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Abstract 5 

Three-leaf masonry panels are typically composed of external leaves of irregularly bonded units and a 6 

rouble infill. The complexity of the response of these structures to mechanical loading arises from: a) the 7 

interaction of the leaves and b) the irregularity of the bond pattern of the outer leaves. This complexity 8 

makes analytical and computational modelling of these structures difficult and costly, respectively. 9 

This paper proposes a computational approach for the calculation of the mechanical properties of the 10 

three-leaf masonry from the properties of its constituent materials and its geometry. Using micro-11 

mechanical analysis approaches applied in composite materials and accounting for the interaction of the 12 

leaves through a simple analytical approach, the homogenised elastic stiffness and strength of a 13 

representative volume element of three-leaf masonry can be calculated with very low computational cost. 14 

The analysis method is validated against experimental results from the literature. It is found that the 15 

proposed model provides accurate results for a relatively wide range of case studies. These results are 16 

expanded upon through a sensitivity study, highlighting the most important material and geometric 17 

parameters influencing the predicted compressive strength of three-leaf masonry walls. 18 
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1 Introduction 21 

Three-leaf masonry construction is a very common structural typology, strongly linked with both 22 

architectural heritage and vernacular construction. It is typically composed of two external leaves made of 23 

regularly or, more frequently, irregularly bonded stone or brick masonry and an inner leaf made of low 24 

cohesion, low strength materials, including loose mortar, soil and stone or brick fragments. Three-leaf 25 

masonry is a highly heterogeneous structure, composed of macroscopically distinguishable material 26 

phases and leaves with widely different mechanical properties [1]. Failure in these structures under 27 

mechanical loading may occur due to separation of poorly interlocked leaves, out-of-plane collapse or 28 

failure of the materials in tension, shear or compression. Load transfer between the material phases and 29 

between the distinct leaves, which governs the developed stresses within each constituent material, 30 

depends on numerous mechanical and geometric properties characterising the three-leaf structure and the 31 

connectivity of the leaves [2]. 32 

Experimental campaigns characterising the mechanical properties of three-leaf masonry, accompanied 33 

by comprehensive characterisation of the individual materials, are relatively few [2–6]. Despite the limited 34 

number of such studies, the results are enlightening in terms of describing the failure mode and the salient 35 characteristics of the response. These studies typically include the determination of the Young’s modulus 36 

and compressive strength, the measurement of the effects of grouting or other strengthening measures on 37 

capacity and the investigation of the interaction between leaves [1]. 38 

A variety of models for three-leaf masonry has been proposed in the literature. Analytical expressions 39 

for predicting the compressive strength [6–9] have been calibrated, relying partly on the mechanical 40 

properties of the materials and partly on empirical or semi-empirical observations or qualitative 41 

assessments of leaf interlocking. Further, computational modelling using finite elements has been 42 

attempted [2,10], this approach being very case-specific and characterised by high computational cost and 43 

modelling effort. Finally, method-of-cells approaches have been successfully applied for the analysis of both 44 

single-leaf [11] and multi-leaf masonry structures [12]. 45 
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A very promising approach for the analysis of the external leaves of three-leaf masonry is treating the 46 

outer leaf as a composite material consisting of a mortar matrix with stone or brick unit inclusions. This 47 

approach is suitable for providing averaged values of stresses in the components of a composite material 48 

and for calculating the homogenised properties of the material with low computational cost. In the initially 49 

studied case of a composite material consisting of particle inclusions in a matrix, it is possible to relate the 50 

stresses within the inclusion to a given applied stress in an infinite matrix [13]. This model was later 51 

extended to account for composite materials with tightly packed inclusions and the interaction between 52 

them and with the surrounding matrix [14,15], a condition more closely resembling that encountered in 53 

the external leaves of masonry structures. While the shape of the inclusions is often considered to be 54 

ellipsoidal, and despite solutions of the problem existing for near-rectangular inclusions [16], this 55 

modelling approach has been applied in linear elastic modelling masonry structures with ellipsoidal 56 

inclusions approximating cuboid brick units with good accuracy [17]. Finally, nonlinear analyses of 57 

cements and mortar using this micro-mechanical approach have been successful in capturing the behaviour 58 

of brittle materials [18–21], providing a basis for application on masonry structures. 59 

In this paper a model for the calculation of the elastic properties of three-leaf masonry structures is 60 

proposed. This goal is accomplished through a combined use of micro-mechanical modelling and analytical 61 

expressions for the homogenisation of the external leaf and the simulation of leaf interaction, respectively. 62 

This approach allows for the calculation of mechanical properties, primarily of the compressive strength, 63 

as a function of the geometric disposition and mechanical properties of the primary components 64 

comprising the three-leaf structure: units, mortar and fill material. Simultaneously, the coupled use of 65 

micro-mechanics and analytical expressions keeps the computational cost of non-linear analysis low. 66 

The accuracy of the model is validated against experimental data involving compression tests on three-67 

leaf masonry members. Only case studies with sufficient material characterisation are considered in this 68 

validation in order to minimise the number of assumptions concerning unknown material properties. 69 

Finally, a sensitivity study is performed for identifying the geometric and material parameters that have 70 

the strongest effect on the compressive strength of the masonry. This investigation can serve as a guide for 71 
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future characterisation efforts in the study of three-leaf masonry structures through the identification of 72 

the most crucial material parameters. 73 

2 Two-scale micro-mechanical model 74 

2.1 Overview 75 

The proposed model deals with the simulation of three-leaf masonry structures under mechanical 76 

loading. At the macro-scale, the structure consists of two outer leaves and an enclosed inner leaf. The outer 77 

leaves are composed of masonry units and mortar joints, while the inner leaf is composed of stone or brick 78 

fragments embedded in a highly porous fill material; the latter often being the same material as the mortar 79 

in the joints but less compacted. In the present study, it is considered that the inner and outer leaves are 80 

connected through a plane interface, thus not explicitly considering the potential presence of keyed collar 81 

joints. A visual representation of a representative three-leaf masonry structure is given in Figure 1. 82 

 83 

Figure 1 General layout of three-leaf masonry structure featuring units of different sizes. 84 

The modelling strategy consists in the serial two-scale analysis of three-leaf masonry walls. At the 85 

micro-scale, the interaction of the components within the leaves is modelled for deriving the stresses and 86 

strains at each material phase. At the macro-scale the interaction of the outer and inner leaves is modelled. 87 

The two scales are solved separately and coupled for deriving the homogenised stresses and strains of the 88 

masonry [22]. 89 
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2.2 Homogenisation of masonry leaves 90 

The outer leaves of a three-leaf masonry are treated as a composite material consisting of stone or brick 91 

unit inclusions in a mortar matrix. In this context, an inclusion is defined as a region embedded in an 92 

infinite, homogeneous and isotropic matrix. When the matrix undergoes a change in size and shape, the 93 

inclusion in turn undergoes a deformation which is different from that of the matrix, assuming the two 94 

phases possess different material properties. Defining the eigenstrain 𝜺∗ as the strain state within the 95 

inclusion upon removal of the constraint provided to it by the matrix, the strain within the inclusion is 96 

equal to: 97 

ε𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜀∗𝑘𝑙 (1) 

where 𝑆𝑖𝑗𝑘𝑙  are the components of Eshelby’s tensor 𝑺. These components are a function of the shape of the 98 

inclusion, with ellipsoidal inclusions having received the most attention in the literature. The outer surface 99 

of an ellipsoid is defined by the equation: 100 

𝑥2𝑎12 + 𝑦2𝑎22 + 𝑧2𝑎32 = 1 (2) 

where 𝑎1, 𝑎2 and 𝑎3  are the half-length, half-height and half-width of the ellipsoid. These ellipsoids are 101 

used for approximating the shape of units in the outer leaves, be they of cuboid or more rounded shape. 102 

This approximation of cuboids with ellipsoids does not appear to lead to any marked difference between 103 

computed elastic properties of the masonry and experimentally derived values [17,23]. An ellipsoidal 104 

inclusion is illustrated in Figure 2.  105 
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 106 

Figure 2 Illustration of an ellipsoidal inclusion. 107 

For ellipsoidal inclusions, with their axes as shown in Figure 2 aligned with the axes of the masonry as 108 

shown in Figure 1, the components of Eshelby’s tensor 𝑺 are calculated as [24]: 109 

𝑆1111 = 38𝜋(1 − 𝜈) 𝑎12𝐼11 + 1 − 2𝜈8𝜋(1 − 𝜈) 𝐼1 

𝑆1122 = 18𝜋(1 − 𝜈) 𝑎22𝐼12 + 1− 2𝜈8𝜋(1 − 𝜈) 𝐼1 

𝑆1133 = 18𝜋(1 − 𝜈) 𝑎32𝐼13 + 1− 2𝜈8𝜋(1 − 𝜈) 𝐼1 

𝑆1212 = 𝑎12 + 𝑎2216𝜋(1 − 𝜈) 𝐼12 + 1− 2𝜈16𝜋(1 − 𝜈) (𝐼1 + 𝐼2) 
(3) 

following the symmetries: 110 

𝑆𝑖𝑗𝑘𝑙 = 𝑆𝑗𝑖𝑘𝑙 = 𝑆𝑖𝑗𝑙𝑘  (4) 

and 𝜈 being the Poisson’s ratio of the matrix. The parameters 𝐼𝑖  and 𝐼𝑖𝑗  are calculated by the elliptical 111 

integrals [25]: 112 

𝐼1 = 2𝜋𝑎1𝑎2𝑎3∫ 𝑑𝑠(𝑎12 + 𝑠)𝛥(𝑠)∞
0  (5) 
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𝐼11 = 2𝜋𝑎1𝑎2𝑎3∫ 𝑑𝑠(𝑎12 + 𝑠)2𝛥(𝑠)∞
0  

𝐼12 = 2𝜋𝑎1𝑎2𝑎3∫ 𝑑𝑠(𝑎12 + 𝑠)(𝑎22 + 𝑠)𝛥(𝑠)∞
0  

where: 113 

𝛥(𝑠) = √(𝑎12 + 𝑠)(𝑎22 + 𝑠)(𝑎32 + 𝑠) (6) 

The remaining parameters 𝐼𝑖  and 𝐼𝑖𝑗  are calculated by cyclic permutation through subscripts 1,2,3. 114 

Instead of a single inclusion, we can consider a composite material 𝐶 comprised of 𝑛 inclusion groups 𝑖 115 

within a matrix 𝑚.  Each group represents inclusions with the same dimensions and material properties. 116 

The dilute estimate 𝑻𝑖 of the 𝑖-th inclusion group is equal to: 117 

𝑻𝑖 = [𝑰 + 𝑺𝑖𝑪𝑚−1(𝑪𝑖 − 𝑪𝑚)]−1 (7) 

where 𝑰 is the identity tensor and 𝑪𝑚 and 𝑪𝑖 are the stiffness tensors of the matrix and the inclusion 118 

respectively. The matrix strain concentration factor 𝑨𝐶  in the composite is equal to: 119 

𝑨𝐶 = (𝜔𝑚𝑰 +∑𝜔𝑖𝑻𝑖𝑛
𝑖=1 )−𝟏 (8) 

where 𝜔𝑖  is the volume ratio of the 𝑖-th group of inclusions and 𝜔𝑚  the volume ratio of the matrix, both 120 

with respect to the total volume of the composite. The strain concentration tensor 𝑨𝑖  of the 𝑖-th inclusion 121 

group in the composite material is equal to: 122 

𝑨𝑖 = 𝑻𝑖𝑨𝐶 (9) 

Finally, the effective stiffness tensor 𝑪𝐶 of the composite material is [26]: 123 
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𝑪𝐶 = 𝑪𝑚 +∑𝜔𝑖(𝑪𝑖 − 𝑪𝑚)𝑨𝑖𝑛
𝑖=1  (10) 

The strain in the matrix 𝜺𝑚 is equal to [14]: 124 

𝜺𝑚 = 𝑨𝐶𝜺𝐶 (11) 

where 𝜺𝐶  is the macroscopic strain in the composite, while the stress 𝝈𝑚  in the matrix is equal to: 125 

𝝈𝑚 = 𝑪𝑚𝜺𝑚 (12) 

The strain 𝜺𝑖 in the 𝑖-th group of inclusions is equal to [15]: 126 

𝜺𝑖 = 𝑨𝑖𝜺𝑐 (13) 

and the stress 𝝈𝑖  is equal to: 127 

𝝈𝑖 = 𝑪𝑖𝑨𝑖(𝑪𝑐)−1𝝈𝐶 (14) 

where 𝝈𝐶  is the macroscopic stress in the composite. 128 

Different unit inclusion groups in masonry are often clearly defined by the orientation of the units 129 

within the leaf. It is thus possible to distinguish between header, transversal or half-length header units 130 

depending on the bond type. Each of these types of units constitute an inclusion group. Brick masonry is 131 

often characterized by regularly sized units in the outer leaves, allowing the easy determination of the 132 

dimensions 𝑎1, 𝑎2 and 𝑎3 for each inclusion group. This is not often the case in stone masonry, where the 133 

sizes of the units within the same inclusion group can vary noticeably. Due to this size irregularity, the 134 

dimensions 𝑎1, 𝑎2 and 𝑎3 for each unit inclusion group are calculated as the volume-weighted average for 135 

each dimension in a given area in the masonry. Each average inclusion dimension 〈𝑎𝑖〉 in direction 𝑖 is equal 136 

to: 137 

〈𝑎𝑖〉 = ∑𝑎𝑖 ∙ 𝑉∑𝑉  (15) 
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with 𝑉 being the volume of each individual unit in the studied area of masonry. This approach ensures that 138 

the average dimension is controlled by the dimension of the units occupying the greatest volume in the leaf. 139 

For masonries with highly irregular texture, the calculation of the average dimensions can be performed 140 

for different sections of the masonry, resulting in the calculation of different mechanical properties in each 141 

section. 142 

This homogenization process can be applied in a straightforward manner for the outer leaves: the 143 

mortar acts as the matrix and the units as the inclusions. The geometry and volume ratio of the units can 144 

be determined relatively easily through visual or photogrammetric inspection. The same process can in 145 

principle be adopted for the inner leaf as well, considering the fill material as the matrix and the various 146 

fragments as the inclusions. Additionally, pores can be included in the inner leaf in the form of zero-stiffness 147 

inclusions. However, using this approach for the inner leaf is deemed impractical due to the typical absence 148 

of accurate geometric data for the components of the inner leaf, the difficulty in acquiring such data from 149 

inspection, as opposed to the case of the outer leaves, and from the fact that the inner leaf is often 150 

characterised mechanically as a whole in experimental campaigns. Therefore, the inner leaf is here treated 151 

for the most part as a homogeneous material. 152 

2.3 Masonry leaf interaction 153 

The interaction of the masonry leaves is accounted for through a method-of-cells approach for the 154 

analysis of a representative volume element (RVE) of masonry [12]. In this context, the interaction is 155 

modelled through simple analytical expressions of stress equilibrium and strain compatibility between the 156 

inner leaves 𝐼 and outer leaves 𝑂 for calculating the elastic properties of the masonry 𝑀. Focusing on 157 

normal applied stresses, and having considered a plane interface between the leaves, shear stresses and 158 

strains are disregarded as these, due to the boundary conditions, do not develop in the RVE when it is 159 

subjected to normal stresses/strains only. 160 

Strain compatibility between the leaves dictates that both leaves deform equally in the longitudinal (𝑥) 161 

and vertical (𝑦) direction leading to the strain equalities:  162 
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𝜀0(𝑥𝑥) = 𝜀𝐼(𝑥𝑥) = 𝜀𝛭(𝑥𝑥) 
𝜀0(𝑦𝑦) = 𝜀𝐼(𝑦𝑦) = 𝜀𝛭(𝑦𝑦) (16) 

In the transversal (𝑧) direction, the strain of the masonry is defined as: 163 

𝜀𝑀(𝑧𝑧) = 𝜔𝑂𝜀𝑂(𝑧𝑧) + 𝜔𝐼𝜀𝐼(𝑧𝑧)  (17) 

where 𝜔𝑂  and 𝜔𝐼  are, respectively, the volume ratios of the outer and inner leaves with respect to the total 164 

volume of the masonry. 165 

Stress equilibrium in the horizontal and vertical directions is expressed as: 166 

𝜎𝑀(𝑥𝑥) = 𝜔𝑂𝜎𝑂(𝑥𝑥) + 𝜔𝐼𝜎𝐼(𝑥𝑥)  
𝜎𝑀(𝑦𝑦) = 𝜔𝑂𝜎𝑂(𝑦𝑦) +𝜔𝐼𝜎𝐼(𝑦𝑦) (18) 

while stress equality between leaves in the transversal direction is expressed as: 167 

𝜎𝑀(𝑧𝑧) = 𝜎𝑂(𝑧𝑧) = 𝜎𝐼(𝑧𝑧)  (19) 

The above conditions amount to an iso-strain assumption in the vertical and horizontal direction and 168 

an iso-stress assumption in the transversal direction [27]. These conditions, along with Hooke’s law for the 169 

inner and outer leaves, can be expressed in a more convenient tensor form as follows: 170 

[  
  0⋮0𝝈𝑀𝜺𝑀 ]  

  = [  
 (−𝑪𝐼)−1 𝑰 𝟎 𝟎𝟎 𝟎 (−𝑪𝑂)−1 𝑰𝑲1 𝟎 𝑲3 𝟎𝟎 𝑲2 𝟎 𝑲4]  

 ∙ [𝝈𝛪𝜺𝛪𝝈𝛰𝜺𝛰] 
𝑲1 = [𝜔𝐼 0 00 𝜔𝐼 00 0 1], 𝑲2 = [1 0 00 1 00 0 𝜔𝐼], 𝑲3 = [𝜔𝑂 0 00 𝜔𝑂 00 0 0], 𝑲4 = [0 0 00 0 00 0 𝜔𝑂] 

(20) 

where 𝟎 is a 3 × 3 zero tensor, 𝑰 is a 3 × 3 identity tensor and 𝑪𝐼  and 𝑪𝑂 are the stiffness tensors for the 171 

inner and outer leaves respectively. In the most general case of orthotropic inner and outer leaves, it is 172 
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possible to derive closed-form expressions for all components of the orthotropic stiffness tensor 𝑪𝑀 of the 173 

masonry (defined as 𝝈𝑀  =  𝑪𝑀𝜺𝑀) from eq. (20) as a function of the components of the 𝑪𝐼  and 𝑪𝑂 tensors. 174 

The expressions involving components in the out-of-plane (𝑧) direction are tediously long, but the 175 

remainder are relatively simple and more relevant for structural analysis. The horizontal Young’s modulus 176 𝐸(𝑥) of the masonry reads: 177 

𝐸(𝑥) = 𝜔𝐼𝐸𝐼(𝑥)[𝜔𝐼𝐸𝐼(𝑦)(𝜈𝑂(𝑥𝑦)𝜈𝑂(𝑦𝑥) − 1) + 𝜔𝑂𝐸𝑂(𝑦)(𝜈𝐼(𝑦𝑥)𝜈𝑂(𝑥𝑦) − 1)] + 𝜔𝑂𝐸𝑂(𝑥)[𝜔𝐼𝐸𝐼(𝑦)(𝜈𝐼(𝑥𝑦)𝜈𝑂(𝑦𝑥) − 1) + 𝜔𝑂𝐸𝑂(𝑦)(𝜈𝐼(𝑥𝑦)𝜈𝐼(𝑦𝑥) − 1)]𝜔𝐼𝐸𝐼(𝑦)(𝜈𝑂(𝑥𝑦)𝜈𝑂(𝑦𝑥) − 1) + 𝜔𝑂𝐸𝑂(𝑦)(𝜈𝐼(𝑥𝑦)𝜈𝐼(𝑦𝑥) − 1)  (21) 

while the vertical Young’s modulus 𝐸(𝑦) can be obtained from eq. (21) by substitution between the 𝑥 and 𝑦 178 

superscripts. The Poisson’s ratio 𝜈(𝑥𝑦)  is: 179 

𝜈(𝑥𝑦) = 𝜔𝐼𝐸𝐼(𝑥)𝜈𝐼(𝑦𝑥) (𝜈𝑂(𝑥𝑦)𝜈𝑂(𝑦𝑥) − 1) + 𝜔𝑜𝐸𝑂(𝑥)𝜈𝑂(𝑦𝑥) (𝜈𝐼(𝑥𝑦)𝜈𝐼(𝑦𝑥) − 1)𝜔𝐼𝐸𝐼(𝑥) (𝜈𝑂(𝑥𝑦)𝜈𝑂(𝑦𝑥) − 1) + 𝜔𝑂𝐸𝑂(𝑥) (𝜈𝐼(𝑥𝑦)𝜈𝐼(𝑦𝑥) − 1)  (22) 

while 𝜈(𝑦𝑥) can be obtained from eq. (22) by substitution between the 𝑥 and 𝑦 superscripts. 180 

This model for the interaction of the leaves in the macro-scale can be used for the determination of the 181 

properties of a three-leaf masonry RVE. While it accounts for the in-plane interaction between the leaves 182 

through the iso-strain assumption, the iso-stress assumption in the transversal (𝑧) direction cannot 183 

account for the out-of-plane effects caused by the bulging of the inner leaf under compression and the 184 

subsequent pushing-out of the outer leaf [2]. These out-of-plane effects arise as a consequence of structural 185 

element geometry and boundary conditions and thus cannot be captured through an RVE analysis. 186 

Conceptually, these effects can be modelled by treating the three-leaf structure as a bonded iso-strain 187 

composite under compression, infinitely thick in the longitudinal (𝑥) direction [28], but this addition to the 188 

proposed model is not pursued in this paper. Finally, the model does not account for in-height differences 189 

of vertical deformation between the leaves, which is again an aspect arising at structural element level. 190 

3 Calculation process 191 

For the calculation of the compressive strength of the masonry, it is necessary to model the nonlinearity 192 

of the constituent materials of the composite. For compressive loading it is required to model the nonlinear 193 
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response of the components in compression and tension. It has been previously determined numerically 194 

that interface nonlinearity between units and mortar has a negligible effect on the compressive strength of 195 

masonry [29]. Therefore, interfaces between inclusions and matrices are not considered in the present 196 

investigation. 197 

A damage mechanics approach is adopted in this work, where the stiffness is reduced through 198 

multiplication with integrity variables in tension and compression. An exponential softening curve is 199 

adopted for the response in tension. The integrity variable in tension 𝐼𝑡  is a function of the maximum 200 

principal strain 𝜀+ and the maximum principal effective stress 𝜎𝑒+. The principal strain 𝜀+ is calculated from 201 

the strain tensor of the inclusion or matrix being evaluated and the effective principal stress 𝜎𝑒+ is 202 

calculated from the stress tensor obtained by the product of the undamaged stiffness tensor and the strain 203 

tensor. The expression for the integrity variable reads [30]: 204 

𝐼𝑡(𝜀+) = { 1  0 ≤ 𝜀+ ≤ 𝜀𝑡𝑓𝑡𝜎𝑒+ exp (−𝑓𝑡ℎ𝐺𝑡 (𝜀+ − 𝜀𝑡)) 𝜀𝑡 ≤ 𝜀+  (23) 

where 𝑓𝑡  is the tensile strength, 𝐺𝑡 is the tensile fracture energy, ℎ is the bandwidth and 𝜀𝑡  being the peak 205 

strain in tension, equal to: 206 

𝜀𝑡 = 𝑓𝑡𝐸  (24) 

A parabolic curve is adopted for the materials in compression. The integrity variable in compression 𝐼𝑐  207 

is a function of the minimum principal strain 𝜀− and minimum principal effective stress 𝜎𝑒−, calculated 208 

similarly as in the case in tension, and is equal to [30]: 209 

𝐼𝑐(𝜀−) =
{   
   1 𝜀𝑙 ≤ 𝜀−  ≤ 0− 𝑓𝑐𝜎𝑒− 13(1 + 4 𝜀−  − 𝜀𝑙𝜀𝑐 − 𝜀𝑙 − 2(𝜀−  − 𝜀𝑙𝜀𝑐 − 𝜀𝑙 )2) 𝜀𝑐 ≤ 𝜀−  ≤ 𝜀𝑙− 𝑓𝑐𝜎𝑒− (1 − (𝜀−  − 𝜀𝑐𝜀𝑢 − 𝜀𝑐 )2) 𝜀𝑢 ≤ 𝜀−  ≤ 𝜀𝑐0 𝜀−  ≤ 𝜀𝑢

 (25) 
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where 𝑓𝑐  is the compressive strength, 𝜀𝑙  is the limit of proportionality, equal to: 210 

𝜀𝑙 = −13𝑓𝑐𝐸  (26) 

with 𝐸 being the Young’s modulus, 𝜀𝑐  is the peak strain in compression, equal to: 211 

𝜀𝑐 = −53𝑓𝑐𝐸  (27) 

and 𝜀𝑢 is the ultimate strain, equal to: 212 

𝜀𝑢 = 𝜀𝑐 − 32 𝐺𝑐𝑓𝑐ℎ (28) 

where 𝐺𝑐  is the compressive fracture energy and ℎ is the bandwidth. In eq. (23) & (25) the bandwidth 213 

depends on the dimension of the component in the direction being evaluated. For example, for units in 214 

horizontal tension the bandwidth is equal to the length of the unit, while for bed joints in compression the 215 

bandwidth is equal to the thickness of the bed joint. 216 

The combination of vertical compression and horizontal or transversal tension is common in units in 217 

masonry under vertical compression. The effect of lateral tension on the vertical compressive strength of 218 

the material is taken into account through a reduction of the initial compressive strength of the inclusions 219 

as a function of the lateral stress according to the expression: 220 

𝑓𝑐∗(𝜎) = (1 −max (𝜎(𝑥𝑥), 𝜎(𝑧𝑧), 0)𝑓𝑡 )𝑓𝑐  (29) 

which is a very close linear approximation of a Mohr-Coulomb failure criterion in the tension-compression 221 

region. 222 

Multi-axial compression of the inner leaf can result in the increase in its compressive strength. This 223 

increase is modelled through use of the Hsieh-Ting-Chen failure criterion [31]. When expressed in terms of 224 

principal stresses, the criterion reads: 225 
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𝑓 = 𝐴 𝐽2𝑓𝑐2 +𝐵√𝐽2𝑓𝑐 + 𝐶 𝜎1𝑓𝑐 +𝐷 𝐼1𝑓𝑐 − 1 = 0 (30) 

where 𝐼1 and 𝐽2 are the first stress and second deviatoric stress invariants respectively and 𝜎1 is the 226 

maximum principal stress. The numerical parameters 𝐴, 𝐵, 𝐶 and 𝐷 are calibrated from uniaxial 227 

compression, uniaxial tension, biaxial compression and triaxial compression under equibiaxial stress. In 228 

the present study, the standard values originally reported by the authors of the criterion are used, although 229 

they can be calibrated experimentally for each studied case, albeit with some difficulty. 230 

An isotropic damage approach is adopted for the reduction of the stiffness of the phases. The reduced 231 

stiffness tensor 𝑪∗ of each matrix and inclusion is calculated as the product of the initial stiffness tensor 𝑪 232 

and the integrity variables: 233 

𝑪∗ = 𝐼𝑡(𝜀) 𝐼𝑐(𝜀) 𝑪 (31) 

In summary, the calculation sequence for each loadstep of a strain-driven nonlinear analysis is 234 

comprised of the following steps: 235 

1. calculation of reduced stiffness tensors 𝑪∗ of matrices and inclusions from eq. (31) 236 

2. calculation of stiffness tensors 𝑪𝐼  and 𝑪𝑂 of inner and outer leaves from eq. (10) 237 

3. increment of strain 𝜺𝑀 of masonry 𝑀 238 

4. calculation of macroscopic stresses and strains in masonry 𝑀, inner leaf 𝐼 and outer leaf 𝑂 from 239 

eq. (20) 240 

5. calculation of microscopic stresses and strains in matrices and inclusions within 𝐼 and 𝑂 from 241 

eq. (11) to (14) 242 

6. calculation of integrity variables for next step from eq. (23) & (25) 243 

The strain-driven analysis is continued until complete softening of the stress-strain curve of the 244 

composite is obtained. The calculated compressive strength of the composite is defined as the peak stress 245 

obtained. The calculation process is illustrated in the flowchart shown in Figure 3. 246 
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 247 

Figure 3 Flowchart of calculation process. 248 

4 Model validation 249 

The proposed model is validated against experimental data from the literature involving vertical 250 

compressive testing of three-leaf masonry. Only cases accompanied by extensive characterisation of the 251 

units, mortar and fill material were considered for analysis. Nevertheless, empirical assumptions were 252 

often necessary to fill in gaps in the mechanical characterisation, especially regarding the Young’s moduli 253 and Poisson’s ratios of the constituent materials. 254 

Geometric properties were derived from the case study description and from manual processing of the 255 

figures provided by the authors. When the relevant information is not available, empirical assumptions 256 
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were made for certain material parameters based on statistical analysis of the available experimental 257 

inventory [29]. The Young’s modulus 𝐸𝑢 of the units was taken as 300 times the compressive strength and 258 

that of the mortar 𝐸𝑚 and fill 𝐸𝑓 as 700 times their respective compressive strength. The Poisson’s ratio of 259 

the units 𝜈𝑢  was taken as 0.15 and that of the mortar 𝜈𝑚  0.25 for simulating its significant lateral expansion 260 near compressive yielding. Similarly, the Poisson’s ratio of ungrouted fill 𝜈𝑓  was taken as equal to 0.10 due 261 

to its often high porosity, which decreases lateral expansion under vertical compression, while grouted fill 262 

was assigned a value of 0.20 for simulating the increase in cohesion after strengthening. The tensile 263 

strength of all components was taken as equal to 10% their respective compressive strength. The 264 

compressive fracture energy 𝐺𝑐  is calculated for all components as [29]: 265 

𝐺𝑐 = 𝑓𝑐𝑑 (32) 

were 𝑑 = 1 mm and the tensile fracture energy 𝐺𝑡 is calculated as [32]: 266 

𝐺𝑡 = 73𝑓𝑐0.181000  (33) 

4.1 Vintzileou & Tassios (1995) 267 

This experimental campaign includes the compressive testing of three-leaf stone masonry wallettes 268 

subjected to vertical compression before and after grouting [6]. The outer leaf is built in single-wythe 269 

running bond, with alternate courses having slightly different embedment in the inner leaf, creating small 270 

keyed collar joints. Therefore, two types of units are distinguished. The compressive strength of the inner 271 

leaf after grouting is not reported. Therefore, only the case before grouting was used in this investigation.  272 

4.2 Binda et al (2006) 273 

In this case study masonry wallettes constructed of stone units, a strong mortar and a relatively 274 

cohesive inner leaf were tested in compression [2]. The outer leaf is composed of alternating courses of 275 

full- and half-length units. Two series of tests were conducted, each with a different geometry characterised 276 

by the presence or absence of a collar joint between leaves. In this simulation only the case without collar 277 

joints is simulated. 278 
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4.3 Vintzileou & Miltiadou-Fezans (2008) 279 

The case study involves the compressive testing of masonry walls before and after grouting [5]. The 280 

properties of the fill after grouting were not reported. For simulating the wall after grouting, the 281 

compressive strength of the fill is assigned the target value reported by the authors despite this parameter 282 

not having been determined directly. The two outer leaves, both in single wythe construction, feature 283 

different geometric bond patterns. One leaf is composed of stone units in running bond, while the other 284 

features alternating courses of header stones and half-length stones. Both leaves feature horizontally and 285 

vertically arranged brick tiles, a feature typical of Byzantine architecture (cloisonné masonry) but lacking 286 

extensive characterisation in the literature. All these types of units are included in the model. Further, the 287 

stones feature different embedment lengths within the inner leaf. Nevertheless, the two outer leaves are 288 

considered identical in the model after averaging their featured geometric properties.  289 

4.4 Oliveira et al (2012) 290 

This series of experiments deals with the testing in compression of stone masonry before and after 291 

strengthening using grouting and other mechanical reinforcement methods [4]. The authors reported the 292 

mechanical properties of the fill after grouting, allowing the simulation of the compressive testing both 293 

before and after intervention. 294 

4.5 Meimaroglou & Mouzakis (2018) 295 

The case study involves the compressive testing of short stone masonry wallettes made using clay 296 

mortar [3]. The outer leaves were constructed in a running bond pattern consisting of full-length and half-297 

length unit groups. The inner leaf was constructed using alternate layers of stone fragments and 298 

uncompacted mortar but was not the subject of mechanical characterisation itself. As such, in a departure 299 

from the methodology used in the other case studies simulated this paper, the properties of the fill were 300 

determined by applying the homogenisation method described in this paper. 301 

4.6 Summary of case studies and numerical analysis results 302 

All experimental data used for numerical analysis of the case studies are presented in Table 1, which 303 

includes all numerical parameters required for analysis, apart from the fracture energies which are 304 
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calculated according to Eq. (32) and Eq. (33). The properties of the fill presented for the Meimaroglou & 305 

Mouzakis case were calculated numerically using the proposed model. These data are accompanied by the 306 

numerical analysis results using the proposed model in terms of vertical compressive strength, Young’s 307 

modulus and in-plane Poisson’s ratio. 308 
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Table 1 Experimental case study and numerical analysis results. Assumed values marked with an asterisk. Percentile difference between 309 

numerical and experimentally derived values in parentheses. 310 

Component Parameter Symbol [6] [2] [5] [5] [4] [4] [3] Units 

Unit 

 

Length 𝑙𝑢 293 293 310 150 300 180 300 180 172 172 320 160 mm 

Height ℎ𝑢 137 137 150 150 115 30 115 30 157 157 105 105 mm 

Width 𝑤𝑢 130 140 170 170 155 140 155 140 99 99 165 165 mm 

Compressive strength 𝑓𝑐,𝑢 100 100 17.3 17.3 25 17 25 17 52.5 52.5 107.5 107.5 N mm2⁄  

Tensile strength 𝑓𝑡,𝑢 10* 10* 1.8 1.8 2.5* 1.7* 2.5* 1.7* 5.25* 5.25* 3.1 3.1 N mm2⁄  Young’s modulus 𝐸𝑢 30000* 30000* 8525 8525 7500* 5100* 7500* 5100* 20600 20600 32250* 32250* N mm2⁄  Poisson’s ratio 𝜈𝑢 0.15* 0.15* 0.15* 0.15* 0.15* 0.15* 0.15* 0.15* 0.15* 0.15* 0.15* 0.15* − 

Volume ratio 𝜔𝑢 0.425 0.425 0.380 0.551 0.667 0.133 0.667 0.133 0.850 0.850 0.652 0.185 − 

Mortar 

 

Joint thickness 𝑡𝑚 10 10 20 20 20 20 20 mm 

Compressive strength 𝑓𝑐,𝑚 1.7 9.2 4.35 4.35 3.9 3.9 3.9 N mm2⁄  

Tensile strength 𝑓𝑡,𝑚  0.17* 0.920* 0.435* 0.435* 0.39* 0.39* 0.39* N mm2⁄  Young’s modulus 𝐸𝑚 1190* 6440* 3045* 3045* 410 410 2730* N mm2⁄  Poisson’s ratio 𝜈𝑚 0.25* 0.25* 0.25* 0.25* 0.25* 0.25* 0.25* − 

Volume ratio 𝜔𝑚 0.150 0.069 0.200 0.200 0.150 0.150 0.185 − 

Fill 

 

Compressive strength 𝑓𝑐,𝑓  0.15 4.0 0.15 3.00 0.29 4.1 3.58 N mm2⁄  

Tensile strength 𝑓𝑡,𝑓  0.015* 0.300* 0.015* 0.300* 0.029* 0.410* 0.487 N mm2⁄  Young’s modulus 𝐸𝑓  105* 1616 105* 900* 41 2870* 7134 N mm2⁄  Poisson’s ratio 𝜈𝑓  0.10* 0.10* 0.10* 0.20* 0.10* 0.20* 0.13 − 

Masonry 

 

Length 𝑙 600 310 1040 1040 600 600 700 mm 

Height ℎ 1200 790 1200 1200 1100 1100 550 mm 

Width 𝑤 400 510 450 450 300 300 500 mm 

Inner leaf volume ratio 𝜔𝐼 0.325 0.333 0.275 0.275 0.333 0.333 0.333 − 

Outer leaf volume ratio 𝜔𝑂 0.675 0.667 0.725 0.725 0.667 0.667 0.667 − 

Compressive strength 𝑓𝑐  1.49 5.81 1.94 3.49 2.00 3.60 4.00 N mm2⁄  Young’s modulus 𝐸 4611 1770 1313 1313 2122 2008 692 N mm2⁄  

Numerical results Compressive strength 𝑓𝑐  1.39 (-6.5%) 6.70 (15.3%) 3.43 (+76.9%) 3.62 (+3.6%) 2.84 (+42.2%) 3.44 (-4.3%) 4.26 (6.4%) N mm2⁄  

 Young’s modulus 𝐸 7604 (+64.9%) 6128 (+246%) 4257 (+224%) 4474 (+241%) 3982 (+87.6%) 4929 (+145%) 12203 (+1663%) N mm2⁄  

 Poisson’s ratio 𝜈𝑥𝑦 0.257 0.146 0.175 0.168 0.263 0.235 0.212 − 

 311 
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Overall, the model, coupled with the assumptions presented in the description of the calculation 312 

method, predicts the compressive strength of three-leaf masonry with good accuracy, despite some salient 313 

characteristics of three-leaf masonry having been omitted, primarily the out-of-plane effects caused by the 314 

boundary conditions. The model tends to overestimate the compressive strength, possibly due to the 315 

omission of out-of-plane effects. It is not currently clear whether the empirical assumptions regarding 316 

material parameters or whether elements of the modelling approach introduce a systematic bias on the 317 

model. The most notable lack of accuracy is that in the Vintzileou & Miltiadou-Fezans case before grouting 318 

[5], where the predicted compressive strength is 76.9% higher than the mean experimental value and 51% 319 

higher than the maximum experimental value. It is notable, however, that in the grouted case in the same 320 

experimental series, as in the cases investigated by Oliveira et al [4], the compressive strength is predicted 321 

with greater accuracy, indicating a mitigation of out-of-plane effects by the intervention. Since it is not clear 322 

which parameter has the strongest influence on the results, and since several material parameters were 323 

not directly characterised in the experimental campaign, this case will form the basis of a sensitivity study. 324 

The proposed model and assumptions are less successful in predicting the Young’s modulus of the 325 

three-leaf masonry case studies examined here even when the Young’s moduli of the components were 326 

experimentally determined. The predicted Young’s modulus is systematically higher than the 327 

experimentally derived value, especially in the Meimaroglou & Mouzakis case [3], where the difference is 328 

remarkable. It is noted for this case study that the value of the Young’s modulus used for the units is very 329 

plausible for limestone of this strength [33], although the particulars of the limestone used are not known 330 

in detail. It is possible that imperfect compaction of the mortar in the joints and the presence of 331 imperfections or voids in the inner leaf result in a reduction of the Young’s modulus of masonry. Further, 332 

large differences between the empirically-derived and actual values of the Young’s moduli of the 333 

components are a possible cause of this discrepancy. Consequently, the large differences between the 334 

computed and experimentally measured values highlight the need for comprehensive characterisation of 335 

all materials before application of the proposed model. Finally, it is currently unclear whether full 336 

simulation of the out-of-plane interaction of the leaves could reduce the calculated Young’s modulus of 337 

masonry through the induction of bending on the outer leaf. 338 



21 

5 Sensitivity study 339 

The object of the study is the sensitivity of compressive strength 𝑓𝑐 , Young’s modulus 𝐸 and in-plane 340 Poisson’s ratio 𝜈𝑥𝑦  of masonry to a set of material and geometric parameters. It is performed by variation 341 

of a) the Young’s modulus and the Poisson’s ratio of the stone and brick units (𝐸𝑢, 𝜈𝑢) and the mortar (𝐸𝑚, 342 𝜈𝑚), namely elastic material properties that are often not characterised in experimental campaigns due to 343 

practical difficulties in execution, b) the tensile 𝑓𝑡  and compressive 𝑓𝑐  strength of the fill, mortar and the 344 

stone and brick units (the tensile strength in often only indirectly characterized through flexural or splitting 345 

tests while the compressive strength of the fill is difficult to determine in existing structures), and c) the 346 

volume ratio 𝜔𝑚  of the mortar in the outer leaf and the length 𝑙𝑢1 and height ℎ𝑢1 of the stone units, as these 347 

geometric parameters may vary substantially in different locations of irregular stone masonries or cannot 348 

be easily determined. Each parameter is varied without changing any of the others apart from the 349 

dimensions of the stone units, which are studied jointly. The Vintzileou & Miltiadou-Fezans [5] case is used 350 

for investigating elastic and geometric parameters and the Binda et al [2] case is used for investigating 351 

strength parameters, since the proposed model and assumptions were less successful in accurately 352 

predicting the compressive strength of the masonry in these two cases compared to the others. 353 

Additionally, the former case presents the opportunity of studying the influence of the brick tiling elements 354 

on the mechanical properties of cloisonné masonry. All material and geometric parameters in this section 355 

that have been normalized through division with the reference values found in Table 1 are represented 356 

using a hat operator, i.e. 𝑓𝑐  is equal to the compressive strength of masonry calculated after variation of a 357 

parameter divided by the reference value of 𝑓𝑐 . The parameters modified in the sensitivity study and the 358 

range of variation are presented in Table 2.  359 
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Table 2 Sensitivity study parameters and range of variation. 360 

Component Parameter Symbol Minimum Maximum 

Mortar Young’s modulus �̂�𝑚 0.33 3.00 Poisson’s ratio �̂�𝑚 0.60 1.20 

Compressive strength 𝑓𝑐,𝑚 0.25 1.50 

Tensile strength 𝑓𝑡,𝑚 0.25 1.50 

Content ratio �̂�𝑚 0.25 1.75 

Stone units Young’s modulus �̂�𝑢1 0.33 3.00 Poisson’s ratio �̂�𝑢1 0.33 1.33 

Compressive strength 𝑓𝑐,𝑢1 0.25 1.50 

Tensile strength 𝑓𝑡,𝑢1 0.25 1.50 

Length 𝑙𝑢1 0.25 2.00 

Height ℎ̂𝑢1 0.25 2.00 

Brick units Young’s modulus �̂�𝑢2 0.33 3.00 Poisson’s ratio �̂�𝑢2 0.33 1.33 

    

    

Fill Compressive strength 𝑓𝑐,𝑓  0.25 1.50 

The sensitivity of the calculated properties of masonry to elastic parameters of the components is 361 

illustrated in Figure 4. The influence of the Young’s modulus 𝐸𝑚 of mortar on the compressive strength 𝑓𝑐  362 

of masonry is notable. An decrease of 𝐸𝑚 can result in an increase in 𝑓𝑐  of up to nearly 20% due to higher 363 

confinement of the mortar. Additionally, lowering 𝐸𝑚 increases the Poisson’s ratio 𝜈𝑥𝑦  of masonry, making 364 

the composite material more prone to lateral expansion under vertical compression. Lowering the 365 Poisson’s ratio 𝜈𝑚  of the mortar results in an increase in the predicted strength of masonry due to the 366 

development of lower lateral tensile stresses in the units. However, excessive reduction results in a 367 

decrease in the compressive strength. An increase in this parameter has the opposite effect on the units 368 

and leads to their tensile failure. It is noted that while 𝜈𝑚  can initially be very low due to porosity, it can 369 

increase rapidly near compressive failure of the mortar [34], which can in turn lead to premature failure of 370 

the masonry due to high tensile stresses in the units. Similarly, a higher Young’s modulus 𝐸𝑢1 of the stone 371 

units leads to more confinement of the mortar and an increase in the compressive strength of masonry, the 372 

overall effect being more pronounced compared to the variation of 𝐸𝑚. Increasing the Poisson’s ratio 𝜈𝑢1 373 

of the units makes their lateral deformation more compatible with the lateral expansion of the mortar, 374 

potentially decreasing lateral tensile stresses and reducing tensile damage. However, the effect is not 375 

particularly pronounced in this case study. Despite the low volume ratio of brick units, lowering the Young’s 376 

modulus 𝐸𝑢2 of brick can lead to a lower 𝑓𝑐  due to increase in the stress concentration in the mortar. Finally, 377 variation of the Poisson’s ratio 𝜈𝑢2 of the brick does not strongly influence the calculated properties of the 378 

masonry. 379 
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 380 

Figure 4 Results of sensitivity study on elastic parameters: a) Young’s modulus of mortar, b) 381 

Poisson’s ratio of mortar, c) Young’s modulus of stone units, d) Poisson’s ratio of stone units, e) 382 

Young’s modulus of brick units and f) Poisson’s ratio of brick units. 383 
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The sensitivity of the calculated properties of masonry to the tensile and compressive strength of the 384 

components is illustrated in Figure 5. For the investigated case, the calculated compressive strength 𝑓𝑐  of 385 

masonry is insensitive to the tensile strength 𝑓𝑡,𝑚  of the mortar due to the latter component being under 386 

confinement by the units. The compressive strength of masonry is not particularly sensitive to the tensile 387 

strength 𝑓𝑡,𝑢1 of the stone units due to the low ratio of tensile over compressive stress developed in this 388 

component in this particular case. Different combinations of elastic properties for the mortar and units can 389 

lead to an increase in this ratio and result in sensitivity of the compressive strength of masonry to the 390 

tensile strength of the units. Further, existing local damage to the stone units, which would induce an 391 

apparent decrease in their tensile strength, could lead to a moderate reduction of the compressive strength 392 

of masonry.. The compressive strength 𝑓𝑐  of the masonry is, as expected, not proportional to the 393 

compressive strength of the mortar and stone units. The compressive strength 𝑓𝑐,𝑓  of the fill does not 394 

strongly affect the compressive strength of the masonry due to its very low stiffness, leading to the 395 

development of low compressive stresses in the fill.  396 

 397 

Figure 5 Results of sensitivity study on inelastic parameters: a) tensile strength and b) 398 

compressive strength of components. 399 

The sensitivity of the calculated properties of masonry to geometric parameters is shown in Figure 6. 400 

While the compressive strength 𝑓𝑐  of masonry is not particularly sensitive to the volume ratio 𝜔𝑚  of mortar, 401 the Young’s modulus 𝐸 and Poisson’s ratio 𝜈𝑥𝑦  of masonry are moderately influenced by 𝜔𝑚 . A higher 402 
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mortar content increases the Poisson’s ratio and decreases the Young’s modulus of the masonry, resulting 403 

in a more deformable composite material. Higher deformability in sections of masonry with thicker mortar 404 

joints compared to adjacent sections can lead to deformation incompatibility, instability and loss of 405 

strength. Finally, the compressive strength of masonry shows notable sensitivity to the length 𝑙𝑢1 and 406 

height ℎ𝑢1 of the stone units. The interaction of the parameters presents a complex profile. Overall, 𝑓𝑐  is 407 

more sensitive to changes in height for a given length for a large proportion of the variation range studied, 408 

with shorter units typically yielding higher values of 𝑓𝑐 . Units roughly 225 mm in length and 200 mm in 409 

height, a near-square shape which is encountered in one of the external leaves of the wall, result in 410 

substantially elevated values of 𝑓𝑐 . 411 

 412 

Figure 6 Results of sensitivity study on geometric parameters: a) volume ratio of mortar and 413 

b) length and height of units. 414 

6 Conclusions 415 

A method for the homogenisation of composite materials has been combined with a method-of-cells 416 

approach for the two-scale analysis of three-leaf masonry structures. It provides good accuracy in the 417 

prediction of the compressive strength of three-leaf masonry and highlights crucial characteristics of these 418 

structures with very low computational cost. The method requires a very dedicated approach in the 419 

mechanical characterisation of the unit, mortar and fill properties, but compensates for this requirement 420 

by providing an attractive alternative to finite element analysis for the determination of the mechanical 421 
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properties of these structures. Finite element analysis necessarily suffers from the same requirement of 422 

rigorous material characterisation while inducing the additional burden of potentially very high 423 

computational cost. Further, the proposed method moves beyond currently available empirical models for 424 

three-leaf masonry under compression by proposing a degree of quantification of the problem typically not 425 

available in empirical models. Under this light, the advantages of micro-mechanical approaches of three-426 

leaf masonry structures become apparent.  427 

Following a sensitivity study using the proposed model, the compressive strength of masonry is found 428 

to be sensitive to properties such as the Poisson’s ratio of the mortar, a parameter that is difficult to 429 

measure and presents significant nonlinearity. Additionally, the properties of secondary brick unit 430 

elements found in cloisonné masonry can moderately affect the calculated properties of masonry, making 431 

the characterisation of these elements a relevant task in the structural assessment of existing masonry 432 

structures. Therefore, the need for rigorous characterisation of the mechanical properties of all 433 

components becomes a pressing issue for the acquisition of accurate analysis results. Finally, variation in 434 

the dimensions of the units, which is common in stone masonry, strongly affects the calculated compressive 435 

strength. Therefore, geometric survey of the masonry texture, including the dimensions of the units, is 436 

shown to be an important aspect of structural assessment of masonry buildings. 437 

The present work opens several potential avenues for future work. The interface between units and 438 

mortar can be included in an updated homogenisation process, which, coupled with failure models for 439 

interface tension and shear, can expand the modelling strategy here presented for the analysis of walls 440 

under in-plane shear. It is envisaged to complement this method with out-of-plane leaf interaction at the 441 

structural element scale for the analysis of complete masonry members through implementation of the 442 

updated micro-mechanics model in a finite element context. Evaluation of the results of an updated model 443 

can guide the adjustment of the modelling approach and the empirical assumptions accompanying it.  444 

Additionally, common mechanical strengthening measures, such as longitudinal and transversal ties can be 445 

modelled. Finally, the analysis method can be coupled with photogrammetry methods for the automatic 446 

acquisition of the geometry and calculation of the volume ratios and average dimensions of all components 447 

in the external leaves. 448 
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