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Abstract 

Masonry panels consisting of piers and spandrels in buildings are vulnerable to in-plane actions caused 

by seismicity and soil subsidence. Tectonic seismicity can be hazardous for the safety of masonry 

structures, whereas low-magnitude induced seismicity can be detrimental to their durability due to the 

accumulation of light damage. This is particularly true in the case of unreinforced masonry. Therefore, the 

development of models for the accurate prediction of both damage initiation and ultimate capacity for 

masonry elements and structures is necessary. 

In this paper a method based on analytical modelling for the prediction of the damage initiation mode 

and capacity of stand-alone masonry piers is presented, followed by the expansion of the model through a 

modular approach to masonry walls with asymmetric openings. The models account for all potential 

damage and failure modes for in-plane loaded walls. 

The stand-alone piers model is applicable to all types of masonry construction. The wall with openings 

model can be applied as-is to simple buildings but can also be extended to more complex structures with 

simple modifications. The model results are compared with numerous experimental cases and exhibit very 

good accuracy. 

 

1 Corresponding author: A.Drougkas@tudelft.nl 
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Notation ℎ  height 

ℎ0  effective height 

𝑙  length 

𝑡  thickness 

𝑚  width of compressive stress fan at centre-height 

𝑏  width of compression strut 

𝑓𝑐   compressive strength of masonry 

𝑓𝑡   tensile strength of masonry 

𝑓𝑣   initial shear strength (cohesion) 

𝜇  friction coefficient (tangent of friction angle) 

𝜎  vertical stress 

𝜏  shear stress 

𝑉  vertical force 

𝐻  horizontal force 

Highlights 

• Closed-form expressions predict the damage initiation mode and capacity of piers 

• Analytical modelling predicts the in-plane shear capacity of masonry walls with openings 

• The models are accurate against newly elaborated and existing experimental data 



3 

1 Introduction 

1.1 State of the art 

Masonry structures are vulnerable to seismic loading due to their low tensile and shear strength. While 

out-of-plane effects can be severely detrimental to the safety of masonry structures, these are often offset 

when adequate connections allow for the force distribution to the transversal walls via floor diaphragm 

action. Even if such measures are taken, in-plane failure remains a problem to deal with. 

Typically, four main failure modes may be clearly distinguished: a) rocking, b) sliding, c) biaxial failure 

and d) compressive failure. These failure modes, listed in order of appearance under increasing levels of 

applied vertical stress, define, in combination, a failure envelope for masonry piers under in-plane shear. 

Rocking mode failure arises due to the very low tensile strength of masonry perpendicularly to the bed 

joints, leading to a clear localisation of the bending crack. Models for the rocking capacity can be easily 

derived through simple equilibrium in bending [1,2]. Other models have been proposed in design codes 

[3]. Sliding due to shear, typically localised in bed joints is often described using a Mohr-Coulomb failure 

criterion. Expressions to determine the capacity in shear at the scale of structural member have been 

proposed in the literature [1,4] and used in design codes [5]. Models for diagonal failure are generally more 

complex due to the interaction of compression and tension in an area of the pier that is not as clearly 

defined as in rocking or sliding. Several models for biaxial failure have been proposed in the literature [6–
8], each with different considerations for the dimensions of the pier and the mechanical properties of the 

masonry composite. 

The formulation of models for the prediction of the force capacity of masonry walls with openings is 

complicated by the frame action made possible by the spandrels, whose failure needs to be accounted for 

[9]. Simple analytical models accounting for the interaction of failure modes of piers and spandrels in walls 

with openings are currently lacking in the literature. 

The available experimental inventory on masonry stand-alone piers subjected to in-plane shear under 

vertical stress is extensive [10], and continuously updated [11]. It includes masonry composites made of 

different materials, with widely different dimensions and aspect ratios, different boundary conditions and 
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in different bond types. Experimental tests on masonry walls with windows or openings, accompanied by 

a characterization of the mechanical properties of the masonry composite, are less frequent and feature a 

smaller variety of boundary conditions [12–16]. 

In addition to capacity calculation, the complications introduced by induced seismicity raise the issue 

of correctly identifying the mode of damage initiation in masonry structures. Combined soil subsidence and 

low-magnitude seismicity have been shown to impose mostly in-plane demands on masonry structures 

[17–19]. These demands are the source of light damage, linked to damage initiation rather than collapse. 

Upper-bound approaches for the calculation of the capacity of masonry walls with openings have been 

proposed in the literature. However, a simple model with general applicability for the prediction of the 

force capacity of masonry walls with openings, one based on the material properties of the masonry 

composite, is still lacking. Such a model should allow a quick calculation of the capacity of a masonry 

structure, the prediction of the critical failure mode and the evaluation of the influence of structural 

intervention on the behaviour without resorting to complex finite element or macro-element modelling. 

Furthermore, a simple model for the identification of the in-plane damage initiation mode of masonry 

piers has not been yet proposed. The need of such a model arises from the increase in low-magnitude 

induced seismicity near urban centres, which does not necessarily raise the risk of collapse but may be the 

cause of light damage in masonry structures [16]. A-priori knowledge of the location of damage initiation 

using simple approaches allows the application of targeted intervention at vulnerable areas. Further, such 

a model can prove useful as a structural inspection tool, assisting in focusing damage mapping efforts in 

existing masonry buildings on the areas where damage is expected to arise. 

1.2 Objectives 

The primary objective of the present paper is the presentation of a simple model for the calculation of 

the in-plane shear capacity of masonry structures. In the context of the paper, the term masonry structure 

refers to walls with door- or window-openings, in essence masonry portal frames with or without a base 

spandrel. The model should account for frame action afforded by the spandrel, whose contribution is itself 
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limited by potential damage. Through a modular approach, this model is applicable to masonry elements 

with multiple openings. 

The secondary objective of the paper is the development of a simple model for the prediction of the 

damage initiation mode in masonry piers subjected to in-plane shear. Essentially, this model should be able 

to predict the failure mode that arises first in masonry piers under shear. Such a model can be used in 

stand-alone piers or can be alternatively plugged-in to the proposed model for masonry structures. 

The development of the masonry structure model is based on the assembly and evaluation of simple 

models predicting the capacity of piers in well-defined failure modes. A new model for the biaxial failure of 

masonry is here proposed. These models define a capacity envelope. The results of the failure models are 

compared to numerous experimental results from the literature on stand-alone piers. 

Moving beyond the application of these models in stand-alone piers, the paper presents a method of 

application to complex walls with openings, dealing with issues of force distribution and the development 

of admissible failure modes depending on boundary conditions. This model is validated against case studies 

from the literature, limiting the investigation to cases where a comprehensive determination of the 

mechanical properties of the masonry composite is available. 

The damage initiation model is developed along the lines of a proposed envelope, similarly to the model 

for the capacity of piers. A comparison with the corresponding capacity envelope is provided. 

2 Analytical force capacity models for piers 

2.1 Overview 

The dimensions of the pier are 𝑙 × ℎ × 𝑡 (length × height × thickness). For a given masonry 

compressive strength 𝑓𝑐  and a vertical applied stress 𝜎 (negative for compression), the length of the 

compressed toe 𝑏𝑟, assuming a constant rectangular distribution of vertical stress, or 𝑏𝑡, assuming a 

triangular distribution, is: 
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𝑏𝑟 = − 𝜎𝑓𝑐 𝑙𝑏𝑡 = −2 𝜎𝑓𝑐 𝑙 (1) 

For a given set of geometric and material parameters of a stand-alone pier, the applied vertical force 𝑉 

and the horizontal force capacity 𝐻 are calculated as: 

𝑉 = 𝑙 ∙ 𝑡 ∙ 𝜎 𝐻 = 𝑙 ∙ 𝑡 ∙ 𝜏 
(2) 

The shear stress capacity 𝜏 is calculated for each of the considered failure modes below. An envelope 

curve of the capacity can be drawn by varying 𝜎 in the range [0, 𝑓𝑐] and considering the minimum value of 𝜏 obtained between the considered failure modes. The considered failure modes are illustrated in Figure 1. 

 

Figure 1 Pier failure modes: a) bending, b) shear, c) biaxial tension-compression and d) 

compression. 

The pier is always considered clamped at the base and may be in a cantilever or double-clamped 

configuration when rotational restraint is provided. The boundary condition at the top determines the 

effective height ℎ0 of the pier, with ℎ0 = 1.0 for a cantilever and ℎ0 = 0.50 for a double-clamped 

configuration. 

2.2 Rocking mode capacity 

In a cantilever configuration, the vertical force 𝑉 is applied at the centre of the top of the pier, while in 

a clamped top configuration it is applied at a distance of 𝑏𝑟 2⁄  from the edge. The compression strut extends 
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from the point of application of 𝑉 to the centre of the compressed toe.  Through equilibrium of forces and 

moments, the capacity of a cantilever pier in rocking is: 

𝜏 = −𝜎 (𝑙2 − 𝑏𝑟2 ) ℎ⁄  (3) 

while for a clamped top the capacity is: 

𝜏 = −𝜎 (𝑙 − 𝑏𝑟) ℎ⁄  (4) 

In a more general formulation, the horizontal force capacity 𝐻 can be expressed as the horizontal 

component of a force acting between two points at a horizontal distance of 𝑙 and a vertical distance of ℎ 

whose vertical component is equal to 𝑉: 

𝐻 = 𝑉 𝑙ℎ (5) 

2.3 Shear mode capacity 

For the shear capacity of the pier, the model proposed by Magenes and Calvi is used [1]. In the notation 

of the present paper, the shear capacity is equal to: 

𝜏 = 𝑓𝑣 − 𝜇 ∙ 𝜎1 + ℎ0 𝑙⁄  (6) 

where 𝑓𝑣  is the initial shear strength (cohesion) and 𝜇 is the friction coefficient (tangent of friction angle). 

As noted in the cited work, these parameters are meant to be understood as globally representing the shear 

characteristics of the masonry composite rather than that of the bed joints. 

2.4 Biaxial mode capacity 

A new approach based on principal stresses is proposed for calculating the capacity of the pier against 

biaxial failure. For the interaction of tension and compression, a simple linear failure criterion in planar 

stress is adopted: 

𝑓 = 𝜎1𝑓𝑡 − 𝜎2𝑓𝑐 − 1 (7) 
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where 𝜎1 is the maximum principal stress (tensile), 𝜎2 is the minimum principal stress (compressive) and 𝑓𝑡  is the tensile strength of the masonry composite. This failure criterion clearly describes the interaction 

of tensile and compressive stresses in quasi-brittle materials with a shape approximating very closely a 

linear Mohr-Coulomb criterion. 

The compressive stress distribution in a cantilever pier is considered to assume a fan shape, extending 

along the entire length 𝑙 of the wall at the top and contracting to the width of the compressive strut 𝑏𝑡 at 

the base. A depiction of this fan shape is illustrated in Figure 2a. The width of the fan 𝑚 at centre height, 

where diagonal cracking typically originates, is: 

𝑚 = 𝑙 + 𝑏𝑡2  (8) 

In double-clamped piers, the stress fan assumes the shape shown in Figure 2b, with a laterally 

expanding branch from top to mid-height and a contracting branch from mid-height to base. The angle 𝜃𝑒  

of the right external line of the fan with respect to the vertical is limited by the shear strength characteristics 

of the masonry composite [2]. Considering that the vertical stress at the edge of the fan is zero, the limit 

values for the tangent of this angle is: 

tan(𝜃𝑒 − 𝜃𝑐) ≤ 𝜇 (9) 

where  𝜃𝑐  in the angle of the line connecting the centres of the strut edges with respect to the vertical. In 

this context, the friction coefficient of masonry does not coincide with the friction coefficient of the unit-

mortar interface. It is a parameter related to the masonry geometric bond and the resulting interlocking of 

units, with a minimum value equal to the friction coefficient of the unit-mortar interface. As such, for 

running bond masonry this coefficient is equal to 𝜇 = (𝑙𝑢 2⁄ ) (ℎ𝑢 + ℎ𝑚)⁄ , for Flemish bond it is equal to 𝜇 =(3 𝑙𝑢 4⁄ ) (ℎ𝑢 + ℎ𝑚)⁄  and for English bond it is 𝜇 = (𝑙𝑢 2⁄ ) (2ℎ𝑢 + 2ℎ𝑚)⁄  with 𝑙𝑢, ℎ𝑢 and ℎ𝑚 being the length 

of the unit, height of the unit and height of the mortar bed joint respectively. The accuracy of this calculation 

of the friction coefficient is increased with the increase of the size of the masonry member, due to the 

clearer formation of diagonal cracks following the masonry bond. The maximum length for 𝑚 is only limited 

by the length of the pier. 
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Based on these conditions, the width 𝑚 of the fan at centre height of a double-clamped pier is: 

𝑚 = 𝑏𝑡 + min [𝑙 − 𝑏𝑡 , ℎ2 𝜇] (10) 

 

Figure 2 Distribution of compressive stresses in stand-alone pier for biaxial mode evaluation: 

a) cantilever pier, b) double-clamped pier. 

For the orthogonal stress state at the mid-height, it is assumed that the horizontal 𝜎𝑥 stress is zero and 

that the vertical stress 𝜎𝑦  is evenly distributed. Therefore, it follows that: 

𝜎𝑥 = 0 𝜎𝑦 = 𝜎 𝑙𝑚 

 

(11) 

According to Mohr’s circle [20], the average stress 𝜎𝑚 is: 

𝜎𝑚 = 𝜎𝑥 + 𝜎𝑦2  (12) 

and, in combination with the adopted failure criterion according to eq. (7), the principal stresses are: 

𝜎1 = 2𝑓𝑡𝜎𝑚 + 𝑓𝑐𝑓𝑡𝑓𝑡 + 𝑓𝑐  

𝜎2 = 2𝑓𝑐𝜎𝑚 − 𝑓𝑐𝑓𝑡𝑓𝑡 + 𝑓𝑐  

(13) 

The radius of Mohr’s circle 𝑅 is: 
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𝑅 = 𝜎1 − 𝜎22  (14) 

 

and the resulting shear stress 𝜏𝑚  is: 

𝜏𝑚 = √𝑅2 − 𝜎𝑚2 (15) 

This shear stress 𝜏𝑚  acts along the length 𝑚 of the fan at the evaluated position. Therefore, the 

equivalent stress 𝜏 along the length 𝑙 of the pier is: 

𝜏 = 𝜏𝑚 𝑚𝑙  (16) 

The determination of the uniaxial horizontal tensile strength of masonry 𝑓𝑡  is a complicated issue. It is 

a function of the tensile strength 𝑓𝑡,𝑢  of the units,  the tensile strength 𝑓𝑡,𝑚 of the mortar, the tensile strength 𝑓𝑡,𝑖 of the unit-mortar interface and the shear strength 𝑓𝑣,𝑏  of the bed joints. While for masonry in regular 

bond pattern the vertical tensile strength may be taken as the tensile strength of the unit-mortar interface, 

the staggered arrangement of the units in, for example, running bond, complicates the failure mechanism. 

A simple model for the horizontal tensile strength of masonry is therefore introduced. It is based on the 

identification of three failure modes for the masonry composite in horizontal tension: a) tensile failure of 

the upper head joint unit-mortar interface together with  shearing of the bed joint along the length of half 

a unit and tensile failure of the lower head joint unit-mortar interface, b) tensile failure of the upper head 

joint unit-mortar interface together with tensile failure of the bed joint and tensile failure of the lower unit, 

c) tensile failure of the upper unit together with tensile failure of the bed joint and tensile failure of the 

lower unit. These modes are illustrated in Figure 3 and are expressed analytically as: 

𝑓𝑡,𝑎 = 𝑓𝑡,𝑖 ℎ𝑢2 + 𝑓𝑣,𝑏𝑙𝑜 + 𝑓𝑡,𝑖 ℎ𝑢2ℎ𝑢 + ℎ𝑚  

𝑓𝑡,𝑏 = 𝑓𝑡,𝑖 ℎ𝑢2 + 𝑓𝑡,𝑚ℎ𝑚 + 𝑓𝑡,𝑢 ℎ𝑢2ℎ𝑢 + ℎ𝑚  

𝑓𝑡,𝑐 = 𝑓𝑡,𝑢 ℎ𝑢2 + 𝑓𝑡,𝑚ℎ𝑚 + 𝑓𝑡,𝑢 ℎ𝑢2ℎ𝑢 + ℎ𝑚  

(17) 
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𝑓𝑡 = 𝑚𝑖𝑛[𝑓𝑡,𝑎 , 𝑓𝑡,𝑏 , 𝑓𝑡,𝑐] 
where 𝑙𝑜 is the overlap length between the beds of the units which contributes to the shear mechanism. 

This length can be easily determined for the most common masonry bonds. For running bond it is equal to 𝑙𝑢 2⁄ , for Flemish and English bond it is equal to 𝑙𝑢 4⁄  and in stack bond it is equal to 0. In addition to regular 

masonry with mortared joints, eq. (17) can account for dry masonry through the contribution of 𝑓𝑣,𝑏  and 

for masonry with unfilled head joints by considering 𝑓𝑡,𝑖 = 0. 

 

Figure 3 Illustration of potential horizontal tensile failure modes for masonry. Planes of 

failure for each mode indicated in dashed lines. 

2.5 Compression mode capacity 

The capacity of the pier in compression is calculated through a simple superposition of the normal 

stresses at the base of the pier due to the applied vertical stress 𝜎 and the bending moment caused by 𝜏 

applied at the top of the pier. Limiting the minimum stress to the compressive strength −𝑓𝑐, the shear 

capacity is equal to: 

𝜏 = (𝑙 − 𝑏𝑟)6ℎ 𝑓𝑐  (18) 

2.6 Model results and validation 

All failure models yield non-negative results for 𝜎 ∈ [0, 𝑓𝑐] and produce a capacity envelope as 

qualitatively shown in Figure 4 for a cantilever pier, defined by the minimum value among the models for 

a given value of 𝜎. In the case of a clamped pier, the 𝜏 envelope is altered only in the region of low vertical 

stress 𝜎, as both rocking and shear capacity increase. This results in an increase in the range of biaxial 
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failure towards the range of lower vertical stress 𝜎. This shift is critical given that most masonry piers, due 

to their large dimensions, function at a relatively low level of average vertical stress from self-weight and 

service loads in buildings. 

 

Figure 4 Capacity envelope for piers, derived from the four considered failure modes. 

The results of the model combination are tested against the dataset of experimental results assembled 

by Morandi et al [10]. The dataset includes 188 experimental results of masonry piers subjected to in-plane 

shear under vertical stress. Material properties are included in the dataset. However, this data is not always 

fully reported. In the absence of a reported tensile strength 𝑓𝑡  this was calculated according to eq. (17). A 

conservative value of 0.100 N mm2⁄  was assumed for 𝑓𝑡,𝑖 in masonry with mortared head joints, and the 

tensile strength of the mortar and units was taken as 10% of their respective compressive strengths [21]. 

Rather than assigning nominal values, the cases where 𝑓𝑣  or 𝜇 where not reported were disregarded. This 

filtering resulted in 36 cases with reported 𝑓𝑡  and 27 cases with no reported 𝑓𝑡  to be considered for analysis, 

for a total of 63 cases, that is 33% of all reported cases in the cited dataset. 

The results of the comparison are plotted in Figure 5. When relying on the reported 𝑓𝑡  (Figure 5a) the 

obtained coefficient of determination 𝑅2 is 0.955 and the mean percentage error MPE is −9.55%, indicating 

excellent global agreement between the experimental data and analysis results and a tendency of the model 

to underestimate the capacity. The proposed envelope rarely overestimates the capacity of the piers by 

more than 15%. The accuracy of the model is noticeably increased when not relying on the reported 𝑓𝑡  

(Figure 5b) but rather by relying only on the 𝑓𝑡  as calculated using eq. (17). The obtained 𝑅2 is slightly 

increased to 0.962 and the MPE is increased to −5.42%, indicating an enhancement of the model’s accuracy, 
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especially in the cases with higher capacity. This improvement validates the accuracy of the proposed 

model for the tensile strength of masonry and the calculated biaxial failure envelope. Due to the accuracy 

of the obtained results, the envelope described by these failure models is considered appropriate for 

application in the analysis of more complex wall structures. 

 

Figure 5 Results of pier capacity model against dataset of experimental data [10]: a) relying 

on the reported 𝒇𝒕, b) relying only on calculated 𝒇𝒕. Dashed lines indicate 15% difference, solid line 

marks equality. 

3 Analytical damage initiation models for piers 

3.1 Overview 

The proposed damage initiation model for stand-alone piers functions similarly to the capacity model. 

However, instead of calculating the peak shear force for a specific failure type, it calculates the shear force 

activating a specific failure type. It may, therefore, be used for identifying the sequence of damage mode 

initiation and propagation in stand-alone piers loaded in-plane. 

Under the assumption that the pier is uncracked before damage initiation, the normal stresses can be 

easily computed through superposition of the stresses due to 𝜎 and 𝜏 applied at the top of the pier. Similarly, 

the distribution of shear stress along the length of the pier assumes a parabolic shape, with the maximum 

shear stress being 1.5 times the average [22]. 
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3.2 Rocking mode initiation 

Damage initiation in rocking occurs under the following conditions: a) a constant vertical stress 

distribution at the top and a triangular vertical stress distribution at the base are assumed, b) for the 

maximum stress at the least compressed toe: 𝜎𝑚𝑎𝑥 = 𝑓𝑡,𝑖 , c) for the minimum stress at the compressed toe: 𝜎𝑚𝑖𝑛 ≥ −𝑓𝑐 . 

According to moment and force equilibrium, and based on the above conditions, the resulting value for 

the damage initiation shear stress is: 

𝜏 = (𝑓𝑡,𝑖 − 𝜎) 𝑙6ℎ (19) 

3.3 Shear mode initiation 

The conditions for shear mode initiation are: a) a trapezoidal vertical stress distribution is assumed at 

the base, b) for the maximum stress at the least compressed toe: 𝜎𝑚𝑎𝑥 ≤ 𝑓𝑡,𝑖, c) for the minimum stress at 

the compressed toe: 𝜎𝑚𝑖𝑛 ≥ −𝑓𝑐 , d) the maximum shear stress due to the trapezoidal distribution needs to 

reach the shear strength. Therefore, 𝜏 = (𝑓𝑣 − 𝜇 ∙ 𝜎𝑚𝑎𝑥) 1.5⁄ . 

Based on these assumptions and applying moment equilibrium, the values for the minimum and 

maximum stress are: 

𝜎𝑚𝑎𝑥 = 𝑓𝑣 ∙ ℎ − (2 ∙ 𝜇 ∙ ℎ + 𝑙)𝜎ℎ ∙ 𝜇 + 𝑙  

 

(20) 

𝜎𝑚𝑖𝑛 = − 𝑙 ∙ 𝜎 + 4 ∙ 𝑓𝑣 ∙ ℎ4 ∙ ℎ ∙ 𝜇 + 𝑙  

while the value for the damage initiation shear stress is: 

𝜏 = 2 𝑓𝑣 − 𝜎 ∙ 𝜇12 ∙ ℎ ∙ 𝜇 + 3 ∙ 𝑙 𝑙 (21) 

3.4 Biaxial mode initiation 

The biaxial mode initiation stress is calculated similarly to the capacity according to eq. (8) through eq. 

(16). Due to the assumption that no other damage initiation mode has arisen, the pier remains uncracked 
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and the stress fan is vertical, the horizontal force being resisted by friction. Therefore, the width of the fan 𝑚 is equal to the length of the pier 𝑙. Due to the parabolic shear stress distribution along the length of the 

pier, the damage initiation shear stress is equal to: 

𝜏 = 𝜏𝑚1.5 (22) 

3.5 Model results and validation 

The three mode initiation models can be combined to produce a damage initiation envelope. This 

envelope is additionally delimited by the compressive failure model as defined in eq. (18). The brittleness 

of the compressive failure mode results in the coincidence of damage initiation and ultimate capacity load. 

Plotting the damage initiation envelope for a masonry pier results in a typical curve shown in Figure 6, 

where a comparison with the capacity envelope is shown. The damage initiation envelope is always below 

the capacity envelope. 

   

Figure 6 Damage initiation model envelope for piers, derived from the four considered 

damage initiation modes in dotted lines. Capacity envelope in solid lines. 

The range of normalised vertical stresses for which damage initiates through pure rocking is greater 

than the range where rocking determines the capacity. This is true for the shear mode as well. Conversely, 

the range of biaxial mode initiation is limited compared to the capacity envelope. Due to the usually low 

level of global vertical stress under which masonry piers typically operate in buildings [23], it is expected 

that the majority of piers will feature rocking or shearing damage initiation, followed by rocking, shearing 

or, less commonly, biaxial failure. 
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The damage initiation model is validated against a series of experiments carried out on piers at Delft 

University of Technology [24,25], coupled with extensive material characterisation [26,27]. The geometric 

and material parameters are reported in Table 1. The experiments include two different sets of materials, 

different masonry bonds, different boundary conditions and varying vertical pre-compression levels.  

The damage initiation and final failure mode was reported in three of the cases (TUD_COMP_20, 

TUD_COMP_21, TUD_COMP_22), while for one of the cases (TUD_COMP_47/48) the crack pattern was 

objectively registered using digital image correlation (DIC). Systematic documentation and objective 

interpretation of damage initiation in experimental reports is often problematic without the use of DIC or 

other optical methods for crack tracking. Damage initiation is typically reported in terms of visible diagonal 

cracking, which cannot arise without prior initiation of some degree of rocking damage. Localised toe 

crushing may also be reported, but this phenomenon is associated with practically all damage initiation 

and capacity models and is, therefore, not indicative of the overall failure mode by itself. Nevertheless, even 

damage reported in simple terms can assist in interpreting damage initiation modes in masonry piers. 
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Table 1 Experimental case studies for pier model validation: geometric and material 

parameters. Force capacity prediction error in parentheses. 

Parameter Symbol Unit Case study 

Specimen name - - TUD_COMP_20 TUD_COMP_21 TUD_COMP_22 TUD_COMP_47/48 

Reference - - [24] [24] [24] [25] 

Pier length 𝑙 mm 1100 3070 3070 3070 

Pier height ℎ mm 2778 2710 2710 2710 

Pier thickness 𝑡 mm 102 100 210 100 

Unit length 𝑙𝑢 mm 214 210 210 210 

Unit height ℎ𝑢 mm 72 50 50 50 

Mortar bed joint height ℎ𝑚  mm 10 10 10 10 

Unit compressive strength 𝑓𝑐𝑢 N mm2⁄  13.26 28.30 28.30 28.30 

Mortar compressive strength 𝑓𝑐𝑚  N mm2⁄  7.57 3.81 3.81 3.81 

Masonry compressive strength 𝑓𝑐  N mm2⁄  6.35 14.02 10.67 11.35 

Unit-mortar interface tensile strength 𝑓𝑡𝑖 N mm2⁄  0.12 0.15 0.15 0.09 

Initial shear strength 𝑓𝑣  N mm2⁄  0.13 0.12 0.12 0.14 

Masonry bond - - Running Running English Running 

Vertical stress −𝜎 N mm2⁄  0.63 0.36 0.36 0.46 

Boundary condition - - Cantilever 
Double-
clamped 

Cantilever Cantilever 

Damage initiation - experimental - - Rocking Shear/rocking Rocking Rocking 

Failure mode – experimental - - Rocking Biaxial Rocking Biaxial 

Shear force capacity – experimental 𝐻𝑒𝑥𝑝 kN 15.1 98.1 117.2 112.5 

Damage initiation – model - - Rocking Rocking Rocking Rocking 

Failure mode – model - - Rocking Biaxial Rocking Biaxial 

Shear force capacity – model 𝐻𝑚𝑜𝑑 kN 13.5 (-10.6%) 100.6 (2.5%) 120.2 (2.6%) 106.2 (-5.6%) 

Overall, the model exhibits very good accuracy in both capacity calculation and in predicting the 

damage initiation and failure mode. In cases TUD_COMP_21, TUD_COMP_22 and TUD_COMP_47/48 the 

model was able to predict the shift from a damage initiation mode based on rocking/sliding to a failure 

mode based on diagonal cracking. The number of suitable experimental cases suitable for validation of the 

proposed model, which need to include comprehensive material characterisation and unambiguous 

reporting of the damage initiation force and mode, is currently small, especially compared to the number 

of cases suitable for validation of the capacity model. Further experimental investigation focusing on 

damage initiation is thus motivated. 
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4 Strut & fan model for walls with openings 

4.1 General model description 

In the context of the proposed approach, modelling of masonry walls with openings under in-plane 

loads requires: 1) the discretisation of the frame into individual components, 2) the distribution of forces 

and stresses in these components, 3) the identification of potential failure modes according to the 

arrangement of the components and the boundary conditions. 

The discretisation of a masonry wall with a single opening is shown in Figure 7, along with the notation 

used hereafter for dimensions and loads. The wall consists of 8 components arranged in a regular 3 × 3 

grid. Three components for the spandrel (𝑆1, 𝑆2 and 𝑆3), two components for the piers (𝑃1 and 𝑃3) and three 

components for the base (𝐵1, 𝐵2 and 𝐵3) are considered. The piers can have different lengths, thus allowing 

the analysis of asymmetric structures. Each component can be assigned its own thickness  𝑡 and set of 

material properties. Additionally, the vertical load at the top of each pier and of the spandrel can be 

different. A height of ℎ1 = 0 reduces the model to a portal frame, while all the other dimensions can only 

be greater than 0. The horizontal loading direction is towards the positive of the 𝑥 axis. Vertical 

compression is applied towards the negative of the 𝑦 axis. 

In the modular approach proposed, the wall 𝑊 is composed of a pair of sub-systems: 𝐿 (left) and 𝑅 

(right), connected with a central spandrel. Each sub-system consists of a single base, pier and spandrel. The 

capacity of the wall is dependent on the capacity of the individual sub-systems and the effect of their 

interaction through spandrel action. 
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Figure 7 Discretisation of masonry wall with central opening into components. 

4.2 Boundary conditions and spandrel function 

As in the case of stand-alone piers, the wall is considered clamped at the base. For the boundary 

condition at the top, the wall may be in a) cantilever, b) clamped or c) clamped with vertical translational 

restraint configuration. 

The boundary conditions and construction details at the top of the wall affect the function of the 

spandrel in providing frame action. In particular, for a cantilever configuration, two cases are distinguished: a) a “weak” connection with the piers, due to the absence of structural elements above the spandrel, and b) a “strong” connection with the piers, provided by steel or reinforced concrete capping beams or a strong 

lintel. In the former, the 𝑆2 spandrel component responds to horizontal loading by “rocking” between the 
two piers: a hinge is formed at the top right corner of 𝑆1 and another at the left bottom corner of 𝑆3. In the 

latter case, the spandrel elements respond jointly. For the clamped and clamped with vertical restraint 

configurations, it is always considered that the spandrel provides a “strong” connection. The two types of 

spandrel function are illustrated in Figure 8. 
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Figure 8 a) “Strong” and b) “weak” spandrel function under horizontal loading. 

4.3 Modelling assumptions 

The stress distribution in the components is represented through a system of compressive struts and 

fans. The compressive struts develop between two formed plastic hinges. Fans develop between two 

continuous lines of applied vertical displacement or between one such line and a plastic hinge. 

Concerning the distribution of the compressive stresses, it is assumed that the vertical stress 𝜎1 is 

distributed to pier 𝑃1, while both vertical stresses 𝜎2 and 𝜎3 are borne by pier 𝑃3, due to the loading direction. The transfer of vertical load from the spandrel 𝑆2 above the opening 

constitutes the frame action of the wall. 

Plastic hinges are formed due to yielding in compression and have a width of 𝑏 calculated as per the 

pier model through eq. (1). 

4.4 Sub-system failure shapes 

Eight arrangements of plastic hinges are possible for a sub-system, illustrated in Figure 9. Stress fans 

are depicted in light blue, with the direction of the stress flow indicated by arrows. Compressive struts are 

indicated in deeper blue colour. The expansion of the stress fan between hinges as expressed in eq. (10) 

and illustrated in Figure 2 is not shown for clarity of the illustrations. The plastic hinges are formed at the 

edges of the struts or at the convergence locus between a laterally contracting and an expanding stress fan. 
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Figure 9 Potential failure shapes for base-pier-spandrel sub-system. Disposition of stress fans 

and compressive struts. 

The disposition of the struts and fans determines where the failure checks are performed. This point is 

illustrated by commenting on the difference between shapes 1, 2 and 3. In shape 1, the spandrel, pier and 

base are checked individually. In shape 2 all three components are checked as one. In shape 3 the base is 

checked individually while the spandrel and pier are checked as one component. 

Individual failure checks are executed according to the model for stand-alone piers: a) all components 

are checked against biaxial failure according to eq. (16), b) all components are checked in compression 

according to eq. (18), c) piers are checked in shear according to eq. (6), c) rocking failure is checked 

according to eq. (5) by calculating the horizontal force component between plastic hinges or, in the absence 

of a second plastic hinge, by assuming a resultant force at the centre of a fan extending towards the 

direction of loading (positive 𝑥 direction). 

The failure checks in sub-system 𝐿 are straightforward due to the sub-system only bearing the vertical 

and horizontal forces applied on 𝑆1. Sub-system 𝐵 bears the vertical and horizontal forces applied on both 
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𝑆2 and 𝑆3. For a “weak” spandrel, 𝑉2 is transferred to the lower right corner of 𝑆3, while for a “strong” 
spandrel it is applied at the centre of 𝑆2, providing an increased lever-arm and increased rocking capacity. In the case of a “strong” spandrel, an additional biaxial strength check is performed for 𝑆2, considering a 

stress fan from the top of 𝑆2 to the top of 𝑃2, where it assumes a width as defined in Figure 9. 

Based on these calculations, the capacity 𝜏𝐴,𝑖  and 𝜏𝐵,𝑖  of each sub-system 𝐿 or 𝑅 for the failure shapes 𝑖 ∈ [1,8] is calculated. 

4.5 Combination of sub-system failure shapes 

The sub-system failure shapes are combined in pairs. Each pair defines a potential failure mode and 

total capacity for the wall. These capacity sums can be expressed as: 

𝑪(𝑖, 𝑗) = (𝜏𝐿,𝑖 + 𝜏𝑅,𝑗),   𝑖, 𝑗 ∈ [1,8] (23) 

The capacity of the wall 𝜏𝑊 is defined as the minimum element in 𝑪. However, due to their interaction 

in the wall and due to boundary conditions, not all sub-system failure shapes are allowed in the complete 

wall structure. The boundary conditions and geometry of the wall affect the stress distribution and 

potential failure modes as follows: a) cantilever wall with “weak” spandrel require the formation of 2 
hinges, b) cantilever walls with “strong” spandrels require 3 hinges, c) hinges cannot form at the top of 

cantilever walls with “strong” spandrels for maintaining continuity of the applied vertical stress, d) double-

clamped walls require 4 hinges, e) double-clamped walls with vertical restraint require 4 hinges, but the 

bending failure mode is inactivated, f) the central part 𝐵2 of the base restricts the rotation of components 𝐵1 and 𝐵3 [28], therefore, no plastic hinge can form at the base of 𝐵1 or 𝐵3, unless a sufficient gap is provided 

between the base components. 

Based on the above conditions, the allowable failure shape combinations are: a) 𝑪(3,3), 𝑪(3,7),  𝑪(3,8),  𝑪(7,3),  𝑪(7,7),  𝑪(7,8),  𝑪(8,7), and 𝑪(8,8) for a cantilever wall with a “weak” spandrel, b) 𝑪(1,3), 𝑪(3,1), 𝑪(1,7) and 𝑪(7,1) for a cantilever wall with a “strong” spandrel, c) 𝑪(1,1), 𝑪(1,6) and 𝑪(6,1) for the double-

clamped, with or without vertical restraint. 
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4.6 Model results and validation 

The proposed model for the masonry wall capacity is validated against experimental cases from the 

literature. Among the findings in the literature, the list of cases used was confined to those in which material 

parameters were reported. It includes both walls with window openings and portal frames, i.e. where ℎ1 =0. Due to the small number of such available campaigns, nominal shear characteristics were assumed where 

they were missing in order to not overly limit the application cases [29]. The tensile strength as calculated 

according to eq. (17) and the friction angle of the masonry as calculated in subsection 2.4 are also reported. 

Concerning boundary conditions, walls were tested in cantilever with “strong” spandrel (‘𝐶’) and double-

clamped with vertical restraint (‘𝑉’) configuration. The vertical load was only applied on the piers in a few 

instances. In one case of asymmetrical piers, the capacity in both positive and negative directions is 

reported (𝐻𝑒𝑥𝑝+  and 𝐻𝑒𝑥𝑝−  respectively). The parameters used and the comparison of the experimental and 

model results are presented in Table 2. In addition to calculating the model capacity 𝐻𝑚𝑜𝑑+  in the positive 

direction, the capacity in the negative direction 𝐻𝑚𝑜𝑑−  was calculated by reversing the parameters 𝑙1 and 𝑙3. 

Overall a very good prediction of the experimental capacity is obtained using the proposed model for this 

wide variety of experimental cases. 

The difference in wall capacity due to uneven piers, accompanied by a shift in failure mode, is captured 

in the simulation of the experiments by Esposito & Ravenshorst [24]. The quarter-scale experiments by 

Lobato [30]  and full-scale experiments by Foraboschi & Vanin [13,31] illustrate the shift in capacity due to 

an increasing vertical load, an increase indicative of the global friction angle of the masonry. The accuracy 

of the model in simulating large piers connected by a spandrel, namely portal frames without the base, is 

shown in the simulation of the experiments by Parisi et al [14]. Finally, the model captures the significant 

effect of boundary conditions on the response, as illustrated in the high capacity obtained in the 

experiments by Raijmaker, which was vertically restrained, resulting in a force capacity nearly double that 

of a double-clamped model [12]. 
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Table 2 Comparison of wall with opening capacity model with experimental results from the literature. Predicted force error in 1 

parentheses. 2 

Ref. ℎ1 ℎ2 ℎ3 𝑙1 𝑙2 𝑙3 𝑡 𝑓𝑐  𝑓𝑣  𝜇 𝑓𝑡  −𝜎 Boundary conditions Masonry bond 𝐻𝑒𝑥𝑝+  𝐻𝑚𝑜𝑑+  𝐻𝑒𝑥𝑝−  𝐻𝑚𝑜𝑑−  − mm mm mm mm mm mm mm N mm2⁄  N mm2⁄  − N mm2⁄  N mm2⁄  − − kN kN kN kN 

[30] 90 90 90 150 75 112.5 35 18.9 0.46 2.42 1.70 0.645 𝐶 Running 4.9 5.7 (16.3%) - - 

 
           1.132   7.7 9.6 (24.7%) - - 

 
           1.858   13.1 12.5 (-4.6%) - - 

 
           2.540   13.2 14.5 (9.8%) - - 

 
           3.236   15.9 16.3 (2.5%) - - 

 
           4.036   17.7 17.9 (1.1%) - - 

[14] 0 2300 1000 1700 1700 1700 310 3.73 0.15 1.36 0.26 0.373b 𝐶 Running 184 171.5 (-6.8%) - - 

[31] 325 1170 845 930 880 930 240 1.21 0.15a 2.36 0.16 0.300b 𝐶 Flemish 63 51.7 (-17.9%) - - 

 
           0.179b   48 37.8 (-21.3%) - - 

 
           0.090b   18 19.4 (7.7%) - - 

[13] 380 1210 1180 1025 1070 1025 250 1.21 0.15a 2.64 0.16 0.270b 𝐶 Flemish 64.2 60.4 (-5.9%) - - 

 
           0.179b   59.8 43.2 (-27.8%) - - 

 
           0.090b   18.2 24.4 (34.1%) - - 

[25] 530 1510 650 870 780 1420 100 11.35 0.13 1.75 0.37 0.120 𝐶 Running 22.2 19.3 (-13.1%) - - 

[24] 540 1680 490 870 1000 1200 210 10.67 0.2 0.88 0.32 0.340 𝐶 English 85.4 84.2 (-1.4%) 94.1 90.4 (-3.9%) 

[12] 350 350 350 430 210 325 100 10.5 0.35 1.75 0.66 0.300 𝑉 Running 41.5 45.6 (9.9%) - - 

a assumed value 

b vertical load applied over pillars only 

3 
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5 Conclusions 4 

An analytical model for the prediction of the in-plane capacity of masonry piers and walls with openings 5 

is presented. The model considers all major geometric and material parameters, including the bond type, 6 

for the calculation of the capacity. Additionally, an analytical model is proposed for the prediction of the 7 

damage initiation mode in masonry piers under in-plane shear. Apart from geometric and material 8 

properties, no further numerical parameters or major empirical assumptions are needed for analysis. 9 

The model accounts for all potential failure modes normally encountered in masonry walls subjected 10 

to a combination of in-plane vertical and horizontal loading. Unequal vertical loading, asymmetric piers 11 

and local variations in material properties can be easily introduced in the analysis. 12 

The basis of the model is validated against numerous standalone pier experimental tests, while the 13 

model for walls with openings is similarly validated against several case studies with different material 14 

properties, dimensions, bonding patterns and boundary conditions. 15 

The model provides a very efficient and accurate method for the capacity assessment of simple 16 

structures subjected to in-plane shear loading under vertical stress. The damage initiation model provides 17 

a simple means of highlighting weaknesses in masonry piers, thus allowing efficient intervention design 18 

for the strengthening of masonry structures against damage initiation. 19 

The proposed model presents opportunities for future work pertaining to the simulation of structural 20 

reinforcement, such as in the form of embedded bars. The contribution of horizontal bars can be introduced 21 

in the tensile strength for the biaxial failure check. Vertical bars can increase the rocking mode capacity 22 

when anchored at the base of cantilever walls, or at the base and top of double-clamped piers. Finally, 23 

diagonal bars can restore or increase the cohesion in damaged zones. 24 
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