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Inversions often underlie complex adaptive traits, but the genic targets inside them are largely unknown. Gene expression profiling

provides a powerful way to link inversions with their phenotypic consequences. We examined the effects of the Cf-Inv(1) inversion

in the seaweed fly Coelopa frigida on gene expression variation across sexes and life stages. Our analyses revealed that Cf-Inv(1)

shapes global expression patterns, most likely via linked variation, but the extent of this effect is variable, with much stronger

effects in adults than larvae. Furthermore, within adults, both common as well as sex-specific patterns were found. The vast

majority of these differentially expressed genes mapped to Cf-Inv(1). However, genes that were differentially expressed in a single

context (i.e., in males, females, or larvae) were more likely to be located outside of Cf-Inv(1). By combining our findings with

genomic scans for environmentally associated SNPs, wewere able to pinpoint candidate variants in the inversion that may underlie

mechanistic pathways that determine phenotypes. Together the results of this study, combined with previous findings, support

the notion that the polymorphic Cf-Inv(1) inversion in this species is a major factor shaping both coding and regulatory variation

resulting in highly complex adaptive effects.

KEY WORDS: Chromosomal evolution, gene expression, genetic architecture, population genomics.

Chromosomal inversions, pieces of the chromosome that have

been flipped 180°, are structural variants that may encompass

hundreds of genes but segregate together as a single unit due

to suppressed recombination. Recombination between arrange-

ments (i.e., orientations) is reduced in heterokaryotypes but

proceeds freely in both homokaryotypes. This reduced recombi-

nation can shield adaptive allelic combinations from gene flow,

∗These authors contributed equally.

facilitating evolutionary processes such as local adaptation (Kirk-

patrick and Barton 2006; Schaeffer 2008; Twyford and Friedman

2015; Westram et al. 2021), sex chromosome evolution (Peichel

et al. 2004; Lemaitre et al. 2009; Knief et al. 2017). and speci-

ation (Kirkpatrick and Barton 2006; Hoffmann and Rieseberg

2008; Lowry and Willis 2010; Ayala et al. 2013; Twyford and

Friedman 2015; Wellenreuther and Bernatchez 2018). Inversions

underlie major phenotypic polymorphisms in a wide variety of

taxa, such as male reproductive morphs in the ruff, Philomachus
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pugnax (Küpper et al. 2016; Lamichhaney et al. 2016), and

Müllerian mimicry wing patterns in the butterfly Heliconius

numata (Joron et al. 2011). However, the reduced effective

recombination that allows inversions to have these profound

effects may also limit the ability to detect signatures of selection

due to extreme linkage disequilibrium. This encumbers detection

of the mechanistic pathways that generate phenotypic effects as

well as identification of the underlying adaptive variants.

The linkage disequilibrium in inversions presents many chal-

lenges to identify adaptive variation. Because effective recom-

bination between arrangements is reduced, forward genetic ap-

proaches such as Quantitative Trailt Loci (QTL) mapping or

genome wide association studies are not feasible for variation that

is fixed between arrangements (Noor et al. 2001). Additionally,

the reduced recombination and effective population size within

the inverted region facilitate the accumulation of neutral and dele-

terious variation (Berdan et al. 2021), increasing divergence be-

tween the arrangements and increasing the likelihood of detecting

phenotype or environment associations with noncausative loci.

Finally, larger inversions, such as the lnv4m inversion in Zea

mays, may contain hundreds of genes that affect a wide variety

of phenotypes that vary in their selective pressures (Crow et al.

2020).

Transcriptomic analysis offers a way to address the links be-

tween individual loci and the phenotypic effects of an inversion

by uncovering functionally important variation in a way that is

not hindered by linkage disequilibrium in natural populations or

recombination suppression in controlled crosses. This is because

(1) the phenotypic effects of inversions might be underlain in part

by changes in gene expression, and (2) overlap between differen-

tially expressed genes (from transcriptomic studies) and outlier

SNPs (from genomic studies, i.e., loci associated with adaptive

traits or ecological factors) facilitates the identification of can-

didate genes (Renaut et al. 2011; Kozak et al. 2014; Pardo-Diaz

et al. 2015).

There are three major (nonexclusive) ways that inversions

may affect gene expression. First, inversions may modify the epi-

genetic environment near their breakpoints (Lupiáñez et al. 2015;

Shanta et al. 2020). Second, breakpoints may change the relative

positions of genes and their transcription regulators, changing ex-

pression patterns (Lettice et al. 2011; Lavington and Kern 2017).

Third, the linked variation within an inversion can contain cis- or

trans-acting regulatory elements that can evolve independently in

the two arrangements due to suppressed recombination between

them (Huang et al. 2015; Fuller et al. 2016; Said et al. 2018; Crow

et al. 2020). As variants within inversions are highly linked, it

is difficult to distinguish between cis-regulation and trans-acting

loci in linkage disequilibrium with their targets. Here, we focus

on whether differentially expressed loci are contained within the

inverted region (hereafter referred to as cis-regulated for kary-

otype) or located in other areas of the genome (hereafter referred

to as trans-regulated for karyotype). Overall, these effects on

gene expression can be fixed, vary across life stages or sexes,

or show plastic responses to the environment.

In this study, we investigated the effect of a large inversion

on expression variation and combined this analysis with previ-

ously published population genomic data to identify putatively

adaptive loci. We use the seaweed fly, Coelopa frigida, which

inhabits “wrackbeds” (accumulations of decomposing seaweed)

on North Atlantic shorelines. This fly has an inversion polymor-

phism on chromosome I (Cf-Inv(1) spanning 60% of chromo-

some 1 and 10% of the genome, corresponding to about 25 MB)

(Merot et al. 2020a). Cf-Inv(1) has two highly diverged arrange-

ments, termed α and β, resulting from three overlapping inver-

sions (Aziz 1975). The inversion influences multiple measur-

able traits in males such as mating success (Aziz 1975; Day

et al. 1983; Edward 2008), development time (Butlin et al. 1982;

Gilburn and Day 1994; Mérot et al. 2020b), longevity (Butlin and

Day 1985a), and adult size (Butlin et al. 1982; Mérot et al. 2018).

Of these, size is the trait where the inversion has the strongest ef-

fect; αα males are approximately threefold heavier than ββ males

(Berdan et al. 2018b). This is mirrored in development time with

αα males taking significantly longer to reach adult eclosion than

ββ males (Butlin et al. 1982). Conversely, female phenotype is

mostly unaffected by karyotype, although there are small effects

on size (Butlin and Day 1985a; Mérot et al. 2020b). The sex dif-

ference in the effect of the inversion indicates a particular role

for gene expression as males and females largely share the same

genome.

Cf-Inv(1) is under multiple forms of natural and sexual selec-

tion. The inversion is polymorphic in all investigated natural pop-

ulations to date and maintenance of the polymorphism is mostly

through balancing selection caused by strong overdominance of

the heterokaryotype (Butlin 1983; Day et al. 1983; Butlin and

Day 1984, 1989; Mérot et al. 2018). This overdominance is due to

increased survival of heterokaryotypic larvae, particularly when

flies reach high densities, combined with trade-offs in survival

and fecundity between the two homokaryotypes (Butlin et al.

1982; Butlin and Day 1985a,b; Mérot et al. 2020b). In general,

αα individuals (especially males) enjoy higher mating success

due to their larger size and higher fecundity (in females) but show

lower larval survival rates and develop more slowly, whereas the

converse is true for ββ individuals. Several lines of evidence in-

dicate that Cf-Inv(1) is also under directional natural selection

that modifies the equilibrium frequency attained due to overdom-

inance. The frequency of the different arrangements varies de-

pending on the seaweed they are found on, with kelp favoring α

and bladderwrack favoring β (Day et al. 1983; Mérot et al. 2018)
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Figure 1. Variation in expression differs across life stages. (A) Map of Norway, Denmark, and Sweden showing the populations sampled.

The inset shows size variation inmales as a function of karyotype. (B) Principal component analysis (PCA) of expression variation in adults.

Points are colored by karyotype (αα, red; ββ, green) and shaped according to sex (female, circle; male, triangle). (C) PCA of expression

variation in larvae; all samples are pools of three larvae of unknown sex colored by karyotype (αα, red; αβ, blue; ββ, green). Both Figures 1B

and 1C are based on the top 500 transcripts with the highest variance.

and populations are locally adapted to their own seaweed com-

position (Wellenreuther et al. 2017; Berdan et al. 2018a). Finally,

other abiotic characteristics such as wrackbed depth and tempera-

ture also influence the relative fitness of the two homokaryotypes

(Day et al. 1983; Mérot et al. 2018). However, the specific pheno-

types associated with these fitness differences remain unknown.

We collected C. frigida from natural populations (Figure 1A)

and examined how Cf-Inv(1) shaped gene expression across sexes

and life stages. Specifically, our study had three major goals: (1)

To examine the effect of karyotype on global expression patterns

in adults and larvae and to determine if these effects are common

across sexes and life stage or context specific, (2) To ascertain if

these genes are cis- or trans-regulated with respect to Cf-Inv(1),

and (3) To identify putative adaptive variation within the inver-

sion and connect this with ecological niche differences between

karyotypes.

Results and Discussion
SEQUENCING AND TRANSCRIPTOME ASSEMBLY

To study gene expression variation associated with sex, life stage,

and karyotypes of the inversion, we sequenced RNA from 17

adult individuals and 28 larval pools. We used part of this dataset

to create the first reference transcriptome for C. frigida. Our fi-

nal transcriptome assembly contained 35,999 transcripts with an

N50 of 2155 bp, a mean length of 1092 bp, and a transrate score

(Smith-Unna et al. 2016) of 0.4097. The transcriptome has good

coverage, it has a BUSCO score of 86.6% (2393 complete and

single copy [85.5%], 31 complete and duplicated [1.1%], 190

fragmented [6.8%], and 185 missing [6.6%]), and 95% of the

reads mapped back to the transcriptome (Simão et al. 2015). Us-

ing the trinotate pipeline (Trinotate.github.io), we were able to

annotate 14,579 transcripts (40%) from the transcriptome. This

EVOLUTION LETTERS 2021 3
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high-quality transcriptome will provide a useful resource for any

future work on this and related species, provide a much-needed

functional map for better understanding the regulation of genes

across life stages and sexes, and facilitate the identification of

functional phenotypes that correspond to inversions.

THE EFFECT OF Cf-Inv(1) ON GENE EXPRESSION IS

STRONG BUT VARIABLE

In adults, karyotype was the second strongest factor explain-

ing expression variation. Decomposing adult expression varia-

tion into a principal component analysis (PCA), we found that

the PC1, explaining 86% of the variance, separated males and fe-

males, whereas PC2, explaining 3% of the variance, separated αα

and ββ in both males and females (Fig. 1B). This strong sex dif-

ference was mirrored in our differential expression analysis; a to-

tal of 3526 out of 26,239 transcripts were differentially expressed

between the sexes with a strong bias toward increased expression

in males (68% of differentially expressed genes upregulated in

males; Fig. S1).

Sex modulated the effects of Cf-Inv(1) on global expression

patterns. When combining the sexes, 304 out of 26,239 tran-

scripts were differentially expressed between αα and ββ (Fig.

S2). A distance matrix analysis revealed that (1) average simi-

larity between pairs of females was higher than between pairs

of males and (2) males clustered by karyotype, whereas females

did not (Fig. S3). Due to these strong differences, we chose to

run separate analyses for the sexes instead of analyzing the inter-

action term from our main model. Comparing homokaryotypic

sex groups separately (αα vs. ββ) revealed that more than double

the number of differentially expressed genes were found in males

compared to females (801 vs. 340; Figs. S4 and S5). Note that

males and females expressed a similar number of genes (e.g., had

a total read count across all samples >10 for 21,149 and 21,579

genes, respectively). There was substantial overlap between dif-

ferentially expressed genes in the two sexes with the highest pro-

portion of unique differentially expressed genes found in males

(Fig. S6). The phenotypic effects of Cf-Inv(1) are also strongly

sex specific. This is likely due to sexual selection that, in C.

frigida, has partly evolved in response to strong sexual conflict

over reproduction, specifically mating rate (Crean and Gilburn

1998; Dunn et al. 1999). This sexual conflict over mating rates

has selected for sexual dimorphism in some of the external phe-

notypic traits used for mating, notably size and cuticular hydro-

carbon composition (Enge et al. 2021). Larger males (usually αα)

are more successful in obtaining copulations and resisting the re-

jection responses that females use to prevent male mountings.

The Cf-Inv(1) inversion has a large impact on a range of traits: the

morphology of males (Butlin et al. 1982; Gilburn and Day 1994),

development time (Butlin and Day 1984; Mérot et al. 2020b), and

the composition of cuticular hydrocarbons (Enge et al. 2021). It

was thus no surprise that males showed a larger gene expression

difference between karyotypes compared to females.

Surprisingly, Cf-Inv(1) was not a primary factor explaining

variance in larval gene expression. A PCA in larvae found that

the first two PCs (explaining 52% of the variance) did not sepa-

rate samples based on karyotype (Fig. 1C), instead a separation

by population was observed (Fig. S7). We ran an additional PCA

on the larval data using only the Skeie population (the only popu-

lation with all three karyotypes), to remove population variation.

The first two PCs (explaining 67% of the variance) together sep-

arated the karyotypes, albeit weakly (Fig. S8).

To formally test the role of karyotype in partitioning varia-

tion, we ran a PERMANOVA on Manhattan distances for each

subgroup (i.e., males, females, and larvae; Table S2) (Dixon

2003). As different tests had different sample sizes, we con-

centrated on R2 values (sum of squares of a factor/total sum of

squares). Males and females had the highest R2 values (0.2464

and 0.153, respectively) followed by all adults and larvae (0.084

and 0.073, respectively). These results match our qualitative ob-

servations that karyotype explains the largest proportion of vari-

ance in adult males followed by adult females and then larvae.

However, the comparison of our combined adult model with the

sex-specific models shows that separating sex is critical for quan-

tifying the effect of karyotype. Thus, the superficial appearance

of inversion having less influence on larval gene expression may

be because larval sex was not determined.

Further dissecting differential expression in our full larval

dataset corroborated our qualitative observations. Because we

had three genotypes in larvae (αα, αβ, and ββ), we ran three dif-

ferent contrast statements (αα vs. ββ, αβ vs. ββ, and αα vs. αβ).

When comparing expression in ββ versus αβ, we found that 23

out of 15,859 transcripts were differentially expressed and most

of these (74%) were upregulated in αβ (Fig. S9). Comparing ex-

pression in αα versus. ββ, we found 29 out of 15,859 transcripts to

be differentially expressed and most of these (83%) were upregu-

lated in ββ (Fig. S10). Comparing expression in αα versus αβ, we

found six out of 15,859 transcripts to be differentially expressed

and most of these (83%) were upregulated in αβ. There was

some overlap between these three contrasts (Fig. S11). We com-

pared expression patterns of our significantly and differentially

expressed transcripts across all three contrasts. Using unadjusted

P-values, we classified transcripts as additive (αα > αβ > ββ

or αα < αβ < ββ), underdominant (αβ < αα and αβ < ββ),

overdominant (αβ > αα and αβ > ββ), β-dominant (αβ = ββ,

αβ < αα, or αβ > αα), α-dominant (αβ = αα, αβ < ββ, or

αβ > ββ), or unknown (see Table S3). We found 11 additive tran-

scripts (nine located within Cf-Inv(1)), one underdominant tran-

script, no overdominant transcripts, 19 β-dominant transcripts

(nine located within Cf-Inv(1)), and 24 α-dominant transcripts

(10 located within Cf-Inv(1)). The vast majority of differentially
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expressed genes showed some form of dominance or were addi-

tive (98%) indicating that αα and ββ generally represent expres-

sion extremes in this system. In C. frigida, heterokaryotype over-

dominance does not seem to be linked to overdominant expres-

sion as is found in many examples of heterosis (Chen 2013). In-

stead, data from within- and between-population crosses suggest

that the observed overdominance of the heterokaryotype is actu-

ally associative overdominance caused by the masking of dele-

terious alleles (Ohta 1971; Butlin and Day 1985b). Under this

model, the null expectation would be additive expression or dom-

inant expression (in cases where natural selection in heterokary-

otypes has selected for the allele with fewer deleterious muta-

tions), which is what we observe.

Compared to the adults, a lower proportion of transcripts

were significantly differentially expressed between αα versus ββ

larvae (1.16−3.05% in adults, 0.2% in larvae). In addition to

pooling sexes in larvae, there are several other features of our

experimental design that could have contributed to the reduced

effect in larvae. First, our crossing design generated only two

αα larval pools compared to 10 αβ larval pools and 16 ββ lar-

val pools. Thus, our contrasts that included αα had lower power.

We also generated more variation in our larval samples compared

to our adults as we crossed both within and between populations,

whereas adults were all single population origin. It is possible that

this variation made detection of differentially expressed genes

more difficult. However, our results still clearly suggest that the

effect of Cf-Inv(1) on gene expression is strongly conditional on

life stage and sex.

ALLELE-SPECIFIC EXPRESSION WITHIN Cf-Inv(1)

Beyond quantitative differences of expression, genes within

Cf-Inv(1) were also characterized by allele-specific expression

(ASE) in heterokaryotypes. Concentrating on loci that were fixed

between arrangements, we retained 315 out of 619,424 SNPs

found across 113 transcripts all located within Cf-Inv(1). Using

the ASEP package (Fan et al. 2020) with our nine αβ larval pools,

a total of 30 out of 113 transcripts had significant ASE (Fig.

S12). We compared this with our complete differential expres-

sion results and found that only a single transcript overlapped

between the two. For each of thes transcripts, we averaged read

depth across all SNPs per transcript, per individual. We classi-

fied them as “α-biased expression” if >50% of the larval pools

(i.e., replicates) had ≥55% α-allele reads and as “β-biased ex-

pression” if >50% of the larval pools had ≥55% β-allele reads.

To explore our cutoff choice, we generated 10,000 binomial trails

with a 1:1 outcome using the mean read depth of our data (44).

Using a 55% cutoff, we expect a false positive error rate of ap-

proximately 22.6% compared to a 44% error rate using a 50%

cutoff. Given a 22.6% error rate and six replicates (our average),

the estimated error rate for our classification scheme is 0.31%

(compared to 3.3% with a 50% cutoff for reads). We thus con-

sidered 55% a conservative cutoff. If neither of these conditions

was met, that is, the direction was inconsistent, we simply labeled

them as “allele-biased expression.” We found five transcripts that

showed “α-biased expression,” 12 transcripts that showed “β-

biased expression,” and 13 transcripts that showed “allele-biased

expression” (Fig. S12; transcripts with data for five or more in-

dividuals are shown in Fig. 2). There were no significant gene

ontology (GO) terms for any of these groupings. Two interesting

patterns emerge from these data. First, allele-biased expression,

when present, seems to be relatively consistent across popula-

tions. Our αβ larvae resulted from crosses within and between

populations yet we found consistent ASE patterns in 56% of our

ASE transcripts. Second, differentially expressed genes showed

no propensity toward ASE as only one out of 30 ASE genes

showed significant differential expression in any of our analy-

ses and most showed close to zero differential expression (e.g.,

from the combined adult αα vs. ββ comparison, the mean abso-

lute log2fold change was 0.75). This indicates that ASE may be

evolving somewhat independently from differential expression.

Overall, these results demonstrate that there is allele-biased ex-

pression within inversions but the extent of this phenomenon and

the resulting phenotypic implications remain unknown.

GENES WITH CONSTANT KARYOTYPE EFFECTS ARE

OVERWHELMINGLY CIS-REGULATED WHILE GENES

WITH CONDITIONAL EFFECTS ARE MORE LIKELY TO

BE TRANS-REGULATED

Most of the differentially expressed genes mapped within Cf-

Inv(1) (Fig. 3). For adults, 12.8% of transcripts tested for differ-

ential expression were found within Cf-Inv(1) (Table 1), which

is approximately what might be expected, as Cf-Inv(1) comprises

10.5% of the genome (Mérot et al. 2021). However, 80.6% of

the transcripts that were differentially expressed between αα and

ββ (with the sexes combined) were found within Cf-Inv(1) (odds

ratio = 28.3). Looking at this in a different way, 7.2% of the

transcripts within the inversion were differentially expressed be-

tween karyotypes compared to 0.3% of genes in the collinear re-

gion. No differentially expressed genes were found immediately

adjacent to the estimated breakpoints (Mérot et al. 2021). The

closest two loci to the distal and proximal breakpoints (P23M_

DN102_c0_g1_i8 and P10M_ DN23301_c0_g1_i1) were found

73 and 410 kb away, respectively. Furthermore, the distribution of

all differentially expressed genes within Cf-Inv(1) shows no clus-

tering near the breakpoints (Fig. S13). These general patterns in-

dicate that the breakpoints themselves (and any subsequent chro-

matin changes) are unlikely to be responsible for these expression

patterns. This is in line with other studies in Drosophila (Fuller

et al. 2016; Said et al. 2018) and maize (Crow et al. 2020) that

implicate linked variation rather than the breakpoints themselves.
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Figure 2. Patterns of allele specific expression (ASE). Each plot is for a single transcript where each dot represents a single αβ individual

averaged over all SNPs in that transcript. A 1:1 line is provided for context. Colors indicate the expression pattern: α-biased expression,

red; β-biased expression, blue; allele-biased expression, green. Note that only transcripts with data for five or more individuals are shown

here. The full dataset is shown in Figure S12.

When decomposing the sexes, the cis-effect was much

stronger in females than males as 78% of differentially expressed

genes in females (odds ratio = 24.2) were found within Cf-Inv(1)

compared to 44.5% in males (odds ratio = 5.5; Fig. 3A, C).

For larvae, we combined the ββ versus αβ, αα versus αβ, and

αα versus ββ contrasts as so few differentially expressed tran-

scripts were found (a combined total of 55 transcripts). Of these,

52.8% were found within Cf-Inv(1) (odds ratio = 7.6). This ef-

fect is visible when comparing density plots for log2fold changes

from αα versus ββ comparisons from the entire genome to within

Cf-Inv(1) (Fig. 3B, D, F). Here, we see two trends. First the

whole genome density plots for both males (Fig. 3D) and larvae

(Fig. 3F) are much flatter and left shifted than the density plot for

females (Fig. 3B). Second, for all three groups the density plots

for genes within Cf-Inv(1) are wider and more left shifted. All of

these differences were significant with two sample Kolmogorov-

Smirnov tests but the effect was weaker when comparing the

whole genome versus within Cf-Inv(1) in larvae (Table S4).

6 EVOLUTION LETTERS 2021
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Figure 3. Differential expression is mostly cis-regulated for karyotype. Differentially expressed transcripts along the genome in (A)

females, (C) males, and (E) larvae. Y-axes denote logfold change between αα and ββ and x-axes denote position in megabases. The dotted

magenta lines denote the location of Cf-Inv(1). Note that position in LG6 is not to scale with the other linkage groups for presentation.

Each dot is a single transcript and both color and size denote the –log (P-value) after false discovery rate correction. Next to each graph

are density plots of log2fold changes for αα versus ββ comparisons for all loci in the genome (colored gray) and just loci within Cf-Inv(1)

(colored magenta) for each group: females (B), males (D), and larvae (F). Negative values indicate higher expression in ββ.

Compared to karyotype, the effect of sex showed no pattern of

localization. Instead, transcripts differentially expressed between

males and females in adults closely matched the null distribution

of tested transcripts (Table 1).

The fact that most of the differentially expressed genes were

cis-regulated for karyotype but not for sex effects is consis-

tent with the idea that gene expression presents a major sub-

strate for evolutionary change. Other recent studies of expres-

sion variation between karyotypes have also found strong cis-

effects (Fuller et al. 2016; Lavington and Kern 2017; Said et al.

2018). Allele-biased expression is expected under cis-regulation

so these results are concordant with our ASE analysis (Knight

2004). Interestingly, the group where the strongest phenotypic

differences are present (males) showed more trans-effects of

EVOLUTION LETTERS 2021 7
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Table 1. Location of differentially expressed transcripts.

Location Tested transcripts

Differentially expressed

between αα and ββ

Differentially expressed

between males and

females

LG1 (excluding Cf-Inv(1)) 10.6% 3.1% 12.0%

Cf-Inv(1) 12.8% 80.5% 11.6%

LG2 18.6% 2.7% 18.8%

LG3 16.6% 3.8% 17.4%

LG4 18.0% 3.8% 19.0%

LG5 17.5% 3.4% 17.6%

LG6 1.6% 0.0% 0.7%

Other Scaffolds 4.3% 2.7% 2.9%

Proportion of differentially expressed or tested transcripts is shown as a percentage located within different linkage groups or inversions. The LG1 category

excludes Cf-Inv(1). The “Other Scaffolds” category sums across 340 scaffolds that could not be incorporated into existing linkage groups (for details, see

Mérot et al. 2021). The total number of transcripts represented by each group is as follows: 25,320 (tested transcripts), 293 (DE between αα and ββ), and 3411

(DE between males and females).

Cf-Inv(1). Furthermore, differentially expressed transcripts that

were shared between analyses were more likely to be located

within Cf-Inv(1). Of transcripts significant in both the male and

female comparisons, 92.3% map to Cf-Inv(1) compared with

59.8% of transcripts unique to the female analysis and 29% of

transcripts unique to the male analysis. Overall, these results sug-

gest that the “base” effect of the inversion might be mostly cis-

regulated, whereas conditional effects may be more likely trans.

Cis-regulatory elements are physically linked to the genes whose

expression they control and thus tend to influence one or a few

gene targets, often in specific tissues or at specific times, whereas

more distant trans-factors can control the expression of many

genes. Thus, trans-control of conditional effects in inversions

may evolve more easily due to cascading effects. This is in line

with evidence suggesting trans-regulation may also be important

for environment-dependent changes in gene expression (Snoek

et al. 2017; Signor and Nuzhdin 2018). Our results highlight the

importance of comparing the effects of inversions on gene ex-

pression in multiple contexts (i.e., sexes, life stages).

PROCESSES AFFECTED BY Cf-Inv(1) INCLUDE

METABOLISM AND DEVELOPMENT

To be able to connect changes in expression with the phenotypic

effects of Cf-Inv(1), we first tested for enrichment of GO cate-

gories in differentially expressed genes between karyotypes and

sexes (Table 2). We found 16 significantly enriched GO terms

across all of our tests but removed one GO term as it was sup-

ported by a single transcript. The 15 remaining terms can be

found in Table 2. The three terms associated with karyotype re-

lated to development (adult chitin-based cuticle development)

and metabolism/energy storage (digestion, positive regulation of

triglyceride lipase activity). Unsurprisingly, the majority of the

terms associated with sex differences were related to the produc-

tion of gametes (e.g., sperm axoneme assembly, germ-line stem

cell division).

We also investigated the impact of Cf-Inv(1) at the level

of pathways by testing for polygenic expression patterns us-

ing Signet library (Gouy et al. 2017) and the KEGG path-

way database (Kanehisa et al. 2017). We identified a num-

ber of gene subnetworks within biological pathways that show

differential expression between karyotypes and sexes. Twenty-

six pathways were differentially expressed between αα and ββ

(Table 3A). Of these, 10 were found in multiple tests. We found

pathways related to cell cycle metabolism and control, such

as nucleotide metabolism or amino acid metabolism as well

as signaling (FoxO pathway) or genetic information processing

(Fanconi anemia pathway). Twelve of the 26 pathways differing

between karyotypes were also related to energetic metabolism,

particularly in males, including fatty acid degradation, carbo-

hydrate metabolism, and metabolism of cofactors. Of particular

interest, male analysis included two organismal pathways, one

related to longevity regulation and another involved in photo-

transduction in flies. As in other insects, increased size in C.

frigida is associated with increased longevity and thus αα males

live considerably longer on average (Butlin and Day 1985a). We

found 16 pathways differentially expressed between males and

females (Table 3B), including hormone biosynthesis.

Taken together, these GO terms and the gene networks anal-

ysis reveal a clear and strong association with development and

metabolism/energy storage, and cell cycle metabolism and ge-

netic information processing, respectively. Overall, more terms

for the effect of karyotype were associated with the male dataset

compared to the female dataset (GO: two terms vs. one term,

Signet: 15 pathways vs. eight pathways), although this is not sur-

prising given the difference in the number of differentially ex-

pressed genes. These associations between inversion karyotype
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Table 2. Significantly enriched Gene Ontology terms.

GO ID Term Annotated Significant Expected elimF Adjusted P-value Analysis

Additional

analyses where

significant

GO:0003341 Cilium movement 59 35 10.14 1.00 × 10–7 0.0003617 Sex

GO:0006030 Chitin metabolic process 96 32 16.5 8.60 × 10–5 0.084835091 Sex

GO:0006270 DNA replication initiation 26 18 4.47 6.30 × 10–7 0.00162765 Sex

GO:0007288 Sperm axoneme assembly 15 11 2.58 2.60 × 10–6 0.0047021 Sex

GO:0007305 Vitelline membrane formation

involved in chorion-containing

eggshell formation

19 15 3.27 6.20 × 10–9 3.36 × 10–5 Sex

GO:0007586 Digestion 99 10 1.03 7.00 × 10–8 0.00075957 Adult αα vs. ββ Female αα vs. ββ,

Larvae αα vs.

ββ

GO:0008365 Adult chitin-based cuticle

development

8 7 0.25 1.90 × 10–10 2.06 × 10–6 Male αα vs. ββ Sex

GO:0030720 Oocyte localization involved in

germarium-derived egg

chamber formation

11 8 1.89 7.60 × 10–5 0.0824676 Sex

GO:0034587 piRNA metabolic process 22 13 3.78 1.20 × 10–5 0.018601714 Sex

GO:0035082 Axoneme assembly 67 40 11.51 6.10 × 10–9 3.36 × 10–5 Sex

GO:0042078 Germ-line stem cell division 29 14 4.98 0.00011 0.0994675 Sex

GO:0060294 Cilium movement involved in cell

motility

12 9 2.06 1.70 × 10–5 0.023058375 Sex

GO:0061365 Positive regulation of triglyceride

lipase activity

5 4 0.15 4.20 × 10–6 0.0227871 Male αα vs. ββ

GO:1905349 Ciliary transition zone assembly 6 6 1.03 2.60 × 10–5 0.031347333 Sex

Listed are: the GO ID, the term, the number of transcripts annotated with that term in the testing set, the number of these transcripts that were differentially expressed, the expected number of transcripts,

the P-value from the elim model with the Fisher’s exact test, the adjusted P-value, the analysis where the term was significant, and other analyses where the same term was significant. If a term was

significant in multiple analyses, we show the data from the most significant test and list that one in the analysis column.
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Table 3. Functional pathways exhibiting subnetworks of genes interacting with each other and differentially expressed between kary-

otypes or sexes.

A: Genotype effects

Pathway Category

Network

size

Sub-

network

size

Sub-

network

score P-value Q-value Analysis

Additional

analyses where

significant

Alanine, aspartate,

and glutamate

metabolism

Amino acid

metabolism

26 6 3.7 0.019 0.162 Adult αα vs. ββ Male αα vs. ββ

Glutathione

metabolism

Amino acid

metabolism

37 9 5.7 0.008 0.146 Female αα vs.

ββ

Male αα vs. ββ

Arginine and

proline

metabolism

Amino acid

metabolism

28 7 3.4 0.022 0.163 Male αα vs. ββ

Phenylalanine

metabolism

Amino acid

metabolism

8 5 3.4 0.027 0.165 Adult αα vs. ββ

Glycine, serine, and

threonine

metabolism

Amino acid

metabolism

24 11 6.8 0.002 0.087 Female αα vs.

ββ

Male αα vs. ββ,

Adult αα vs.

ββ

Thiamine

metabolism

Amino acid

metabolism

13 4 6.6 0.002 0.087 Female αα vs.

ββ

Larvae αα vs.

ββ

Tyrosine

metabolism

Amino acid

metabolism

17 5 3.1 0.035 0.173 Male αα vs. ββ

Amino sugar and

nucleotide sugar

metabolism

Carbohydrate

metabolism

38 4 6.0 0.011 0.193 Adult αα vs. ββ

Glyoxylate and

dicarboxylate

metabolism

Carbohydrate

metabolism

19 7 5.1 0.014 0.146 Female αα vs.

ββ

Adult αα vs. ββ

Galactose

metabolism

Carbohydrate

metabolism

25 6 3.1 0.039 0.180 Male αα vs. ββ

Starch and sucrose

metabolism

Carbohydrate

metabolism

27 8 3.7 0.008 0.083 Male αα vs. ββ

Oxidative

phosphorylation

Energy

metabolism

32 5 4.1 0.004 0.057 Male αα vs. ββ

Fanconi anemia

pathway

Genetic

information

processing

(replication

and repair)

13 7 4.0 0.010 0.150 Adult αα vs. ββ

Sphingolipid

metabolism

Lipid

metabolism

25 3 5.8 0.007 0.146 Female αα vs.

ββ

Ether lipid

metabolism

Lipid

metabolism

18 4 3.2 0.028 0.172 Male αα vs. ββ

Fatty acid

degradation

Lipid

metabolism

28 18 6.8 0.001 0.060 Male αα vs. ββ Adult αα vs. ββ

Fatty acid

elongation

Lipid

metabolism

14 4 7.0 0.001 0.060 Male αα vs. ββ Adult αα vs. ββ

Glycerophos-

pholipid

metabolism

Lipid

metabolism

49 6 4.1 0.004 0.057 Male αα vs. ββ

(Continued)
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Table 3. (Continued).

A: Genotype effects

Pathway Category

Network

size

Sub-

network

size

Sub-

network

score P-value Q-value Analysis

Additional

analyses where

significant

One carbon pool by

folate

Metabolism of

cofactors

and vitamins

11 6 5.2 0.014 0.146 Female αα vs.

ββ

Folate biosynthesis Metabolism of

cofactors

and vitamins

29 5 4.2 0.003 0.057 Male αα vs. ββ Adult αα vs.

ββ, Female

αα vs. ββ

Purine metabolism Nucleotide

metabolism

118 42 6.5 0.000 0.000 Adult αα vs. ββ Male αα vs. ββ

Pyrimidine

metabolism

Nucleotide

metabolism

75 6 3.6 0.021 0.162 Adult αα vs. ββ

Longevity

regulating

pathway—

multiple

species

Organismal

system

(aging)

41 3 3.5 0.023 0.162 Adult αα vs. ββ Male αα vs. ββ

Phototrans-

duction—fly

Organismal

system

(Sensory

system)

26 6 4.0 0.005 0.057 Male αα vs. ββ

FoxO signaling

pathway

Signal

transduction

46 6 3.3 0.031 0.176 Adult αα vs. ββ

Neuroactive

ligand-receptor

interaction

Signaling

molecules

9 7 5.3 0.011 0.146 Female αα vs.

ββ

B: Sex effects

Pathway Category

Network

Size

Sub-

network

Size

Sub-

network

Score P-value Q-value Analysis

Additional

analyses where

significant

Alanine, aspartate,

and glutamate

metabolism

Amino acid

metabolism

26 7 4.4 0.011 0.059 Sex Adult αα vs.

ββ, Male αα

vs. ββ

Arginine and

proline

metabolism

Amino acid

metabolism

28 4 6.8 0.000 0.000 Sex Male αα vs. ββ

Drug metabolism—

cytochrome

P450

Xenobiotics

biodegrada-

tion and

metabolism

20 8 3.7 0.028 0.101 Sex

Drug metabolism—

other

enzymes

Xenobiotics

biodegrada-

tion and

metabolism

33 5 3.6 0.033 0.110 Sex

(Continued)
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Table 3. (Continued).

B: Sex effects

Pathway Category

Network

Size

Sub-

network

Size

Sub-

network

Score P-value Q-value Analysis

Additional

analyses where

significant

Folate biosynthesis Metabolism of

cofactors

and vitamins

29 4 3.9 0.021 0.084 Sex Adult αα vs.

ββ, Female

αα vs. ββ,

Males αα vs.

ββ

Galactose

metabolism

Carbohydrate

metabolism

25 7 3.8 0.022 0.084 Sex Male αα vs. ββ

Glutathione

metabolism

Amino acid

metabolism

37 8 6.2 0.000 0.000 Sex Male αα vs. ββ,

Female αα

vs. ββ

Glycerophos-

pholipid

metabolism

Lipid

metabolism

49 7 3.4 0.046 0.140 Sex Male αα vs. ββ

Glycolysis/

gluconeo-

genesis

Carbohydrate

metabolism

36 4 6.9 0.000 0.000 Sex

Insect hormone

biosynthesis

Metabolism of

terpenoids

and

polyketides

24 8 3.5 0.038 0.113 Sex

Longevity

regulating

pathway—

multiple

species

Organismal

system

(aging)

41 8 3.6 0.035 0.111 Sex Adult αα vs.

ββ, Male αα

vs. ββ

Phototrans-

duction—fly

Organismal

system

(Sensory

system)

26 7 4.5 0.009 0.056 Sex Male αα vs. ββ

Purine metabolism Nucleotide

metabolism

118 9 8.6 0.000 0.000 Sex Adult αα vs.

ββ, Male αα

vs. ββ

Pyruvate

metabolism

Carbohydrate

metabolism

27 4 6.9 0.000 0.000 Sex

Taurine and

hypotaurine

metabolism

Metabolism of

other amino

acids

9 3 4.0 0.017 0.083 Sex

Valine, leucine, and

isoleucine

degradation

Amino acid

metabolism

32 3 3.9 0.019 0.084 Sex

For clarity, only karyotype effects are shown in panel A and sex effects are shown in panel B. Pathways are based on the KEGG database with genes identified

in flybase. Significance of network score was assessed using the R library signet, by comparing with scores generated by random sampling. Network size is

the number of genes connected in the pathways under consideration. Subnetworks are a subset of genes that are directly connected by edges and show

high scoring. Subnetwork size is the number of genes and subnetwork score is the normalized score inferred by the procedure based on the strength of

the relationship between the factor compared (karyotype/sex) and expression at the genes involved in this subnetwork. For A, if a term was significant in

multiple analyses, we show the data from the most significant test and list that one in the analysis column. The additional tests are listed under “Additional

analyses where significant”.
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and metabolism and development are corroborated by the large

phenotypic effects of Cf-Inv(1), which results in strong size and

developmental time differences in males but not females (Butlin

et al. 1982; Mérot et al. 2018).

There were fewer terms associated with the larvae. Over-

all, the signal in larvae was very weak and we only identified

one pathway significantly differing between genotypes: thiamine

metabolism, which is associated with digestion. This is not sur-

prising as larvae stop feeding before pupation (Chown and Gas-

ton 2010) and αα males develop 1.2–1.5× more slowly than ββ

males. It should be noted that our larval samples were almost cer-

tainly in different stages of development as we standardized by

time rather than stage. Work in Drosophila melanogaster shows

that thiamine is critical for pupation (Sannino et al. 2018) further

underlining that the differences we observe are likely partially

linked to differences in developmental stage.

COMBINING GENOMIC AND TRANSCRIPTOMIC

STUDIES FACILITATES THE IDENTIFICATION OF

CANDIDATE GENES

By combining our gene expression results with results from a pre-

vious study that identified environmentally associated SNP out-

liers (Mérot et al. 2021), we were also able to identify a small

group of strong candidate genes for local adaptation. We com-

pared the position of 997 transcripts that were differentially ex-

pressed between karyotypes in one of our six contrasts (adult

αα vs. ββ, adult male αα vs. ββ, adult female αα vs. ββ, lar-

vae αα vs. ββ, larvae αβ vs. ββ, larvae αα vs. αβ) with 1526

outlier SNPs identified as being associated with biotic and abi-

otic characteristics of the wrackbed, as these factors have been

found to be significant selective forces on Cf-Inv(1) (Day et al.

1983; Butlin and Day 1989; Mérot et al. 2018). We found 86

differentially expressed transcripts that mapped within 5 kb of

an environmentally associated SNP. Randomly subsampling our

tested transcripts 10,000 times indicated that the expected over-

lap should only be 42 ± 0.06 transcripts. This is likely due to

the linkage disequilibrium created by the inversion, running this

test using only transcripts that mapped to Cf-Inv(1) generated an

expectation closer to the observed value (expected overlap: 67 ±

0.06, actual: 70). Of our 86 overlapping transcripts, 55 were asso-

ciated with one of two PCs that described seaweed composition

of the wrackbed habitat, whereas 44 were associated with abi-

otic characteristics of the wrackbed such as depth, temperature,

and salinity. There was some overlap; 13 transcripts were associ-

ated with both wrackbed composition and climate. All of the tran-

scripts associated with abiotic characteristics were located within

Cf-Inv(1). In contrast, 15 out of 55 transcripts associated with

seaweed composition were located in other places in the genome.

Full information on these loci can be found in Tables S5 and S6.

The wrackbed composition represents a major selective

force both on Cf-Inv(1) as well as on C. frigida as a whole. Flies

raised on Laminaria spp. are larger and in better condition than

flies raised on Fucus spp., although this effect is strongest in αα

and αβ males (Edward 2008). These effects are likely tied directly

to the microbial community of these algae, which forms the base

of the C. frigida larval diet; Fucus spp. support large numbers

of Flavobacterium, whereas Pseudomonas spp. are more com-

mon on Laminaria spp. (Laycock 1974; Bolinches et al. 1988).

Thus, we expect some candidate genes to be related to either

digestion or growth. Within our 55 candidates, we found sev-

eral loci relating to digestive processes, such as carbonic anhy-

drase 5A that helps regulate pH of the midgut in D. melanogaster

(Overend et al. 2016) and trypsin, a crucial digestive enzyme (Wu

et al. 2009). As with the signet analysis, we also uncovered genes

relating to the cessation of larval feeding and the onset of pu-

pation, suggesting that the timing of this transition is a major

factor underlying the size difference between αα and ββ males

rather than differences in larval growth rate. In insects, two of the

major modulators of feeding behavior are neuropeptide F (npf)

and serotonin (5-HT) (Fadda et al. 2019) (Neckameyer 2010). In

older nonfeeding Drosophila larvae, npf is downregulated (Wu

et al. 2003) and one potential mediator of this is tetrahydro-

biopterin (BH4), a fat-derived metabolite that suppresses the re-

lease of npf from npf neurons (Kim et al. 2017). Among our can-

didates was pterin-4-alpha-carbinolamine dehydratase (Pcd) that

is involved in the recycling of BH4 and thus increasing levels of

BH4. In our data, Pcd was upregulated in ββ larvae and ββ males:

this could suppress npf and thus feeding behavior leading to ear-

lier pupation. 5-HT is another major regulator of feeding behav-

ior, and increased levels of 5-HT in the gut of D. melanogaster

enhance larval feeding behavior (Neckameyer 2010). Among

our candidates was 5-hydroxytryptamine receptor 1 (HT1R) that

was upregulated in αα males, potentially increasing feeding

behavior.

Abiotic characteristics are harder to associate with gene

function than seaweed composition but we did find an abundance

of genes involved in pupation, cuticle hardening, and eclosion

such as LGR5 and LCR15 (Mendive et al. 2005), eclosion hor-

mone (Krüger et al. 2015), and ChT (Hamid et al. 2019). Devel-

opment time in C. frigida is highly plastic and is affected by tem-

perature and density as well as karyotype (Butlin and Day 1984).

As wrackbeds are ephemeral habitats, there is likely strong selec-

tion on these traits as well. Overall, these results provide some

initial insights and putative candidates for further exploration.

Furthermore, it is clear that many of the traits are likely poly-

genic and highly complex. Although merging transcriptomic and

genomic datasets provides an excellent first step to narrow down

candidates, more work, especially functional validation, needs to

be done to differentiate between adaptive and linked variation.
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Conclusions
Abundant evidence indicates that chromosomal inversions are

key genomic factors in eco-evolutionary processes because of

their multifarious impacts on genome structure, recombination,

and regulation (Hoffmann and Rieseberg 2008; Wellenreuther

and Bernatchez 2018). However, few studies have made progress

toward dissecting the mechanistic pathways that enable inver-

sions to shape evolutionary trajectories. Using a transcriptomic

approach in the seaweed fly Coelopa frigida revealed that the

impact of Cf-Inv(1) was conditional and differed between males,

females, and larvae. Males showed a stronger effect of Cf-Inv(1)

than females. Overall, most of the differentially expressed genes

were cis-regulated for karyotype, but not for sex effects. We

found little evidence to implicate the breakpoints themselves or

subsequent chromatin changes underlie these patterns, indicat-

ing that linked variation is likely the major cause of the observed

expression differences. Interestingly, genes where the effect of

Cf-Inv(1) was more constant were more likely to be cis-regulated

than genes whose differential expression was conditional. These

results suggest that trans-regulation may be important for condi-

tional gene expression in inversions. Combining our results with

genomic data uncovered candidate variants in the inversion that

may underlie mechanistic pathways that determine critical phe-

notypes in particular the cessation of larval feeding. Overall, our

results highlight the complex effects of inversion polymorphisms

on gene expression across contexts and the benefit of combin-

ing transcriptomic and genomic approaches in the study of inver-

sions.

Methods
REARING AND CROSSES

Larvae of C. frigida for breeding were collected from the

field in April/May 2017 from Skeie, Norway (58.69733,

5.54083), Østhassel, Norway (58.07068, 6.64346), Ystad, Swe-

den (55.425, 13.77254), and Smygehuk, Sweden (55.33715,

13.35963). Larvae were also collected from Skadbergsanden,

Norway (58.45675, 5.91407) in June 2016. See Figure 1A for

all sampling locations. All larvae were brought back live to the

Tjärnö Marine Laboratory in Strömstad, Sweden where they were

raised to adulthood at 25°C.

We generated an αα line from Skeie and a ββ line from each

population (see the Supporting Information for details). Six days

after the creation of these lines, two replicates of three larvae each

from each line were flash frozen in liquid nitrogen and stored

at −80°C until extraction. Larvae were always stored as groups

of three henceforth referred to as larval pools. The adults that

emerged from these lines were used to make subsequent crosses

within and between karyotypes and populations to generate αβ

and ββ larvae (see Table S7 for the crossing scheme). Adults

were then flash frozen individually in liquid nitrogen and stored

at −80°C until extraction. All experimental crosses were set up

in a 50-ml tube with a sponge for aeration and 4 g Saccharina

latissima and 2 g Fucus spp. Six days after the creation of these

crosses, one larval pool from each cross was flash frozen in liq-

uid nitrogen and stored at −80°C until extraction. All larval pools

and adults were processed at the same time of day (±1 h) to re-

duce variation. We were able to get larval pools from two suc-

cessful crosses per cross type. We also generated an ontogeny

series to ensure a comprehensive transcriptome (see Note in the

Supporting Information).

RNA EXTRACTION, LIBRARY PREPARATION, AND

SEQUENCING

RNA from all samples was extracted following a TriZOL pro-

tocol (see Note in the Supporting Information). Only flies from

our lab lines and crosses were sequenced: two larval pools per

line (one αα and four ββ lines) and two larval pools from each

subsequent cross type (see Table S5 for the crossing scheme).

We also sequenced three Skeie αα adult males, three Skeie αα

adult females, five Skeie ββ adult males, two Skeie ββ adult fe-

males, three Skadbergsanden ββ adult females, and one Ystad ββ

adult female. We chose these samples to bias toward parents of

the larval samples and endeavored to get a good distribution of

genotypes. However, we were severely limited by RNA quality.

All of these samples were submitted to SciLifeLab in Uppsala,

Sweden for library preparation and sequencing. RNA was pu-

rified with Agencourt RNA clean XP before library preparation.

Library preparation was done with the TruSeq stranded mRNA li-

brary preparation kit including polyA selection. Samples were se-

quenced on a NovaSeq S1 flowcell with 100 bp paired end reads

(version 1 sequencing chemistry).

TRANSCRIPTOME ASSEMBLY

We only used samples from the geographically close populations

Skeie and Østhassel to construct our transcriptome to limit ge-

netic variation between samples. Individual assemblies for two

of the Skeie αα adult males, two of the Skeie αα adult females,

two of the Skeie ββ adult males, two of the Skeie ββ adult fe-

males, both of the Østhassel ontogenetic pools spanning 0–348

h of development (as a single assembly), both of the Skeie αα

larval pools (as a single assembly), and both of the Skeie ββ

larval pools (as a single assembly) were done using Trinity ver-

sion 2.9.1 (11 assemblies in total) (Haas et al. 2013). Prior to

assembly, all reads were trimmed and adaptors removed using cu-

tadapt 2.3 with Python 3.7.2 (Martin 2011). All assemblies were

run through TransRate 1.0.1 (Smith-Unna et al. 2016), a quality

assessment tool for de novo transcriptomes that looks for arti-

facts, such as chimeras and incomplete assembly, and provides
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individual transcript and overall assembly scores. We retained

all transcripts from each assembly classified by TransRate as

“good.” These contigs were then merged using CD-hit 4.8.1 (Fu

et al. 2012) with a sequence identity threshold of 0.95, a word

size of 10, and local sequence alignment coverage for the longer

sequence at 0.005. Finally, the transcriptome was mapped to the

genome assembly (Merot et al. 2020a) using GMAP 2018-07-

04 (Wu and Watanabe 2005). The mapping coordinates for each

transcript were extracted and in the event that two transcripts

mapped to the same coordinates, only the longer transcript was

retained. The mapping coordinates of all transcripts were retained

for use in further analyses. The final transcriptome was anno-

tated using the Trinotate pipeline with the Uniprot/Swiss-Prot and

Pfam databases (Downloaded on June 25, 2020) (Grabherr et al.

2011).

DIFFERENTIAL EXPRESSION ANALYSIS

We used DESeq2 1.26.0 to determine which transcripts were dif-

ferentially expressed between karyotypes and sexes (Love et al.

2014). The reads from all samples were trimmed and the adap-

tors were removed using cutadapt 2.3 with Python 3.7.2 (Martin

2011). The trimmed reads were then aligned to the reference tran-

scriptome using bowtie2 2.3.5.1 (Langmead and Salzberg 2012)

and quantified using RSEM (Li and Dewey 2011). The result-

ing genes.results files were prepared for use in DESeq2 using

the Trinity script abundance_estimates_to_matrix.pl (Haas et al.

2013). These files were used as input for DESeq2 1.26.0 imple-

mented in R (Love et al. 2014). Adults and larvae were analyzed

separately and normalization was done by DESeq2. We removed

all transcripts where the total count of reads (across all individ-

uals) was less than 10. We also removed a single sample (Skeie

ββ larvae pool 1) as hierarchical clustering using a distance ma-

trix revealed that this sample was an extreme outlier. In DESeq2,

our model for adults included both karyotype and sex and their

interaction, whereas the model for larvae included karyotype and

population. We did not include population in the adult model as

13 out of 17 samples came from the Skeie population. We further

split adult males and females and analyzed them separately. Con-

ventional thresholds (log2 fold change > 2, adjusted P-value af-

ter correction for false discover rate < 5%) were used to identify

differentially expressed transcripts. We tested for GO enrichment

in our different sets of results using topGO (Alexa and Rahnen-

fuhrer 2010) with the elim algorithm and the Fisher’s exact test

implemented in R (Love et al. 2014). Manhattan distance matri-

ces for all subgroups (males, females, and larvae) were calculated

using the dist() function in R and PERMANOVA results were

calculated using Adonis2 in the vegan package (Dixon 2003).

Note that karyotype was always used at the first term as terms

are added sequentially and models differed between subgroups.

GENE SUBNETWORK ANALYSIS

To investigate the effect of inversion on expression in genes in-

volved in common biological pathways, we performed a gene

network analysis designed to detect polygenic selection using

the R package signet (Gouy et al. 2017). This method defines

subnetworks of genes that interact with each other, because they

are known to be involved in the same biological pathway in the

KEGG database, and present similar patterns attributed to selec-

tion; for example, covariation in expression levels. For this anal-

ysis, we used the D. melanogaster KEGG database and thus fo-

cused on the transcripts that matched a gene in Flybase (13,586

out of 26,239). Variation of expression levels between genotypes

were analyzed in a multivariate framework with redundancy anal-

ysis (RDA), with and without sex as covariate, and scaled to a z-

score such that individual transcript scores have a mean of 0 and a

standard deviation of 1 (following Rougeux et al. 2019). Follow-

ing the recommendations of the signet procedure, each pathway

of the KEGG database was parsed to score gene subnetworks us-

ing 10,000 iterations of simulated annealing. A null distribution

of subnetwork scores was generated by random sampling to cre-

ate 10,000 subnetworks of variable sizes. We pathways with a

higher score than the null distribution as significant, that is, with

a P-value below 0.05, and a false discovery rate (Q-value) of 0.20.

OVERLAP WITH GENOMIC RESULTS

We combined our data with previously published population ge-

nomic data to identify loci that may contribute to local adaptation.

Briefly, in our previous work, 16 populations of C. frigida were

sampled along latitudinal and ecological gradients and sequenced

at the whole-genome level, and the association between SNPs and

environmental variation was tested using a combination of two

genotype-environment association methods (LFMM2 and Bay-

pass) (Merot et al. 2020a). Using our mapping coordinates, we

identified transcripts located <5 kb from an outlier SNP defined

by both of these association methods and differentially expressed

between genotypes in at least one of our analyses.

ALLELE-SPECIFIC EXPRESSION

We used our set of αβ larvae to search for transcripts that

showed ASE. RNA from each of our samples was mapped to

our reference genome using bowtie2 2.3.5.1 (Langmead and

Salzberg 2012). The alignment files were sorted and read groups

were added using Picard 2.10.3 (http://broadinstitute.github.io/

picard/). The resulting files were indexed with samtools (Li 2011)

and SNPs were called using bcftools (Li 2011). We took the con-

servative approach of only examining loci that were fixed dif-

ferent between arrangements. SNPs were filtered by mean depth

(>5), maximum percentage of missing samples (25%), and FST

between α and β = 1, using vcftools (Danecek et al. 2011). We

further retained only SNPs that had observations from at least
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three individuals. To test for ASE, we used the ASEP package

(Fan et al. 2020) implemented in R (Love et al. 2014). This pack-

age uses multi-individual information and accounts for multi-

SNP correlations within the transcripts. Using ASEP, we per-

formed a one-condition analysis to detect gene-level ASE and

corrected for multiple testing using the Benjamini and Hochberg

(1995) method implemented in R with “p.adjust.” (Benjamini and

Hochberg 1995). We considered contigs with an adjusted P-value

< 0.1 to be significant.
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