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Abstract

The aim of variable selection is the identification of the most important predictors
that define the response of a linear system. Many techniques for variable selection
use a constrained least squares (LS) formulation in which the constraint is imposed
in the 1-norm (the lasso), or the 2-norm (Tikhonov regularisation), or a linear com-
bination of these norms (the elastic net). It is always assumed that a constraint
must necessarily be imposed, but the consequences of its imposition have not been
addressed. This assumption is considered in this paper and it is shown that the
correct application of Tikhonov regularisation to the overdetermined LS problem
min ‖Ax− b‖2 requires that A and b satisfy a condition C. If this condition is satis-
fied, then the solution of the LS problem with this constraint is numerically stable
and the regularisation error e between the solution of this problem and the solution
of the LS problem is small. If, however, the condition C is not satisfied, then the error
e is large. The condition C is derived from a refined normwise condition number of
the solution of the LS problem. The paper includes examples of regularisation and
variable selection with correlated variables that illustrate the theory in the paper.

Key words: Ridge regression (Tikhonov regularisation); condition number;
discrete Picard condition; regularisation error; lasso
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1 Introduction

The identification of the most important parameters (predictors) that define
the response of a linear system is important for statistical modelling of physical
systems. Many predictors are included in the initial model of the linear system,
but the identification of the most important predictors requires a reduction
in the number of predictors from the initial large number by the elimination
of some of them, such that a simpler model is obtained. This process of the
elimination of predictors that are not important for the characterisation of the
linear system is called variable selection and it arises in several applications,
including text mining [2] and medical imaging [12].

A linear model of a system is defined by the equation

y = Xβ + ǫ, (1)

where X ∈ R
n×p, n ≥ p, rankX = p, y ∈ R

n, β ∈ R
p and ǫ is the noise.

Equation (1) is solved in the least squares (LS) sense for β, which yields the
equation

XTXβ = XTy, (2)

whose solution is

βLS = X†y, X† =
(

XTX
)−1

XT . (3)

The solution βLS is, in general, not sparse and it is therefore not suitable for
variable selection. Also, a small relative change in y may cause a large relative
change in βLS, which is unsatisfactory. These problems are addressed by the
imposition of a constraint on βLS, such that a modified solution β̂(λ1, λ2) of
(1) is sought,

β̂(λ1, λ2) = arg min
β∈Rp

{

‖y −Xβ‖22 + λ1 ‖β‖1 + λ2 ‖β‖22
}

, (4)

where λ1 ≥ 0 and λ2 ≥ 0 are parameters whose values define the severity
with which the constraints are imposed. The condition λ1 = 0, λ2 > 0 yields
Tikhonov regularisation [6], the condition λ1 > 0, λ2 = 0 yields the lasso [10],
and the condition λ1, λ2 > 0 yields the elastic net [14]. Tikhonov regularisation
is called ridge regression in the machine learning and statistics literature, but
the term Tikhonov regularisation is used in this paper.

The function ‖v‖0 is a measure of the sparsity of v because it is equal to the
number of its non-zero elements, but it is not a norm because it does not
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satisfy the triangle inequality. The best convex approximation of ‖v‖0 is ‖v‖1,
and thus the condition λ1 > 0, λ2 = 0 is used to impose sparsity on βLS. The
condition λ1 = 0, λ2 > 0 is different because it reduces ‖βLS‖ but it does not
impose sparsity on βLS.

Tikhonov regularisation is discussed extensively in the numerical analysis lit-
erature [6] but this literature is not cited by researchers in computational
statistics and thus concepts from computational linear algebra, for example,
regularisation error and condition estimation, are not considered in compu-
tational statistics. It is shown in this paper that Tikhonov regularisation can
be applied to (2) only if X and y satisfy the discrete Picard condition [6,
§4.5], and more generally, a regularised solution must satisfy two fundamental
properties when λ1 and λ2 assume their optimal values, λ∗

1 and λ∗
2 respectively:

(1) It is numerically stable, that is, a small relative error in y causes a small
relative error in β̂(λ∗

1, λ
∗
2).

(2) The error e(λ∗
1, λ

∗
2) between βLS and β̂(λ∗

1, λ
∗
2), that is, the regularisation

error, is small,

e(λ∗
1, λ

∗
2) =

∥

∥

∥β̂(λ∗
1, λ

∗
2)− βLS

∥

∥

∥

‖βLS‖
≪ 1.

Consider the situation defined by λ1 = 0 and λ2 > 0, in which case the singular
value decomposition (SVD) of X allows considerable analytical progress to be
made. Closed form expressions for the error e(0, λ2) and the stability of β̂(0, λ2)
are derived, and it is shown that the requirement of a stable solution and a
small error are satisfied if X and y satisfy the discrete Picard condition and
λ2 assumes its optimal value λ∗

2. These issues are considered in detail in this
paper and examples that illustrate the theoretical results are included.

The algorithm for variable selection is considered in Section 2 and it is shown
that it contains two computations, called the forward and inverse problems.
Expressions for their effective condition numbers, which are refined measures
of their stability, are derived in Section 3, and they allow detailed analysis of
Tikhonov regularisation, which is considered in Section 4. The discrete Picard
condition is introduced and it is shown that the satisfaction of this condition
is critical for the correct application of Tikhonov regularisation because it
guarantees that the solution β̂(0, λ∗

2) satisfies the two properties stated above.

The matrix X is arbitrary in Sections 3 and 4, but it is restricted to a design
matrix with correlated covariates in Section 5. Examples of variable selection
with correlated covariates and the application of regularisation to (2) are in
Section 6, and the paper is summarised in Section 7.

The work described in this paper extends the work in [13] because several
important issues are addressed:
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(1) Only the effective condition number of the inverse problem is considered
in [13], but this paper considers the effective condition numbers of the
forward and inverse problems. This allows analysis of the uncertainty
principle, which is discussed briefly in [13], and it is shown that the form
of the uncertainty principle is dependent on the order in which the forward
and inverse problems are solved. An example of regression that shows the
importance of the uncertainty principle is in [13, §3].

(2) Numerical issues associated with the computation of the effective con-
dition numbers of the forward and inverse problems are considered in
Section 4, but they are not addressed in [13]. It is shown that a distinc-
tion must be made between the stability/instability of the forward and
inverse problems, and the stability/instability of their effective condition
numbers.

(3) The discrete Picard condition is associated with the solution of an inverse
problem, but the literature does not show that it can also be associated
with the solution of the forward problem in variable selection. This as-
sociation arises because variable selection requires that both the forward
and inverse problems be solved, and it is shown that this condition al-
lows theoretical and numerical issues associated with these problems to
be considered.

(4) Variable selection with correlated covariates is discussed in Section 5, but
this issue is not considered in [13]. The examples in Section 6 show the
different forms of the graphs of two methods, the generalised cross vali-
dation (GCV) and L-curve, for the calculation of the optimal value of the
regularisation parameter. In particular, these graphs assume radically dif-
ferent forms, dependent upon the need, or otherwise, to impose Tikhonov
regularisation. This result emphasizes the care with which regularisation
must be applied because its application when it is not required causes a
degradation in the computed solution. This distinction between the cor-
rect and incorrect application of Tikhonov regularisation is not addressed
in the statistics literature.

2 Variable selection

The algorithm for variable selection is shown in Algorithm 1 and it is assumed
that λ1 = 0 and λ2 6= 0, and the algorithm for the more general condition
λ1, λ2 6= 0 follows easily. The value of λ2 is defined in lines 13 and 14 of the
algorithm by the GCV [1], [3], [4, Chapter 15] and [6, §7.4], and by the L-
curve [4, Chapter 15], [5] and [6, §4.6]. The two fundamental computations
are in lines 9 and 10 of the algorithm, and extensive reference is made to them.
The best solutions from Algorithm 1 are obtained by selecting the variables
associated with the columns of X that correspond to the dominant non-zero
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entries in the solution vector β. This selection is shown in Example 6.3.

Algorithm 1 Variable selection

1: Input: X, β,N % N is the number of trials
2: Output: Errors e0, e1 and e2 of, respectively, the LS solution, and the

regularised solutions using the GCV and the L-curve to determine the
regularisation parameter.

3: % Initialise the scalars that store the errors.
4: e0 ← 0, e1 ← 0, e2 ← 0
5: % Start the loop for the number of trials N in the presence of noise.
6: for i = 1 : N do

7: % Compute the response in the presence of noise ǫ and solve
8: % the LS problem.
9: y ← Xβ + ǫ
10: βLS ← X†y
11: % If regularisation is required, compute the regularisation parameters
12: % using the GCV and L-curve, and apply Tikhonov regularisation.
13: λGCV = GCV(X, y)
14: λLcurve = Lcurve(X, y)

15: β
(

λGCV
)

= Tikhonov
(

X, y, λGCV
)

16: β
(

λLcurve
)

= Tikhonov
(

X, y, λLcurve
)

17: % Calculate the errors in βLS, β
(

λGCV
)

and β
(

λLcurve
)

.

18: e0 ← e0 +
‖β−βLS‖2

‖β‖
2

19: e1 ← e1 +
‖β−β(λGCV)‖

2

‖β‖
2

20: e2 ← e2 +
‖β−β(λLcurve)‖

2

‖β‖
2

21: end for

22: % Calculate the mean errors.
23: e0 ← e0

N
, e1 ← e1

N
, e2 ← e2

N

Proposition 2.1 Consider (1) in which y is computed from X, β and ǫ. This
model leads to the linear system

y = X(β + δβ),

where δβ is the component of ǫ that lies in the column space R(X) of X .

Proof The noise ǫ is written as ǫ = ǫ1 + ǫ2 where ǫ1 ∈ R(X) and ǫ2 is
orthogonal to R(X). There therefore exists a vector δβ such that ǫ1 = Xδβ,
and thus

ǫ = Xδβ + ǫ2 and ǫT1 ǫ2 = δβTXT ǫ2 = 0,
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from which it follows that

y = Xβ + ǫ = X(β + δβ) + ǫ2.

If y1 and y2 are defined as

y1 = X(β + δβ) and y2 = ǫ2,

then y1 lies in R(X), and y2 is composed of noise and is orthogonal to R(X).
It follows that only y1, and not y2, contains information included in X . �

Proposition 2.1 leads to the following definitions of the forward and inverse
problems.

Definition 2.1 (The forward problem) Given a matrix X ∈ R
n×p and a vec-

tor β ∈ R
p, the forward problem is defined as the computation of y,

y := Xβ. (5)

Definition 2.2 (The inverse problem) Given a matrix X ∈ R
n×p, n ≥ p, of

full column rank p and a vector y ∈ R
n, the inverse problem is defined as the

computation of βLS,

βLS := X†y. (6)

Lines 9 and 10 in Algorithm 1 show that the response y of the forward problem
is the input to the inverse problem, and these two problems should therefore
be considered together. There are two issues that must be addressed:

(1) If y is sensitive to a small relative error ∆β in β, then it is computationally
unreliable and the consequences on βLS must be considered.

(2) If y is stable with respect to ∆β, then ∆y ≈ ∆β, but it does not follow
that the relative error ∆βLS in βLS satisfies ∆βLS ≈ ∆y. The satisfac-
tion of these approximations is desirable because it guarantees that the
forward and inverse problems are well conditioned, but the relationship
between X, β and y must be considered such that the conditions when
these approximations are satisfied, and are not satisfied, are defined.

These issues are important because it is shown in Section 4 that if regular-
isation is applied to the inverse problem when it is numerically stable, then
the regularisation error in the regularised solution is large. This result re-
quires that the numerical condition of the forward and inverse problems be
considered, and this issue is addressed in Section 3.
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3 The numerical condition of the forward and inverse problems

It was shown in Section 2 that the solution of the forward problem defines
the input to the inverse problem in variable selection. These problems are
therefore related, but it is convenient to consider them separately and then
combine the results, such that the two points raised in Section 2 are addressed.

Section 3.1 considers the condition number κ(X) = ‖X‖
∥

∥

∥X†
∥

∥

∥ of X , and
refined condition numbers, called effective condition numbers, of the forward
and inverse problems, and their advantages with respect to κ(X) for condition
estimation, are discussed. It is shown in Section 3.2 that the product of the
effective condition numbers of these problems in variable selection is equal to
κ(X) because the forward problem is solved before the inverse problem, and
the implications of this result are discussed. 1

3.1 Condition numbers and effective condition numbers

The condition number κ(X) of X is not a good measure of the numerical
condition of the forward and inverse problems because it is a function of X ,
and it is independent of β for the forward problem and independent of y for
the inverse problem, but the solution y of the forward problem is a function
of X and β, and the solution βLS of the inverse problem is a function of X
and y. It is therefore necessary to derive refined expressions for the numerical
condition of the forward and inverse problems. The effective condition number
of the inverse problem is introduced in [13, §4], and the analysis is extended
in this paper because it allows an uncertainty principle to be considered in
significantly greater detail than in [13, §6].

Let the relative errors ∆β, ∆βLS and ∆y in β, βLS and y be, respectively,

∆β =
‖δβ‖
‖β‖ , ∆βLS =

‖δβLS‖
‖βLS‖

and ∆y =
‖δy‖
‖y‖ . (7)

Expressions for the condition numbers and effective condition numbers of the
forward and inverse problems are derived in Theorems 3.1, 3.2 and 3.3, and the
difference between the condition numbers and the effective condition numbers
is evident. In particular, the effective condition number of the forward problem
is equal to the maximum value of γ = ∆y/∆β for all vectors δβ and the given
vector β, and the condition number κ(X) is equal to the maximum value of γ

1 A slightly different result is obtained if the inverse problem is solved before the
forward problem.
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for all vectors δβ and all vectors β. It is shown that the equivalent result for
the inverse problem is more complex.

Theorem 3.1 The effective condition number ηfwd(X, β) and the condition
number κfwd(X) of the forward problem (5) are, respectively,

ηfwd(X, β) = max
δβ∈Rp

∆y

∆β
=
‖X‖ ‖β‖
‖y‖ =

‖X‖ ‖β‖
‖Xβ‖ , (8)

and

κfwd(X) = max
β∈Rp

ηfwd(X, β) = ‖X‖
∥

∥

∥X†
∥

∥

∥ = κ(X). (9)

Proof It follows from (5) that δy = Xδβ and thus

‖δy‖ = ‖Xδβ‖ ≤ ‖X‖ ‖δβ‖ = ‖X‖ ‖β‖∆β,

from (7). The result (8) follows by division of this inequality by ‖y‖ = ‖Xβ‖.
Furthermore,

max
δβ,β∈Rp

‖δy‖ = max
β∈Rp

‖X‖ ‖β‖∆β,

and it follows by definition of the forward problem that y lies in the column
space of X . The vector β is therefore equal to X†y, which yields

max
δβ,β∈Rp

‖δy‖ = max
β∈Rp

‖X‖ ‖β‖∆β = ‖X‖
∥

∥

∥X†
∥

∥

∥ ‖y‖∆β,

and the condition number (9) follows. �

Theorem 3.2 The effective condition number ηinv(X, y) of the inverse prob-
lem (6) is

ηinv(X, y) = max
δy∈Rn

∆βLS

∆y
=

∥

∥

∥X†
∥

∥

∥ ‖y‖
‖βLS‖

=

∥

∥

∥X†
∥

∥

∥ ‖y‖
‖X†y‖ . (10)

Proof It follows from (6) that δβLS = X†δy and thus from (7),

‖δβLS‖ =
∥

∥

∥X†δy
∥

∥

∥ ≤
∥

∥

∥X†
∥

∥

∥ ‖δy‖ =
∥

∥

∥X†
∥

∥

∥ ‖y‖∆y.
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The division of this inequality by ‖βLS‖ =
∥

∥

∥X†y
∥

∥

∥ yields the result (10). �

The expressions (8), (9) and (10) assume simpler forms if the 2-norm is used.
If the SVD of X is UΣV T where U and V are orthogonal matrices, and

Σ =







Σ1

0





 ∈ R
n×p, Σ1 = diag

[

σ1 σ2 · · · σp

]

∈ R
p×p, (11)

then

ηfwd
2 (X, β) =

σ1 ‖d‖2
‖Σd‖2

, d = V Tβ, (12)

κfwd
2 (X) = κ2(X) =

σ1

σp

, (13)

ηinv2 (X, y) =
‖c‖2

σp ‖Σ†c‖2
, c = UT y. (14)

An expression for the condition number κinv
2 (X) of the inverse problem is

derived in Theorem 3.3 [13, Theorem 4.2].

Theorem 3.3 Equation (14) can be written as

ηinv2 (X, y) = κ2(X)







∑n
i=1 c

2
i

∑p
i=1

(

σ1

σi

)2
c2i







1

2

, (15)

and thus

ηinv2 (X, y) ≤ κ2(X)

(

∑n
i=1 c

2
i

∑p
i=1 c

2
i

) 1

2

=
κ2(X)

cos θ
= κinv

2 (X),

where κ2(X) is defined in (13), κinv
2 (X) is the condition number of the inverse

problem and

cos θ =
‖Xβ‖2
‖y‖2

=

∥

∥

∥XX†y
∥

∥

∥

2

‖y‖2
=

(

∑p
i=1 c

2
i

∑n
i=1 c

2
i

)
1

2

. (16)

�

The geometric interpretation of the expression for cos θ in (16) requires that
the orthogonal projection of a vector onto a subspace be considered. Specif-
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ically, the left singular matrix U from the SVD of X is partitioned into two
matrices, U1 and U2,

U =
[

U1 U2

]

, U1 ∈ R
n×p, U2 ∈ R

n×(n−p), (17)

where U1U
T
1 y is the orthogonal projection of y onto R(X). The expression for

c in (14) is written as

c =







c̄1

c̄2





 =







UT
1

UT
2





 y, (18)

where c̄1 ∈ R
p and c̄2 ∈ R

n−p, and thus from (16),

cos2 θ =
c̄T1 c̄1
cT c

=

∥

∥

∥UT
1 y
∥

∥

∥

2

2

‖y‖22
=

yT (U1U
T
1 y)

yTy
.

It follows that as cos θ → 0, the angle between y and its orthogonal projection
onto R(X) approaches 90 degrees. This condition should be avoided because
it implies, with respect to variable selection, that the chosen predictors are not
good parameters for defining the output of the linear system, and with respect
to regression, it implies that the chosen basis functions (which are contained
in X) are not suitable for representing the data y.

3.2 An uncertainty principle

It is shown in this section that the effective condition numbers of the forward
and inverse problems satisfy an uncertainty principle because their product is
a function of X , or a function of X and y, depending on the order in which the
forward and inverse problems are solved. Theorem 3.4 considers the situation
in which the forward problem is solved before the inverse problem, which
occurs in variable selection, and Theorem 3.5 considers the situation in which
the inverse problem is solved before the forward problem.

Theorem 3.4 Let the vector β = β0 yield the result y0 of the forward prob-
lem, y0 = Xβ0. If the inverse problem is then solved with this vector y0,
then the product of the effective condition numbers of the forward and inverse
problems is

ηfwd(X, β0)η
inv(X, y0) = ‖X‖

∥

∥

∥X†
∥

∥

∥ = κ(X). (19)
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Proof Since the forward problem is solved before the inverse problem, y0
lies in R(X) and the residual of the solution β0 = X†y0 of the inverse problem
is equal to zero because

X†y0 = X†(Xβ0) = β0. (20)

The effective condition numbers of the forward and inverse problems are, from
(8) and (10),

ηfwd(X, β0) =
‖X‖ ‖β0‖
‖y0‖

=
‖X‖ ‖β0‖
‖Xβ0‖

,

and

ηinv(X, y0) =

∥

∥

∥X†
∥

∥

∥ ‖y0‖
‖β0‖

=

∥

∥

∥X†
∥

∥

∥ ‖y0‖
‖X†y0‖

,

and the result (19) follows from (20). �

Theorem 3.5 considers the situation in which the inverse problem is solved
before the forward problem. The result of the theorem is stated in the 2-norm
because (14) is required for its proof.

Theorem 3.5 Let the vector y = y0 yield the result β0 = X†y0 of the inverse
problem. If the forward problem is then solved for this vector β0, that is,
y1 = Xβ0, then the product of the effective condition numbers of the forward
and inverse problems is

ηfwd
2 (X, β0)η

inv
2 (X, y0) = κ2(X)

(

‖y0‖2
‖U1UT

1 y0‖2

)

=
κ2(X)

cos θ
, (21)

where κ2(X) is defined in (13), cos θ is defined in (16), U1 is defined in (17)
and U1U

T
1 y0 is the orthogonal projection of y0 onto R(X). If X is square, that

is, n = p, the result assumes a simpler form because cos θ = 1,

ηfwd
2 (X, β0)η

inv
2 (X, y0) = κ2(X). (22)

Proof It follows from (14) that the effective condition number of the inverse
problem is

11



ηinv2 (X, y0) =

∥

∥

∥UT y0
∥

∥

∥

2

σp ‖Σ†UTy0‖2
.

The solution of the forward problem is y1 = Xβ0 where β0 = X†y0, and the
effective condition number of y1 is, from (12),

ηfwd
2 (X, β0) =

σ1

∥

∥

∥V Tβ0

∥

∥

∥

2

‖ΣV Tβ0‖2
.

The product of these effective condition numbers is

ηfwd
2 (X, β0)η

inv
2 (X, y0) =

σ1

σp





∥

∥

∥UT y0
∥

∥

∥

2

‖ΣV Tβ0‖2









∥

∥

∥V Tβ0

∥

∥

∥

2

‖Σ†UTy0‖2





=κ2(X)

(

‖y0‖2
‖XX†y0‖2

)





∥

∥

∥V Tβ0

∥

∥

∥

2

‖Σ†UTy0‖2





=κ2(X)

(

‖y0‖2
‖XX†y0‖2

)

,

and the results (21) and (22) follow. �

It follows from Theorem 3.4 that if the forward problem is solved before the
inverse problem, then the term on the right hand side of the uncertainty
principle is equal to κ(X). Theorem 3.5 shows, however, that if the inverse
problem is solved before the forward problem, then the term on the right hand
side of the uncertainty principle may be much larger than κ2(X). It was noted
in Section 3.1 that cos θ ≈ 1 in a well formulated problem, and the uncertainty
principles (19), (21) and (22) can therefore be combined,

ηfwd
2 (X, β0)η

inv
2 (X, y0) ≈ κ2(X).

This form of the uncertainty principle is independent of the order in which
the forward and inverse problems are solved, and it has two important conse-
quences:

(1) If X is well conditioned, then the forward and inverse problems are also
well conditioned.

(2) If X is ill conditioned, then three situations arise:
(a) The forward problem is well conditioned and the inverse problem is

ill conditioned.
(b) The forward problem is ill conditioned and the inverse problem is

well conditioned.
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(c) The forward and inverse problems satisfy

ηfwd
2 (X, β0) ≈ ηinv2 (X, y0) ≈

√

κ2(X).

An example of the application of the uncertainty principle to regression is in
[13, §3].

4 The discrete Picard condition and Tikhonov regularisation

The effective condition numbers of the forward and inverse problems were con-
sidered in Section 3, and it is instructive to consider the conditions that are
satisfied for the effective condition number of the inverse problem to attain its
maximum value because it leads to the discrete Picard condition, the satisfac-
tion of which is required for the correct application of Tikhonov regularisation
[6, §4.5]. This application is discussed in Section 4.1, and it is shown in Section
4.2 that this condition also arises in the consideration of the stability of the
forward problem in variable selection.

4.1 The discrete Picard condition and the inverse problem

It follows from (14) that ηinv2 (X, y) attains its maximum value when

|ci|
σi

→ 0 as i→ p, (23)

where c = {ci}ni=1. The singular values σi are arranged in non-increasing order
and it therefore follows from (23) that ηinv2 (X, y) attains its maximum value
when the constants |ci| decay to zero faster than the singular values decay to
zero. If the decay (23) is such that |ci|/σi ≈ 0, i = k+1, . . . , p, then |ci| ≈ 0, i =
k + 1, . . . , p, and it follows from (15) that if cos θ ≈ 1, then

ηinv2 (X, y)≈κ2(X)







∑k
i=1 c

2
i +

∑n
i=p+1 c

2
i

σ2
1

∑k
i=1

(

ci
σi

)2







1

2

≈κ2(X)







∑k
i=1 c

2
i

σ2
1

∑k
i=1

(

ci
σi

)2







1

2

≈κ2(X).
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i

(i)

(ii)

(iii)

Fig. 1. The ratios (i) |ci|/σi −, (ii) |δci|/σi ≈ ǫ/σi − and (iii) |ci+δci|/σi − if the discrete
Picard condition is satisfied.

Equation (23) is the discrete Picard condition, which is defined because of its
importance.

Definition 4.1 (The discrete Picard condition) The discrete Picard condition
is satisfied if the constants |ci| , i = 1, . . . , p, decay to zero faster than the
singular values σi decay to zero.

It follows from (14) that y = Uc and thus the dominant components of y
lie in the space spanned by the first few columns of U if the discrete Picard
condition is satisfied.

It is shown in [13, §4] that |ci|/σi is very sensitive to a perturbation δc = UT δy
because even if the theoretically exact solution satisfies the discrete Picard
condition, the perturbed solution does not satisfy this condition,

|ci + δci|
σi

9 0 as i→ p,

where the perturbations δci satisfy |δci| ≈ ǫ, i = 1, . . . , p, such that

|δci| ≈ ǫ ≪ |ci| , i = 1, . . . , t,

|δci| ≈ ǫ ≫ |ci| , i = t+ 1, . . . , p.
(24)

This error model arises because the constants |ci| decay to zero faster than the
singular values decay to zero and it is assumed that the magnitude |δci| of the
perturbations is approximately constant. Figure 1 shows the variation of the
ratios |ci|/σi, |δci|/σi ≈ ǫ/σi and |ci+δci|/σi with i if the discrete Picard condition
is satisfied, and it is seen that the magnitude of the solution of the inverse
problem in the presence of noise is governed by the noise ǫ,
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‖β + δβ‖22 =
p
∑

i=1

(

ci + δci
σi

)2

≈
p
∑

i=t+1

(

δci
σi

)2

≈
p
∑

i=t+1

(

ǫ

σi

)2

≈
(

ǫ

σp

)2

,

(25)

which confirms that the solution of the inverse problem is ill conditioned. It
follows that the satisfaction of the discrete Picard condition by the exact so-
lution does not imply that the solution obtained with perturbed data satisfies
this condition. Furthermore,

ηinv2 (X, y + δy) =
‖c+ δc‖2

σp ‖Σ†(c+ δc)‖2
≈ ‖c‖2

σp

(

|cp+δcp|
σp

) ≈ ‖c‖2
σp

(

ǫ
σp

) =
‖c‖2
ǫ

,

(26)

which shows that the effective condition number of the inverse problem is ill
conditioned if the discrete Picard condition is satisfied.

Equations (25) and (26) show that if the exact solution of the inverse problem
satisfies the discrete Picard condition, then the solution and its effective con-
dition number in the presence of noise are dominated by noise. It is shown,
however, in Section 4.3 that the satisfaction of the discrete Picard condition
guarantees that Tikhonov regularisation yields an approximate solution of an
ill conditioned LS problem that satisfies the conditions stated in Section 1
(the approximate solution is numerically stable and the regularisation error is
small). The correct application of Tikhonov regularisation is therefore based on
prior knowledge of properties of the theoretically exact solution. For example,
an image is dominated by spectral components of low frequency, which implies
that the discrete Picard condition is satisfied, and thus a blurred image can
be restored to a deblurred form by the application of Tikhonov regularisation
[8, pp. 67-69].

The importance of the discrete Picard condition can also be seen by consid-
ering other forms of the ratio |ci|/σi. Specifically, if

|ci| ≈ σi, i = 1, . . . , p, (27)

then |ci|/σi ≈ 1, and furthermore, the perturbation model (24) is appropriate
because the constants |ci| decay to zero as i increases. It is easily established
that ηinv2 (X, y) cannot be computed reliably for the model (27) because it is
sensitive to the perturbations δci.

If the constants |ci| satisfy

|ci+1| ≫ |ci| , i = 1, . . . , p− 1, (28)
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then |ci|/σi increases monotonically as i increases, and if the perturbations δci
satisfy (24), then ηinv2 (X, y) can be computed reliably because the effect of the
perturbations is small [13, §4].

The models (23), (27) and (28) are useful for analysing the solution of the
inverse problem, and it is shown in Section 4.3 that Tikhonov regularisation
cannot be used if the data satisfy (27) or (28) because these models lead to
large regularisation errors.

4.2 The discrete Picard condition and the forward problem

It was shown in Section 4.1 that the satisfaction of the discrete Picard con-
dition implies that the solution and effective condition number of the inverse
problem are ill conditioned. This analysis is extended in this section to the
forward problem, whose output is equal to the input of the inverse problem in
variable selection, and it is shown that ηfwd

2 (X, β) can be written in a form that
includes the term |ci|/σi that defines the discrete Picard condition. It therefore
follows that the stability and instability issues that were considered in Section
4.1 for the inverse problem must also be considered for the forward problem.

It follows from (11), (12), (14) and (18) that

c =







c̄1

c̄2





 = UT y = UTXβ = UT (UΣV T )(V d) = Σd =







Σ1

0





 d,

and thus

d = Σ−1
1 c̄1 =

[

c1
σ1

c2
σ2
· · · cp

σp

]T

. (29)

This equation unites the forward and inverse problems because (12) and (14)
show that d and c arise in the effective condition numbers of the forward and
inverse problems, respectively. Also, the equation allows the expression for the
effective condition number of the forward problem (12) to be written as

ηfwd
2 (X, β) =

σ1 ‖d‖2
‖Σd‖2

=
σ1

∥

∥

∥Σ−1
1 c̄1

∥

∥

∥

2
∥

∥

∥ΣΣ−1
1 c̄1

∥

∥

∥

2

= σ1







∑p
i=1

(

ci
σi

)2

∑p
i=1 c

2
i







1

2

, (30)

and thus the term ci/σi that defines the solution and effective condition num-
ber of the inverse problem also defines the effective condition number of the
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forward problem. It is therefore necessary to consider the stability of (30) for
the conditions ηfwd

2 (X, β) ≈ 1 and ηfwd
2 (X, β) ≈ κ2(X). These situations are

considered in Theorems 4.1 and 4.2 respectively.

Theorem 4.1 If the forward problem (5) is well conditioned, and the in-
verse problem (6) is ill conditioned and cos θ ≈ 1, then ηfwd

2 (X, β) ≈ 1 and
ηinv2 (X, y) ≈ κ2(X) ≫ 1. Furthermore, the effective condition numbers of the
forward and inverse problems are ill conditioned.

Proof The condition ηinv2 (X, y) ≈ κ2(X) implies that the discrete Picard
condition is satisfied and cos θ ≈ 1. If β is perturbed to β+ δβ, then it follows
from (30) that

ηfwd
2 (X, β + δβ) = σ1







∑p
i=1

(

ci+δci
σi

)2

∑p
i=1(ci + δci)2







1

2

≈ σ1

(

|cp + δcp|
σp

)

1

‖c‖2
,

and thus ηfwd
2 (X, β) is ill conditioned because

ηfwd
2 (X, β + δβ) ≈

(

ǫ

‖c‖2

)

κ2(X).

The ill conditioned nature of ηinv2 (X, y) when it is approximately equal to
κ2(X) is established in (26), and in accordance with the uncertainty principle,
the product of these effective condition numbers is approximately equal to
κ2(X). It is noted that the forward problem is well conditioned and its effective
condition number is ill conditioned, but the inverse problem and its effective
condition number are ill conditioned. �

Theorem 4.2 If the forward problem (5) is ill conditioned and its effective
condition number satisfies ηfwd

2 (X, β) ≈ κ2(X), then the inverse problem (6)
is well conditioned and the effective condition numbers of the forward and
inverse problems are well conditioned.

Proof It follows from the uncertainty principle that the inverse problem is
well conditioned and thus (28) is satisfied,

ηinv2 (X, y) =
‖c‖2

σp ‖Σ†c‖2
≈ |cp|

σp

(

|cp|
σp

) = 1.

Also, it follows from (28) and (29) that ‖d‖2 ≈ |cp|/σp and thus the forward
problem is ill conditioned,
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ηfwd
2 (X, β) = σ1

‖d‖2
‖Σd‖2

≈ σ1

(

|cp|
σp

)

1

|cp|
= κ2(X).

If perturbed data ci+δci are considered and cos θ ≈ 1 for this perturbed data,
where the perturbations δci satisfy (24), then

ηinv2 (X, y + δy) ≈ 1

σp







∑p
i=1(ci + δci)

2

∑p
i=1

(

ci+δci
σi

)2







1

2

≈ 1

σp





|cp|
(

|cp|
σp

)



 = 1,

and

ηfwd
2 (X, β + δβ) =

σ1 ‖d+ δd‖2
‖Σ(d+ δd)‖2

=
σ1

∥

∥

∥Σ−1
1 (c̄1 + δc̄1)

∥

∥

∥

2
∥

∥

∥ΣΣ−1
1 (c̄1 + δc̄1)

∥

∥

∥

2

≈ σ1

(

|cp|
σp

)

1

|cp|
,

and thus

ηfwd
2 (X, β + δβ) ≈ κ2(X).

It follows that the effective condition numbers of the forward and inverse
problems are well conditioned. �

Theorems 4.1 and 4.2 are summarised in Table 1 and it is seen that a dis-
tinction is made between the stability/instability of a problem, and the sta-
bility/instability of its effective condition number.

Fwd. problem well cond. Fwd. problem ill cond.

Inverse problem −−− ηfwd
2 (X,β) and ηinv2 (X, y)

well cond. are well conditioned

Inverse problem ηfwd
2 (X,β) and ηinv2 (X, y) −−−

ill cond. are ill conditioned

Table 1
The stability of the forward and inverse problems, and the stability of their effective
condition numbers, if κ2(X)≫ 1.

4.3 Tikhonov regularisation

This section considers Tikhonov regularisation, which requires that a con-
straint be imposed on ‖β‖22 and leads to the equation
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(XTX + λI)β(λ) = XTy, λ ≥ 0, (31)

where λ is the regularisation parameter. This equation is derived from (4) by
setting λ1 = 0 and λ2 = λ. Methods for the computation of the optimal value
of λ are discussed in Section 4.4, but it is considered a known constant in this
section. The solution of (31) is

β(λ) = V (ΣTΣ+ λI)−1ΣT c = V
(

(ΣTΣ + λI)−1ΣTΣ
)

Σ†c = V F (λ)Σ†c,

(32)

where F (λ) is a square diagonal matrix of order p whose non-zero entries
fi(λ), i = 1, . . . , p, are the filter factors of X ,

F (λ) = (ΣTΣ + λI)−1ΣTΣ = diag {fi(λ)}pi=1 = diag

{

σ2
i

σ2
i + λ

}p

i=1

,

and β(0) = V Σ†c is equal to βLS, which is defined in (3). The effect of λ can
be quantified by assuming there exists an index t, t < p, such that λ ≈ σ2

t , in
which case the filter factors fi(λ) ≈ fi(σ

2
t ) satisfy

fi(λ) =



























σ2

i

σ2

i
+λ
≈ 1, i < t,

σ2

i

σ2

i
+λ
≈ 1

2
, i = t,

σ2

i

σ2

i
+λ
≈ 0, i > t,

λ ≈ σ2
t . (33)

It therefore follows from (32) that the solution of (31) can be written as

β(λ) =
p
∑

i=1

fi(λ)
(

ci
σi

)

vi ≈
t
∑

i=1

fi(λ)
(

ci
σi

)

vi, λ ≈ σ2
t , (34)

where vi is the ith column of V . The filter factors of the 8× 8 Hilbert matrix
are considered in Example 4.1.

Example 4.1 Figure 2 shows the filter factors fi(λ) of the 8×8 Hilbert matrix
H for four values of λ. It is seen that they decay rapidly to zero, and thus the
effect of the small singular values of H on β(λ) is also reduced to zero because
of this decay of the filter factors. �

The filter factors must decay to zero for the suppression of the small singu-
lar values of X from β(λ), which is important for Tikhonov regularisation.
Sections 5 and 6 consider the situation in which X is a design matrix with
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Fig. 2. Filter factors of the 8 × 8 Hilbert matrix for λ = 10−8 −, λ = 10−5 −,
λ = 10−2 −− and λ = 10 −−, for Example 4.1.

correlated covariates and it will be shown that this decay of the filter fac-
tors is not satisfied, which has consequences for the effectiveness of Tikhonov
regularisation for variable selection.

The regularisation error, that is, the error between β(λ) and β(0) = βLS =
X†y = V Σ†c, as a function of λ is considered in Theorem 4.3 [13, §5].

Theorem 4.3 The regularisation error ∆(λ) between β(λ) and β(0) is

∆(λ) =
‖β(λ)− β(0)‖2
‖β(0)‖2

= λ







∑p
i=1

(

ci
σi

)2
1

(σ2

i
+λ)2

∑p
i=1

(

ci
σi

)2







1

2

.

Let the filter factors satisfy (33). Then the regularisation error ∆(λ ≈ σ2
t ), is

a function of the ratio |ci|/σi:

(i) If the discrete Picard condition (23) is satisfied, then

∆(λ ≈ σ2
t ) ≈

(

σt

σ1

)2

≪ 1. (35)

(ii) If (27) is satisfied, then

∆(λ ≈ σ2
t ) ≈

(

p− t

p

) 1

2

< 1.

(iii) If (28) is satisfied, then
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∆(λ ≈ σ2
t ) ≈

σ2
t

σ2
p + σ2

t

≈ 1.

�

Theorem 4.3 shows that the regularisation error is large if c = UT y satisfies
(27) or (28), and thus regularisation must not be applied if these conditions
are satisfied. Regularisation is, however, applied when the discrete Picard con-
dition is satisfied, and Theorem 4.3 shows that the regularisation error (35) is
small in this circumstance.

It was stated in Section 1 that a regularised solution must be numerically
stable and have a small regularisation error. The regularisation error was con-
sidered in Theorem 4.3, and it is shown in Theorem 4.4 that the satisfaction
of the discrete Picard condition guarantees that the regularised solution is
numerically stable [13, §5].

Theorem 4.4 Let the relative errors ∆β(λ) and ∆y be defined in the 2-norm.
The effective condition number of β(λ) is

ηinv2 (X, y, λ) = max
δy∈Rn

∆β(λ)

∆y
=

∥

∥

∥(ΣTΣ + λI)−1ΣT
∥

∥

∥

2
‖c‖2

‖(ΣTΣ+ λI)−1ΣT c‖2
,

and if the discrete Picard condition is satisfied, the filter factors satisfy (33)
and cos θ ≈ 1, then

ηinv2 (X, y, λ = σ2
t ) ≈ γ

(

σ1

σt

)

< ηinv2 (X, y, λ = 0) ≈ σ1

σp

,
1

2
≤ γ ≤ 1. (36)

�

Equation (36) is expected because it follows from (33) that the filter factors
retain the first t singular values σi, i = 1, . . . , t, of X , and the last p−t singular
values σi, i = t + 1, . . . , p, of X are removed from the solution.

4.4 Methods for computing the optimal value of λ

Two popular methods for the determination of the optimal value λopt of λ are
the GCV [1], [3], [4, Chapter 15] and [6, §7.4], and the L-curve [4, Chapter 15],
[5] and [6, §4.5], and both methods require that the discrete Picard condition
be satisfied [6, §7.4] and [6, §7.5.1]. Furthermore, the computation of λopt

using the GCV requires that the noise be white [11] and it is necessary to
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determine the value of λ for which a function attains its minimum value, but
this minimum is very often shallow, which makes its accurate computation
difficult. Computational problems with the L-curve are discussed in [6, §7.5.2].

5 Variable selection with correlated covariates

The forward and inverse problems discussed in this paper occur in variable
selection, and the situation in which X is a design matrix with correlated
covariates is considered in this section and Section 6. The number of rows n
of X is equal to the number of observations, and the number of columns p of
X is equal to d + 1, where d is the number of predictors. The columns of X
are 1, the column vector all of whose entries are one, and the covariates xi,
i = 1, . . . , d,

X =
[

1 x1 x2 · · · xd

]

∈ R
n×p, 1,xi ∈ R

n. (37)

The covariates are jointly Gaussian and marginally distributed as N (0, σ2)
with correlation coefficient r,

r = cor (xi,xj) =
xT
i xj

‖xi‖2 ‖xj‖2
, i, j = 1, . . . , d.

It follows from (37) that

XTX =





























n 0 0 · · · 0

0 xT
1 x1 xT

1 x2 · · · xT
1 xd

0 xT
2 x1 xT

2 x2 · · · xT
2 xd

...
...

...
...

...

0 xT
d x1 xT

d x2 · · · xT
d xd





























,

where the variance σ2 of the jth column, j = 2, . . . , p, of X is

σ2 =
E
{

xT
i xi

}

n− 1
, i = 1, . . . , d,

and thus
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‖xi‖2 = σ
√
n− 1, i = 1, . . . , d.

It follows that

X̃T X̃ =E
{

XTX
}

=



































n 0 0 0 · · · 0

0 (n− 1)σ2 r(n− 1)σ2 r(n− 1)σ2 · · · r(n− 1)σ2

0 r(n− 1)σ2 (n− 1)σ2 r(n− 1)σ2 · · · r(n− 1)σ2

0 r(n− 1)σ2 r(n− 1)σ2 (n− 1)σ2 · · · r(n− 1)σ2

...
...

...
...

...
...

0 r(n− 1)σ2 r(n− 1)σ2 r(n− 1)σ2 · · · (n− 1)σ2



































=





















n 0 · · · 0

0
... σ2(n− 1) [(1− r)I + rJ ]

0





















, (38)

where all the entries of J ∈ R
d×d are one, and (1 − r)I + rJ is a symmetric

matrix whose diagonal entries are one and all other entries are equal to r.
This expression for X̃T X̃ enables its singular values to be calculated [9]. In
particular, the eigenvalues of rJ in (38) are

µ1 = rd, µ2 = µ3 = · · · = µd = 0,

and thus the eigenvalues of (1− r)I + rJ are

µ1 = rd− r + 1, µ2 = µ3 = · · · = µd = 1− r.

The singular values of X̃ are therefore

σ1 =
√
n, σ2 = σ

√

(n− 1)(rd− r + 1), σ3 = σ
√

(n− 1)(1− r),

(39)

where σ2 > σ3 and the multiplicity of σ3 is p− 2.
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6 Examples

This section considers two examples of regularisation and one example of vari-
able selection. Examples 6.1 and 6.2 consider regularisation, and in particular,
the forward problem is well conditioned and the inverse problem is ill condi-
tioned in Example 6.1, and the forward problem is ill conditioned and the
inverse problem is well conditioned in Example 6.2. These problems are

Forward problem: y0 = Xβ0 + ǫ,

Inverse problem: β(0) = βLS = X†y0 = X†(Xβ0 + ǫ) = β0 +X†ǫ, (40)

where ǫ is a vector of uniformly distributed random variables, β(0) = βLS is
the solution of the inverse problem for λ = 0, and the signal-to-noise ratio
(SNR) of the forward problem is ‖Xβ0‖2/‖ǫ‖

2
.

Example 6.3 considers variable selection, for which Algorithm 1 with N = 1 is
implemented. The vector β0 is dense in Examples 6.1 and 6.2, but it is sparse
in Example 6.3.

Example 6.1 Let the design matrix X be of order 150× 11, the correlation
coefficient r be equal to 0.9999 and the variance σ2 be equal to 1. The condition
number of X is κ1(X) = 1269 and κ2(X) = 316.2, and the vector β0 is such
that the effective condition numbers in the absence of noise (ǫ = 0 in (40))
are

ηfwd
1 (X, β0) = 1.2460, ηinv1 (X, y0) = 1018.1,

ηfwd
2 (X, β0) = 1.0003, ηinv2 (X, y0) = 316.11,

where β0 and y0 are defined in (40). It follows that the forward problem is well
conditioned and the inverse problem is ill conditioned.

Noise ǫ was added to Xβ0, as shown in (40), and scaled such that the SNR is
equal to 10. Figure 3 shows the variation of log10 |di|σi, log10 |ci|/σi, and log10 σi

with i, where d = {di} and c = {ci} are defined in (12) and (14) respectively,
and σi are the singular values of X . It is seen that X has two singular values
of unit multiplicity and one singular value of multiplicity p − 2 = 9, which
follows from (39). The figure also shows that the dominant components of
|di|σi and |ci|/σi are defined by i = 1 and i = 2, and that the other components
of these functions are much smaller, by a few orders of magnitude. Tikhonov
regularisation was used to regularise the inverse problem, and the optimal
value of λ was determined by the GCV, which requires the evaluation of a
function G(λ), and the L-curve. The Matlab package Regularization Tools
[7] was used for these computations, and the L-curve and GCV are shown in
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Fig. 3. The variation of log10 |di| σi •, log10 |ci|/σi • and log10 σi • with i, for Example
6.1.
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Fig. 4. The L-curve and the optimal value of the regularisation parameter,
λLcurve
opt = 2.2482, for Example 6.1.

Figures 4 and 5 respectively. The optimal value of the regularisation parameter
from the L-curve, λLcurve

opt , is the value of λ in the corner, which is the point
on the curve at which the curvature is a maximum. The optimal value of
the regularisation parameter from the GCV, λGCV

opt , is the value of λ for which
G(λ) attains its minimum value. Figure 5 highlights a problem with the GCV,
specifically, the function G(λ) is almost flat in the neighbourhood of λGCV

opt ,
which makes its computation difficult. It is noted that the optimal values of
λ obtained from these methods differ by about three orders of magnitude.

The correct application of Tikhonov regularisation requires that the discrete
Picard condition be satisfied, such that the filter factors fi(λ) remove the
terms in the solution β(0) of the inverse problem that are defined by the small
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Fig. 5. The GCV function G(λ) against
√
λ and the optimal value of the regulari-

sation parameter, λGCV
opt = 5.8568 × 10−3, for Example 6.1.

singular values, that is, the terms that corrupt β(0), as shown in (34). This
removal requires that the filter factors decay to zero, but the error in the
regularised solution may be large if this decay condition is not satisfied. The
filter factors for the optimal regularisation parameters for the L-curve and
GCV, λLcurve

opt = 2.2482 and λGCV
opt = 5.8568 × 10−3 respectively, are shown in

Figure 6 and it is seen that their values computed from λGCV
opt are

fi(λ
GCV
opt ) ≈ 1, i = 1, 2,

fi(λ
GCV
opt ) ≈ 10−0.144 = 0.718, i = 3, . . . , 11,

and the ratio 0.718 of the minimum value of the filter factors to the maximum
value of the filter factors shows that these filter factors are not effective in
removing the small singular values from β(0). The filter factors computed
from λLcurve

opt are more effective in the removal of these singular values because

fi(λ
Lcurve
opt ) ≈ 1, i = 1, 2,

fi(λ
Lcurve
opt ) ≈ 10−2.182 = 6.58× 10−3, i = 3, . . . , 11,

and thus the ratio of the minimum value of the filter factors to the maximum
value of the filter factors is equal to 6.58× 10−3, which is much smaller than
its value of 0.718 for λGCV

opt . The filter factors do not decay to zero and they
therefore differ from the filter factors shown in Figure 2 for the 8 × 8 Hilbert
matrix. This property of the filter factors of X follows because its singular
values do not decay to zero but level off at a constant value σi, i = 3, . . . , 11,
as shown in Figure 3.

This error, and the error eLS of the LS solution βLS = β(0), are
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Fig. 6. The filter factors for the optimal regularisation parameter for the L-curve,
λ = λLcurve

opt = 2.2482 •, and the GCV, λ = λGCV
opt = 5.8568 × 10−3 •, for Example

6.1.

eLS =
‖βLS − β0‖2
‖β0‖2

= 4.3947,

eLcurve =

∥

∥

∥β(λLcurve
opt )− β0

∥

∥

∥

2

‖β0‖2
= 0.2675,

eGCV =

∥

∥

∥β(λGCV
opt )− β0

∥

∥

∥

2

‖β0‖2
= 3.1602.

The largest error is eLS, and the error eGCV is smaller but it is very large, and
much larger than the error eLcurve. The error eLcurve is smaller than the error
eGCV because the filter factors for λLcurve

opt are more effective than the filter
factors for λGCV

opt in removing the contribution of the small singular values of
X to β(0).

Figure 7 shows the variation of log10 |di|σi, log10 |di + δdi|σi, log10 |ci|/σi and
log10 |ci+δci|/σi with i. It is seen that |di|σi and |ci|/σi are ill conditioned because
they are sensitive to perturbations δdi and δci, respectively, as stated in The-
orem 4.1. The forward problem is well conditioned and its effective condition
number is ill conditioned, but the inverse problem is different because it, and
its effective condition number, are ill conditioned. This result is stated in the
entry in the second row in Table 1.

Regularisation in the 1-norm (the lasso) was applied by specifying λ1 6= 0 and
λ2 = 0 in (4). Figure 8 shows the cross-validated mean square error using
10-fold cross-validation, and the error bars. The optimal value of the regular-
isation parameter and the error in the regularised solution are, respectively,
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Fig. 7. The variation of log10 |di| σi −, log10 |di + δdi| σi −−, log10 |ci|/σi − and
log10 |ci+δci|/σi −− with i, for Example 6.1.
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Fig. 8. The cross-validated mean square error from the lasso against the regular-
isation parameter λ, the error bars and the optimal value of the regularisation
parameter, λ = λlasso

opt = 2.3858, for Example 6.1.

λlasso
opt = 2.3858 and elasso =

∥

∥

∥β(λlasso
opt )− β0

∥

∥

∥

2

‖β0‖2
= 1.5352,

and the figure shows that λlasso
opt is badly defined because the minimum of the

curve is shallow, and it is therefore similar to Figure 5. Furthermore, the
error is much larger than the errors eLcurve and eGCV obtained from Tikhonov
regularisation. �

Example 6.2 Consider the design matrix X in Example 6.1, but the vector
β0 is such that the forward problem is ill conditioned and the inverse problem
is well conditioned,
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ηfwd
1 (X, β0) = 335.7, ηinv1 (X, y0) = 3.779,

ηfwd
2 (X, β0) = 316.2, ηinv2 (X, y0) = 1.000,

(41)

where β0 and y0 are defined in (40). The entries of ǫ are uniformly distributed
random variables, and ǫ is scaled such that the SNR is equal to 10. Figure
9 shows the variation of log10 |di|σi, log10 |ci|/σi, and log10 σi with i, and it
is seen that |di|σi and |ci|/σi are dominated by the small singular values σi,
i = 3, . . . , 11, of X . This must be compared with these quantities in Figure 3
for Example 6.1, which are dominated by the large singular values σ1 and σ2.

Figures 10 and 11 show, respectively, the L-curve and the function G(λ) for the
evaluation of the GCV, and it is seen that they differ from their equivalents in
Figures 4 and 5 for Example 6.1. This difference arises because the use of the
L-curve and GCV for the determination of the optimal value of λ requires that
the discrete Picard condition be satisfied, but this condition is not satisfied in
this example because (41) shows that the inverse problem is well conditioned.
It is interesting to note that the L-curve in Figure 10 possesses a point of
maximum curvature, and it is well defined. The value of λ at this point is,
however, spurious as a regularisation parameter because the inverse problem
is well conditioned and thus the discrete Picard condition is not satisfied. It
follows that the error eLS of the solution βLS of the inverse problem is small,

eLS =
‖βLS − β0‖2
‖β0‖2

= 1.1668× 10−2.

The variation of log10 |di|σi, log10 |di + δdi|σi, log10 |ci|/σi and log10 |ci+δci|/σi

with i is shown in Figure 12. It is clear that |di|σi and |ci|/σi are stable with
respect to perturbations δdi and δci, respectively, which confirms Theorem 4.2
and the entry in the first row in Table 1.

Figure 13 shows the cross-validated mean square error from the lasso, and the
error bars, and it is seen that the graph does not possess a minimum in the
range of λ defined by the horizontal axis. �

Example 6.3 Consider the design matrix X in Examples 6.1 and 6.2, but
the vector β0 is such that four of its components are equal to zero, β0,2 =
β0,3 = β0,6 = β0,10 = 0, as shown in Figure 14. The variance of the entries in
X is σ2 = 1, the correlation coefficient is r = 0.9999 and the SNR is equal to
10. The effective condition numbers of the forward and inverse problems are

ηfwd
1 (X, β0) = 1.064, ηinv1 (X, y0) = 1192,

ηfwd
2 (X, β0) = 3.149, ηinv2 (X, y0) = 100.4,
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Fig. 9. The variation of log10 |di| σi •, log10 |ci|/σi • and log10 σi • with i, for Example
6.2.
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Fig. 10. The L-curve for Example 6.2.

and the terms |di|σi and |ci|/σi are sensitive to perturbations δdi and δci, re-
spectively, because the forward problem is well conditioned and the inverse
problem is ill conditioned, as shown in Figure 7 for Example 6.1.

Tikhonov regularisation and the lasso were used to regularise the inverse prob-
lem, and the optimal values of the regularisation parameters were

λLcurve
opt = 0.3186, λGCV

opt = 0.03227, λlasso
opt = 7.523× 10−5,

and thus λlasso
opt ≪ λGCV

opt , λLcurve
opt . The vector β(λLcurve

opt ) is shown in Figure 15,
and the vector β(λGCV

opt ) is very similar because its first component is large and
dominant, and its other components are non-zero and much smaller. There is
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Fig. 11. The GCV function G(λ) against
√
λ for Example 6.2.
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Fig. 12. The variation of log10 |di|σi −, log10 |di + δdi|σi −−, log10 |ci|/σi − and
log10 |ci+δci|/σi −− with i, for Example 6.2.

therefore a clear distinction between the entries of the solutions from Tikhonov
regularisation that are non-zero and dominant, and the entries that are sig-
nificantly smaller and are therefore approximately zero. The solution β(λlasso

opt )
from the lasso was unsatisfactory because many components of β0 that are
either equal to zero or small were much larger in β(λlasso

opt ). The relative errors
of the LS solution βLS, the solutions from Tikhonov regularisation and the
lasso are
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Fig. 13. The cross-validated mean square error from the lasso, and the error bars,
for Example 6.2.
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Fig. 14. The vector β0 for Example 6.3.

eLS =
‖βLS − β0‖2
‖β0‖2

= 1.1906,

eLcurve =

∥

∥

∥β(λLcurve
opt )− β0

∥

∥

∥

2

‖β0‖2
= 0.1027,

eGCV =

∥

∥

∥β(λGCV
opt )− β0

∥

∥

∥

2

‖β0‖2
= 0.3852,

elasso =

∥

∥

∥β(λlasso
opt )− β0

∥

∥

∥

2

‖β0‖2
= 1.000,

and thus the error in β(λlasso
opt ) is much larger than the errors in β(λLcurve

opt )
and β(λGCV

opt ). The error eLcurve is smaller than the error eGCV because the
filter factors for λLcurve

opt are more effective than the filter factors for λGCV
opt in

removing the contribution of the small singular values of X to β(0). The large
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Fig. 15. The solution vector β(λLcurve
opt ) for Example 6.3.

error in βLS is expected because the inverse problem is ill conditioned. �

7 Summary

This paper has considered numerical issues in regularisation and variable se-
lection when X is a design matrix with correlated covariates. It has been
shown that the stability of the forward problem and the stability of the inverse
problem are not independent because the product of their effective condition
numbers is equal to the condition number of X . Also, Tikhonov regularisation
requires that the discrete Picard condition be satisfied because this guaran-
tees that the regularisation error is small and the regularised solution is stable,
provided that the singular values of X decay to zero.

It was shown that X̃, where X̃T X̃ = E
{

XTX
}

, has two distinct singular
values and one multiple singular value, and formulae for them were derived.
It was shown that the filter factors and singular values of X̃ do not decay to
zero but level off at a constant value.

The lasso was investigated experimentally but the results were unsatisfactory
because the regularisation error was large, even for ill conditioned problems. It
is therefore necessary to investigate the properties of the lasso, and in partic-
ular, the conditions to be satisfied for it to yield an acceptable solution must
be determined.

The work described in this paper can be extended to other design matrices,
for example, matrices with correlated columns but different correlation coef-
ficients. The decay of the singular values of these design matrices, and the
discrete Picard condition, must be considered because they are important in
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determining the success, or otherwise, of the application of Tikhonov regular-
isation to the inverse problem in variable selection.
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