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a b s t r a c t 

A series of zirconolite ceramics with stoichiometry Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 ( x = 0–0.35), considered as a 

host phase for the immobilisation of separated plutonium, were prepared from a mixture of oxide pre- 

cursors by sintering in air at 1450 °C. Ce was utilised as a structural surrogate for Pu, with Al added 

to provide charge compensation. XRD and electron diffraction analyses indicated crystallisation of the 

zirconolite-2M polytype for all compositions, accompanied by various secondary phases contingent on 

the doping level, consistent with microstructure observation. The relative yield of zirconolite phases re- 

mained above 94 wt.% for 0.05 < x < 0.20. It was determined that Ce was partially reduced to the Ce 3 + 

oxidation state and Al occupied mainly octahedral Ti sites. The incorporation rate of CeO 2 was calcu- 

lated to be 9.27 wt.% in Ca 0.80 Ce 0.20 ZrTi 1.60 Al 0.40 O 7 with a comparatively high yield of 94.7 wt.%, which is 

representative of a PuO 2 incorporation rate of 14.86 wt.%. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The United Kingdom currently holds the world’s largest inven- 

tory of separated plutonium, under civil safeguards, with an inven- 

tory of over 140 t forecast at the end of reprocessing options [ 1 , 2 ]. 

Current UK government policy is to reuse this separated plutonium 

as MOX fuel in light water reactors. However, an alternative op- 

tion currently under consideration is immobilisation of plutonium 

within a chemically durable wasteform and disposal in an engi- 

neered geological disposal facility [3] . Titanate ceramics are a fam- 

ily of crystalline materials that are under development as hosts for 
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high level radioactive waste streams due to superior aqueous dura- 

bility with respect to vitrified wasteforms [4–6] . 

Zirconolite, prototypically CaZrTi 2 O 7 , has been proposed as a 

potential candidate for immobilising Pu due to its excellent chem- 

ical durability and radiation tolerance [ 7 , 8 ]. Natural zirconolites 

have been found to contain up to 20 wt.% of uranium and thorium 

with ages in excess of a billion years [9] . Although some natural 

analogues have become metamict (amorphised) due to the effects 

of self-irradiation, the fact that they have retained significant quan- 

tities of U/Th is promising with regards to the long-term stabil- 

ity of zirconolite as the advanced ceramic wasteform for actinides. 

Zirconolite has the general formula CaZr x Ti 3-x O 7 that crystallises 

in 2M polytype, in the space group C2 /c , over the compositional 

range 0.8 ≤ x ≤ 1.37 [10] . The crystal structure of zirconolite-2M, 

demonstrated in Fig. 1 , is considered as a derivative of the well 

known pyrochlore structure (space group: Fd -3m ) [ 10 , 11 ]. Distor- 

tion perpendicular to the (111) plane of the pyrochlore structure 

results in the monoclinic (C2/ c ) zirconolite-2M structure, consisting 

the hexagonal tungsten bronze layers perpendicular to the [001] 

direction. The Ca and Zr cations are 8- and 7- fold co-ordinate, 

https://doi.org/10.1016/j.jnucmat.2021.153198 
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Fig. 1. Structural model of zirconolite-2M phase (C2/ c ). Ca atom in orange, Zr atoms 

in green, TiO 6 polyhedra in light blue, TiO 5 polyhedra in purple (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.). 

respectively. Three unique Ti co-ordination polyhedral form, com- 

prising two fully occupied octahedral sites (light blue TiO 6 polyhe- 

dra in Fig. 1 ) and a 50% occupied trigonal bi-pyramidal site (TiO 5 

in Fig. 1 ) [11] . In principle, actinides such as Pu 4 + are capable of 

entering the zirconolite lattice via solid solution with (i) Ca site 

whilst ions such as Al 3 + can occupy Ti sitesin formulations that do 

not exhibit aliovalence, or (ii) Zr site without charge compensator. 

Begg et al. attempted co-substitution of Pu/Np within zirconolite 

and deduced that whilst Pu could be accepted within solid solu- 

tion, Pu valence was dependent on the processing atmosphere [12] . 

Laboratory studies of Pu containing materials require dedicated 

facilities and specialist handling equipment due to the hazards as- 

sociated with Pu. As a result, experiments utilising plutonium are 

expensive and hazardous, hence the use of inactive/less hazardous 

structural surrogates is commonplace in early stage formulation 

research. Ce is often used as a surrogate for Pu due to similar- 

ities in oxidation state (trivalent and tetravalent) and ionic radii 

(e.g. Ce 4 + = 0.97 Å and Pu 4 + = 0.96 Å in eightfold coordination) 

[13] . In this study, Ce 4 + from CeO 2 is utilised to simulate Pu 4 + 

in PuO 2 , mainly arising from reprocessing plants. Blackburn et al. 

found that the mixture of zirconolite-2M and zirconolite-4M poly- 

types, alongside secondary perovskite phases, was produced when 

heating CaZr 0.8 Ce 0.2 Ti 2 O 7 in air [14] . For the Ca-site substitution, 

Vance et al. prepared zirconolites of Ca 0.8 Ce 
3 + 

0.2 ZrTi 1.8 Al 0.2 O 7 and 

Ca 0.8 Ce 
4 + 

0.2 ZrTi 1.6 Al 0.4 O 7 by hot-pressing and sintering, Al 
3 + was 

added as a charge compensating species to maintain charge neu- 

trality [15] . The Ca site was replaced by Ce 3 + or Ce 4 + as the target 

stoichiometry in both cases and pure zirconolite was obtained for 

Ca 0.8 Ce 
3 + 

0.2 ZrTi 1.8 Al 0.2 O 7 , while zirconolite was the major phase 

for Ca 0.8 Ce 
4 + 

0.2 ZrTi 1.6 Al 0.4 O 7 with minor amount of Al 2 O 3 [15] . 

However, the graphite-rich environment during hot-pressing would 

provide a naturally reducing environment, making the inherent re- 

dox behaviour of Ce in zirconolite difficult to understand. 

In this study, a suite of Ce-Al co-doped zirconolites, formulated 

Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 ( x = 0–0.35), were synthesised in air us- 

ing Ce as a structural surrogate for Pu. The current work aims to 

develop the fundamental understanding of the solid solution be- 

haviour of zirconolite wasteforms in part with charge compensat- 

ing species. This understanding would contribute essential under- 

pinning evidence to support any future change in UK government 

policy for plutonium inventory management, to adopt immobili- 

sation and disposal in the form of a ceramic zirconolite waste- 

form [16] . On this basis, the phase assemblage, polymorphic be- 

haviour, chemical composition, the crystal structure and the redox 

behaviour of Ce in the sintered zirconolites were investigated as a 

function of Ce incorporation, from which we aim to draw an infer- 

ence for Pu immobilisation behaviour when using Al 3 + as a charge 

compensating species. 

2. Materials and methods 

2.1. Zirconolite fabrication 

The reagents used in this study were: CaTiO 3 (Alfa Aesar, pu- 

rity ≥ 99.0 %), CeO 2 (Acros Organics, ~ 99.9%), ZrO 2 (Aldrich, ~

99.0%), Al 2 O 3 (Alfa Aesar, ~ 99.7%) and TiO 2 (Aldrich, ≥ 99.0 %). 

The oxide precursors were batched with a target composition of 

Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 ( x = 0–0.35; �x = 0.05) and mixed by 

planetary milling with acetone and Si 3 N 4 ball media. The mixtures 

were dried and cold-pressed under the pressure of 100 MPa. All 

specimens were sintered in air at 1450 °C for 12 h, with ramping 

and cooling rates of 5 °C/min. 

2.2. Phase and microstructural characterisation 

Reacted samples were ground and characterised by powder X- 

ray diffraction (PXRD, D2 Phaser Diffractometer, Bruker; Cu-K α) in 

the range 10 ˚ ≤ 2 θ ≤ 110 ˚ with step size of 0.02 ˚. Refinement 

of PXRD patterns were performed to calculate the lattice parame- 

ter and weight fraction using the GSAS software package [17] , with 

LaB 6 used as the internal standard. Samples for microstructure ob- 

servation were polished to a 1.0 μm optical finish using progres- 

sively finer SiC paper and diamond pastes. Hitachi TM3030 scan- 

ning electron microscope (SEM) was used for observation of the 

polished surface and energy-dispersive X-ray spectroscopy analy- 

sis (EDX) was performed using a Quantax 70 (Bruker) system cou- 

pled with SEM. The semi quantitative cation composition was de- 

termined based on 20 EDX data points. 

2.3. Local environment analysis 

Transmission mode Ce L 3 Edge X-ray Absorption Near Edge 

Structure (XANES) data were acquired using an EasyXAFS XES 100- 

extended spectrometer, using the (4 2 2) harmonic of a Si (2 1 1) 

spherically bent crystal analyser (for a Rowland circle of 1 m diam- 

eter), to monochromate the Bremsstrahlung radiation of a Pd X-ray 

tube operating at 25 kV and 4 mA [18–20] . A helium beam path 

was maintained to minimise X-ray attenuation. Data were acquired 

with a step size of 0.50 eV in the XANES region (570 0–590 0 eV) 

and a count time of 10 s per step. Data were acquired sequentially 

in the absence of a sample (I 0 ) and in the presence of a sample 

(I t ), using a Hitachi Vortex silicon drift detector. Data were nor- 

malised, aligned to the absolute energy scale (calibrated by a Cr 

foil), summed, and background subtracted using the Athena pro- 

gram [21] . Data were also acquired on CePO 4 (monazite) and CeO 2 

reference compounds, characteristic of Ce 3 + and Ce 4 + respectively. 

XANES samples were prepared to yield an edge step of ca. μx = 1, 

by dilution of the required quantity of material in polyethylene 

glycol and pressing as 13 mm diameter pellet. Linear combina- 

tion fitting of the XANES data from the reference compounds to 

that of Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 , over the range 5680–5760 eV, under 

the constraint that the fractional weights of the reference spectra 

summed to unity. 

Solid state single pulse 27 Al magic angle spinning (MAS) 

nuclear magnetic resonance (NMR) spectra of the powdered 

Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 ( x = 0.05–0.35) samples were acquired us- 

ing a Bruker Avance III HD 500 spectrometer at 11.7 T (B 0 ) us- 

ing a 4.0 mm dual resonance CP/MAS probe, yielding a Larmor 

frequency of 130.32 MHz. Spectra were acquired using a 1.4 μs 

non-selective ( π /2) excitation pulse, a measured 60 s relaxation 

delay, a total of 64 scans and spinning at 12.5 kHz. All spectra 
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were referenced to 1.0 M aqueous Al(NO 3 ) 3 at 0 ppm. Due to the 

existence of the hibonite phase, NMR data of hibonite (prepared 

by solid state reaction) was also collected for comparison. Selected 

area electron diffraction (SAED) patterns were acquired for a sam- 

ple with a target composition of Ca 0.75 Ce 0.25 ZrTi 1.5 Al 0.5 O 7 , using a 

JEM 2100F (JEOL) transmission electron microscope (TEM), oper- 

ating at 200 keV. Powdered sample after grinding was dispersed 

with acetone and pipetted onto the Cu-grid (Agar) for TEM analy- 

sis. 

3. Results and discussion 

All compositions were characterised by powder X-ray diffrac- 

tion ( Fig. 2 ). Reflections of zirconolite-2M (space group: C2 /c [22] ) 

were observed for all compositions, as shown in Fig. 2 A. No re- 

flections corresponding to CeO 2 were observed, indicative of com- 

plete incorporation within the ceramic wasteform. Compositions 

within range 0 ≤ x ≤ 0.15 were found to contain a small amount 

of perovskite (prototypically, CaTiO 3 ), characterised by the weak 

(112) reflection at 2 θ = 33.2 °. As displayed in Fig. 2 B, increasing 

the Ce incorporation rate to x ≥ 0.20, resulted in the formation of 

secondary hibonite (CaAl 12 O 19 , PDF #84–1613 [23] ) and the reten- 

tion of corundum (Al 2 O 3 ). These results are indicative that the co- 

doping of Ce and Al within the zirconolite structure was achieved 

within the range 0 < x ≤ 0.15. 

Rietveld fitting of PXRD data was performed to determine the 

lattice parameters of synthesised zirconolites, see Table 1 . Fig. S1 

(see Supporting Information ) presents representative Rietveld fits of 

the x = 0.15 and x = 0.25 compositions. The refined lattice pa- 

rameters of CaZrTi 2 O 7 ( x = 0) were in good agreement with those 

reported by Whittle et al. [22] It was observed that a and β grad- 

ually increased as Ce and Al doping was increased from x = 0.05, 

whereas b and c remained almost constant. Quantitative phase 

analysis ( Fig. 3 ) found that the weight fraction attributed to per- 

ovskite remained ≤ 3.1% for compositions with 0 ≤ x ≤ 0.15. Per- 

Fig. 3. Quantitative phase analysis results in the Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 system as a 

function of composition. 

ovskite did not appear as a secondary phase when higher levels 

of Ce substitution ( ≥ 0.20) were targeted. The weight fraction of 

Al 2 O 3 and CaAl 12 O 19 phases increased to 13.5 wt.% and 1.6 wt.%, 

respectively, for the composition with x = 0.25, increasing to 

16.3 wt.% and 7.4 wt.%, for x = 0.35. It may be inferred that the 

substitution limit of Ce/Al is x = 0.20 for Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 , as 

evidenced by the marked increase in secondary phase formation at 

higher levels of attempted substitution. 

SEM images of the synthesised zirconolites are shown in Fig. 4 . 

All compositions exhibited a dense microstructure with little ob- 

servable porosity (below ~ 5%). The zirconolite grain size was typ- 

ically found to lie in the range of 10–20 μm. When low Ce in- 

corporation was targeted, 0.05 < x < 0.15, zirconolite (denoted 

by Z in Fig. 4 ) was observed as the dominant phase, consistent 

Fig. 2. (A) Powder XRD patterns of Ce-Al co-doped zirconolite with composition Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 after sintering in air at 1450 
°C for 12 h; vertical marks show allowed 

reflections of zirconolite-2M. [22] (B) The enlargement inset shows the existence of the secondary phases. Perovskite reflections are labelled by black circles; CaAl 12 O 19 and 

Al 2 O 3 are labelled by green circles and orange circles (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.). 
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Fig. 4. Representative SEM observation of the polished samples. Z –Zirconolite, P –Perovskite, H –Hibonite and C –Corundum. 

with PXRD data. Perovskite (P) was clearly present as a secondary 

phase and appeared to form at zirconolite grain boundaries. The 

microstructure of compositions with higher targeted Ce concentra- 

tion ( i.e. x ≥ 0.20) contained large inclusions of dark contrast iden- 

tified as CaAl 12 O 19 (H-hibonite) and Al 2 O 3 (C-corundum). The rela- 

tive fraction of these phases within the microstructure increased as 

a function of doping, in agreement with quantitative phase anal- 

ysis obtained from refinement of PXRD. EDX analysis for the zir- 

conolite sample with target stoichiometry Ca 0.75 Ce 0.25 ZrTi 1.5 Al 0.5 O 7 

( x = 0.25) is shown in Fig. 5 ; analysis of elemental distribution 

( Table 2 and Table S1 in Supporting Information ) confirmed the for- 

mation of the hibonite phase and retention of Al 2 O 3 . Notably, Ce 

was observed to be overwhelmingly incorporated in the zircono- 

lite phase, only trace Ce incorporation within the perovskite phase 

( x = 0.05–0.15) and hibonite phase ( x = 0.15–0.35) was evident 

from EDX analysis. 

Ce L 3 edge XANES data of the zirconolite samples are shown 

in Fig. 6 . By comparison with data from the CeO 2 standard, the 

XANES features of the zirconolite composition are consistent with 

the majority of Ce being speciated as Ce 4 + . However, a proportion 

of the Ce speciation was present as Ce 3 + , which is indicated by 

the shift to lower energy of E 0 ( e.g. �E ≈ 1.0 eV for x = 0.20 

when comparing with CeO 2 ) and increased intensity in the im- 

mediate post edge feature. Derived from linear combination fit- 

ting of XANES spectra (see Fig. S2 in Supporting Information ), the 

fraction of Ce 3 + was observed to increase ( Table 2 ) concurrently 

with Ce incorporation (x) in the products. The existence of trivalent 

Ce (Ce 3 + ) was previously reported when incorporating Ce in the 

hibonite and perovskite structured compounds [ 24 , 25 ]. Assuming 

trace Ce incorporated within the hibonite and perovskite phases 

occurred as Ce 3 + , the ratio of Ce 3 + /Ce 4 + for zirconolite phase could 

be derived, as reported in Table 2 . The ratio of Ce 4 + speciation to 

(Ce 3 + + Ce 4 + ) in the zirconolite phase gradually decreased as the 

substitution level was increased. Due to the formation of Al 2 O 3 

and CaAl 12 O 19 phases, the incorporation of Al in the zirconolite 

phase was below the nominal target concentration; therefore, the 

Table 1 

Refined structural parameters for Ca 1-x CexZrTi 2-2 xAl2xO7 (0.00 ≤ x ≤ 0.35) determined from Rietveld analysis of pow- 

der X-ray diffraction data. 

Composition a ( ̊A) b ( ̊A) c ( ̊A) β ( ̊) V ( ̊A 3 ) R p (%), R wp (%), χ2 

x = 0.00 12.4429(4) 7.2722(2) 11.3764(4) 100.570(3) 1011.95(4) 7.69, 6.09, 2.856 

x = 0.05 12.4325(5) 7.2505(3) 11.3618(5) 100.610(3) 1006.66(5) 7.63, 5.70, 3.173 

x = 0.10 12.4379(6) 7.2470(3) 11.3526(5) 100.643(6) 1005.70(6) 8.68, 6.41, 4.122 

x = 0.15 12.4421(7) 7.2459(4) 11.3497(6) 100.658(6) 1005.58(7) 7.96, 6.07, 3.321 

x = 0.20 12.4507(8) 7.2490(4) 11.3500(7) 100.678(6) 1006.66(8) 8.35, 6.41, 3.861 

x = 0.25 12.4582(8) 7.2501(4) 11.3587(7) 100.674(6) 1008.20(8) 9.95, 7.56, 5.655 

x = 0.30 12.4798(10) 7.2572(5) 11.3630(9) 100.720(9) 1011.16(10) 8.73, 6.86, 4.058 

x = 0.35 12.4881(18) 7.2599(11) 11.3686(15) 100.739(12) 1012.65(35) 9.78, 7.54, 4.857 
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Fig. 5. Elemental partitioning of Ca 0.75 Ce 0.25 ZrTi 1.5 Al 0.5 O 7 samples. Z –Zirconolite, H –Hibonite and C – Corundum. 

Table 2 

Weight fraction, ratio of Ce 3 + /4 + and chemical composition of Ce-Al co-substituted zirconolite samples. 

Substitution level, x Fraction of zirconolite (wt.%) ∗ Ce speciation (%) (Ce 3 + /Ce 4 + , %) Cation stoichiometry in zirconolite phase (f.u.) 

Overall Zirconolite # Ca Ce Zr Ti Al 

0.05 96.9(1) 26.4(8)/73.6(7) 19.5(8)/80.5(7) 0.98(7) 0.02(1) 1.00(10) 1.80(10) 0.24(5) 

0.10 97.4(1) 23.2(6)/76.8(5) 19.2(6)/80.8(5) 0.93(6) 0.07(2) 1.02(6) 1.71(9) 0.33(6) 

0.15 96.0(1) 31.3(5)/68.7(5) 29.0(5)/71.0(5) 0.86(7) 0.11(2) 1.06(10) 1.61(11) 0.39(6) 

0.20 94.7(1) 36.4(6)/63.6(6) 34.6(6)/65.4(6) 0.82(5) 0.15(2) 0.98(6) 1.55(12) 0.57(6) 

0.25 84.9(1) 42.8(4)/57.2(4) 39.1(4)/60.9(4) 0.75(6) 0.26(3) 0.92(6) 1.47(8) 0.66(8) 

0.30 80.8(2) 38.8(3)/61.2(3) 33.0(3)/67.0(3) 0.78(6) 0.23(2) 0.90(9) 1.51(8) 0.59(6) 

0.35 76.3(2) 40.5(2)/59.5(2) 31.6(2)/68.4(2) 0.68(6) 0.27(3) 1.03(8) 1.35(9) 0.71(8) 

∗ Quantitative phase analysis based on Rietveld fits of PXRD results 
# Corrected by assuming the Ce in the impurity is trivalent; 

Fig. 6. Ce L 3 XANES data of Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 and reference compounds of 

CeO 2 and CePO 4 . 

reduction of Ce 4 + to Ce 3 + was required to achieve the charge com- 

position and to maintain overall charge neutrality. Consequently, 

Ce 4 + was auto-reduced to Ce 3 + and the overall ratio of Ce 3 + to 

Ce 4 + was increased. A similar reduction of Ce was observed when 

heat-treating Ca 1-x Ce x ZrTi 2-2x Cr 2x O 7 in air [26] , although the un- 

favourable porous microstructure was observed in the sintered 

specimens. 

Considering the chemical composition given in Table 2 , the 

estimated formula show an increasing trend of Ce incorporation 

within the zirconolite phase. However, the actual Ce loadings were 

slightly lower than targeted, which was attributed to the exis- 

tence of the secondary phases of perovskite ( x = 0.05–0.15) and 

hibonite ( x = 0.15–0.35) incorporating Ce. EDX analysis revealed 

that the Ca site was fully occupied in all cases, with the sum of 

Ca Ca + Ce Ca ≈ 1.0. Ce has a greater tendency toward auto re- 

duction at high temperature, compared to Pu [ 27 , 28 ], this must 

therefore be taken into account when considering Pu 4 + solubility 

within the Ca 1-x Pu x ZrTi 2-2x Al 2x O 7 system. The leaching rate of per- 

ovskite is also known to be higher than that of zirconolite [29] , 

hence the formation of a Pu-bearing perovskite would be undesir- 

able. For comparison, the leaching rate of Ca from Nd-hibonite (Nd 

was employed as analogue for trivalent actinide elements) was de- 

termined to be in the range 10 −4 ~ 10 −3 g •m −2 
•d −1 in deionised 

water at 90 °C after 32 days [30] . This value was comparable to 

that reported in Nd-zirconolite (2.79 × 10 −4 g •m −2 
•d −1 , Ref. 31 ). 

This suggested hibonite might be a durable host for plutonium but 

required the detailed investigation. Compositional data obtained 

in this study suggests that the preferable formulation for CeO 2 is 

Ca 0.8 Ce 0.2 ZrTi 1.6 Al 0.4 O 7 , as targeting this composition yielded the 

highest reasonable fraction of zirconolite at 94.7 wt.% without the 

5 



M.-X. Zhong, B. Walkley, D.J. Bailey et al. Journal of Nuclear Materials 556 (2021) 153198 

Fig. 7. 27 Al MAS NMR spectra (B 0 = 11.7 T, νR = 12.5 kHz) of Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 
samples. 

presence of perovskite, which is representative of a PuO 2 incorpo- 

ration rate of 14.86 wt.%. The actual Pu incorporation rate achiev- 

able may be lower for the Ca 1-x Pu x ZrTi 2-2x Al 2x O 7 system, given the 

lower tendency for auto reduction of Pu 4 + to Pu 3 + as a self-charge 

compensation mechanism when the solubility limit of Al 3 + on the 

Ti 4 + sites is reached. 

Solid-state NMR spectroscopy probing 27 Al was used 

to resolve the local structure surrounding Al within the 

Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 ceramics and to determine whether Al 3 + 

substituted onto the octahedral Ti (I)/(III) sites or the trigonal 

bipyramidal Ti (II) site, shown schematically in Fig. 1 . Solid-state 

NMR spectroscopy can resolve the local environment surrounding 

each atom via differences in the chemical shift ( δ) which arise due 

differences in local coordination and consequent shielding effects 

experienced by the relevant nuclei. Furthermore, differences in the 

local electric field gradient surrounding the nuclei result in varying 

quadrupolar broadening effects, which are able to be observed in 

the spectra and provide information regarding the symmetry of 

the local electric field gradient. 27 Al MAS NMR spectra in Fig. 7 

for the Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 samples exhibit two broad, high 

intensity resonances with maximum intensities at δobs = 9 and 

16 ppm, spanning from -25–25 ppm and 0–30 ppm, respectively, 

as well as a broad, lower intensity resonance with maximum 

intensity at either δobs = 62 ppm ( x = 0.05) or δobs = 68 ppm 

( x = 0.10–0.35). 

Quantitative phase analysis (as discussed above) identifies the 

presence of only zirconolite-2M and perovskite phases in the zir- 

conolite samples with x = 0.05 and 0.10, hence any 27 Al MAS NMR 

resonances in the spectra for these samples must result from Al 

sites within the zirconolite-2M structure. Therefore, the presence 

of a resonance with maximum intensity at δobs = 62 ppm in the 

zirconolite samples where x = 0.05 and 0.10 is attributed to 5- 

coordinated Al species (Al V ) within the trigonal bipyramidal Ti(II) 

site. The large distribution of chemical shifts exhibited and asym- 

metric lineshape by this resonance are consistent with disorder of 

the Ti(II) sites. The resonance associated with the Al V sites (be- 

tween 62–68 ppm) had a significantly lower intensity when com- 

pared to the Al VI sites in the zirconolite sample with x = 0.05, 

which is consistent with the relative bond strength in each site, 

with neutral 5-coordinated Ti-oxygen bond exhibiting the largest 

binding strength [32] and hence being less favourable toward sub- 

stitution of Al 3 + . 

The high intensity resonances at δobs = 9 and 16 ppm were at- 

tributed to Al VI sites within the zirconolite-2M structure and there- 

fore indicate successful doping of Al 3 + onto the Ti(I) and Ti(III) 

sites, forming (Ti,Al)O 6 octahedra. Considering the second coordi- 

nation sphere of the Ti(I) and Ti(III) site in zirconolite-2M structure 

[22] and the differences in electronegativity of Ca and Zr atoms 

( χ = 1.0 and 1.4 for Ca and Zr, respectively), Al atoms occupy- 

ing the Ti(III) sites would experience greater shielding and exhibit 

lower δobs than those occupying Ti(I) sites. The greater intensity at 

lower (more negative) chemical shifts in the broad octahedral res- 

onance for the sample with x = 0.05 compared with that for the 

sample with x = 0.10, indicated that Al substituted for Ti in the 

Ti(III) site preferentially to the Ti(I) site, but as the Al doping level 

was increased, Al also substituted for Ti in the Ti(I) site. This shows 

that there is an effective limit on the extent of Al substitution pos- 

sible on the Ti(III) site. This trend continues as the Al doping level 

is further increased ( x = 0.15 – 0.35), and with an observed in- 

crease in the relative intensity of the 27 Al resonance for Al in the 

Ti(I) site compared to that of Al in the Ti(III) site. 

In order to distinguish the contribution of hibonite the NMR 

spectra for the zirconolite samples with x = 0.15–0.35, 27 Al MAS 

NMR data for pure CaAl 12 O 19 was also acquired (shown in Fig. 

S3 in Supporting Information ). It was reported that hibonite con- 

tains Al in three distinct octahedrally coordinated sites (Al VI ) which 

resonate at δiso (isotropic chemical shift) = 22.3 ppm, 16.26 ppm 

and 9.92 ppm [33] . At fields below 18.8 T, these resonances over- 

lap to a significant extent [ 34 , 35 ], such that only the resonances 

at δiso = 16.26 ppm and 9.92 ppm are clearly visible with the 

resonance at δiso = 22.3 ppm manifested as a shoulder on that 

at δiso = 16.26 ± 0.05 ppm (shown in Fig. S3). The three Al VI 

sites in hibonite will therefore contribute to the spectra presented 

here within the region of δobs at 16 ppm and 9 ppm, respectively 

[ 34 , 36 ]. This is consistent with the presence of a distinct shoulder 

at δobs = 16 ppm on the Al VI resonance with maximum intensity 

at δobs = 9 ppm (Fig. S3). It is noteworthy that the ratio of inten- 

sities of the single Al IV resonance and the three Al VI resonances 

in the 27 Al MAS NMR spectrum of hibonite [34] are not consistent 

with that observed in the spectra presented here (which may be 

considered semi-quantitative due to the measured relaxation delay 

and non-selective pulse used during acquisition, even without de- 

termination of the quadrupolar parameters and simulation of the 

spectra). This, and the observation of an additional shoulder on 

the main octahedral resonance at δobs = - 3pm, indicates that the 

broad octahedral resonance contains dominant contributions from 

resonances due to multiple additional octahedral sites which over- 

lap with those present in hibonite. 

Al 2 O 3 contains a single octahedral Al site that resonates at 

δobs = 13.5 ppm [37] , and may contribute to the NMR data for 

the zirconolite samples with x = 0.25–0.35. The small amount of 

Al 2 O 3 in these samples (1.6–7.4 mol. %), however, is not sufficient 

to account for all of the intensity in the Al VI region of the spec- 

tra for these compositions, again indicating contributions from res- 

onances due to multiple additional octahedral sites which over- 

lap with those present in both hibonite and Al 2 O 3 . Together, the 
27 Al NMR data for all compositions shows that for all doping lev- 

els investigated Al substitutes into both Ti V and Ti VI coordinated 

sites, with a strong preference for substituting onto Ti VI coordi- 

nated sites. In regard to substitution in Ti VI sites, at low doping 

levels, Al substitutes for Ti in the Ti(III) site preferentially to the 

Ti(I) site; but as the Al doping level was increased beyond x = 0.05, 

Al then substitutes for Ti in the Ti(I) site. This suggests that the 
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Fig. 8. Zone axis electron diffraction patterns for Ca 0.75 Ce 0.25 ZrTi 1.5 Al 0.5 O 7 composition, indexed in C2 /c space group as zirconolite-2M. [110] zone axis shown left (a), and 

[ ̄1 2 ̄2 ] zone axis on right (b). 

limit on the extent of Al substitution possible on the Ti(III) site is 

reached at x ≈ 0.05. 

Intergrowth defects in zirconolite structures are commonly ob- 

served, giving rise to variations in the stacking relationship be- 

tween adjacent hexagonal bronze type structural modules. The oc- 

currence of these observed polytypes and intergrowth defects is 

known to depend on the targeted chemical composition, and even 

a small concentration of dopant species (particularly rare earth 

cations) may be sufficient to result in complex intergrowth de- 

fects that are not readily detectable using X-ray powder diffrac- 

tion techniques. However, such intergrowth defects are readily ev- 

idenced in zone axis electron diffraction patterns by characteris- 

tic streaking associated with structural disorder in the correspond- 

ing real space direction. Vance et al. observed that extensive twin- 

ning, stacking disorder and other polytype intergrowths existed in 

uranium doped zirconolite (nominal CaU 0.2 Zr 0.8 Ti 2 O 7 ) [38] . More- 

over, it was reported that Al-Nd co-doped zirconolite derived from 

glass-ceramic exhibited heavy stacking faults [39] . The zone axis 

electron diffraction patterns of the x = 0.25 composition, shown 

in Fig. 8 , are indexed in the C2 /c space group for the zirconolite- 

2M structure. No evidence of streaking is apparent, demonstrating 

the absence of significant twinning or stacking disorder. This also 

demonstrates that zirconolite was present only as the 2M polytype, 

consistent with indexed PXRD data. 

4. Conclusion 

Ce-Al co-doped zirconolite ceramics consistent with 

Ca 1-x Ce x ZrTi 2-2x Al 2x O 7 stoichiometry were fabricated by sin- 

tering at 1450 °C in air. It was revealed that the existence of 

zirconolite-2M as the dominant crystalline phase. The composition 

and weight fraction of accompanying secondary phases were 

dependent on the level of targeted Ce incorporation. Perovskite 

was present (albeit at low concentrations) for compositions for 

which x ≤ 0.15, after which further Ce incorporation appeared to 

stabilise hibonite and alumina as accessory phases, the relative 

weight fraction of which tends to increase with raised levels of 

Ce-doping. It was hypothesised that the solubility limit site was 

reached between x = 0.15–0.20, allowing excess Ce/Al to react 

with perovskite to form hibonite and residual Al 2 O 3 . Al 
3 + occupied 

both 6-fold Ti(I) and Ti(III) sites, with preferential occupation of 

Ti(III) sites, and Ce underwent partial reduction to Ce 3 + . The 

variations in redox behaviour concerning Ce and Pu should be 

considered for final Pu-bearing wasteforms. The most favourable 

phase assemblage with a high zirconolite yield and a high incor- 

poration rate of CeO 2 was produced for the target stoichiometry 

Ca 0.80 Ce 0.20 ZrTi 1.60 Al 0.40 O 7 . Overall, these results are promising for 

progress towards a suitable host phase assemblage for stockpiled 

plutonium. 
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