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By	2050	 it	 is	believed	that	ca.	10	million	deaths	will	occur	globally	every	year	due	to	antimicrobial	

resistance.
1
	This	will	cost	the	world	economy	ca.	$100	trillion.	There	is	no	doubt	that	the	continual	

evolution	of	antibiotic	resistance	is	an	existential	threat	to	human	beings.	The	discovery	of	penicillin	

in	1928	by	Alexander	Fleming	yielded	the	start	of	the	antibiotic	era,	revolutionising	the	treatment	of	

bacterial	infections	and	preventing	an	inconceivable	number	of	fatalities,	notably	during	World	War	

II.	Antibiotics	have	since	become	a	staple	in	modern	medical	procedures.
2
	However,	following	what	is	

known	as	the	“golden	period”	of	antimicrobial	drug	discovery	in	the	mid-to-late	20
th
	century,	a	decline	

in	new	antibiotic	approval	by	the	FDA,	alongside	a	rise	in	antimicrobial	resistance	(AMR),	has	led	to	a	

staggering	 increase	 in	untreatable	bacterial	 infections.
3
	 This	 can	also	be	partially	 attributed	 to	 the	

unfortunate	 withdrawal	 of	 investment	 from	 “Big	 Pharma”	 companies	 in	 antibiotic	 drug	 discovery	

programmes.	 The	 total	 cost	 of	 development	 for	 an	 anti-infective	 drug	 is	 estimated	 at	 $500-800	

million.
4
	The	lack	of	said	significant	breakthroughs	illustrate	why	companies	are	hesitant	to	financially	

commit	to	such	projects,	where	there	are	often	more	lucrative	and	viable	options.
3,	5
	

Bacterial	 type	 II	 topoisomerase	enzymes,	 such	 as	DNA	gyrase	 and	 topoisomerase	 IV,	 are	 essential	

proteins	 that	modulate	 the	 topology	of	DNA	 in	bacteria	during	DNA	 transcription,	 replication,	and	

other	 DNA-associated	 processes.
6,	 7

	 The	 primary	 function	 of	 DNA	 gyrase	 is	 to	 introduce	 “negative	

supercoils”	 into	 bacterial	 DNA	 through	an	ATP-dependent	mechanism.	 Topoisomerase	 IV	 serves	 a	

different	 function,	 primarily	 eliminating	 entanglements	 that	 occur	 naturally	 in	 DNA	 during	 DNA	

replication.		

Both	enzymes	are	comprised	of	two	proteins,	coded	for	by	the	gyrA	and	gyrB	genes	for	DNA	gyrase,	

and	 the	 parC	 and	 parE	 genes	 for	 topoisomerase	 IV.
8,	 9

	 These	 two	 proteins	 are	 composed	 of	 four	

subunits,	 forming	 heterotetrameric	 protein	 complexes:	 A2B2	 for	 DNA	 gyrase,	 and	 C2E2	 for	



topoisomerase	IV.	They	are	well-validated	targets	for	antibiotics;	the	fluoroquinolone	antibiotics	(FQs)	

being	one	of	the	most	important,	clinically-used	classes	of	antibiotics	available.	This	is	because	they	

are	renowned	for	possessing	a	“dual-targeting”	mechanism,	where	they	can	of	inhibit	both	DNA	gyrase	

and	topoisomerase	IV	simultaneously.		

The	prospect	of	achieving	dual-targeting	 is	an	 immensely	attractive	one	 for	 the	discovery	of	novel	

antimicrobial	agents,	as	 the	 inhibition	of	 two	 important	enzymes	simultaneously	presents	bacteria	

with	a	more	difficult	task	of	evolving	resistance.
10,	11

	Prominently,	DNA	gyrase	and	topoisomerase	IV	

possess	a	high	degree	of	structural	and	sequence	similarity,	but	possess	limited	sequence	similarity	to	

human	topoisomerase	II,	allowing	for	the	design	of	selective	 inhibitors	for	bacterial	topoisomerase	

enzymes	over	the	human	enzyme.
12
	

The	well-established	regions	on	bacterial	type	II	topoisomerases	are	associated	with	their	DNA-	and	

ATP-binding	sites.
8,	13

	FQs	bind	to	the	gyrase-DNA	complex	and	“trap”	the	bound	DNA	within	gyrase	

by	forming	key	interactions	within	the	DNA-binding	site	through	a	water-metal	ion	bridge.
14	
Despite	

the	success	of	“dual-targeting”	inhibitors	and	the	relatively	slow	rate	at	which	bacterial	resistance	has	

evolved	to	these	drugs,	resistance	is	growing	within	the	clinic,	primarily	through	the	development	of	

point	mutations.
15
	For	example,	amino	acid	variation	of	Ser-83	to	Phe	and	Tyr	residues,	and	Asp-87	to	

Asn	have	been	 introduced	within	 the	GyrA	domain	of	DNA	gyrase,	and	Glu-84	 to	 Lys	modification	

within	the	ParC	domain	of	topoisomerase	IV.
16
	

A	promising	approach	to	combating	FQ	resistance	may	lie	in	targeting	allosteric	binding	sites	present	

in	DNA	gyrase	and	topoisomerase	 IV.	Allosteric	sites	are	regions	that	are	remote	 to	the	active	site	

within	a	protein	–	the	site	that	is	responsible	for	carrying	out	its	primary	function,	i.e.	the	DNA-binding	

site	in	the	case	of	the	topoisomerases.	

Chan	et	al.	report	one	such	example	within	a	Staphylococcus	aureus	DNA	gyrase	structure	containing	

a	thiophene-carboxamide-based	 inhibitor	
17,	18

	Upon	examination	of	the	co-crystal	structure,	 it	was	

discovered	that	the	inhibitor	was	bound	within	a	pocket	between	the	GyrA	and	GyrB	subunits.	This	

region	is	remote	from	the	FQ	binding	site,	and	as	such	is	an	allosteric	inhibition	site.	The	inhibitor	was	

observed	to	be	very	potent	towards	E.	coli	DNA	gyrase	(IC50:	0.30	µM)	and	importantly	is	not	cross-

resistant	with	the	FQs.	However	it	 lacked	any	form	of	significant	potency	against	topoisomerase	IV	

(IC50:	>540	µM).	Whilst	potent	against	DNA	gyrase,	the	dual-targeting	mechanism	associated	with	the	

FQs	was	clearly	not	observed	for	this	compound.	Unfortunately,	the	development	of	this	inhibitor	was	

later	terminated	due	to	in	vivo	toxicity.	



A	 later	 publication	 by	 the	 same	 team	describes	 examples	 of	 fused	 5-6-heterocyclic	 inhibitors	 that	

incorporated	or	entirely	replaced	the	thiophene	moeity.
18
	Their	most	potent	inhibitor	was	determined	

against	E.	coli	DNA	gyrase	(IC50:	0.16	µM);	4-fold	less	active	than	the	parent	thiophene	inhibitor,	but	

notably	also	displayed	some	mild	E.	coli	topoisomerase	IV	inhibition	(IC50:	~90	µM	-	decatenation	of	

kinetoplast	 DNA	 inhibition	 assay).	 It	 was	 also	 observed	 to	 be	 weakly	 active	 against	 human	

topoisomerase	 IIα	 (IC50:	 ~210	µM),	 and	was	 found	 to	possess	 cytotoxicity	 and	 cardiac	 ion	 channel	

inhibition	 (hERG	 and	 NaV1.5)	 which	 resulted	 in	 the	 termination	 of	 these	 compounds.	 These	 data	

however	 offer	 significant	 promise	 for	 the	 future	 development	 of	 dual	 allosteric	 DNA	

gyrase/topoisomerase	IV	inhibitors.	The	design	was	developed	further	by	Thalji	et	al.,	resulting	in	a	

novel	molecular	design	equipotent	against	DNA	gyrase	and	more	potent	than	the	parent	compound	

against	topoisomerase	IV.	It	remained	weakly	inactive	against	human	topoisomerase	II,	showing	the	

continual	opportunity	for	selective	targeting.	

There	 is	 therefore	potential	 for	 future	development	with	 this	allosteric	site,	as	different	molecular	

designs	appear	 to	validate	 the	nature	of	 the	residues	 involved	 in	 intermolecular	bonding.	Notably,	

with	both	the	Chan	et	al.	and	Thalji	et	al.	inhibitors,	it	was	observed	within	two	X-ray	crystal	structures	

(PDB:	5NPP	and	6QX1	respectively)	the	predicted	interactions	between	the	different	 inhibitors	and	

both	Arg-630	and	Glu-634.	Targeting	these	two	amino	acid	residues	appears	to	be	key	to	the	inhibition	

of	DNA	gyrase,	though	minimal	activity	against	topoisomerase	IV	to-date	has	likely	resulted	in	crystal	

structure	 procurement	 challenging,	 if	 not	 impossible.	 It	 therefore	 remains	 to	 be	 seen	 if	 sufficient	

activity	can	be	achieved	against	 topoisomerase	 IV	 following	a	similar	molecular	design.	This	would	

potentially	validate	the	existence	of	a	similar	allosteric	site	present	within	the	topoisomerase	IV	crystal	

structure,	and	aid	the	rationalisation	of	a	potentially	novel	dual-targeting	approach	that	is	not	cross-

resistant	 with	 the	 FQs.	 In	 this	 pursuit,	 the	 authors	 are	 using	 advanced	 computational	 modelling	

techniques	to	design	and	subsequently	synthesise	dual-targeting	inhibitors	tailored	to	this	allosteric	

site.	
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