results of the heterogeneous graph model GraphNAS*, Policy-GNN
and the multi-relationship graph model GraphNAS and Policy-GNN in Table 4, it can be found that the multi-
relational graph compared with the heterogeneous graph brings an AUC improvement of 0.33%-1.71% in the
Yelp and Amazon datasets. This confirms that in other similar models, the multi-relational graph we construct
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Yelp Amazon

Models AUC Recall AUC Recall
5% 10% 20% 40% 5% 10% 20% 40% 5% 10% 20% 40% 5% 10% 20% 40%
GCN 5498 50.94 53.15 5247 | 53.12 51.10 53.87 50.81 || 74.44 75.25 75.13 7434 | 65.54 67.81 66.15 67.45
GAT 56.23 5545 57.69 56.24 | 54.68 5234 53.20 54.52 || 73.89 74,55 72.10 72.16 | 63.22 6584 67.13 65.51
GraphSAGE | 53.82 5420 56.12 54.00 | 54.25 52.23 52.69 52.86 || 70.71 73.97 7397 75.27 | 69.09 69.36 70.30 70.16
RGCN 50.21 55.12 55.05 53.38 | 50.38 51.75 5092 50.43 || 75.12 74.13 75.58 74.68 | 64.23 67.22 65.08 67.68
GeniePath 56.33 56.29 57.32 5591 | 5233 5435 54.84 5094 || 71.56 72.23 71.89 72.65 | 65.56 66.63 65.08 65.41
Player2Vec 51.03 50.15 51.56 53.65 | 50.00 50.00 50.00 50.00 || 76.86 75.73 74.55 56.94 | 50.00 50.00 50.00 50.00
SemiGNN 53.73 51.68 51.55 51.58 | 52.28 52.57 52.16 50.59 70.25 76.21 7398 7035 | 63.29 6332 6128 62.89
GraphConsis | 61.58 62.07 62.31 62.07 | 62.60 62.08 62.35 62.08 8546 85.29 8550 85.50 | 85.49 8538 85.59 85.53
GAS 54.43 52.58 5251 52.60 | 5340 53.26 53.37 51.61 || 71.40 77.49 7451 71.03 | 6431 6457 62.08 63.74
FdGars 61.77 62.15 6281 62.66 | 62.83 62.16 62.73 62.40 || 85.58 85.41 85.88 85.81 | 85.83 8573 8584 85.93
GrathASH 52.93 54.69 56.73 54.46 | 5240 54.15 55.69 56.16 || 71.01 7248 73.52 76.05 | 69.17 6948 7035 70.16
GraphNAS 53.26 5531 57.15 55,59 | 53.69 5547 56.04 57.00 || 72.41 73.04 73.58 76.25 | 70.36 70.53 71.73 71.88
Policy-GNNH 54.04 55.73 5930 60.60 | 53.08 5535 5875 59.99 || 72.20 73.30 74.11 77.20 | 70.10 71.20 73.08 74.44
Policy-GNN | 5575 56.29 60.01 61.52 | 54.15 56.16 58.95 60.33 || 73.69 74.06 7529 78.85 | 71.34 7246 74.55 76.70
CARE-GNN | 71.26 7331 7445 7570 | 67.53 67.77 68.60 71.92 || 89.54 89.44 8945 89.73 | 8834 88.29 88.27 8848
R1oGNN 81.97 83.72 82.31 83.54 | 75.33 75.78 75.51 76.19 || 9544 9541 95.63 96.19 | 90.17 89.48 89.51 89.82

Table 4. Fraud Detection results (%) compared to the baselines.
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Table 5. Fraud Detection classification results (%) compared to RIoGNN variants.

Yelp Amazon
Models AUC Recall AUC Recall
RIOGNN 76.01 63.15 91.28 72.46
BIO-GNN 78.67 71.21 95.47 88.35
ROO-GNN 83.59 75.56 95.58 89.22
RIO-Att 78.65 71.69 93.97 83.78
RIO-Weight 80.40 72.83 96.25 89.61
RIO-Mean 77.84 71.43 94.57 89.47
RIoOGNN 83.54 75.55 96.19 88.66

still has obvious advantages. In addition, we found that GraphNAS and Policy-GNN, which are also based on
reinforcement learning guidance and use the multi-relational graph, have no significant advantages in AUC and
Recall. This is because GraphNAS and Policy-GNN do not adaptively sample different relations, which causes
them to be limited by the complexity of the relationship between Yelp and Amazon datasets. And for Policy-GNN,
since the one-hop neighbor information of Yelp and Amazon is already rich enough, more multi-hop strategies
cannot bring significant benefits.

Training Percentage. To measure the impact of the training ratio on the classification accuracy, we use four
different ratios of 5% to 40% for experiments. It can be seen from Table 4 that most of the baseline performance
changes are not necessarily related to the increase in training percentage. It indicates that the semi-supervised
learning approach leveraging a small number of supervised signals is enough to train a good model. Moreover, in
the four different training ratios of the Yelp dataset, the AUC fluctuation range of RIoGNN is only within 1.57%
compared to the 4.44% of CARE-GNN. In Amazon, both models have good stability. This is because the Amazon
node features provide enough information to distinguish fraudsters, which is of higher quality than the Yelp
dataset. It also verifies from another result that RtoGNN has better stability and adaptability under complicated
environments.

R10GNN Variants in Classification. To measure the positive impact of the newly added mechanism on
the classification accuracy of fraud detection tasks, we compare several variants of RIoOGNN under the discrete
strategy. The experiment sets the training data ratio to 40%, and the other settings are the same as Section 4.1. We
show the experimental results of spam review classification in the Yelp dataset and suspicious user classification
in the Amazon dataset as shown in Table 5. From the results, the performance of all variants is better than the
baseline model. Next, we will discuss the effects of different variants from three aspects.

Firstly, in the two datasets, except for the RIoOGNN ,; variant, all other variants only use the Label-aware
Similarity Measure with a one-layer structure. From the results in Table 5, the RIoGNN ,; variant is lower than
all other variants, but it performs better than all baselines. It can be found that in the fraud detection task, the
increase in the number of layers does not bring about a significant increase in classification accuracy. This is
limited by the dataset size of Yelp and Amazon, and the importance of information in multi-hop neighbors is low.
We will continue to explore more multi-layer effects in Section 5.1.3.

Secondly, for the similarity-aware neighbor selector part, we observe the comparison results of the variant
BIO-GNN without adaptive strategy optimization reinforcement learning algorithm and the single-depth structure
variant ROO-GNN without the recursive framework for the RSRL framework. The second part of Table 5 gives
evidence of partial optimization. The results of the BIO-GNN variant on the RIoGNN model show that the
automatic strategy optimization in Yelp and Amazon effectively improves the classification accuracy of 4.65% and
0.89%, and the BIO-GNN variant is also far better than most baseline models. This shows that the Markov Decision
Process has a positive effect on searching for the filtering threshold of the aggregation process. Moreover, the
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Table 6. Fraud detection clustering results (%) compared to RioGNN variants.
Dataset | Metric | RtoGNN 5 | BIO-GNN ROO-GNN | RIO-Att RIO-Weight RIO-Mean | RtoGNN
Yelp NMI 3.18 9.36 12.39 9.80 12.05 8.39 12.22
ARI 6.12 11.84 16.61 11.88 15.88 8.80 16.45
Amazon NMI 58.87 59.83 57.81 55.76 58.76 58.72 61.26
ARI 76.53 77.38 76.09 76.54 76.73 76.51 78.40

reinforcement learning algorithm with dynamic iterative function and full action space learning process breaks
the limitation of fixed strategy and observation range and obtains a better threshold selection effect, which also
confirms the conjecture in Section 3.2.2. Besides, combining Figure 8 with Table 5, the accuracy of the ROO-GNN
variant has little change compared with RToGNN, that is, the multi-depth structure of RIoGNN can converge
much quicker than the single-depth variant ROO-GNN whilst maintaining a higher accuracy rate. This also
implies the stability of the recursive framework in terms of classification accuracy.

Finally, from the results of the variation of the aggregation methods between the different relations in the
third part of the Table 5, RtoGNN has apparent advantages over the other three on the Yelp dataset, and both
RIO-Weight and R1oGNN on the Amazon dataset have good results. It confirms that RoGNN does not need
to train additional attention weights, and using the filtering threshold as an inter-relation aggregation weight
can improve the performance of GNN and reduce the complexity of the model. Therefore, it can get the best
performance compared with other variants. For the three variants, RIO-Weight has better results than the other
two, but RIoGNN can maintain better accuracy in the dataset of different quality and structure and has a certain
degree of adaptability.

R10GNN Variants in Clustering. In order to explore the effectiveness of RToGNN in clustering tasks, we
conduct clustering experiments on RIoOGNN and its variant models. The experiment set a fixed training rate of
40%. We cluster the node representations learned by RIoGNN through K-Means. The results are shown in Table 6.
We respectively count the best values of NMI and ARI indicators within 500 epochs. It can be seen from the
results that compared with RIO-GNNy; and BIO-GNN, RioGNN’s NMI and ARI indicators in the Yelp dataset
increase at least 9.04% and 10.33% respectively. Similarly, the Amazon dataset has risen by at least 2.39% and
1.87%. This phenomenon is the same as the classification result, and is affected by the limitation of the size of
the dataset, the choice of the action space, and the dynamic iterative function. In addition, the NMI and ARI of
ROO-GNN in the Yelp dataset achieved the best results, while the RloGNN in the Amazon dataset exceeded the
NMI and ARI of ROO-GNN by 3.45% and 2.31%. This is because the Yelp dataset is smaller than Amazon, so the
optimization space of the recursive framework is also smaller. It shows that the recursive framework has better
advantages in dense datasets. What is more noteworthy is that RIoGNN in the clustering experiment exceeds the
effect of all GNN aggregation variants. NMI and ARI exceed 0.17%-3.83% and 0.57%-7.65% in the Yelp dataset, and
exceed 2.5%-5.5% and 1.67%-1.89% in the Amazon dataset. This shows that directly using the filtering threshold
as the weight of the aggregation has obvious advantages in clustering tasks.

5.1.2  Explainable RSRL Training Process. This section focuses on the RSRL framework and discusses the explain-
ability of the reinforcement learning process in detail. We show the change process of the RIoGNN’s filtering
threshold and similarity score of the different relations before convergence during the training process on the Yelp
and Amazon datasets. For a better comparison, we also conduct a similar analysis on ROO-GNN and BIO-GNN
variants.

Filter Thresholds. In Table 2, we observe that the average feature similarity for most relations in Yelp and
Amazon are very high. However, there is a relation such as R-T-R, which has a low label similarity of 0.05, which
indicates that fraudsters successfully disguised themselves. For this reason, we propose to filter the lower-ranked
neighbors in the Top-p sampling through the filtering threshold. It can be seen from Figure 5(b) and Figure 5(c)
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Fig. 5. The training scores and thresholds of RloGNN on Yelp and Amazon.

that the filtering thresholds of the three relations of the Yelp dataset are stable at [0.99,0.093,0.787], and the
Amazon dataset converges to [0.071,0.0712,0.9997]. It shows that the filtering thresholds for different relations
eventually converge to different values. The reason is that the label similarity and feature similarity of different
relations are different in the same dataset. This result also can be verified from Table 2. For instance, the label
similarity difference between R-U-R and R-T-R is 0.85, but the feature similarity difference is only 0.04. The
proposed framework builds a reinforcement learning tree for each relation, uses the similarity between the
relations as a reward, and independently finds the appropriate filtering threshold. Due to the mutual influence
between relations, a set of Nash equilibrium filtering thresholds will eventually be obtained, which is a sampling
scheme that can best eliminate the interference of fraudsters [16]. In the Nash equilibrium, it is impossible for all
agents to obtain greater rewards only by changing their own strategies. In addition, in Figure 5(b) and Figure 6(b),
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Fig. 6. The training scores and thresholds of RIoGNN variants on Yelp.

Figure 6(d), we also observe that different models are used under the same dataset, and they converge and combine
with different filtering thresholds [0.99,0.093, 0.787], [0.89,0.001, 0.978], [0.34, 0.17,0.169], respectively. Since the
result of reinforcement learning is obtained by the connection strategy of all agents, there may be many different
filter threshold combinations at each time the game between relations reaches the Nash equilibrium [40, 82].
Figure 5(a) and Figure 5(c) show the changes in rewards obtained during the filtering threshold learning process
for different relations. We observe that in the Yelp dataset, the relations R-S-R and R-U-R achieve better reward
growth in the interest competition of the three relations. In contrast, the relation R-T-R eventually stabilizes at a
relatively low reward. This is consistent with the actual scenario. Comments with the same star rating in the
same product are important considerations for dividing spam comments, and comments by the same user usually
have the same tendency. However, reviews published in the same month have a lower impact factor. The U-P-U
and U-S-U of the similar Amazon dataset are more meaningful than the relation U-V-U. This means that users
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Fig. 7. Scores of Multi-Layer RloGNN on Yelp.

who post similar content are more closely connected, and are considered an important observation factor when
making user judgments.

Recursive Framework. In the right column of Figure 6, we show the changes in the filtering thresholds of
the two variants of RSRL, ROO-GNN and BIO-GNN on the Yelp dataset. Comparing R1oGNN in Figure 5(b) with
ROO-GNN in Figure 6(b), it can be seen that RIoGNN with the recursive framework of Figure 5(b) performs
a more accurate filtering threshold search for each depth. For example, the relation R-U-R is first explored in
the interval [0, 1] with an accuracy of 0.1 to obtain a convergence of 0.9. Then it searches for the convergence
between [0.85,0.95] to obtain the highest accuracy 0.01 of the relation R-U-R, and get the final convergence
0.99. The difference from R1oGNN is the ROO-GNN model in Figure 6(b), where only one deep reinforcement
learning is performed. For example, R-U-R directly explores the [0, 1] interval with the highest accuracy of 0.01
and obtains the final convergence value of 0.89. In addition to the difference mentioned above, we can also see
whether there is a recursive reward change shown in Figure 5(a) and Figure 6(a). For RIoOGNN with recursion, all
relations converge fully at 110 epochs, while ROO-GNN without recursion converges at 390 epochs. Furthermore,
the rewards obtained by the two methods are basically the same. This solves the challenge we pose in Section 2.2,
and explains that reducing the number of actions for each reinforcement learning can effectively accelerate the
convergence of the model. The experimental results also show that the addition of recursion does not bring about
a significant loss of accuracy, which is significant.

Action Space and Iterative Function. In Figure 5(b) and Figure 6(d), we present the BIO-GNN variant and
R10GNN with dynamic iterative function and full action space learning process. It can be seen that, similar
to RtoGNN, BIO-GNN also recursively converges to 0.4 with an accuracy of 0.1 for the R-U-R relation and
then converges to 0.33 with an accuracy of 0.01. But the difference from RioGNN is that this method has an
average similarity score of 0.045 for the three relations, which is lower than RIoGNN’s 0.021. This means that the
maximum filtering effect has not been achieved. In other respects, compared with the Figure 5(a) and Figure 6(a)
that have obtained better performance, the R-T-R relation of Figure 6(c) has obtained a higher reward ratio in
the competition. That is, the behaviors published in the same month are considered by BIO-GNN to be more
important, which is contrary to the reality. So this explains the reason for the lower performance of BIO-GNN.
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Fig. 8. The impact of recursive framework on computational efficiency.

Meanwhile, these results demonstrates that dynamic learning can be observed globally, thereby obtaining more
effect, which proves the conjecture in Section 3.2.2.
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5.1.3 Effectiveness and Efficiency Evaluation. Next, we introduce the effectiveness and efficiency of multi-layer
similarity perception modules and recursive neighbor selectors in fraud detection tasks on the two datasets. We
use RIoGNN with a two-layer perception structure to train for 500 epochs on the Yelp dataset, and select the
first 250 epochs to show the changes in the scores of each layer in Figure 7. For the recursive framework, we
analyze the AUC change trend of ROO-GNN, BIO-GNN variants and RIoGNN on two datasets within 500 epochs
(Figure 8). The dotted line in the figure indicates the average AUC of each variant after reaching stability. The
specially marked points in the figure show the epoch numbers for different models to reach a certain AUC.

Multi-layer Analysis. We provide a multi-layer label-aware similarity neighbor measurement scheme to deal
with data collections with more complex structures in the future. For the datasets in this article, the increase of
multiple layers is limited by the datasets (one-hop neighbor information is enough for sampling), and the AUC
gain brought by it is limited. However, we notice in Figure 7 that as the number of layers increases, Layer 2 has a
significant improvement in the similarity score of each relation compared to Layer 1. Among them, the similarity
score of the relation R-U-R is 14.00 in the second level compared with the first level. In addition, the R-T-R and
R-S-R are improved in 5.33 and 7.66. This is because we take the embedding of the neighbors of the previous
layer as the input of the second layer, embedding more hops of neighbor relations. Rich neighbor information
makes the performance of the similarity module better. This also shows that multi-layer joining can be a new
deployment scheme in some datasets with insufficient embedded information of one-hop neighbors.

Multi-depth Analysis. In order to effectively speed up the optimization speed of the filtering threshold of
each relation while ensuring the accuracy rate, we propose a recursive reinforcement learning learning framework.
It can be seen from Figure 8 that the RtoGNN model has obvious advantages over ROO-GNN and BIO-GNN
in both datasets. First of all, we observe the final convergence AUC size. In the Yelp dataset, RtoGNN and
BIO-GNN models are about 4.75% higher than ROO-GNN. In the Amazon dataset, RIOGNN is better than the
other two models by about 0.8%. And BIO-GNN finally converged AUC is generally low. In addition, in terms of
computational efficiency, compared with the ROO-GNN model without recursion, RIoOGNN maintains a stable
and rapid increase in AUC in both datasets. However, ROO-GNN has greater fluctuations. In the first 50 epochs
of Yelp and the first 75 epochs of Amazon, there is no significant difference between them. In the Yelp dataset,
the speedup of RToGNN compared to ROO-GNN is 2.14 when AUC reaches 78.5%, 2.99 when AUC reaches 81.5,
and 2.10 when AUC reaches 83.1%. In Amazon, the speedup ratio is 3.19 when the AUC reaches 95.30%, and
the speedup ratio is 4.52 when AUC reaches 95.4%. Compared with the BIO-GNN with limited action space and
fixed strategy, Yelp and Amazon are also observed 8.81 and 1.71 times time savings at 78.5% and 95.3% AUC.
This shows that the proposed recursive framework can achieve good efficiency while maintaining accuracy. And
generally, the higher the AUC demand, the better the efficiency. The broader and flexible action space and the
iterative function that automatically updates have more significant advantages in terms of efficiency and accuracy.
Finally, we find that different optimization structures have different impact factors for different datasets. Due
to the smaller scale and lower accuracy requirements of the Yelp dataset, whether it has a recursive structure
has little effect on the final convergence AUC. But in Amazon, which has a larger scale and higher precision
requirements, placing all actions at one depth causes a loss of accuracy. This also confirms the conjecture in
Section 3.2.2 about the loss of accuracy caused by the excessively large action space, and confirms the advantages
of the recursive structure in large-scale datasets.

5.2 Overall Evaluation of Diagnosis of Diabetes Mellitus Task

5.2.1 Accuracy Analysis. In this section, we conduct experiments to evaluate the accuracy of diagnosis of diabetes
mellitus on the MIMIC-III dataset. As presented in Table 7, we report the best test results of RloGNN and various
baselines and variants in seven hundred epochs. It can be observed from the results that RloGNN performs better
than other baselines and variants under most training ratios and indicators.
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Table 7. Diabetes Detection results (%) compared to the baselines.

MIMIC-III
Models AUC Recall
5% 10% 20% 40% 5% 10% 20% 40%
GCN 65.37 65.39 64.93 65.13 60.85 61.24 60.31 60.99
GAT 63.67 63.09 63.11 64.26 62.13 62.75 63.12 63.45
GraphSAGE 65.91 66.28 65.82 65.34 63.80 63.88 63.82 63.99
GCT 62.97 63.45 64.33 65.14 60.08 61.23 61.39 62.25
HSGNN 63.27 65.68 65.03 67.87 61.24 63.87 64.08 65.39
HAN 62.79 63.26 64.94 65.13 61.15 61.27 62.38 63.02
GrathASH 64.03 65.28 65.08 65.59 62.18 63.94 64.05 65.14
GrathAS 65.76 67.40 67.79 68.05 64.28 66.88 67.31 67.93
Policy-GNNH 66.30 67.19 67.70 67.98 63.28 66.05 67.12 68.18
Policy-GNN 67.45 68.55 69.01 69.59 64.73 67.11 68.32 69.02
CARE-GNN 77.64 80.22 80.81 81.26 69.17 71.58 72.08 72.68
R1oGNN 79.23 80.92 81.23 82.56 71.23 72.64 72.93 74.01

Single-relation vs. Multi-relation. In order to further prove the effectiveness of RtoGNN in processing the
multi-relational graph, we perform a baseline comparison on the more challenging task of diagnosis of diabetes
mellitus. Table 7 shows the comparative results of RToGNN and the three types of baselines. Compared with
the first type of baseline running on a single-relational graph: GCN, GAT and GraphSAGE, the model RtoGNN
is significantly better than them on the MIMIC-III dataset by 13.32%-18.30%. This result fully confirms that the
fine-grained division of multi-relational graph and hierarchical aggregation based on different relations are
very conducive to the completion of the node classification task. This point is completely consistent with the
experimental conclusions on the fraud detection task. Furthermore, in order to show the performance of RloGNN
when dealing with the multi-relational graph, we carry out the second type of baseline comparison experiment.
Although GCT, HSGNN and HAN all run on heterogeneous graphs, and propose different ideas for processing
heterogeneous relations, their accuracy rates are at least 8.77% lower than RtoGNN. Due to the high density of
neighbor nodes under each relation, the inability to effectively filter interfering nodes also brings difficulties to the
final diagnosis task. Compared with RToGNN, it is obvious that they fail to filter out interfering neighbor nodes
and produce a sufficiently strong positive effect on the final diagnosis. Interestingly, comparing the two types of
baselines, we find that although the second type of baselines divides the heterogeneous relations to a certain
extent, they are in most cases even worse than the first type of baselines running on a single-relational graph. The
above results show that when dealing with the multi-relational graph, how to effectively select the appropriate
neighbor nodes is particularly important, while RtoGNN achieves this well through parameterized similarity
measures and adaptive sampling thresholds. When it comes to the third type of baseline, CARE-GNN, we find
that its accuracy is significantly higher than the first two types of baselines by 11.73%-17.70%, which means
that fine-grained and multi-relational division of heterogeneous graphs is very necessary. Although CARE-GNN
realizes automatic filtering and sampling of neighbor nodes to a certain extent, its diagnostic effect is lower than
R10GNN due to the inability to adaptively select the best filtering threshold under each relation. The above shows
that the proposed RSRL framework finds the optimal filtering threshold under each relation in the recursive
process successfully, thus it performs outstandingly in downstream tasks.

Heterogeneous vs. Multi-relation. In synchronization with the fraud detection task, we also analyze the
performance of GraphNAS and Policy-GNN models in heterogeneous graph and multi-relational graph in the
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Table 8. Diabetes diagnosis classification results (%) compared to RIoOGNN variants.

MIMIC-III

Models AUC Recall
RIOGNN 4 81.06 72.28
BIO-GNN 81.29 72.75
ROO-GNN 81.01 72.34
RIO-Att 80.96 72.16
RIO-Weight 81.04 72.58
RIO-Mean 80.31 77.42
RIoGNN 81.36 72.84

disease detection task. From Table 7, the same phenomenon as the fraud detection task can be obtained, that is,
the introduction of the multiple relational graph on the Mimic dataset also has certain advantages compared
with the heterogeneous graph. However, unlike Yelp and Amazon, GraphNAS and Policy-GNN are generally
better than other baselines in terms of accuracy. We believe that the cause is the balanced features and labels of
the Mimic dataset with different relations, and the higher aggregation requirements of the large-scale dataset for
neighbor information.

Training Percentage. In order to measure the impact of the training ratio on the classification accuracy in
the diagnosis of diabetes mellitus task, we still set four different training ratios ranging from 5% to 40%. It can be
seen from Table 7 that the classification accuracy of RIoGNN shows a steady upward trend as the training ratio
increases. This shows that the training process of RtoGNN has a very positive effect on the final classification
accuracy. It can be seen intuitively, RIOGNN has successfully achieved a good performance improvement in
the process of reinforcement learning recursion by supervised signals, which is also in line with expectations.
However, the accuracy of some baselines changes unrelated to the training percentage, which means that their
training methods have great limitations in this task and fail to improve the performance of their models by
increasing the supervised signal learning process. It also verifies that RoGNN has better explainability and
can continuously improve the accuracy of diagnosis through learning more node features. Consistent with its
performance under the previous fraud detection task, RIoGNN still maintains strong stability and explainability
and its accuracy rate surpasses the others at each training ratio.

R10GNN Variants in Classification. In order to further verify the impact of the proposed new mechanism
on different tasks, we compare different performances of several variants of RIoGNN under the discrete strategy
in the context of diabetes diagnosis. We show the experimental results of diagnosis of diabetes mellitus on the
MIMIC-III dataset in Table 8. First of all, we compare three variants based on different aggregation methods on
the MIMIC-III dataset. The results show that RIOGNN is better than the other three variants, while RIO-Weight
has better results than the other two, which is consistent with the results on Yelp dataset. We find that the choice
of aggregation method is usually based on a specific dataset. As for different dataset, different relations have
different ways of influencing the results, which lead to different aggregation methods. However, whether it is
for Yelp, Amazon or MIMIC-III, the results show that RToGNN is superior to all aggregation variants, while
RIO-Weight is second only. This point has a certain degree of universality. Next, we also focus on the performance
of the RtoGNN variant with two-layer structure, RoGNN ,;. Consistent with the previous results on Yelp and
Amazon, the two-layer architecture doesn’t bring very good performance improvements to the model on MIMIC-
III. Compared with RToGNN, it can be found that the increase in the number of layers does not improve the
final accuracy, indicating that the use of a single-layer structure based on the label-aware similarity measure
for neighbor selection is optimal. However, in conjunction with Table 2, it is noted that MIMIC-III dataset is
denser than Yelp and Amazon, thus the effect of RtoGNN ,; is very close to that of RtoGNN. This shows that for
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denser relations, the second-order neighbors found by RToGNN ,; are more effective in the final result. To some
extent, for too dense multi-relation graphs, second-order neighbors can be used as supplementary information for
first-order neighbors. Finally, for the Label-aware Similarity Measure section, we observe the variant BIO-GNN
without adaptive strategy optimization reinforcement learning algorithm and the single-depth structure variant
ROO-GNN without the recursive framework for the RSRL framework again on MIMIC-IIL It can be found from
Table 8 and Table 7 that ROO-GNN performs significantly better than most baselines and variants, second only
to RIoGNN. This shows that Bernoulli Multi-armed Bandit (BMAB) algorithm of discrete strategy has strong
adaptability in the process of recursively selecting the filtering threshold of relations. In contrast, the accuracy
rate of ROO-GNN is 0.28% lower than BIO-GNN. Apart from that, Figure 10 shows that as the training epoch
increases, ROO-GNN fluctuates greatly in the range of 79.48%-81.43%, and can never be stable in a fixed smaller
interval as RtoGNN or BIO-GNN. That is to say, the multi-depth structure of RioGNN brings better convergence
speed and excellent stability than the single-depth variant ROO-GNN while maintaining a higher accuracy rate.

Table 9. Diabetes diagnosis clustering results (%) compared to RlIoGNN variants.

Dataset Metric | RIoGNN 5 | BIO-GNN ROO-GNN | RIO-Att RIO-Weight RIO-Mean | RtoGNN

NMI 19.01 19.81 19.13 17.17 20.22 19.86 20.10

MIMICTIT |\ gy 7.15 8.27 8.11 6.24 9.01 7.51 10.03

R10GNN Variants in Clustering. Similar to fraud detection, we also perform cluster analysis in the task
of disease diagnosis. The best results of NMI and ARI within 700 epochs are recorded in Table 9. It can be seen
that compared with BIO-GNN and ROO-GNN, R1oGNN brings at least 0.29% and 1.76% increase in NMI and ARI
respectively. This proves that the RSRL framework also brings accuracy optimization for dense datasets in the
clustering task. In addition, RioGNN has better performance on ARI indicators for variants that use different
methods for aggregation. For the NMI indicator, the RIO-Weight effect has been improved. We believe this is
because the MIMIC-III dataset has a smaller difference in weight between the relationships compared with Yelp
and Amazon. Weight can distinguish different classes better than RToGNN, which directly uses the filtering
threshold as the aggregation parameter.

5.2.2 Explainable Reinforcement Learning Training Process. This section focuses on the process of reinforcement
learning and explains the convergence process of proposed RIoGNN on the MIMIC-III dataset. We also present a
comparative analysis of different variants to further explain the applicability of RIoGNN.

The Effectiveness and Necessity of the RSRL Framework. This part demonstrates the validity and neces-
sity of the proposed framework by comparing RioGNN with variants and its preliminary version CARE-GNN. It
can be seen from the Figure 10 that RtoGNN performs better than CARE-GNN in almost every epoch, which
proves that the RSRL framework has a positive effect on the final classification results on MIMIC-III. RtoGNN
can effectively filter suspected nodes by building a reinforcement learning tree for each relation and identify
suspected nodes more accurately. Compared with RIoGNN, the accuracy of ROO-GNN in Figure 9 fluctuates
significantly, and it is difficult to converge to a stable range, which proves the necessity to establish a recursive
process. Through the RSRL process, the classification accuracy can be maintained in a relatively stable range. The
experimental results show that RtoGNN with the recursive framework performs better through a more accurate
filtering threshold search for each depth. While ROO-GNN without recursion not only fails to converge within a
finite number of epochs but also causes a loss of accuracy.

Filter Thresholds. To further test the proposed model’s filtering performance against suspected neighbors,
we deliberately extract four denser relations when designing the MIMIC-III dataset. Each relation is at least an
order of magnitude higher than the Yelp or Amazon dataset, which means that the MIMIC-III dataset is more
challenging for RtoGNN’s filtering performance. It can be seen from Figure 9(b) and Figure 9(d) that the filtering
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Fig. 9. The training scores and thresholds of RIOGGNN vs BIO-GNN on MIMIC-III.

thresholds of the four relations of RtoGNN on the MIMIC-III dataset are stable at [0.88, 0.96, 0.32, 0.26], while
BIO-GNN are stable at [0.35, 0.37, 0.36, 0.37]. Considering that the label similarity and feature similarity of
different relations are different, the model’s filtering strength for different relations is not the same. It is worth
noting that there is a certain commonality between the relation filtering strength on RtoGNN and BIO-GNN.
Under RioGNN, the convergence thresholds of V-A-V and V-M-V are relatively similar, while V-P-V and V-D-V are
relatively similar. Generally speaking, relations with high filtering thresholds can bring more positive guidance
to the diagnosis result and are more explainable. From another perspective, a higher filtering threshold can prove
the explainability and correctness of the selected relation, which is more conducive to us intuitively judging
whether the choice of the relation is appropriate enough. It is clear from Figure 9 that these four relations of

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 39. Publication date: October 2021.



Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural Networks « 39:35

0.816- (192,0.8129)

0.814- (95,0.8129)

0.812-

0.810- { | }\

0.808 -

0.806 -

0.804 -

0.802- \ \
\ \

0.800- \ \

AUC

0.798- \ mean AUC = 0.8119

0.796 - \

0.794- mean AUC = 0.8129 —— BIO-GNN

ROO-GNN

0.792- —— RIOGNN

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
epoch
(a) AUC of RtoGNN,ROO-GNN and BIO-GNN on MIMIC-III.

Fig. 10. The effectiveness and necessity of the RSRL framework.

Table 10. Results (%) compared to different RL algorithms and strengthening strategies.

Methods Yelp Amazon | MIMIC-III
2 AC [50] 83.54 96.19 81.36
3 DON [69] 84.08 95.13 80.96
a PPO [86] 80.52 94.99 80.98
§ AC [50] 81.31 94.72 80.98
£ | DDPG [55] 83.80 95.39 81.17
£ SAC [31] 80.42 94.76 80.87
S TD3 [23] 84.18 95.11 81.51

R10GNN converge to a stable value within 100 epochs. This indicates that the algorithm can obtain a set of Nash

equalization filter thresholds in a very limited epoch through RSRL framework, and thus has good stability and
high efficiency.

5.3 Versatility Analysis of RSRL Framework

To better adapt to many task-driven scenarios, we implement a general RSRL reinforcement learning framework.
In dealing with datasets of different sizes and types, different reinforcement learning algorithms and action
space types can be flexibly matched. The depth and width of the reinforcement learning tree can be adaptively
estimated for each relation.

Algorithms and Action Space for Different Task Scenarios. In Section 5.1 and Section 5.2, we analyze
the function variants (Table 5 and Table 8) and the difference between reinforcement learning algorithms under
RSRL framework and traditional reinforcement learning (Figure 8 and Figure 10) in terms of accuracy and
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efficiency through a classical reinforcement learning algorithm, Actor-Critic. Here, in order to better explore
the versatility of RIoGNN for different reinforcement learning algorithms and the applicability of different
reinforcement learning algorithms for different tasks, in Table 10 we select the current mainstream reinforcement
learning algorithms for experiments, and record the best AUC value within 500 epochs. In addition, for the RSRL
framework, we proposed two different action spaces for the construction of reinforcement learning forests in
Section 3.2.2 to adapt to different task requirements. Different from the discrete action space, the reinforcement
learning framework with continuous action space has continuous precision (that is, the highest floating-point

number of the processor) in every action selection of reinforcement learning. This difference makes it have a
better exploration effect in large-scale dataset. From the experimental results, PD3 algorithm continuous action
space and two sets of networks to update the Q value achieves the best results in both Yelp and MIMIC-III dataset.
In the Amazon dataset, the best result is obtained from the more basic discrete action space AC. SAC and PPO are
at alow level in the three datasets. In general, RIoGNN is well-adapted to most reinforcement learning algorithms,
and is a versatile framework for different types of dataset and task scenarios.

Depth and Width for Different Task Scenarios. In Section 3.2.2, we define a depth and width adaptive
parameter « to adjust the size of the action space of each layer of the relation and the depth of the entire relation
tree. In the previous experiment, we fixedly chose 10 as . In this section, in order to discuss the impact of the
depth and width adaptive parameter on the accuracy and efficiency of the RtloGNN model, we compare and
analyze the AUC and convergence epoch sizes of the three dataset under different settings. As shown in Figure 11,
we set the six « values of 2, 4, 8, 10, 16, 20, and respectively record the maximum AUC and the corresponding
epoch serial number obtained in 500 epochs. In the Yelp dataset, AUC achieves the maximum value when «
is 10, which is at least 1.33% better than other parameters. But in this case, it takes longer to reach this value.
Therefore, we suggest that Yelp can be adaptively chosen « to 8 or 10 for efficiency priority and accuracy priority.
On the other hand, Amazon achieves better accuracy when « is 8 or 10, and achieves better efficiency when
a is 2 or 4. The difference from the previous two is that the MIMIC-III dataset obtains a loss of accuracy and
efficiency when a is 8. Judging from these situations, RIoGNN can be adapted to a dataset of different scales and
different accuracy and efficiency biases by adjusting a. This represents the versatility of the dataset size and task

requirements.
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Table 11. Inductive learning results (%) compared to RioGNN variants.

Model Yelp Amazon MIMIC-III
odels AUC Recall F1 | AUC Recall F1 | AUC Recall F1
GAT 5594 5179  47.25 | 7233 6586  60.17 | 6389 59.13  56.78

GraphSAGE | 53.85 51.78 44.36 74.91 70.02 65.32 63.89 69.99 59.24
R10GNN 79.45 71.86 63.58 92.01 83.65 86.24 79.01 69.77 69.64
BIO-GNN 79.49 71.86 63.58 95.07 88.19 86.51 81.21 72.81 72.64
ROO-GNN 82.15 74.23 67.73 94.79 87.43 88.67 81.01 72.39 72.23

RIO-Att 78.72 71.78 62.38 93.79 88.71 83.72 79.84 71.31 71.28

RIO-Weight | 81.06 72.79 65.59 94.67 88.58 85.12 81.25 72.72 72.28

RIO-Mean 78.17 71.41 62.12 93.53 87.32 85.75 80.29 71.92 71.74
R1oGNN 82.38  75.08 65.26 94.03 88.58 86.46 81.23 72.63 72.53

5.4 Inductive Learning Analysis

In this section, we perform inductive learning on RIoGNN, some representative baselines and variant models
of R1oGNN. In the previous experiment, we use transductive learning, that is, the graph passed into the model
contains the test nodes. In inductive learning, we only pass the adjacency matrix of the nodes that need to
be trained into the model, and record the best AUC, Recall and F1 indicators of Yelp and Amazon within 500
epochs and MIMIC-III within 700 epochs. From the results in Table 11, it can be seen that RIoGNN still has
obvious advantages compared with GAT and GraphSAGE, where AUC, Recall and F1 increase by 17.34%-28.53%,
2.64%-23.30%, 13.29%-20.90%. In addition, RIoGNN has a relatively stable evaluation index among many variants.
Among them, the results on Yelp dataset are compared with those with transductive learning in Table 5. In
the inductive learning, the AUC and Recall rate of RToGNN constantly surpasses ROO-GNN variants although
R10GNN is slightly lower than ROO-GNN in the transductive learning shown in Table 11. This represents the
stability of the performance of the recursive framework in challenging tasks and illustrates its advantages in
small-scale scenarios. In the Amazon dataset, due to the expansion of the data scale, some variants are better
evaluated in some aspects, but RIoGNN is stable at a relatively high level from the comprehensive situation of
AUC, Recall and F1. This situation similarly appears in MIMIC-IIL. It is worth noting that the BIO-GNN variants in
the Amazon and MIMIC-III datasets achieve a good performance improvement compared with their situation in
the transductive learning task. We believe this is because BMAB has a relatively weak learning ability compared
to Actor-Critic, which reduces the dependence of the learned model on the training set, so it is more compatible
with newly added nodes. Overall, RIoGNN has good applicability in both transductive learning and inductive
learning.

5.5 Hyper-parameter Sensitivity

Figure 12 shows the test performance of the three hyper-parameters we introduce in Section 4.4 in three datasets.
The first row of Figure 12 shows the AUC and Recall of the training set of RtoGNN at different sampling ratios
(note that the test results come from an unbalanced test set). It can be seen that when the sampling ratio is 1 : 0.2,
that is, when the negative samples are much smaller than the positive samples, overfitting occurs in all three
datasets. Compared with 1 : 0.5 and 1 : 2 sampling ratios, 1 : 1 sampling show higher AUC and Recall indicators
in all three datasets. The second row of Figure 12 studies the backtracking structure we set in Section 3.2.2.
From Figure 12(d), Figure 12(e) and Figure 12(f), models with backtracking settings bring stable performance
in all datasets compared to models without backtracking. In the third row of Figure 12, we test different depth
switching conditions. When the deep switching number is set to 3, AUC and Recall achieve good and balanced
performance.
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6 RELATED WORK

In the past years, Graph Neural Networks (GNNs) and Reinforcement Learning (RL) technologies have received
increasing attention and many upgraded algorithms have been proposed. Hence, the existing literature can be
roughly classified into three categories: semi-supervised graph neural networks, RL, and RL-guided GNNs.

6.1 Semi-supervised Graph Neural Networks

According to the difference in data modeling for real-world graph data, we roughly divide the semi-supervised

graph neural network methods into homogeneous graph neural networks, heterogeneous graph neural networks,
and multiple graph learning models.
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Homogeneous Graph Neural Networks. They are usually referred to those GNN methods that do not
consider the data type of nodes or the attributes of the edges on the graph. Classical methods include GCN [49],
Graph-SAGE [32] and GAT [96]. As discussed in the previous section, the GCN model defines the first successful
graph convolutions in analogy to convolutional layers over Euclidean data, and is thus seen as a generalization
of convolution neural networks (CNNs) for non-grid topologies. The Graph-SAGE model exploits sampling for
obtaining a fixed number of neighbors for each node to generate node embedding via aggregation functions,
which can be invariant if the permutations of node orderings, such as a mean, sum, or max function, are applied.
Moreover, the Graph-SAGE model presents the first general inductive learning framework that continuously
samples and aggregates its local neighbors’ features to generate embedding for the new node. By contrast, the
GAT model firstly adopts attention mechanisms to learn the relative weights between two connected nodes. The
multi-head self-attention is further enforced to increase the model’s expressive capability. Despite the powerful
graph representation learning capability of these models, the main limitation is the ignorance of the diversity of
data types and relationships manifesting in the real-world data and applications.

Heterogeneous Graph Neural Networks. Such approaches generally consider the heterogeneity of node
types or edge types when aggregating feature information from node’s local neighbors via neural networks. The
classical meta-path and meta-graph based methods include GAS [53], HAN [101], Player2Vec [118], HSGNN [62]
and MAGNN [22]. Considering the diversity of edges in real-world data, more relational graph neural network
methods including R-GCN [85], SemiGNN [98], FdGars [99] and GraphConsis [61] are developed. Other hetero-
geneous graph neural networks, including HGT [41], GEM [60], HetSANN [38], etc., implement complex neural
aggregations among heterogeneous neighbors. All these heterogeneous models are upgraded versions of the
previous homogeneous models. Nevertheless, there is no literature exploring how to select neighbor nodes to
build the most expressive, explanatory and stable aggregation.

Multiple Graph Learning Models. Apart from the above homogeneous and heterogeneous GNNs that solve
single-graph representation learning, multi-graph neural network models [65, 66, 88, 102, 117] study fusing the
multiple characterizes to comprehensively learn the embedding of graph data objects. MGAT [105] explores both
attention-based architecture for learning node representations from each single view and view-focused attention
method to aggregate the view-wise node representations. A multi-view knowledge graph embedding [115]
is presented by using cross-view entity identity inference to capture the alignment information between two
knowledge graphs. In order to filter out useless feature interactions, a Bayesian Personalized Feature Interaction
Selection mechanism [8] is designed under the Bayesian Variable Selection (BVS) theory in recommendation
tasks. Moreover, a block-diagonal regularization [9] is proposed to guide the item similarities in the top-N
recommendation task.

6.2 Reinforcement Learning

With the development of technology, reinforcement learning algorithms have derived many different development
directions. The more basic algorithms are value-based only Q-Learning [103] and DQN [69] algorithms, which
use value functions to estimate and reduce the occurrence of local optimal situations. However, policy-based
only algorithms such as PPO [86] directly performs iterative calculation on the policy, which can achieve better
convergence. The Actor-Critic type of reinforcement learning methods AC [50], DDPG [55], TD3 [23], and
SAC [36] combine the advantages of value-based and policy-based to train Q functions and strategies at the same
time. In addition to the above division methods, from the perspective of action space types, DQN and Q-learning
are suitable for discrete action spaces, DDPG, TD3, and SAC support continuous action spaces, while PPO and
AC are suitable for both discrete and continuous action spaces. Or from the perspective of learning methods,
reinforcement learning algorithms such as DDPG, DQN, SAC, and TD3 combine deep learning and use the fitting
ability of neural networks to obtain better optimization. These different algorithms have different advantages, but
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also bring different limitations. For example, algorithms that only support discrete action spaces are incapable of
continuous action space requirements, Actor-Critic type algorithms have inherited the desired shortcomings
while absorbing the value-based method and the policy-based method. The framework that only supports the
same reinforcement learning algorithm has limitations in adaptability to many types of tasks.

6.3 Combination GNNs and RL

There are a few attempts to marry GNNs and RL. DGN+GNN [2] is a model used to generalize unseen network
topologies, where GNNs that model the network environment allow the DRL agent to operate on different
networks. G2S+BERT+RL [11] is a RL based graph-to-sequence model for natural question generation, where
the answer information is utilized by an effective Deep Alignment Network and a novel bidirectional GNN
is proposed to process the directed passage graph. Similarly, other work [34, 42, 90] investigates how to use
GNN s to improve the generalization ability of RL. There are also numerous studies that leverage RL to optimize
representation learning on graphs. For example, DeepPath [106] a knowledge graph embedding and reasoning
framework based on RL policy-based; the RL agent is trained to ascertain the reasoning paths in the knowledge
base. RL-HGNN [120] devises different meta-paths for any node in a HIN to learn its effective representations. It
models the process of meta-path design as a Markov Decision Process by using a DRL-based policy network for
adaptive meta-path selection. As opposed to RIoOGNN, the RL-HGNN model pays more attention to revealing
meaningful meta-paths or relations in heterogeneous graph analysis. GraphNAS [24] employs a search space
covering sampling functions, aggregation functions and gated functions and uses RL to search graph neural
architectures. Policy-GNN [51] formulates the GNN training problem as a Markov Decision Process, and can
adaptively learn an aggregation policy to sample diverse iterations of aggregations for different nodes. However,
neither GraphNAS nor Policy-GNN models considers heterogeneous neighborhoods in aggregation although
they pay more attention to neural architecture searching.

7 RELATED WORK

In the past years, Graph Neural Networks (GNNs) and Reinforcement Learning (RL) technologies have received
increasing attention and many upgraded algorithms have been proposed. Hence, the existing literature can be
roughly classified into three categories: semi-supervised graph neural networks, RL, and RL-guided GNNs.

7.1 Semi-supervised Graph Neural Networks

According to the difference in data modeling for real-world graph data, we roughly divide the semi-supervised
graph neural network methods into homogeneous graph neural networks, heterogeneous graph neural networks,
and multiple graph learning models.

Homogeneous Graph Neural Networks. They are usually referred to those GNN methods that do not
consider the data type of nodes or the attributes of the edges on the graph. Classical methods include GCN [49],
Graph-SAGE [32] and GAT [96]. As discussed in the previous section, the GCN model defines the first successful
graph convolutions in analogy to convolutional layers over Euclidean data, and is thus seen as a generalization
of convolution neural networks (CNNs) for non-grid topologies. The Graph-SAGE model exploits sampling for
obtaining a fixed number of neighbors for each node to generate node embedding via aggregation functions,
which can be invariant if the permutations of node orderings, such as a mean, sum, or max function, are applied.
Moreover, the Graph-SAGE model presents the first general inductive learning framework that continuously
samples and aggregates its local neighbors’ features to generate embedding for the new node. By contrast, the
GAT model firstly adopts attention mechanisms to learn the relative weights between two connected nodes. The
multi-head self-attention is further enforced to increase the model’s expressive capability. Despite the powerful
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graph representation learning capability of these models, the main limitation is the ignorance of the diversity of
data types and relationships manifesting in the real-world data and applications.

Heterogeneous Graph Neural Networks. Such approaches generally consider the heterogeneity of node
types or edge types when aggregating feature information from node’s local neighbors via neural networks. The
classical meta-path and meta-graph based methods include GAS [53], HAN [101], Player2Vec [118], HSGNN [62]
and MAGNN [22]. Considering the diversity of edges in real-world data, more relational graph neural network
methods including R-GCN [85], SemiGNN [98], FdGars [99] and GraphConsis [61] are developed. Other hetero-
geneous graph neural networks, including HGT [41], GEM [60], HetSANN [38], etc., implement complex neural
aggregations among heterogeneous neighbors. All these heterogeneous models are upgraded versions of the
previous homogeneous models. Nevertheless, there is no literature exploring how to select neighbor nodes to
build the most expressive, explanatory and stable aggregation.

Multiple Graph Learning Models. Apart from the above homogeneous and heterogeneous GNNs that solve
single-graph representation learning, multi-graph neural network models [65, 66, 88, 102, 117] study fusing the
multiple characterizes to comprehensively learn the embedding of graph data objects. MGAT [105] explores both
attention-based architecture for learning node representations from each single view and view-focused attention
method to aggregate the view-wise node representations. A multi-view knowledge graph embedding [115]
is presented by using cross-view entity identity inference to capture the alignment information between two
knowledge graphs. In order to filter out useless feature interactions, a Bayesian Personalized Feature Interaction
Selection mechanism [8] is designed under the Bayesian Variable Selection (BVS) theory in recommendation
tasks. Moreover, a block-diagonal regularization [9] is proposed to guide the item similarities in the top-N
recommendation task.

7.2 Reinforcement Learning

With the development of technology, reinforcement learning algorithms have derived many different development
directions. The more basic algorithms are value-based only Q-Learning [103] and DQN [69] algorithms, which
use value functions to estimate and reduce the occurrence of local optimal situations. However, policy-based
only algorithms such as PPO [86] directly performs iterative calculation on the policy, which can achieve better
convergence. The Actor-Critic type of reinforcement learning methods AC [50], DDPG [55], TD3 [23], and
SAC [36] combine the advantages of value-based and policy-based to train Q functions and strategies at the same
time. In addition to the above division methods, from the perspective of action space types, DQN and Q-learning
are suitable for discrete action spaces, DDPG, TD3, and SAC support continuous action spaces, while PPO and
AC are suitable for both discrete and continuous action spaces. Or from the perspective of learning methods,
reinforcement learning algorithms such as DDPG, DQN, SAC, and TD3 combine deep learning and use the fitting
ability of neural networks to obtain better optimization. These different algorithms have different advantages, but
also bring different limitations. For example, algorithms that only support discrete action spaces are incapable of
continuous action space requirements, Actor-Critic type algorithms have inherited the desired shortcomings
while absorbing the value-based method and the policy-based method. The framework that only supports the
same reinforcement learning algorithm has limitations in adaptability to many types of tasks.

7.3 Combination GNNs and RL

There are a few attempts to marry GNNs and RL. DGN+GNN [2] is a model used to generalize unseen network
topologies, where GNNs that model the network environment allow the DRL agent to operate on different
networks. G2S+BERT+RL [11] is a RL based graph-to-sequence model for natural question generation, where
the answer information is utilized by an effective Deep Alignment Network and a novel bidirectional GNN
is proposed to process the directed passage graph. Similarly, other work [34, 42, 90] investigates how to use
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GNN s to improve the generalization ability of RL. There are also numerous studies that leverage RL to optimize
representation learning on graphs. For example, DeepPath [106] a knowledge graph embedding and reasoning
framework based on RL policy-based; the RL agent is trained to ascertain the reasoning paths in the knowledge
base. RL-HGNN [120] devises different meta-paths for any node in a HIN to learn its effective representations. It
models the process of meta-path design as a Markov Decision Process by using a DRL-based policy network for
adaptive meta-path selection. As opposed to RIoGNN, the RL-HGNN model pays more attention to revealing
meaningful meta-paths or relations in heterogeneous graph analysis. GraphNAS [24] employs a search space
covering sampling functions, aggregation functions and gated functions and uses RL to search graph neural
architectures. Policy-GNN [51] formulates the GNN training problem as a Markov Decision Process, and can
adaptively learn an aggregation policy to sample diverse iterations of aggregations for different nodes. However,
neither GraphNAS nor Policy-GNN models considers heterogeneous neighborhoods in aggregation although
they pay more attention to neural architecture searching.

8 CONCLUSION AND FUTURE WORK

This paper studies RtoGNN, a reinforced, recursive and flexible neighborhood selection guided multi-relational
Graph Neural Network architecture, to learn more discriminative node embedding and respond to the explanation
of the importance of different relations in spam review detection and disease diagnosis tasks, respectively.
R10GNN designs a label-aware neural similarity neighbor measure and reinforced relation-aware neighbor
selectors using reinforcement learning technology, respectively. To optimize the computational efficiency of the
reinforcement neighbor selecting, we further design a recursive and scalable framework with estimable depth and
width for different scales of multi-relational graphs. The conducted experiments on three real-world benchmark
datasets suggest that RToGNN significantly, consistently and steadily outperforms the state-of-the-art alternatives
across all the datasets. Our work shows the promise in learning a reinforced neighborhood aggregation for
GNNs, potentially opening new avenues for future research in boosting the performance of GNNs with adaptive
neighborhood selection and analysing the importance of different relations in message passing.

In the future, we aim to adopt a multi-agent RL algorithm to further enable the RToGNN to adaptively
identify meaningful relations for each node, instead of the manual efforts in defining relations, for automated
representation learning on heterogeneous data. In addition, it is also interesting to study how to extend our
models to other tasks on graph data analysis and application, such as the personalized recommendation system,
social network analysis, and etc.
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