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Abstract

Scribble-supervised semantic segmentation has gained

much attention recently for its promising performance with-

out high-quality annotations. Due to the lack of supervi-

sion, confident and consistent predictions are usually hard

to obtain. Typically, people handle these problems by either

adopting an auxiliary task with the well-labeled dataset or

incorporating a graphical model with additional require-

ments on scribble annotations. Instead, this work aims

to achieve semantic segmentation by scribble annotations

directly without extra information and other limitations.

Specifically, we propose holistic operations, including min-

imizing entropy and a network embedded random walk on

the neural representation to reduce uncertainty. Given the

probabilistic transition matrix of a random walk, we fur-

ther train the network with self-supervision on its neural

eigenspace to impose consistency on predictions between

related images. Comprehensive experiments and ablation

studies verify the proposed approach, which demonstrates

superiority over others; it is even comparable to some full-

label supervised ones and works well when scribbles are

randomly shrunk or dropped.

1. Introduction

In recent years, the use of neural networks, especially

convolutional neural networks, has dramatically improved

semantic classification, detection, and segmentation [16].

As one of the most fine-grained ways to understand the

scene, typically, semantic segmentation demands large-

scale data with high-quality annotations to feed the net-

work. However, the pixel-level annotating process for se-

mantic segmentation is costly and tedious, limiting its flex-

ibility and usability on some tasks that require rapid de-

ployment [18]. As a consequence, the scribble annotations,

which are more easily available, have become popular.

The main difficulty for scribble-supervised semantic seg-
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Figure 1. From left to right: image, scribble annotation, ground

truth, our prediction. From top to bottom: sample with regular,

shrunk and dropped scribble annotation, respectively.

mentation lies in two aspects. (1) the scribble annotation is

sparse and cannot provide enough supervision for the net-

work to make confident predictions. (2) the scribble annota-

tion varies from image to image, which makes it hard for the

network to produce consistent results. As a consequence,

[18] adopted the classic graphical model as post-processing

to obtain the final dense predictions. Some works [25, 28]

turn to an auxiliary task with well-labeled dataset for help,

but this does not actually remove the burden of annotation

but merely shifts it. To avoid the post-processing and depen-

dence on another well-labeled dataset, [24] design a graph-

ical model with regularized loss to make predictions con-

sistent within the appearance similar neighborhood, but did

not consider semantic similarity. Moreover, they require ev-

ery object in an image to be labeled, which is too strict for

dataset preparation.

We address the task by a more flexible approach with-

out introducing auxiliary supervision and constraints in this

work. The approach can work properly when scribbles on

some objects are randomly dropped or even shrunk to spots.

Several representative results are shown in Fig. 1. We pro-

pose two creative solutions for the problems of confidence

and consistency mentioned above. To reduce uncertainty

when supervision is lacking, we take advantage of two facts

related to semantic segmentation. The first one is that each

pixel only belongs to one category (deterministic), and there



is only one channel of output neural representation that

plays the dominant role. The second one is neural repre-

sentations should be uniform within internal object regions.

Accordingly we present here, for the first time, a solution

involving neural representations which include two specific

operations, minimizing entropy to encourage deterministic

predictions and a network embedded random walk module

to promote uniform intermediates. The transition matrix of

a random walk will also be useful for consistency enhance-

ment later. In general, we make up for the lack of supervi-

sion with scribble annotations by taking advantage of two

priors, determinism and uniformity.

We propose to adopt self-supervision during training as

the second solution for inconsistent results caused by vary-

ing scribble annotations from image to image, which im-

poses consistency on the neural representation before and

after certain input transformation [15]. However, consis-

tency over the whole neural representation usually is not

necessary for semantic segmentation, especially for regions

belonging to the background category, which usually are

semantically heterogeneous. When these regions are dis-

torted and changed heavily after transformation, it is hard

for the network to generate consistent output and may con-

fuse the network in some scenarios. With that in mind and

given the transition matrix of a random walk, we propose to

set self-supervision on the main parts of images by impos-

ing consistent loss on the eigenspace of transition matrix.

The idea is inspired by spectral methods [26], where it has

been observed that the eigenvectors of a Laplacian matrix

have the capability to distinguish the main parts in images,

and some methods use this property for clustering [20] and

saliency detection [12]. Since the eigenspace of a transition

matrix has a close relation to the one of a Laplacian matrix,

our self-supervision on transition matrix’s eigenspace will

also focus on the main image parts.

The proposed approach demonstrates consistent supe-

riority over others on a common scribble dataset and is

even comparable to some fully supervised ones. More-

over, we further conduct experiments when scribbles are

gradually shrunk and dropped. The proposed approach

can still work reasonably, even when the scribble shrunk

to a spot or dropped significantly. Careful ablation stud-

ies are made to verify the effectiveness of every op-

eration. Finally, the code and data are available at

https://github.com/panzhiyi/URSS.

2. Related Work

Scribble-supervised semantic segmentation aims to pro-

duce dense predictions given only sparse scribbles. Exist-

ing deep learning-based works can usually be divided into

two groups: 1) Two-stage approaches [18, 25], which first

obtain full mask pseudo-labels by manipulating scribble an-

notations, and then train the network as usual using seman-

tic segmentation with pseudo-labels. 2) Single-stage ap-

proaches [23, 24], which directly train the network using

scribble annotations by a specific loss function and network

structure. While two-stage approaches can be formulated as

regular semantic segmentation, single-stage approaches are

usually defined to minimize the following function:

L =
∑

p∈ΩL

c(s(x)p, yp) + λ
∑

p,q∈Ω

u(s(x)p, s(x)q), (1)

where Ω is a point set, ΩL is a point set with scribble an-

notations, s(x)i represents prediction at point i given input

x, and yi is the corresponding ground truth. The first term

measures the error with scribble annotations and usually is

in the form of cross-entropy. The second term is a pair-wise

regularization to help generate uniform predictions. The

two terms are harmonized by a weight parameter λ.

For scribble-supervised semantic segmentation, the

graphical model has been prevalently adopted in either two-

stage approaches for generating pseudo-label or one-stage

approaches for loss design. [18] iteratively conduct la-

bel refinement and network optimization through a graph-

ical model. [25] generate high-quality pseudo-labels for

full-label supervised semantic segmentation by optimizing

a graphical model with edge detectors learned from another

well-labeled dataset. These two works require iterative op-

timization or an auxiliary dataset. Instead, [24] add soft

graphical model regularization into the loss function and

explicitly avoid graphical model optimization. Some of

these methods only work well on a dataset where every ob-

ject is labeled by at least one scribble. In general, existing

works have not provided a flexible and efficient solution to

scribble-supervised semantic segmentation yet.

3. Method

Scribble-supervised semantic segmentation usually suf-

fers from uncertain and inconsistent predictions due to lack

of supervision and varying annotations from image to im-

age. In this work, we propose two solutions, viz. uncertainty

reduction on neural representation and self-supervision on

neural eigenspace to address these problems. Compared

with other approaches, we do not rely on auxiliary tasks

with well-labeled datasets and additional requirements for

annotation preparation.

3.1. Uncertainty Reduction on Neural Representa­
tion

To reduce the uncertainty on neural representations, we

take advantage of priors that neural presentations should

be deterministic and uniform for each semantic object.

Thereby, holistic operations are developed and imposed on

neural representation, including minimizing entropy and

network embedded random walk.



Figure 2. Network Pipeline. We use blue and orange flows to represent scribble-supervised training and self-supervised training, respec-

tively. Given an image and its transform, we pass them to ResNet to extract neural representations f(x)L−1, from which the similarity

measurement module (SMM) computes a transition matrix. A random walk is then carried out on f(x)L−1. The results f(x)L are used

for classification. Simultaneously, soft entropy by pseudo-boundaries is minimized to reduce the uncertainty of the neural representation,

and self-supervised loss is set between transition matrices to realize self-supervision on neural eigenspace. During inference, only the blue

flow is activated.

Minimizing entropy

The entropy on the neural representation is defined as:

EΩ = −
1

|Ω|

∑

(i,j)∈Ω

∑

c

s(x)i,j,c · log(s(x)i,j,c), (2)

where s(x) represents the prediction given the input x.

s(x)i,j,c represents the probability that the pixel at position

(i, j) belongs to the c-th category.

Entropy indicates the randomness of a system. Accord-

ing to a classical thermodynamic principle: minimizing en-

tropy results in minimum randomness of a system. Thus,

minimizing entropy on a neural representation will reduce

the uncertainty and force the network to produce deter-

ministic predictions. However, uncertain predictions are

inevitable in places such as object boundaries, and undif-

ferentiated entropy minimization will cause network train-

ing conflict. Correspondingly, we propose to minimize en-

tropy on the neural representation excluding positions cor-

responding to object boundaries, leading to soft entropy:

EΩ−B
= −

1

|Ω−B|

∑

(i,j)∈Ω−B

∑

c

s(x)i,j,c · log(s(x)i,j,c)

(3)

where Ω−B is the point set that excludes object bound-

aries. In this way, minimizing soft entropy will reduce

uncertainty and avoid potential conflicts on object bound-

aries. Since accurate boundaries are hard to acquire, we

only use pseudo boundaries by the no-learning-based super-

pixel method, SLIC [1]. We note that entropy has been ex-

plored for some vision tasks, such as object detection [27],

but with different motivation and implementation. To the

best of our knowledge, minimizing entropy is adopted to

scribble-supervised semantic segmentation for uncertainty

reduction for the first time here.

Network embedded random walk

A random walk operation is defined as:

z = αPy + (1− α)y, (4)

y is the initial state vector, α is a parameter that controls the

degree of random walk, P is transition matrix that measures

the transition possibilities between every two positions, and

we usually set similar positions with a large possibility of

transition [26]. By the definition of Eq. 4, the output state

z after random walk will have more similar states for sim-

ilar positions, resulting in the uniform state within similar

semantic/appearance regions.

Inspired by the characteristic of a random walk, we pro-

pose to embed this operation into the network for uniform

neural representation,

f(x)L = αPf(x)L−1 + f(x)L−1, (5)

where f(x)L−1 is the neural representation of input x in

layer L-1 and f(x)L is the neural representation after ran-

dom walk in layer L, they are both of dimension [M,N,K]

(M ,N and K represent length, width and channel number).

We set α as a learnable parameter to be acquired during

training and define the probabilistic transition matrix P as:

P = softmax (f(x)L−1T f(x)L−1), (6)



Figure 3. Entropy map. Colder color indicates smaller entropy.

where f(x)L−1 is flattened to [MN,K], and

f(x)L−1T f(x)L−1 will produce a matrix of dimen-

sion [MN,MN]. By softmax in the horizontal direction, we

generate a suitable probabilistic transition matrix P with

all units are positive and every row of the matrix sums to 1.

A random walk has been frequently used for semantic

segmentation tasks [5, 11, 2, 3]. However, most of them use

a random walk to diffuse pseudo-labels or refine the initial

predictions. Instead, we use a random walk on the neural

representation for uniform and uncertainty reduction when

given only scribble annotations.

Uncertainty reduction verification

In this part, we verify how the uncertainty is reduced by the

two operations mentioned above. Given several randomly

selected samples, we measure pixel-level entropy maps for

predictions obtained by baseline, networks with proposed

operations individually (+entropy,+soft entropy,+random

walk) and together (+uncertainty reduction (UR)). The re-

sults are visualized in Fig. 3. As expected, the entropy is

decreased by the proposed two operations, and using them

both leads to minimum entropy, albeit object boundaries re-

maining uncertain. The detailed setting of networks will be

given later.

3.2. Self­Supervision on Neural Eigenspace

Self-supervision computes the misfit between the net-

work’s intermediates of the input and its transform, which

forces the network to produce consistent outputs. Self-

supervision has been utilized for unsupervised learning

tasks to provide unsupervised loss [15, 19].

We adopt self-supervision to address the issue of incon-

sistent results caused by varying scribble annotations from

image to image. Several issues need to be considered when

applying self-supervision loss in this work: (1) where the

self-supervision is involved; (2) how the self-supervision

loss is calculated; (3) what kinds of the transform will be

used. We address these issues in the following.

Self-supervision

The most straight forward way to implement self-

supervision is to compute the difference between neural rep-

resentations of the input and its transform:

ss(x, φ) = l(Tφ(f(x)), f(tφ(x))), (7)

where tφ denotes the transform operation on x with φ as a

parameter, while Tφ corresponds to the transform operation

on f(x) (tφ and Tφ are a pair of corresponding transforms

for self-supervision). l is the metric to measure difference.

We denote this kind of consistency as ss(x, φ). There are

several obvious places to apply self-supervision, e.g. neural

representations f(x)L−1 and f(x)L.

Self-supervision on neural eigenspace

However, as for the semantic segmentation task with self-

supervision, we argue that directly calculating loss on the

whole neural representation is not necessary and may not be

optimal. When the image is distorted heavily after the trans-

form, some parts of its neural representation will change

greatly, so minimizing Eq. 7 will be hard and even ambigu-

ous. In this work, given the transition matrix P of the ran-

dom walk in Sec. 3.1, we propose to apply self-supervision

on the neural eigenspace of P .

The eigenspace of transition matrix P and that of the nor-

malized Laplacian matrix L have close relationships [26]. It

can be proved that ΛP =1−ΛL and UP =UL (Λ denotes a di-

agonal matrix with eigenvalues as entries, U denotes a ma-

trix with eigenvectors as columns). According to [13, 12],

columns of UL have the capability to distinguish the main

parts of the images. So, UP will also inherit this property.

We visualize several eigenvectors of P in Fig. 4. As can

be seen, compared with the original neural representations

f(x)L−1 and f(x)L, some eigenvectors of P are better able

to distinguish the main parts from others and neglect some

details, though P is also computed from the neural repre-

sentation. Based on the above analysis, we define the self-

supervision as,

ss(x, φ) = l(UP (Tφ(f(x))), UP (f(tφ(x))))

+ l(ΛP (Tφ(f(x))),ΛP (f(tφ(x)))).
(8)

Figure 4. (a) From top to bottom: scribble-annotation and ground-

truth. (b) From top to bottom: Neural representation before and

after a random walk. (c) Leading eigenvectors of the transition

matrix.



Soft eigenspace self-supervision

Eq. 8 requires explicit eigendecomposition, which is time-

consuming, especially within the deep neural network con-

text. Though there are some approximation methods [8,

29, 22] proposed, their efficiency and stability are still far

from satisfactory. To this end, we develop soft eigenspace

self-supervision, which avoids explicit eigendecomposi-

tion. Firstly, in view of the fact that the matrix’s trace is

equal to the sum of its eigenvalues, we measure the consis-

tency on Λ by computing the difference to the trace of P ,

tr(P ). Secondly, given the consistency on the Λ, we pro-

pose to measure the consistency on the P to obtain consis-

tent U indirectly. In other words, the soft eigenspace self-

supervision loss is defined as:

ssP (x, φ) = la(Tφ(P (x)), P (tφ(x)))

+ γ ∗ lb(tr(Tφ(P (x))), tr(P (tφ(x)))),
(9)

where P (x) denotes P for input x, tr(P (x)) is the trace of

P (x). Since P (x) is a probabilistic transition matrix, we

define la as Kullback-Leibler Divergence, and use the L2

norm for lb. γ is the weight to control the two terms.

Computing efficiency

We set two linear transform operations for self-supervision,

φ ∈(horizontal flip, translation). Compared with the trans-

form that impacts the neural representation, any transform

will lead to a complex change on P and complicate the com-

putation. However, since all transform operations are linear,

the probabilistic transition matrix after transform can be ex-

pressed as the multiplication of the original P with prede-

fined computing matrices to facilitate Eq. 9 computation.

Tφ(P (x)) can be defined as:

Tφ(P (x)) = Tφr · P (x) · Tφc, (10)

where Tφr and Tφc are predefined computing matrices for

the transform φ. In Fig. 5, we visualize computing matrices

for horizontal flip and vertical translation when using soft

eigenspace self-supervision.

4. Implementation

The network is illustrated in Fig. 2, including two mod-

ules (ResNet to extract features, and Similarity Measure-

ment Module (SMM) to compute probabilistic transition

matrix), one specific process (random walk), and three

loss functions (soft entropy, self-supervision, and cross-

entropy). These components realize uncertainty reduc-

tion on neural representation and self-supervision on neural

eigenspace.

A random walk is embedded in the network’s computa-

tion flow and conducted on the final layer right before the

Figure 5. Predefined computing matrices for self-supervision on

eigenspace.

classifier, strictly following Eq. 5 with learned α that con-

trols the degree of random walk. Similarity Measurement

Module computes the inner product distance between any

pairs of neural representation elements and forms the prob-

abilistic transition matrix P as Eq. 6.

We use the pre-trained ResNet [10] with dilation [7] as

the backbone to extract initial neural representations. The

total loss in our work is defined as:

L =
∑

p∈ΩL

c(s(x)p, yp) + ω1EΩ−B
+ ω2 ∗ ssP (x, φ),

(11)

where ω1 and ω2 are predefined weights. The first term

measures the divergence of prediction to ground truth at

positions with scribbles. The second term computes en-

tropy within regions excluding pseudo-boundaries. The

third term is self-supervision on eigenspace. By minimiz-

ing Eq. 11, we are training the network to fit scribbles when

scribbles are available, produce confident predictions and

consistent outcome eigenspace. The random walk embed-

ded in the network will also help generate uniform interme-

diates. Consequently, we overcome difficulties of scribble-

supervised semantic segmentation when given sparse and

random annotations.

The training process has two steps. In the beginning,

only the first two terms participate. At this time, the net-

work may not perform well initially, and self-supervision

will not bring benefits but prevent the optimization. After

the network gets reasonable performance, the whole Eq. 11

is activated.



Figure 6. (a) A representative sample of scribble-drop with the scribble drop rate from 0.1 to 0.5, and the mIoU scores on different settings.

(b) A representative sample of scribble-shrink with the scribble shrink rate from 0 to 1 (point), and the mIoU scores on different settings.

(Zoom in for better visualization)

5. Experiment

5.1. Experiment Setting

Datasets

We perform our experiments on the commonly used

scribble-annotated dataset, scribblesup [18]. This dataset

has 21 classes (including an ignore category) with every ob-

ject in the image labeled by at least one scribble. However,

our approach can work without preconditions. To verify

our advantages, we further prepare two variants of scrib-

blesup with the same training and validation partition. The

first one is scribble-drop, where every object in image ran-

domly drops (i.e. deletes) all scribbles. The second one is

scribble-shrink, where every scribble in the image is shrunk

randomly (even to a spot). We test many settings of the drop

and shrink rate. Fig. 6 shows several representative samples

of scribble-drop and scribble-shrink.

Compared methods

We compare with recently proposed scribble-supervised

methods including scribblesup [18], RAWKS [25],

NCL [23], KCL [24] and BPG-PRN [28], and also

other weakly-supervised methods such as point supervised

(What’sPoint [4]), bounding-box supervised (SDI [14],

BCM [21]) and image-level-label supervised (CIAN [9],

FickleNet [17], SCE [6]). Besides, full-label supervised

method (DeepLabV2 [7]) is also compared. We use mIoU
as the main metric to evaluate these methods and ours.

When comparing with others, we use their reported scores.

Hyper-parameters

All training images are randomly scaled (0.5 to 2), rotated

(-10 to 10), blurred by a Gaussian kernel of size (5,5) with a

standard deviation of 1.1, and flipped for data augmentation,

then cropped to [465,465] before feeding to the network.

f(x)L−1 and f(x)L are of spatial dimension [59,59]. All

the computations are carried out on two NVIDIA TITAN

RTX GPUs. The supplementary material details the set-

ting of γ, ω1, ω2, and training parameters including learning

rate, batch size and epochs.

Uncertainty Reduction
mIoU

entropy boundary random walk

66.8

✓ 69.3

✓ 69.4

✓ ✓ 70.0

✓ ✓ ✓ 70.9

Table 1. Ablation study for uncertainty reduction.

5.2. Ablation Study

In this part, we investigate all operations involved in

Sec. 3. We use Scribblesup dataset for training and vali-

dation. Firstly, we do an ablation study for operations in

Sec. 3.1. Starting with baseline (ResNet50), we gradually

add entropy minimization, boundary exclusion, and random

walk, obtaining networks with different combinations. We

report mIoU in Tab. 1. The first row is the baseline. We can

observe that all operations can obtain better performance,

and using them all leads to the best performance. We get



Self-Supervision
mIoU

transform operation location

flip

f(x)L−1 72.5

f(x)L 72.5

Eigenspace 72.9

translation

f(x)L−1 71.9

f(x)L 70.0

Eigenspace 72.6

random

f(x)L−1 72.4

f(x)L 71.6

Eigenspace 73.0

Table 2. Ablation study for self-supervision.

Figure 7. Variation by different self-supervision. (a) input im-

age, (b) ground truth, (c) (d) (e) variation on f(x)L−1, P (x) and

f(x)L, respectively. The first row shows variations for the flip

operation, while the second row is for the translation operation.

4.1% improvement by uncertainty reduction on neural rep-

resentation in total.

Secondly, we do an ablation study for self-supervision

in Sec. 3.2. Starting with the network getting best score

(70.9%) in Tab. 1, we compare networks after further train-

ing by self-supervision on f(x)L−1, f(x)L and eigenspace

of P (x) with different transform operations. We report

mIoU in Tab. 2. We observe that not all of them would

bring improvement, self-supervision on f(x)L with transla-

tion operation even deteriorates the performance. However,

self-supervision on the eigenspace of P (x) improves the

performance consistently, and randomly selecting transform

operations achieves the best performance. We get 2.1%
(from 70.9% to 73.0%) improvement by self-supervision on

the neural eigenspace.

The eigenspace of P is the feature located behind

f(x)L−1 and in front of f(x)L. To delve into the reason

why self-supervision on eigenspace outperforms others, in

Tab. 3, we show mean variations of f(x)L−1, f(x)L and

P (x) under the same transform (no self-supervision applied

yet). The variation is measured by the relative error de-

fined as |Tφ(f)− f ′|/(|Tφ(f)|+ |f ′|) (f : neural represen-

tation, f ′: neural representation after transform). As can

be seen, the same transform will always lead to less vari-

ation on P (x). In Fig. 7, we visualize variation for self-

supervision on different places. Compared with f(x)L−1

and f(x)L, variation on P (x) is smaller in background re-

gions. This phenomenon indicates that self-supervision on

P (x) can focus on the main parts and avoid training con-

flicts on the background category with unstable semantics,

relieving the training burden.

f(x)L−1 f(x)L P (x)

flip 52.8% 37.5% 6.7%

translation 7.5% 12.0% 3.5%

Table 3. Variation comparison under the same transform operation.

5.3. Quantitative Results

We get mIoU 73.0% with ResNet50 and 74.6% with

ResNet101 on the Scribblesup dataset. When comparing

with others, we also report performance with CRF as oth-

ers. Tab. 4 lists all scores for compared methods. In addi-

tion to scribble-supervised methods, we also show meth-

ods with other label types, such as point and full-label.

The proposed method reaches state-of-the-art performance

compared with other scribble-supervised methods and is

even comparable to the full-label one. The reported full-

label method (DeepLabV2) was additionally pre-trained on

COCO dataset. The supplementary material has more re-

sults by different label types.

Method Ann. Backbone wo/ CRF w/ CRF

What’sPoint P V GG16 46.0 -

SDI B ResNet101 - 69.4

BCM B ResNet101 - 70.2

CIAN I ResNet101 64.1 67.3

FickleNet I ResNet101 64.9 -

SCE I ResNet101 64.8 66.1

DeepLabV2 F ResNet101 76.4 77.7

scribblesup S V GG16 - 63.1

RAWKS S ResNet101 59.5 61.4

NCL S ResNet101 72.8 74.5

KCL S ResNet101 73.0 75.0

BPG-PRN S ResNet101 71.4 -

ours-ResNet50 S ResNet50 73.0 74.7

ours-ResNet101 S ResNet101 74.6 76.1

Table 4. Performance on validation set of Scribblesup. The anno-

tation type (Ann.) indicates: P–point, B-bounding box, I-image,

S–scribble and F–full label.

It should be noted that some methods, such as [18, 25,

24], require every object is labeled. However, ours does

not have this limit. In Fig. 6, we show the performance

under different drop and shrink rates on scribble-drop and

scribble-shrink datasets. As can be seen, with our proposed

solutions, we perform well when the drop rate and shrink

rate increase, even when all scribbles were shrunk to spots.



Figure 8. Visual comparison between ours and others.

Figure 9. Results of the proposed method after being trained on

scribble-drop dataset with different drop rate.

Figure 10. Results of the proposed method after being trained on

scribble-shrink dataset with different shrink rate.

5.4. Qualitative Results

Fig. 8 shows the visual comparison between NCL, KCL,

and ours on three images from the test set of scribblesup.

With the proposed uncertainty reduction (UR) and self-

supervision (SS), results are gradually refined and show sig-

nificant promotion over the baseline and others. (The results

and scores in this section are all from the validation set.)

Fig. 9 and Fig. 10 further demonstrate our results on

scribble-drop and scribble-shrink. It can be seen some de-

tails are missing when scribbles for training set are gradu-

ally shrunk, but the main parts are preserved well. As for

the random drop, our method shows promising robustness.

When each scribble was dropped with 50% probability dur-

ing training, the prediction does not degrade much.

5.5. Computational Resources Consumed

The consumed resources are measured in Tab. 5. Self-

supervision does not need to preserve intermediates nor has

extra parameters and is only adopted during training. Ran-

P (M) M (MB) S (it/s)

Baseline 41.72 2015.5 4.21

+Uncertainty Reduction +1.24 +37.2 +0.32

+Self-Supervision +0 +10.8 +0

Table 5. Parameters (P), memory (M), inference speed (S).

dom walk only requires moderate space to save the transi-

tion matrix. Consequently, the cost of the proposed solu-

tions appears acceptable.

6. Conclusion

In this work, we recognize that semantic segmentation

given only scribble annotations will cause uncertain and in-

consistent predictions. Accordingly, we develop two cre-

ative solutions, uncertainty reduction on neural representa-

tion to produce confident results, and self-supervision on

neural eigenspace for consistency in output. No additional

information and requirement for annotation preparation is

needed. Thorough ablation studies and intermediate visual-

ization have verified the effectiveness of the proposed solu-

tions. Finally, we reach state-of-the-art performance com-

pared with others, even comparable to the full-label super-

vised ones. Moreover, the proposed approach still works

when scribbles are randomly dropped or shrunk.
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els compared to state-of-the-art superpixel methods. IEEE

transactions on pattern analysis and machine intelligence,

34(11):2274–2282, 2012.

[2] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic

affinity with image-level supervision for weakly supervised

semantic segmentation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

4981–4990, 2018.

[3] Nikita Araslanov and Stefan Roth. Single-stage semantic

segmentation from image labels. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2020.

[4] Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and Li

Fei-Fei. What’s the point: Semantic segmentation with point

supervision. In European conference on computer vision.

Springer, 2016.

[5] Gedas Bertasius, Lorenzo Torresani, Stella X Yu, and Jianbo

Shi. Convolutional random walk networks for semantic im-

age segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 858–866,

2017.

[6] Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson

Piramuthu, Yi-Hsuan Tsai, and Ming-Hsuan Yang. Weakly-

supervised semantic segmentation via sub-category explo-

ration. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 8991–9000,

2020.

[7] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834–848, 2017.

[8] Zheng Dang, Kwang Moo Yi, Yinlin Hu, Fei Wang, Pascal

Fua, and Mathieu Salzmann. Eigendecomposition-free train-

ing of deep networks with zero eigenvalue-based losses. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 768–783, 2018.

[9] Junsong Fan, Zhaoxiang Zhang, Tieniu Tan, Chunfeng Song,

and Jun Xiao. Cian: Cross-image affinity net for weakly su-

pervised semantic segmentation. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2020.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[11] Peng Jiang, Fanglin Gu, Yunhai Wang, Changhe Tu, and

Baoquan Chen. Difnet: Semantic segmentation by diffusion

networks. In Advances in Neural Information Processing

Systems, pages 1630–1639, 2018.

[12] Peng Jiang, Zhiyi Pan, Changhe Tu, Nuno Vasconcelos, Bao-

quan Chen, and Jingliang Peng. Super diffusion for salient

object detection. IEEE Transactions on Image Processing,

29:2903–2917, 2019.

[13] Peng Jiang, Nuno Vasconcelos, and Jingliang Peng. Generic

promotion of diffusion-based salient object detection. In

Proceedings of the IEEE International Conference on Com-

puter Vision (ICCV), December 2015.

[14] Anna Khoreva, Rodrigo Benenson, Jan Hosang, Matthias

Hein, and Bernt Schiele. Simple does it: Weakly supervised

instance and semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 876–885, 2017.

[15] Samuli Laine and Timo Aila. Temporal ensembling for semi-

supervised learning. arXiv preprint arXiv:1610.02242, 2016.

[16] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep

learning. nature, 521(7553), 2015.

[17] Jungbeom Lee, Eunji Kim, Sungmin Lee, Jangho Lee, and

Sungroh Yoon. Ficklenet: Weakly and semi-supervised se-

mantic image segmentation using stochastic inference. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 5267–5276, 2019.

[18] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun.

Scribblesup: Scribble-supervised convolutional networks for

semantic segmentation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3159–3167, 2016.

[19] Sudhanshu Mittal, Maxim Tatarchenko, and Thomas Brox.

Semi-supervised semantic segmentation with high-and low-

level consistency. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2019.

[20] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral

clustering: Analysis and an algorithm. In Advances in neural

information processing systems, pages 849–856, 2002.

[21] Chunfeng Song, Yan Huang, Wanli Ouyang, and Liang

Wang. Box-driven class-wise region masking and filling rate

guided loss for weakly supervised semantic segmentation. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), June 2019.

[22] Jian Sun and Zongben Xu. Neural diffusion distance for im-

age segmentation. In Advances in Neural Information Pro-

cessing Systems, pages 1443–1453, 2019.

[23] Meng Tang, Abdelaziz Djelouah, Federico Perazzi, Yuri

Boykov, and Christopher Schroers. Normalized cut loss for

weakly-supervised cnn segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1818–1827, 2018.

[24] Meng Tang, Federico Perazzi, Abdelaziz Djelouah, Ismail

Ben Ayed, Christopher Schroers, and Yuri Boykov. On reg-

ularized losses for weakly-supervised cnn segmentation. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 507–522, 2018.

[25] Paul Vernaza and Manmohan Chandraker. Learning random-

walk label propagation for weakly-supervised semantic seg-

mentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 7158–7166,

2017.

[26] Ulrike Von Luxburg. A tutorial on spectral clustering. Statis-

tics and computing, 17(4):395–416, 2007.

[27] Fang Wan, Pengxu Wei, Jianbin Jiao, Zhenjun Han, and Qix-

iang Ye. Min-entropy latent model for weakly supervised



object detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1297–

1306, 2018.

[28] Bin Wang, Guojun Qi, Sheng Tang, Tianzhu Zhang, Yunchao

Wei, Linghui Li, and Yongdong Zhang. Boundary perception

guidance: A scribble-supervised semantic segmentation ap-

proach. In IJCAI, pages 3663–3669, 2019.

[29] Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, and Math-

ieu Salzmann. Backpropagation-friendly eigendecomposi-

tion. In Advances in Neural Information Processing Systems,

pages 3162–3170, 2019.


