
This is a repository copy of Sampling hypergraphs with given degrees.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179182/

Version: Accepted Version

Article:

Dyer, M orcid.org/0000-0002-2018-0374, Greenhill, C, Kleer, P et al. (2 more authors)
(2021) Sampling hypergraphs with given degrees. Discrete Mathematics, 344 (11).
112566. ISSN 0012-365X

https://doi.org/10.1016/j.disc.2021.112566

© 2021, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Sampling hypergraphs with given degrees

Martin Dyer∗ Catherine Greenhill† Pieter Kleer‡ James Ross†

Leen Stougie§

22 June 2020, revised 11 July 2021

Abstract

There is a well-known connection between hypergraphs and bipartite graphs, ob-
tained by treating the incidence matrix of the hypergraph as the biadjacency matrix of
a bipartite graph. We use this connection to describe and analyse a rejection sampling
algorithm for sampling simple uniform hypergraphs with a given degree sequence. Our
algorithm uses, as a black box, an algorithm A for sampling bipartite graphs with given
degrees, uniformly or nearly uniformly, in (expected) polynomial time. The expected
runtime of the hypergraph sampling algorithm depends on the (expected) runtime of
the bipartite graph sampling algorithm A, and the probability that a uniformly random
bipartite graph with given degrees corresponds to a simple hypergraph. We give some
conditions on the hypergraph degree sequence which guarantee that this probability is
bounded below by a positive constant.

Keywords: hypergraph, degree sequence, sampling, algorithm, Markov chain

1 Introduction

Hypergraphs are combinatorial objects which can be used to abstractly represent general
dependence structures, with applications in many areas including machine learning [29] and
bioinformatics [26]. We consider the problem of efficiently sampling simple, k-uniform hy-
pergraphs with a given degree sequence, either uniformly or approximately uniformly.

More precisely, a hypergraph H = (V,E) consists of a finite set V = V (H) = {v1, . . . , vn}
of n nodes, and a multiset E = E(H) = {e1, e2, . . . , em} of m edges, where each edge is a
nonempty multisubset of V . We say that H is simple if there are no repeated edges in E
and no edge of E contains a repeated node (so E is a set of subsets of nodes). For any node
vi ∈ V , we define the degree of vi by

di = degH(vi) = |{e ∈ E(H) : vi ∈ e}|,

∗School of Computing, University of Leeds, Leeds LS2 9JT, UK. m.e.dyer@leeds.ac.uk
†School of Mathematics and Statistics, UNSW Sydney, NSW 2052, Australia.

c.greenhill@unsw.edu.au, james.ross@unsw.edu.au
‡Tilburg University, Tilburg, The Netherlands. p.s.kleer@tilburguniversity.edu
§CWI, INRIA-Erable, Vrije Universiteit, Amsterdam, The Netherlands. Leen.Stougie@cwi.nl

1

and write d = (d1, . . . , dn) for the degree sequence of H. For a positive integer k, we say
that H is k-uniform if every edge contains exactly k nodes, counting multiplicities when H
is not simple. We then write Hk(d) for the set of k-uniform simple hypergraphs with degree
sequence d. If there is a positive integer d such that di = d for all i ∈ [n], then we write
Hk(n, d) for the set of all k-uniform d-regular simple hypergraphs on n nodes, instead of
Hk(d).

Recently, Deza, Levin, Meesum & Onn [13] proved that the construction problem for
simple 3-uniform hypergraphs is NP-hard. That is, given d it is NP-hard to decide whether
there exists a 3-uniform simple hypergraph with degree sequence d. This implies that it
is not possible to approximate |Hk(d)| efficiently in general, since approximate counting
can distinguish 0 from a positive number. Moreover, hardness of construction also directly
implies that (approximate) uniform sampling is a difficult problem in general.

Arafat et al. [2] recently gave an algorithm to construct a non-simple hypergraph with
given degrees and edge sizes. Chodrow [9] considered Markov Chain Monte Carlo approaches
for generating such hypergraphs. We emphasize that throughout this work, we only consider
simple hypergraphs. To the best of our knowledge, the only rigorously-analysed algorithm
for this problem in the literature is the configuration model, see Section 2.2.

Our approach is based on the well-known connection between hypergraphs and bipartite
graphs. We first fix some notation for bipartite graphs and then explain this relation. A bi-
partite graph B = (X∪Y,A) consists of a bipartitionX = {x1, . . . , xn} and Y = {y1, . . . , ym}
of nodes, and an edge set A ⊆ X × Y = {{x, y} : x ∈ X, y ∈ Y }. For a pair of nonnegative
integer sequences d = (d1, . . . , dn) and k = (k1, . . . , km), let B(d,k) be the set of all simple
bipartite graphs B such that

degB(xi) = di for all xi ∈ X, and degB(yj) = kj for all yj ∈ Y.

We say that (d,k) is the (bipartite) degree sequence of B. Note that if
∑n

i=1 di ∕=
∑m

j=1 kj,
then B(d,k) = ∅. If there is a fixed integer k such that kj = k for all j ∈ [m], then
we write B(d, k) instead of B(d,k), and we call such bipartite graphs half-regular. If in
addition d = (d, d, . . . , d) is regular then we write B(n, d, k). For any node v ∈ X ∪ Y , let
NB(v) = {w ∈ X ∪ Y : {v, w} ∈ A} be the neighbourhood of node v in B.

Every hypergraph H = (V,E) can be represented as a bipartite graph BH , as follows.
Fix a labelling of the edges of H, say E = {e1, . . . , em}, then let

X = V, Y = E and A =
{

{vi, ej} ∈ X × Y | vi ∈ ej

}

.

If H ∈ Hk(d) then B(H) ∈ B(d, k). Conversely, every bipartite graph B = (X ∪ Y,A)
corresponds to a hypergraph HB = (V,E), where V = X and

E = {NB(y) | y ∈ Y }.

Furthermore, HB is simple if and only if every node in Y has a distinct set of neighbours in
B; that is, if NB(yi) = NB(yj) implies i = j. If HB is simple then we say that the bipartite
graph B is H-simple.

Write B∗(d, k) for the set of all H-simple half-regular bipartite graphs, and define ϕ :
B∗(d, k) → Hk(d) as the canonical mapping that maps B to HB, as described above. We can

2

use rejection sampling to turn any sampling algorithm for B(d, k) into a sampling algorithm
for Hk(d), as follows:

HypergraphSampling(d, k,A)
Input: Parameters (d, k);

algorithm A for sampling from B(d, k).
Begin

repeat
sample B from B(d, k) using A
until B is H-simple

output ϕ(B)
end.

Note that for all H ∈ Hk(d) we have |ϕ−1(H)| = m!, as there are m! distinct ways to label
the edges of H when H is simple. Hence, if A samples uniformly from B(d, k) then the
output of HypergraphSampling is uniform over Hk(d).

The expected number of times HypergraphSampling draws a sample from B(d, k),
using algorithm A, depends on the proportion of bipartite graphs in B(d, k) which are H-
simple: that is, the ratio |B∗(d, k)|/|B(d, k)|. The goal of our work is to identify pairs (d, k)
for which |B(d, k)|/|B∗(d, k)| is bounded above by a polynomial in n. For such pairs, if the
output of A is close to uniform then this implies that the expected number of times we run
A before an H-simple element of B(d, k) is found is at most polynomial. We also identify
pairs (d, k) for which the ratio is bounded above by a constant, in which case only a constant
number of calls to A are expected. This is made more specific in the next subsection.

1.1 Our contributions

The total variation distance between two probability distributions σ, π on a set Ω is given
by

dTV (σ, π) =
1

2

∑

x∈Ω

|σ(x)− π(x)| = max
S⊆Ω

|σ(S)− π(S)|. (1.1)

Suppose that the distribution of the output of algorithm A on B(d, k) is σB, and let σH be the
output of the algorithm HypergraphSampling. Then σH is a distribution on Hk(d) which
is obtained by setting H = ϕ(B) where B has distribution σB, conditioned on B ∈ B∗(d, k).
To make it clear which distribution we are using, we write Pσ for the probability mass
function of the distribution σ. Let πB be the uniform distribution on B(d, k), and let πH be
the uniform distribution on Hk(d).

A fully-polynomial almost uniform sampler (FPAUS) for sampling from a set Ω is an
algorithm that, with probability at least 3

4
, outputs an element of Ω in time polynomial in

log |Ω| and log(1/ε), such that the output distribution is ε-close to the uniform distribution
π on Ω in total variation distance: that is, dTV (σ, π) ≤ ε. If Ω = B(d, k) or Ω = Hk(d) then
log |Ω| = O(M logM) for M =

∑n
i=1 di: this follows from [18, Theorem 1.3], restated below

as Theorem 4.1. So an FPAUS for Hk(d) or B(d, k) must have running time bounded above
by a polynomial in M and log(1/ε).

3

Denote by ρ(d, k) the runtime of an algorithm for testing H-simplicity, when run on inputs
from B(d, k). Given B ∈ B(d, k), we can test whether ϕ(B) is H-simple by creating the edges
of ϕ(B) and sorting them lexicographically, requiring O(M logM) time and O(M) space.
(Better implementations may be possible.) Hence we can assume that ρ(d, k) = O(M logM),
and that the H-simplicity test also creates the hypergraph ϕ(B). Our first result summarises
the properties of the algorithm HypergraphSampling (d, k,A) in terms of the output
distribution and runtime of A, and the runtime ρ(d, k) of the H-simplicity test. The proof
of Theorem 1.1, which is fairly standard, is presented in Section 3.

Theorem 1.1. Suppose that n is a positive integer, d = (d1, . . . , dn) is a sequence of positive
integers, and k is a positive integer such that k ≥ 3 and B∗(d, k) is non-empty.

(i) The output distribution σH of HyperGraphSampling satisfies

dTV (σH, πH) ≤
3

2
·
dTV (σB, πB)

PπB
(B∗(d, k))

.

(ii) The expected runtime of HypergraphSampling(d, k,A) is

q(d, k)
(

τ(d, k) + ρ(d, k)
)

where q(d, k)−1 = PσB
(B∗(d, k)) is the probability that a sampled bipartite graph is H-

simple and τ(d, k) is the (expected) runtime of algorithm A on B(d, k). Furthermore,
the probability that HyperGraphSampling needs more than t q(d, k) iterations of A
before finding an element of B∗(d, k) is at most exp(−t) for any t > 0.

(iii) Suppose that dTV (σB, πB) ≤ ε and PπB
(B∗(d, k)) ≥ 1 − c0 for some ε ∈ (0, 1) and

c0 ∈ (0, 1− ε). Then

dTV (σH, πH) ≤
3ε

2(1− c0)

and the expected runtime of HypergraphSampling(d, k,A) is at most

(1− c0 − ε)−1
(

τ(d, k) + ρ(d, k)
)

.

(iv) If A is an FPAUS for B(d, k) and the assumptions of (iii) hold, then we can trans-
form HypergraphSampling(d, k,A) into an FPAUS for Hk(d) by terminating after
⌈2(1− c0 − ε)−1⌉ calls to A and reporting FAIL.

Remark 1.2. For Theorem 1.1(iv) to provide an FPAUS with an explicit upper bound on
the runtime, explicit bounds are needed on ε, c0 and ρ(d, k). However, for Theorem 1.1(iii)
it is enough to know that sufficiently small values of c0, ε exist.

Remark 1.3. We require O(M) space to store a bipartite graph B ∈ B(d, k), or the corre-
sponding hypergraph ϕ(B). It follows that the space complexity of HypergraphSampling

is bounded above by the sum of O(M) and the space complexity of the chosen algorithm A.

4

We see from Theorem 1.1 that dTV (σB, πB) and PπB
(B∗(d, k)) are the two crucial quanti-

ties which control both the expected runtime of HypergraphSampling(d, k,A), and how
far the output varies from uniform. The first of these quantities is determined by the choice
of algorithm A. In our next two theorems, we provide a lower bound on PπB

(B∗(d, k)) when
d = (d, d, . . . , d) is regular, and give an asymptotic lower bound on this probability which
holds when d is irregular but sparse.

Theorem 1.4. Let n ∈ N, d ∈ N and k ≥ 3 so that m = nd/k ∈ N and
(

m
2

)

<
(

n
k

)

. Then

PπB
(B∗(n, d, k)) ≥ 1−

(

m

2

)(

n

k

)−1

.

Hence Theorem 1.1(iii) applies when
(

m
2

)

≤ c0
(

n
k

)

for some c0 ∈ (0, 1−ε), where dTV (σB, πB) ≤
ε.

Remark 1.5. When k ≥ 3 is a fixed constant, the lower bound in Theorem 1.4 is 1− o(1) if
d = o(nk/2−1).

Theorem 1.6. Assume that for each positive integer n we have an integer k = k(n) ≥ 3
and a sequence d = d(n) = (d1, . . . , dn) of positive integers such that M =

∑n
i=1 di tends

to infinity with n. Suppose that k divides M for infinitely many values of n. Assume that
k2d2max = o(M) and let πB be the uniform distribution on B(d, k). Then

PπB
(B∗(d, k)) ≥ 1− nk dkmax

Mk
·

(

M/k

2

)(

n

k

)−1

· (1 + o(1)).

Writing m = M/k and d = M/n, we see that Theorem 1.1(iii) applies when

(

dmax

d

)k (

m

2

)

≤ c0

(

n

k

)

(1.2)

for some c0 ∈ (0, 1− ε), where dTV (σB, πB) ≤ ε.

In the hypergraph setting, m is the number of edges and d is the average degree of any
hypergraph in Hk(d).

Remark 1.7. When k ≥ 3 is a fixed constant, the lower bound in Theorem 1.6 is 1− o(1) if
dmax = o(M1−2/k). Similarly, if k ≥ 3 is a fixed constant and dmax = O(d) then the lower
bound in Theorem 1.6 is 1− o(1) whenever d2 = o(nk−2), as in the regular case.

There are several algorithms A in the literature for efficiently sampling from B(d, k),
either uniformly or almost uniformly, under various conditions on d and k. These will be re-
viewed in Section 2.1, together with the properties of the resulting algorithm Hypergraph-

Sampling(d, k,A). In Section 2.2 we discuss the configuration model for hypergraphs, which
can be used as an expected polynomial-time sampling algorithm when kdmax = O(log n).

Then in Section 3 we provide a general framework which we use to analyse the algorithm
HypergraphSampling. In Section 4 we fill in the details for the regular regime (Theorem
1.4) and the irregular, sparse regime (Theorem 1.6).

5

2 Related work

2.1 Various bipartite sampling algorithms, and implications

In this section we describe several algorithms for efficient sampling from B(d, k), uniformly or
almost uniformly, under various conditions on d, k. We also apply Theorem 1.1 to describe
when HypergraphSampling(d, k,A) is an efficient algorithm for sampling from Hk(d)
(uniformly or near-uniformly), for each choice of A. We focus on the time complexity of
these algorithms, as most authors have not stated the space complexity of their algorithms.

The first two algorithms mentioned below perform exactly uniform sampling from B(d, k).

(I) If kdmax ≤ C log n then the bipartite configuration model gives rise to an algorithm for
sampling (exactly) uniformly from B(d, k). But the bipartite configuration model is
equivalent to the configuration model for hypergraphs, described in Section 2.2, and so
there is no advantage to working in the bipartite graph setting when kdmax ≤ C log n.
(See Lemma 2.3).

(II) Next suppose that (dmax + k)4 = O(M). Building on the work of [17, 24], Arman,
Gao and Wormald [3, Theorem 4] describe an algorithm which samples uniformly
from B(d, k) with expected runtime O(M) and space complexity O(nM). Note that
dTV (σB, πB) = 0 as the output is exactly uniform. Using this algorithm as A and
applying Theorem 1.1, we see that HypergraphSampling(d, k,A) performs exact
sampling from Hk(d) with expected runtime O(M + ρ(d, k)) whenever (1.2) holds for
some constant c0 ∈ (0, 1). In particular, this holds whenever (d, k) are as described in
Remark 1.7.

The next algorithm produces output which is asymptotically uniform, meaning that the
output distribution is only o(1) from uniform in total variation distance.

(III) If dmax+k = O(M1/4−τ) for some positive constant τ then the algorithm from [3] can be
applied, as described in (II). An alternative is to use the sampling algorithm of Bayati,
Kim and Saberi [4, Theorem 1], which has expected runtime O(dmaxM) (see the proof
of [4, Theorem 1]). The output of this algorithm satisfies dTV (σB, πB) = o(1), where
this vanishing term depends only on n and cannot be made smaller by increasing the
runtime of the algorithm. Hence we can take ε = o(1) in Theorem 1.1, and conclude
that for this choice of A, the algorithm HypergraphSampling(d, r,A) has expected
runtime O(dmaxM + ρ(d, k)) whenever (1.2) holds for some constant c0 ∈ (0, 1), and
the distribution of the output is within o(1) of uniform: that is, dTV (σH, πH) = o(1).

Remark 2.1. Although the Arman, Gao and Wormald algorithm applies for a slightly wider
range of values of (d, k), has a better expected runtime bound and performs exactly uniform
sampling, the Bayati, Kim and Saberi algorithm has one advantage: it is much easier to
implement. Indeed, Bayati, Kim and Saberi [4, Theorem 3] used sequential importance sam-
pling to give an algorithm which is close to an FPAUS, except that the runtime is polymial
in 1/ε, while in an FPAUS the dependence should be on log(1/ε). However, this algorithm

6

is valid only when dmax = O(M1/4−τ) for some τ > 0 and no longer has the advantage of
simplicity, and so it is surpassed by the fast, precisely uniform sampling algorithm of Ar-
man, Gao and Wormald [3], described in (II) above. (Other authors, such as Chen et al. [8],
have used sequential importance sampling to sample bipartite graphs with given degrees,
but without rigorous analysis.)

Now we survey some algorithms which are FPAUSs for B(d, k). Each can be used as A
to give an FPAUS for Hk(d), using Theorem 1.1(iv), so long as (1.2) holds (or

(

m
2

)

≤ c0
(

n
k

)

when d is regular) for some c0 ∈ (0, 1 − ε). The runtime of each of these algorithms is
the mixing time of their underlying Markov chain multiplied by the cost of performing a
single step of the chain, the latter being an implementation-dependent cost. In all cases, the
polynomial bound on the mixing time is quite a high-degree polynomial and is not believed
to be tight. We do not always state the mixing time.

(IV) Jerrum, Sinclair and Vigoda [21] described and analysed a simulated annealing algo-
rithm which gives an FPAUS for sampling perfect matchings from a given bipartite
graph. As a corollary, they obtained an FPAUS for sampling bipartite graphs for given
degrees [21, Corollary 8.1]. Bezáková, Bhatnagar and Vigoda [5] adapted the algorithm
from [21] to provide a simplified FPAUS for B(d, k), valid for any (d, k), with running
time

O((nm)2M3
∆ log4(nm/ε)),

where n and m are the number of nodes in each part of the bipartition, and ∆ =
max{dmax, k}.

(V) Another well-studied Markov chain for sampling (bipartite) graphs with given degrees
is the switch Markov chain. It is the simplest Markov chain which walks on the set
of all (bipartite) graphs with a given degree sequence, as it deletes and replaces only
two edges at a time. The chain has been used in many contexts, including contingency
tables [14], and was first applied to bipartite graphs by Kannan, Tetali and Vempala
[22]. The mixing time of the switch chain has been shown to be polynomial for various
bipartite and general degree sequences, see for example [1, 10, 16, 19, 25, 27]. If
a Markov chain leads to an FPAUS then we say that the Markov chain is rapidly
mixing. In particular

– Tikhomirov and Youssef [27] considered the switch Markov chain on regular bi-
partite graphs (in which d = k), and proved a sharp Poincaré inequality and an
optimal upper bound on the log-Sobolev constant for the switch chain. With
these results, they demonstrated that for some constant c > 0, when 3 ≤ d ≤ nc

the mixing time of the switch Markov chain on d-regular bipartite graphs is at
most

O
(

dn(dn log dn+ log(2ε−1)
)

.

This is a significant improvement on the previously known bounds in other set-
tings.

– Miklos, Erdős and Soukup [25] showed that the switch Markov chain is rapidly
mixing for half-regular bipartite degree sequences (in which one part of the bipar-
tition has regular degrees). An explicit polynomial bound is not clearly stated.

7

– Cooper, Dyer and Greenhill [10] considered regular graphs and showed that the
switch chain is rapidly mixing on the set of all d-regular graphs, for any d = d(n).
Their analysis was extended by Greenhill and Sfragara [19] who adapted the
proof to sparse, irregular degree sequences. Neither of these works explicitly
treated bipartite graphs, though the arguments in both papers are simpler when
restricted to bipartite graphs. In Corollary A.3 we state an upper bound on
the mixing time of the switch chain on B(d, k) which arises from the arguments
of [10, 19] when 3 ≤ dmax ≤ 1

3

√
M . Specifically we show that in this range, the

switch chain has mixing time

∆
10M7

(

1
2
M log(M) + log(ε−1)

)

where ∆ = max{dmax, k}.

– Jerrum and Sinclair [20] defined a notion of P-stability for degree sequences.
Roughly speaking, a degree sequence d is P-stable if small perturbations to d

only change the number of realisations (graphs with degree sequence d) by a small
amount. The notion of P-stable can be adapted to bipartite graphs. Amanatidis
and Kleer [1] defined a possibly stronger notion, strong stability, and showed that
the switch chain is rapidly mixing for any strongly stable degree sequence, and for
any strongly stable bipartite degree sequence. Erdős et al. [16] proved that the
switch chain is rapidly mixing for any P-stable class of bipartite degree sequences.

(VI) The Curveball chain [28] is another Markov chain for sampling bipartite graphs with
given degrees, in which multiple switches are performed simultaneously. Carstens and
Kleer [7] showed that the Curveball chain is rapidly mixing whenever the switch chain
is rapidly mixing.

Remark 2.2. We have focussed on uniform hypergraphs, but our approach can be adapted
to non-uniform hypergraphs. Given a vector k = (k1, . . . , km) which stores the desired edge
sizes, let mℓ be the number of edges of size ℓ, that is,

mℓ = |{j ∈ [m] : kj = ℓ}|

for ℓ ≥ 2. Each hypergraph H on [n] with edge sizes given by k and with degree sequence
d corresponds to exactly

∏n
ℓ=2 mℓ! bipartite graphs from B(d,k), as now we must restrict

to edge labellings e1, . . . , em so that |ej| = kj for j = 1, . . . ,m. All of the bipartite graph
sampling algorithms mentioned in this section generalise to B(d,k), with the exception of
the result by Miklos, Erdős and Soukup regarding the switch chain for half-regular bipartite
graphs [25].

2.2 Sampling hypergraphs using the configuration model

To the best of our knowledge, the only rigorously-analysed algorithm for sampling hyper-
graphs with given degrees is the configuration model. The analogue of the configuration

8

model for hypergraphs has been used by various authors, for example, in the study of ran-
dom hypergraphs [12] and for asymptotic enumeration [15]. In the configuration model
corresponding to Hk(d) there are n objects, called cells, and the ith cell contains di (la-
belled) points. A configuration is a partition of the M =

∑n
i=1 di points into M/k parts,

each containing k points. A random configuration can be chosen in O(M) time. Shrinking
each cell to a node gives an k-uniform hypergraph which may contain loops (that is, an edge
containing a node more than once) or repeated edges. If the resulting hypergraph is not
simple then the configuration is rejected and a new random configuration is sampled. We
say that a configuration is simple if the corresponding hypergraph is simple.

Hence, the configuration model can be used for efficient sampling when the probability
that a randomly chosen configuration is simple is bounded below by the inverse of some
polynomial in n. This implies that the expected number of trials before a simple configuration
is found is at most polynomial.

It follows from asymptotic results of Dudek, Frieze, Ruciński and Šileikis [15] that when
d = (d, d, . . . , d) is regular and k ≥ 3 is constant, the expected number of trials before a
simple configuration is sampled is

exp
(

1
2
(k − 1)(d− 1) + o(1)

)

assuming that k = 3 and d = d(n) = o(n1/2), or k ≥ 4 and d = d(n) = o(n). (Asymptotics
are as n → ∞, restricted to values of n such that dn is divisible by k.) For irregular degrees,
let M2 = M2(d) =

∑n
j=1 dj(dj − 1). It follows from [6, Corollary 2.3] that the expected

number of trials before a simple configuration is sampled is

exp

(

(k − 1)M2

2M
+ o(1)

)

≤ exp
(

1
2
(k − 1)(dmax − 1) + o(1)

)

whenever k4d3max = o(M). Here k = k(n) and d = d(n) are such that k divides M for
infinitely many values of n. We collect these facts together into the following lemma.

Lemma 2.3. The configuration model gives an efficient algorithm for sampling uniformly
from Hk(d) whenever kdmax = O(log n). If kdmax ≤ C log n for some constant C > 0 then the
expected runtime of this algorithm for Hk(d) is O(nC M) = O(dmax n

C+1). If kd = o(log n)
then the expected runtime of this algorithm is O(M) = O(dmaxn). Note dTV (σH, πH) = 0 as
the output is exactly uniform.

Gao and Wormald [17] built on earlier work of McKay and Wormald [24] to give a fast
algorithm for exactly uniform sampling of d-regular graphs. Using a recent improvement
of Arman, Gao and Wormald [3], a uniformly random d-regular graph on n vertices can be
generated in expected runtime O(dn+ d4) whenever d = o(n1/2), and a random graph with
degree sequence d can be generated in runtime O(M) whenever d4max = O(M). It is likely
that this approach could be adapted to the problem of sampling hypergraphs uniformly.

3 Analysis of HypergraphSampling

First we prove Theorem 1.1.

9

Proof of Theorem 1.1. To prove (i), observe that by definition,

σH(H) =
∑

B∈ϕ−1(H)

PσB
(B | B ∈ B∗(d, k)) =

1

PσB
(B∗(d, k))

·
∑

B∈ϕ−1(H)

σB(B).

This equality also holds with σH, σB replaced by πH, πB, respectively. Since the set of all
preimages {ϕ−1(H) : H ∈ Hk(d)} forms a partition of B∗(d, k), and using the triangle
inequality, we have

dTV (σH, πH) =
1
2

∑

H∈Hk(d)

| σH(H)− πH(H) |

≤ 1
2

∑

H∈Hk(d)

∑

B∈ϕ−1(H)

∣

∣

∣

∣

σB(B)

PσB
(B∗(d, k))

− πB(B)

PπB
(B∗(d, k))

∣

∣

∣

∣

≤ 1
2

∑

B∈B∗(d,k)

∣

∣

∣

∣

σB(B)

PπB
(B∗(d, k))

− πB(B)

PπB
(B∗(d, k))

∣

∣

∣

∣

+ 1
2

∑

B∈B∗(d,k)

∣

∣

∣

∣

σB(B)

PσB
(B∗(d, k))

− σB(B)

PπB
(B∗(d, k))

∣

∣

∣

∣

≤ dTV (σB, πB)

PπB
(B∗(d, k))

+ 1
2
·

∣

∣

∣

∣

1

PσB
(B∗(d, k))

− 1

PπB
(B∗(d, k))

∣

∣

∣

∣

∑

B∈B∗(d,k)

σB(B)

≤ 3
2
·
dTV (σB, πB)

PπB
(B∗(d, k))

.

The final inequality follows from applying (1.1) with S = B∗(d, k).
Next, (ii) is immediate as the number of times that HyperSampling calls A has a

geometric distribution with mean q(d, k), and we test whether B is H-simple once for every
call of A. We assume here that the test for H-simplicity also creates the hypergraph ϕ(B),
so there is no additional cost for the final (output) step of the algorithm. Then, (1.1) implies
that

q(d, k)−1 = PσB
(B∗(d, k)) ≥ PπB

(B∗(d, k))− ε,

and (iii) follows.
Finally, suppose that A is an FPAUS for B(d, k) and (1.2) holds for some c0 ∈ (0, 1− ε).

It follows from (ii) and (iii) that the probability that HypergraphSampling(d, k,A) per-
forms more than ⌈2(1− c0− ε)−1⌉ iterations of A is at most e−2 ≤ 1

4
. Therefore, terminating

HypergraphSampling(d, k,A) after this many calls to A gives an FPAUS for Hk(d). To
achieve a total variation of ε from HypergraphSampling(d, k,A), the algorithm A should
be given input ε′ = 2ε (1− c0)/3, by (i).

A general approach for bounding PπB
(B∗(d, k)) is given by the following lemma. The

constant c1 in Lemma 3.1 captures the maximum edge probability relative to the uniform
case (in which every neighborhood is equally likely). If c1 is large then some neighbourhoods
are much more likely under σB than they would be under the uniform distribution. The
extent to which the events “NB(y) = W” are negatively correlated, as y varies over Y for

10

fixed W ⊆ X, is described by the constant c2. Intuitively, if the degree sequence is close to
regular then we expect both c1 and c2 to be close to one.

Lemma 3.1. Suppose that k ≥ 3 is an integer, d is a sequence of nonnegative integers such
that B(d, k) is non-empty, and that B = (X ∪ Y,A) ∈ B(d, k) is a random bipartite graph
according to the uniform distribution πB. Then, suppose that there are constants c1 and c2
such that for any y, y′ ∈ Y and any subset W ⊆ X of size k,

PπB
(NB(y) = W) ≤ c1 ·

(

n

k

)−1

and
PπB

(NB(y
′) = W | NB(y) = W) ≤ c2 · PπB

(NB(y
′) = W).

Then

PπB
(B∗(d, k)) ≥ 1− c1c2

(

m

2

)(

n

k

)−1

.

Proof. Let B be an element from the set B(d, k) drawn uniformly at random, and let X{k}

be the set of all k-subsets of X. We omit the subscript πB on all following probabilities. For
1 ≤ s < t ≤ m, we define the random variable

Zst =

{

1 if NB(ys) = NB(yt)
0 otherwise,

for ys, yt ∈ Y , and we let

Z =
∑

1≤s<t≤m

Zst

be the random variable denoting the number of pairs of nodes (ys, yt) that have the same
neighborhood in B. Note that

P (B ∈ B∗(d, k)) = 1− P(Z ≥ 1). (3.1)

Using the union bound over all possible pairs of nodes (ys, yt),

P(Z ≥ 1) ≤
∑

1≤s<t≤m

P(Zst = 1).

Likewise, for a fixed pair of nodes (ys, yt), applying the union bound over X{k} shows us that

P(Zst = 1) ≤
∑

W∈X{k}

P(NB(ys) = NB(yt) = W).

Now, using the law of total probability,

P(Z ≥ 1) ≤
∑

1≤s<t≤m

∑

W∈X{k}

P(NB(ys) = NB(yt) = W)

=
∑

1≤s<t≤m

∑

W∈X{k}

P(NB(ys) = W | NB(yt) = W) · P(NB(yt) = W)

≤ c1c2

(

m

2

)(

n

k

)−1

. (3.2)

The proof is completed by combining (3.1) and (3.2).

11

4 Probability of H-simplicity

The expected running time of HypergraphSampling is governed by the runtime of al-
gorithm A and the probability that a randomly chosen element of B(d, k) is H-simple. In
Section 4.1 we provide an asymptotic estimate which holds when d is irregular and sparse.
In Section 4.2 we give a combinatorial argument for the case of d-regular k-uniform hyper-
graphs. In particular, these sections yield Theorem 1.6 and Theorem 1.4, respectively.

4.1 Irregular, sparse degrees

In this section we prove a lower bound on the probability that a uniformly random graph
from B(d, k) is H-simple, using an asymptotic formula for irregular, sparse bipartite graphs.
Given a bipartite degree sequence (d,k), for any positive integer r define Mr =

∑n
i=1(di)r

and Lr =
∑m

j=1(kj)r, where (a)b = a(a − 1) · · · (a − b + 1) denotes the falling factorial. Let
L = L1 and M = M1, and note that L = M for any graphical bipartite degree sequence. We
also let dmax = maxi di and kmax = maxj kj.

The following asymptotic enumeration result is a simpler, but weaker restatement of the
main theorem from [18], which is slightly stronger than that of McKay [23]. (It follows from
Theorem 4.1 that B(d,k) ∕= ∅ when kmaxdmax = o(M2/3).)

Theorem 4.1. ([18, Theorem 1.3]) Suppose that M → ∞, and that d = (d1, . . . , dn),
k = (k1, . . . , km) are sequences of nonnegative integer functions of M which both sum to M .
If kmaxdmax = o(M2/3) then

|B(d,k)| =
M !

∏n
i=1 di!

∏m
j=1 kj!

exp

(

− M2L2

2M2
+O

(

d2maxk
2
max

M

)

)

.

Using this enumeration result, we can prove the main result of this section. First some
useful identities which will be used in the proof without further comment: if |η| < 1 then
exp(η) = 1 +O(η) and (1 + η)−1 = 1 +O(η). Also observe that if k2 = o(M) then

Mk

(M)k
≤ Mk

(M − k)k
=

(

1− k/M
)−k

= exp
(

O(k2/M)
)

= 1 +O(k2/M). (4.1)

Theorem 4.2. Assume that for each positive integer n we have an integer k = k(n) ≥ 3
and a sequence d = d(n) = (d1, . . . , dn) of positive integers such that M =

∑n
i=1 di tends

to infinity with n. Assume that k2d2max = o(M) and let πB be the uniform distribution on
B(d, k). Then

PπB
(B∗(d, k)) ≥ 1− nk dkmax

Mk
·

(

M/k

2

)(

n

k

)−1

· (1 + o(1)).

Proof. Let m = M/k, which by assumption is an integer. Then, suppose that we have some
neighbourhood W ∈ X{k}, and two integers s, t ∈ [m]. We will prove the desired result by
conditioning on the neighbourhoods of ys and yt being equal to W , at which point we can

12

apply Lemma 3.1. To do this, we first define two bipartite degree sequences (d ′,k′) and
(d ′′,k′′), as follows:

d ′
i =

{

di − 1 if xi ∈ W ,
di if xi ∈ X \W ,

and k′
j =

{

0 if j = s,
k if j ∈ [m] \ {s},

and

d ′′
i =

{

di − 2 if xi ∈ W ,
di if xi ∈ X \W ,

and k′′
j =

{

0 if j ∈ {s, t},
k if j ∈ [m] \ {s, t}.

We also extend the notation forM andM2 to d
′ and d

′′ by appending one or two dashes, and
likewise for L and L2. By assumption, k2d2max = o(M), which implies that kdmax = o(M1/2).
Hence, the conditions of Theorem 4.1 are satisfied, and we can approximate both |B(d,k)|
and |B(d ′,k′)|. Considering the ratio of these, since d ′

i = di whenever xi /∈ W , and k′
j = kj

whenever j ∕= s, many factors cancel, leading to

|B(d ′,k′)|

|B(d, k)|
=

k!

(M)k
·
∏

xi∈W

di · exp

(

M2L2

2M2
− M ′

2L
′
2

2(M ′)2
+O(k2d2max/M)

)

. (4.2)

Next, by definition of M ′
2, we see that

M ′
2 = M2 −

∑

xi∈W

(di)2 +
∑

xi∈W

(di − 1)2 = M2 − 2
∑

xi∈W

(di − 1) = M2

(

1−O
(

kdmaxM
−1
2

))

.

Similarly,

M ′ = M − k = M
(

1−O
(

kM−1
))

, L′
2 = (k − 1)M ′ = L2

(

1−O
(

kM−1
))

.

Then

M2L2

2M2
− M ′

2L
′
2

2(M ′)2
≤ M2L2

2M2
− M2L2

2M2
·
(

1−O
(

kdmaxM
−1
2 + kM−1

))

= O
(

kdmaxL2M
−2 + kM2L2M

−3
)

= O

(

k2dmax

M

)

.

The final equality follows as M2 ≤ dmaxM and L2 = (k − 1)M . Therefore, combining the
above identities with (4.1) and (4.2) implies that

|B(d ′,k′)|

|B(d,k)|
=

k!

Mk
·
∏

xi∈W

di ·
(

1 +O(k2d2max/M)
)

. (4.3)

Next, observe that there is a bijective relationship between bipartite graphsB0 ∈ B(d ′,k′),
and bipartite graphs B ∈ B(d,k) such that NB(ys) = W , using the map B /→ B0 = B \{ys}
which deletes vertex ys and reduces the degrees of each neighbour of ys by 1. Hence,

PπB
(NB(ys) = W) =

|B(d ′,k′)|

|B(d,k)|
. (4.4)

13

By assumption, k2d2max = o(M), so using (4.3) we find that
(

n

k

)

· PπB
(NB(ys) = W) ≤ nkdkmax

Mk
· (1 + o(1)) . (4.5)

We can use a similar argument to prove a bound on the conditional edge probability needed
for Lemma 3.1. Observe that if d and k satisfy the conditions of Theorem 4.1 then so do d

′′

and k
′′. Hence, we can repeat the argument that produces (4.4) followed by the substitutions

used above to see that

PπB
(NB(yt) = W | NB(ys) = W) =

|B(d ′′,k′′)|

|B(d ′,k′)|

=
k!

(M − k)k
·
∏

xi∈W

(di − 1) ·
(

1 +O(k2d2max/M)
)

.

We will divide this expression by the one given in (4.3) to obtain, using (4.4),

PπB
(NB(yt) = W | NB(ys) = W)

PπB
(NB(yt) = W)

=
(M)k

(M − k)k
·
∏

xi∈W

(

1− 1

di

)

·
(

1 +O(k2d2max/M)
)

≤ (M)k
(M − k)k

·
(

1 +O(k2d2max/M)
)

= 1 + o(1),

using (4.1) and the assumption that k2d2max = o(M). From the above inequality and (4.5),
we can apply Lemma 3.1 with

c1 =
nkdkmax

Mk
· (1 + o(1)) and c2 = 1 + o(1),

to complete the proof.

4.2 Regular degrees

In this section we present a combinatorial argument to establish a lower bound on the
probability that a uniformly random graph from B(d, k) is H-simple, when d = (d, d, . . . , d)
is regular. We first prove a ‘sensitivity result’ for the set of all bipartite graphs with given
degrees. We show that adjusting the degrees on one side of the bipartition, to make them
closer to regular, can only increase the number of bipartite graphs. It is possible that this
result is known, though we could not find it in the literature. We give a proof in Section 4.2.1
for completeness.

Proposition 4.3. Let n,m ∈ N and let (d,k) be a bipartite degree sequence for the biparti-
tion X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Suppose that we have integers g, h ∈ [n] such
that dg ≥ dh + 2 and define d

′ by

d′i =

di − 1 if i = g
di + 1 if i = h
di if i ∈ [n] \ {g, h}.

14

Then
|B(d,k)| ≤ |B(d′,k)|.

Using this proposition, we now prove Theorem 1.4.

Proof of Theorem 1.4. Let B = (X ∪ Y,A) ∈ B(n, d, k) so that all nodes in X are d-regular
and all nodes in Y are k-regular. Throughout the proof we let W ∈ X{k} be a fixed
neighbourhood of size k, and we consider two fixed nodes ys, yt ∈ Y .

We will prove the desired result by conditioning on the neighbourhoods of ys and yt
being equal to W , at which point we can apply Lemma 3.1. To do this, let U ∈ X{k} be any
k-subset of X. We will analyse

PπB
(NB(ys) = U | NB(yt) = W). (4.6)

Our goal will be to show that (4.6) achieves a minimum at U = W . Let △ denote the
symmetric difference operator. Given W = NB(yt), for any subset U ⊆ X{k} of size k, we
define a new bipartite degree sequence (dU ,kU) by

dUi =

di − 2 if xi ∈ U ∩W
di − 1 if xi ∈ U △ W
di if xi ∈ X \ (U ∪W)

and kU
j =

{

0 if yj ∈ {ys, yt}
k if yj ∈ Y \ {ys, yt}

.

Now, when U ∈ X{k} and |U △ W| > 0, we can select a node xg ∈ U \W and xh ∈ W \ U ,
and create a new neighbourhood U ′ = (U ∪ {xh}) \ {xg}. Then, we see that dU

′

is equal to
dU whenever i /∈ {g, h}, and that dU is a more locally balanced degree sequence than dU

′

.
Hence, dU

′

and dU satisfy the conditions of Proposition 4.3, and applying Proposition 4.3 we
conclude that

∣

∣

∣
B(dU ′

,kU ′

)
∣

∣

∣
≤

∣

∣B(dU ,kU)
∣

∣.

Since |U △ W| > 0 is at most 2k, we can repeat the above process a finite number of times
to conclude that for any U ∈ X{k},

∣

∣B(dW ,kW)
∣

∣ ≤
∣

∣B(dU ,kU)
∣

∣. (4.7)

Since
∣

∣B(dU ,kU)
∣

∣

|B(d,k)|
= PπB

(NB(yt) = W) · PπB
(NB(ys) = U | NB(yt) = W ,)

the inequality in (4.7) implies that for any U ,W ∈ X{k}, we have

PπB
(NB(ys) = W | NB(yt) = W) ≤ PπB

(NB(ys) = U | NB(yt) = W). (4.8)

But X{k} has size
(

n
k

)

, so summing over all possible choices for U ∈ X{k} in (4.8) shows us
that (since the probabilities on the right must sum to unity)

PπB
(NB(ys) = W | NB(yt) = W) ≤

(

n

k

)−1

.

15

Since d and k are both regular, by symmetry every possible W ∈ X{k} is equally likely;
hence

PπB
(NB(yt) = W) =

(

n

k

)−1

.

Thus we can apply Lemma 3.1 with c1 = c2 = 1 to conclude that

PπB
(B∗(d, k)) ≥ 1−

(

m

2

)(

n

k

)−1

.

This completes the proof.

4.2.1 Sensitivity result for bipartite degree sequences

In this section we prove Proposition 4.3.

Proof of Proposition 4.3. Let n,m ∈ N and let (d,k) be a bipartite degree sequence for the
bipartition X, Y . Suppose that g, h ∈ [n] are chosen such that dg ≥ dh + 2. We emphasise
that g and h are fixed throughout the proof. Let △ denote the symmetric difference operator.
For any B = (V,E) such that B ∈ B(d,k), let

R2(B) = NB(xg) ∩NB(xh), R1(B) = NB(xg) △ NB(xh),

and let S(B) be defined by

S(B) = ({xg, xh}×R2(B)) ∪ {e ∈ E : e ∩ {xg, xh} = 0}.

We see that S(B) is the set of all edges from B which contain vertices y ∈ Y that are adjacent
to both xg and xh, or adjacent to neither of these vertices. Next, let S be the collection of
possible values for S(B):

S(d,k) = {S(B) : B ∈ B(d,k)}.

Observe that S(d,k) ⊆ S(d′,k), since in any B ∈ B(d,k) with S(B) = S0, we may create
a bipartite graph B′ ∈ B(d′,k) with S(B′) = S0 by deleting the edge xg y and replacing it
with xh y, for some y ∈ NB(xg).

For any S0 ∈ S(d,k), we let T (S0;d,k) be the subset of B(d,k) defined by

T (S0;d,k) = {B ∈ B(d,k) : S(B) = S0}.

Then the set {T (S0;d,k) : S0 ∈ S(d,k)} forms a partition of B(d,k). Similarly, the set
{T (S0;d

′,k) : S0 ∈ S(d,k)} forms a partition of B(d′,k).
We claim that |T (S0;d,k)| ≤ |T (S0;d

′,k)| for every S0 ∈ S(d,k). To see this, first
note that for any B ∈ B(d,k), the sets R1(B) and R2(B) depend only on S(B). Hence
we will instead write R1(S0), R2(S0) for these sets, where S0 = S(B). Further, for every
B ∈ T (S0;d,k) the degree of vertex xi ∈ X in E \ S0 is

{

di − |R2(S0)| if i ∈ g, h,

0 otherwise,

16

and vertex yj ∈ Y has degree 1 if j ∈ R1(S0), or 0 otherwise. Next, let S ′
0 be any set of

bipartite edges satisfying this degree sequence. Then S0 ∩ S ′
0 = ∅ by construction, and the

combined bipartite degree sequence of S0 ∪ S ′
0 is (d,k). Hence, the bipartite graph with

edges S0∪S ′
0 is an element of T (S0;d,k), and every element of T (S0;d,k) is created exactly

once in this way. It follows that for all S0 ∈ S(d,k),

|T (S0;d,k)| =

(

dg + dh − 2|R2(S0)|

dg − |R2(S0)|

)

≤
(

d′g + d′h − 2|R2(S0)|

d′g − |R2(S0)|

)

= |T (S0;d
′,k)|,

since d′g = dg − 1 ≥ dh + 1 = d′h. This verifies the claimed inequality. Finally, we see that

|B(d,k)| =
∑

S0∈S(d,k)

|T (S0;d,k)| ≤
∑

S0∈S(d,k)

|T (S0;d
′,k)| ≤ |B(d′,k)|,

which completes the proof of Proposition 4.3.

Acknowledgements

We are grateful to the referees for their helpful comments.
Research was supported by the Netherlands Organisation for Scientific Research (NWO)

through Gravitation Programme Networks 024.002.003. Martin Dyer is supported by the
EPSRC research grant EP/S016562/1 “Sampling in hereditary classes”. Catherine Greenhill
is supported by the Australian Research Council Discovery Project DP190100977.

Pieter Kleer acknowledges that part of this work was carried out while he was a postdoc-
toral fellow at the Max Planck Institute for Informatics in Saarbrúcken, Germany.

References

[1] G. Amanatidis and P. Kleer, Rapid mixing of the switch Markov chain for strongly
stable degree sequences, Random Structures & Algorithms, 57(3) (2020), 637–657.

[2] N.A. Arafat, D. Basu, L. Decreusefond and S. Bressan, Construction and random gen-
eration of hypergraphs with prescribed degree and dimension sequences, in Database
and Expert Systems Applications (DEXA 2020), Lecture Notes in Computer Science
vol. 12392, Springer, Berlin, 2021, pp. 130–145.

[3] A. Arman, P. Gao and N. Wormald, Fast Uniform Generation of Random Graphs with
Given Degree Sequences, Proceedings of IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS 2019), IEEE, 2019, pp. 1371–1379.

[4] M. Bayati, J.-H. Kim and A. Saberi, A sequential algorithm for generating random
graphs, Algorithmica 58(4) (2010), 860–910.

[5] I. Bezáková, N. Bhatnagar, E. Vigoda, Sampling binary contingency tables with a greedy
start, Random Structures & Algorithms 30(1-2) (2007), 168–205.

17

[6] V. Blinovsky and C. Greenhill, Asymptotic enumeration of sparse uniform linear hyper-
graphs with given degrees, Electronic Journal of Combinatorics 23(3) (2016), #P3.17.

[7] C. J. Carstens and P. Kleer, Speeding up switch Markov chains for sampling bipartite
graphs with given degree sequence, in Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, APPROX/RANDOM 2018, vol. 116 of
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018, pp. 36:1–36:18.

[8] Y. Chen, P. Diaconis, S. P. Holmes and J. S. Liu. Sequential Monte Carlo methods for
statistical analysis of tables, Journal of the American Statistical Association 100(469)
(2005), 109–120.

[9] P. S. Chodrow, Configuration models of random hypergraphs, Journal of Complex Net-
works 8(3) (2019), cnaa018

[10] C. Cooper, M. Dyer and C. Greenhill. Sampling regular graphs and a peer-to-peer
network. Combinatorics, Probability and Computing 16(4) (2007), 557–593.

[11] C. Cooper, M.E. Dyer and C. Greenhill, Corrigendum: Sampling regular graphs and a
peer-to-peer network. arXiv:1203.6111

[12] C. Cooper, A. Frieze, M. Molloy and B. Reed, Perfect matchings in random r-regular,
s-uniform hypergraphs, Combinatorics, Probability and Computing 5(1) (1996), 1–14.

[13] A. Deza, A. Levin, S.M. Meesum and S. Onn, Hypergraphic degree sequences are hard,
Bulletin of the EATCS 127 (2019).

[14] P. Diaconis and A. Gangolli, Rectangular arrays with fixed margins, in D. Aldous,
P. Diaconis, J. Spencer and J.M. Steele (eds.), Discrete Probability and Algorithms,
Springer–Verlag, New York, (1995), pp. 15–41.

[15] A. Dudek, A. Frieze, A. Ruciński, M. Šileikis, Approximate counting of regular hyper-
graphs, Information Processing Letters 113(19-21) (2013), 785–788.

[16] P. L. Erdős, C. Greenhill, T.R. Mezei, I. Miklos, D. Soltész, L. Soukup, The mix-
ing time of the swap (switch) Markov chains: a unified approach. Preprint (2019).
arXiv:1903.06600

[17] P. Gao and N. Wormald, Uniform generation of random regular graphs, SIAM Journal
on Computing 46(4) (2017), 1395–1427.

[18] C. Greenhill, B.D. McKay and X. Wang, Asymptotic enumeration of sparse 0-1 matri-
ces with irregular row and column sums, Journal of Combinatorial Theory (Series A)
113(2) (2006), 291–324.

[19] C. Greenhill and M. Sfragara, The switch Markov chain for sampling irregular graphs
and digraphs, Theoretical Computer Science 719 (2018), 1–20.

18

[20] M. Jerrum and A. Sinclair, Fast uniform generation of regular graphs, Theoretical Com-
puter Science 73(1) (1990), 91–100.

[21] M. Jerrum, A. Sinclair and E. Vigoda, A polynomial-time approximation algorithm for
the permanent of a matrix with non-negative entries, Journal of the ACM 51(4) (2004),
671–697.

[22] R. Kannan, P. Tetali and S. Vempala, Simple Markov chain algorithms for generating
random bipartite graphs and tournaments, Random Structures & Algorithms 14(4)
(1999), 293–308.

[23] B.D. McKay, Asymptotics for 0-1 matrices with prescribed line sums, in Enumeration
and Design, Academic Press, Toronto, 1984, pp. 225–238.

[24] B.D. McKay and N.C. Wormald, Uniform generation of random regular graphs of
moderate degree, Journal of Algorithms 11(1) (1990), 52–67.

[25] I. Miklos, P. L. Erdős and L. Soukup, Towards random uniform sampling of bipartite
graphs with given degree sequence, Electronic Journal of Combinatorics 20(1) (2013),
#P16.

[26] R. Patro, C. Kingsford, Predicting protein interactions via parsimonious network history
inference, Bioinformatics 29(13) (2013), i237–i246.

[27] K. Tikhomirov, P. Youssef, Sharp Poincaré and log-Sobolev inequalities for the switch
chain on regular bipartite graphs. Preprint (2020). arXiv:2007.02729

[28] N.D. Verhelst, An efficient MCMC algorithm to sample binary matrices with fixed
marginals, Psychometrika 73(4) (2008), 705.

[29] D. Zhou, J. Huang, B. Schölkopf, Learning with hypergraphs: Clustering, classifica-
tion, and embedding, in Advances in Neural Information Processing Systems 19, 2006,
pp. 1601–1608.

A Mixing time bounds for the switch Markov chain

The switch Markov chain was analysed by Cooper, Dyer and Greenhill [10, 11] for regular
graphs, and by Greenhill and Sfragara [19] for irregular graphs that are relatively sparse.
Some situations which lead to additional factors in the mixing time bounds from [10, 11, 19]
do not arise in bipartite graphs, and so it is possible to improve the mixing time bounds
for bipartite graphs. To the best of our knowledge, these bounds have not been presented
elsewhere, so we write them down here. The proofs from [10, 11, 19] use the multicommodity
flow method, and are quite long and technical. We do not give full details, but rather explain
how the proofs from [10, 11, 19] can be adapted to the bipartite setting, and give the resulting
mixing time bounds. For all notation that is not defined, and all other missing details, we
refer the reader to [10, 11, 19].

19

We begin with regular bipartite graphs, where there are n nodes in each side of the
bipartition and all nodes have degree d. (We stress that this case is not particularly relevant
for the problem of sampling hypergraphs, unless the hypergraph is d-regular and d-uniform.)
For regular bipartite graphs, the bound on the bipartite switch chain is a factor of 1

32
d6n2

smaller than the general (not-necessarily-bipartite) case. (The constant factor 32 in Theorem
A.1 below arises since graphs in B(n, d, d) have 2n nodes.)

Theorem A.1. Let B(n, d, d) be the set of d-regular bipartite graphs with 2n nodes and a
given bipartition. Then the mixing time of the bipartite switch chain on B(n, d, d) satisfies

τ(ε) ≤ 32d17n6
(

2dn log(2dn) + log(ε−1)
)

.

Proof. Temporarily, write N = 2n, for ease of comparison with [10, 11]. The flow can be
defined in exactly the same way as in [10], though a shortcut edge will never be needed.
(Every circuit decomposes into 1-circuits.) Hence there will be at most 3 defect edges, two
labelled −1 and one labelled 2, all incident with the “start vertex” x0 of the 1-circuit. At
most two switches are needed to transform any encoding into a graph, and [10, Lemma
4] becomes |L(Z)| ≤ 2d4N3|B(n, d, d)|. (This is smaller by a factor of d2N2 than in the
non-bipartite case, essentially because we save one (-1)-switch in the worst case, which costs
d2N2.)

In the bipartite case, we save a factor of d4 compared with [11, Lemma 1] (which is a
correction of [10, Lemma 5]). This is because there can be at most 10 bad pairs in the
yellow-green colouring, not 14. Recall that each bad pair contributes a factor of d. (There
are at most 3 bad pairs from each defect edge, plus at most one additional bad pair from
wrapping around at x0. Alternatively, we no longer have a shortcut edge, which in [10, 11]
was responsible for up to 4 bad pairs, so 14 goes down to 10.)

Combining these effects, we save a factor of d6N2 compared to the mixing time from [11,
Theorem 1]. Note that we have ℓ(f) ≤ dN/2 and, as there are dn edges in any element of
B(n, d, d),

1/Q(e) ≤ 4

(

nd

2

)

|B(n, d, d)| ≤ 1
2
d2N2 |B(n, d, d)|,

which saves an additional factor of 1
2
compared with [10, 11].

Let ∆ = max{dmax, kmax}. By adapting the analysis from [19], we can prove a bound
in the irregular case which is a factor of ∆4M2 smaller than in the general (not-necessarily-
bipartite) case.

Theorem A.2. Let B(d,k) be the set of all bipartite graphs with a given node bipartition,
degrees d on the left and degrees k on the right. Suppose that all degrees are at least 1 and
that 3 ≤ dmax, kmax ≤ 1

3

√
M . Then the mixing time of the bipartite switch chain satisfies

τ(ε) ≤ ∆
10M7

(

1
2
M log(M) + log(ε−1)

)

.

Proof. We have 1/Q(e) ≤ M2 |B(d,k)| and ℓ(f) ≤ M/2, as in [19, Theorem 1.1]. Arguing
as above, the number of bad pairs is at most 10, not 14, saving a factor of ∆4. The main

20

thing is the critical lemma [19, Lemma 2.5], where we give an upper bound on the number
of encodings. We claim that

|L∗(Z)| ≤ 2M4|B(d,k)|

so long as ∆ ≤ 1
3

√
M , say.

In [19, Lemma 2.5], we only performed a (−1, 2)-switching if we had four defect edges.
This was to ensure that we definitely had a (−1)-defect edge incident with a 2-defect edge:
but when there is no shortcut edge, this is already guaranteed when we have three defect
edges. Therefore, letting

a = 2∆2M, b = 2∆2, c = 9
8
M2

be the upper bounds that we proved in [19, Lemma 2.5] on the various ratios, we obtain

|L∗(Z)| ≤ (1 + b+ c+ bc+ c2 + ac) |B(d,k)|.

(The saving here is replacing bc2 by ac, and in omitting the terms involving b2 or abc or ac2,
which were needed in [19] to deal with the shortcut edge.) Using the bounds 3 ≤ ∆ and
∆

2 ≤ M/9, we see that
|L∗(Z)| ≤ 2M4.

This is a factor of M2 smaller than the corresponding bound given in [19, Lemma 2.5], again
because (in the worst case) we save a (−1)-switch, which gives a ratio of 9

8
M2. Combining

this with the earlier saving of ∆4, we obtain the stated bound.

The following corollary is most relevant to sampling uniform hypergraphs with given
degrees. It follows directly from Theorem A.2 by considering a regular sequence k.

Corollary A.3. Let B(d, k) be the set of all bipartite graphs with a given node bipartition,
degrees d = (d1, . . . , dn) on one side and with m nodes of degree k on the other. Let M =
km =

∑n
j=1 dj. Suppose that all degrees are at least 1 and that 3 ≤ dmax, k ≤ 1

3

√
M . Then

the mixing time of the bipartite switch chain satisfies

τ(ε) ≤ ∆
10M7

(

1
2
M log(M) + log(ε−1)

)

where ∆ = max{dmax, k}.

21

