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Abstract. This paper presents a data driven case study of two outer-race spalling faults
in double-row spherical roller main-bearings, with the purpose of identifying key features
and relevant measurements associated with this failure mode in wind turbine main-bearings.
Supervisory data is analysed for one fault case and vibration data for the other. The aim of
this work is to inform practitioners and assist in improving fault detection systems for this
component.

1. Introduction

Wind energy is playing a key role in the decarbonisation of the power sector. In 2019 electricity
production from wind power totaled 417 Terra Watt Hours, accounting for 15% of EU electricity
consumption [1] . However, challenges still remain and concerted efforts are required to further
reduce levelised cost of energy.

An important contribution to these cost reductions will come from amelioration of rates of
catastrophic component failure through improved fault detection and predictive maintenance
capabilities; cutting unplanned downtime and reducing costs associated with the replacement of
damaged parts. Important advances in fault detection for wind turbine drivetrain components
have been made in recent years [2, 3, 4, 5, 6], however, the main shaft bearing is a component
which has seen less focus in the literature in this context [7] when compared to other drivetrain
components. Furthermore, existing work which does consider fault detection and prognosis for
main-bearings is often based on simulated and idealised data [8, 9, 10] or, in some cases, is
based on scaled rotors whose inertias are orders of magnitude less than that of operational
wind turbines [11]. Studies that do employ real world data (e.g. [12, 13]) can also be limited
by the data types and number of failures they have access to, meaning proposed detection
techniques are difficult to validate. Even in studies reporting promising main-bearing fault
detection performance [13, 14], it is not clear whether employed data was ascertained to be the
most appropriate for the task at hand, or simply what was available. Therefore, in order to
support improvements in main-bearing fault detection capabilities, the current work looks to
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study data from two examples of outer-raceway main-bearing failures (supervisory data from
one, vibration data from the other) in order to demonstrate which aspects of this data can be
associated with the known fault type. In addition, the study seeks to inform practitioners as
to the most promising features for inclusion in detection algorithms. As such, focus will be on
the data itself, and observable trends as a fault progresses, rather than the algorithms which
might then make use of such data. Operating conditions for main-bearings are generally high-
load and low-speed, making it also pertinent to ask whether classical fault indicators, commonly
used in high-speed applications, are also present here. Note, while this manuscript was under
review, two valuable additions to the main-bearing fault detection literature have been published
[15, 16].

Employed data was from two sources: that collected from the supervisory control and data
acquisition (SCADA) system, and vibration measurements of 100s duration at 8kHz using an
accelerometer affixed to the main-bearing casing. The SCADA data consists of 10-min means
and standard deviations of wind turbine operational and environmental variables, including:
main-bearing temperature, rotor speed, wind speed and power. Note, due to hardware issues
main-bearing temperature and vibration data was not available for the same turbine, the SCADA
data anlaysed here was instead obtained from an identical turbine with the same fault type. The
turbines’ rated power is ∼2MW.

2. SCADA data analysis

SCADA data was analysed for 16 months before failure of the main-bearing outer raceway.
Starting from first principles, it was assumed that the presence of damage within the bearing
would lead to elevated temperatures at each operating point. However, wind turbine operation is
highly variable, so even for healthy main-bearings time variations in temperature will be present.
Main-bearing temperature (TMB) was therefore plotted against key operational variables in order
to help delineate between natural variability and damage induced effects. Figures 1-3 show these
operational plots for rotor speed, power and wind speed respectively. Each includes data from
month 4 (1 year before failure) and month 16 (1 month before failure). The expected temperature
elevations are clearly present.
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Figure 1. Rotor speed
versus temperature relationship.
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Figure 2. Power versus
temperature relationship.
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Figure 3. Wind speed
versus temperature
relationship.

Effects of changes in ambient temperature (Tamb) on the plotted relationships were also
considered, since changes in ambient temperature outside of the turbine could conceivably
influence the temperature of the main-bearing . Similar outputs were therefore generated using
the adjusted temperature,

Tadj = TMB − Tamb. (1)
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However, it was found that the use of Tamb only increased the scatter present. A correlation
analysis indicated why, since TMB and Tamb were found to be completely uncorrelated. This
suggests that, for this turbine at least, the nacelle generates its own independent micro-climate
possibly due to thermal insulation or active temperature control.

In Figures 1-3, while some co-dependency is apparent between considered variables, there is
also significant scatter which will, inevitably, reduce the sensitivity of fault detection algorithms
which seek to monitor and detect changes in main-bearing temperature relationships. The lack of
structure, seen in above plots, is perhaps somewhat puzzling given the clear physical link which
exists between TMB and the other variables, since both load and speed would be expected to
influence frictional effects fairly directly. Further analysis of the data was therefore undertaken
in order to seek an explanation.

2.1. Thermal inertia and system response
To better understand the underlying causal relationships, time series of SCADA data values for
TMB and the other variables were considered. Here, rotor speed values will be used to illustrate
findings, with similar conclusions found for the other variables.
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Figure 4. Time series data of rotor speed and main-bearing temperature. Thermal inertia is
clearly present, reducing the correlation between these variables.

Figure 4 shows example concurrent TMB and rotor speed time series (scaled to be zero mean and
unit variance - referred to here as “normalised intensity” time series). In this form, the reason
for an observed lack of structure becomes clear. Changes in TMB can be seen to lag behind
changes in rotor speed. This lag is caused by thermal inertia present in the system, in which the
rate of accumulation and dissipation of heat is dictated by a range of factors such as material
heat capacity, physical size, surface area and frictional surface geometry.

Relative to changes in rotor speed, the presence of thermal inertia elicits two main effects
when comparing these time series. The first is a clear smoothing effect, where higher frequency
variations present in rotor speed do not manifest in the temperature signal. The second is
a lag between signals, whereby any sustained change in rotor speed only gradually generates
an associated change in temperature values. Since the relationship between rotor speed and
main-bearing temperature has this added level of complexity, the lack of structure observed in
joint plots becomes unsurprising. This result then begs the following question: can rotor speed
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values, Ω, be transformed into a new speed variable, Ω̂, such that inertial effects are accounted for

and the relationship between speed and temperature strengthened? An answer in the affirmative
suggests an improved variable on which learning algorithms might be based or, alternatively,
helps inform as to appropriate learning features for inclusion at the fault prediction stage.

2.2. Transforming rotor speed to account for inertia

Inertia-like effects can be synthetically incorporated into a transformed version of rotor speed
time series via the following process:

(i) Application of a moving average across the time series. Moving averages of different forms,
such as simple [17], auto-regressive integrated moving average (ARIMA) models [18, 19]
and exponentially weighted moving average models (EWMA) [19] have been shown in the
literature to help improve causal relationships in this type of context. Here a simple,
unweighted, trailing moving average across N 10-min bins was applied; this is a simple
example of a finite impulse response filter.

(ii) Application of a time translation, τ , to the output of step (i) to remove lag. τ is chosen

such that the correlation between Ω̂ and TMB is maximised.

The combined effect of these steps generates the transformed rotor speed time series, for example
see Figures 5 and 6, for a given number of averaging bins (N). It is clear that the relationship

between Ω̂ and temperature is now much stronger.
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Figure 5. Time series before preprocessing.
The effects of thermal inertia are clearly present.
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Figure 6. Time series after preprocessing
rotor speed using an averaging window of
22 and time-shift of 8.

This same idea can be extended so as to consider optimal values of both N and τ , again such
that correlation between the resulting transformed rotor speed and TMB is maximised. As such,
the following cost function was defined,

ρopt(N) = max
τ

ρ
(

Ω̂(N, τ), TMB

)

. (2)

ρopt returns the maximum correlation (ρ) possible when a time shift (τ) is applied to the moving
average processed rotor speed signal, where the averaging is over N bins. The associated time
shift which achieves this maximum, τopt, is therefore the optimal lag for that choice of N .
Using ρopt to investigate optimal parameters across the available data, it was found that the
outlined process results in significant increases in signal correlation for all values of N , with
correlations generally increasing from values as low as 0.69 to those as high as 0.95. With no
averaging, N = 1, a large value of τ is required, with τopt corresponding to between 1.5 and 3
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hours. However, the overall correlation between signals was found to be maximum when a large
averaging window, N = 40 − 60 (∼6.5-10 hours), was used in conjunction with no time shift,
τopt = 0. This last result is due to the fact that the application of a non-centred moving average
also introduces some amount of lag into the resulting signal, with results indicating that at the
point of maximum correlation the smoothing transform alone is enough to remove signal lag.

Figure 7 shows the Ω̂, TMB relationship after applying the globally optimal transformation, as
described above, for data from a year prior to failure (month 4) and one month prior to failure
(month 16). When compared to Figure 1, the effects of pre-processing are clear, with much
reduced scatter and a stronger relationship evident between the two variables. There remains a
discernible increase in temperature values from month 4 to month 16, especially at higher rotor
speeds where the overlap between datasets has been all but removed.
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Figure 7. Rotor speed - temperature rela-
tionship after applying the globally optimal
transformation.
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A key question at this stage is whether by transforming Ω → Ω̂, the impending failure
becomes easier to detect. This question was considered by comparing the shift seen in lines of
best fit relative to the magnitude of residuals from those lines. More formally, for lines of best
fit L4 and L16 (written in vector form) on original data, and denoting those fitted to processed

data as L̂4 and L̂16; the relative shift in each case if defined as,

∆T =
mean (|L16 − L4|)

σ
(3)

∆T̂ =
mean

(

|L̂16 − L̂4|
)

σ̂
, (4)

where σ denotes the average of original data residual standard deviations from lines L4 and
L16 respectively, and similarly for σ̂ with respect to L̂4 and L̂16 on transformed data. With
these definitions in place, it was found that the relative shift (∆T̂ ) after transforming rotor
speed values was around 40% larger than that obtained using the original data (∆T ), indicating
a significant improvement in sensitivity which could in turn allow for earlier or more reliable
detection of impending main-bearing failures. In practise, more sophisticated methods than
straight line fits would be used to detect faults, however, the analysis presented here highlights
the potential benefits of either pre-processing as outlined, or ensuring such effects are accounted
for in learning methodologies.

While correlation can be maximised with a large enough averaging window and no lag, it is
also worth considering the possible information made available when a shorter averaging window
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is applied, such that non-zero optimal lag values (for the chosen value of N) are obtained.
Considering the degrading internal conditions of a failing main-bearing, which in turn lead to
higher frictional forces, and so the higher temperatures observed in Figures 1-3, it would be
reasonable to expect rougher surfaces and the presence of metallic debris to also effect the rate
at which temperature responds to changes in speed (or load). The lag applied above can in
fact be interpreted as an estimate of the rate at which bearing temperature responds to changes
in rotor speed, an estimate learned from the data itself. Optimal lag values were therefore
investigated, using intermediate values of N , in order to ascertain whether a reduction in τopt
values tends to occur as the bearing moves closer to failure. On average this was found to be
the case; for example, Figure 8 shows distributions of daily optimal lag values from the first and
last five months of data using an averaging window of N = 10. Dashed lines show the average
of optimal lag values in each case. Both with respect to the distributions themselves and their
average values, a shift towards the left is evident for the data taken from closer to failure. This
in turn implies that optimal lag might itself constitute a useful learning feature to be tracked
and fed to fault detection algorithms.

The transformation process outlined in this section can also be applied to power and wind
speed signals with similar results. Overall the highest correlations were to found exist in the
rotor speed case.

3. Vibration data analysis

Vibration data was analysed for a turbine of the same type and power-rating, also with an
outer-race fault. Note, due to hardware issues required SCADA and vibration data was not
available for the same turbine, hence data from a similar turbine with the same fault type was
investigated instead.

Vibration based fault detection is a well established field, and one in which changes in signal
characteristics associated with given fault types are well understood. As with other approaches to
fault detection, in the case of wind turbine main-bearings there are few studies which investigate
vibration signal characteristics as the bearing progresses to failure, although the technique is
commonly and successfully used by industry for main-bearing fault detection. The present
section considers vibration signal characteristics from a number of healthy and one faulty main-
bearing between 18 and 1 months to failure. As previously, the focus is on the data itself and, in
this case, whether classical signs of failure are also present for this main-bearing fault example.
Vibration signal characteristics will be considered in both frequency and time domains.

Figure 9 (a) shows a power spectral density (PSD) plot for the failed bearing (black) around
1 month before turbine shutdown. Also included are a range of healthy main-bearing PSDs from
two different turbines (green and yellow) for comparison. Power spectra were estimated using
Welch’s method with a Hanning window and no overlap. Cumulative energy spectra, obtained
by integrating the square of PSD values, are also shown for the faulty case and one of the healthy
cases. Energy values have been normalised, and so move monotonically from −∞ to 0 on the
log scale. Note also that frequency values are normalised by the mean rotational frequency, fr,
of the low speed shaft, measured during each vibration sample.

Rotor harmonics are clearly visible in all signals at 1P (likely due to blade imbalance) and
3P, as would be expected. Unique to the faulty case are three distinct peaks between 14 and
45 f/fr. Such peaks can often be used to identify a fault location by comparing frequencies
of identified peaks with those corresponding to repeated interactions between bearing internal
surfaces. Standard formulae exist such that these characteristic frequencies can be determined
from bearing geometry and rotational speed alone [20, 21, 22, 23]. In the current case, the
additional peaks appearing in the faulty signal correspond to the first three harmonics (1st,
2nd and 3rd) of the ball-pass-frequency on the outer raceway (BPFO) for this particular main-
bearing, thus corresponding to the known fault type of the failure in question. Also apparent
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Figure 9. Vibration data results showing (a) power and (normalised) cumulative energy spectra
for healthy and faulty bearings (b) cumulative energy spectra as damage progresses (c) time-
domain signal statistics over time. Note, in (b) the green and black curves are the same as those
shown in (a). The red curve is from faulty main-bearing data at an intermediate damage stage.

between healthy and faulty signals is a markedly raised noise floor.
The normalised cumulative energy spectra associated with these signals provide useful

guidance as to which features should be considered significant. In the healthy case, almost
all signal energy is shown to be concentrated in the fundamental and 3rd harmonic (3P) of
rotational speed, indicated by the normalised energy converging to 0 (on the log scale) at, or
just after, the 3P peak. In the faulty case, however, the total signal energy is spread across a
much larger range of frequencies, only converging to 0 at around 100 f/fr. Along with energy
‘steps’ at 1P and 3P, the three BPFO harmonics can be seen to also contain enough energy
to visibly increase cumulative energy values. Curiously, the peak at around 95 f/fr, which is
visible but not significant (energy wise) in the healthy cases, becomes significant in the faulty
case. The nature of this peak is still under investigation, the current hypothesis is that this is
in fact a gearbox generated signal transmitted to the main-bearing via the low speed shaft. The
energy content of this peak close to main-bearing failure indicates a possible interaction whereby
additional loads/harmonics may be being transmitted to the gearbox as the main-bearing fails.
However, this is currently only conjecture, more work is needed to conclusively account for this



EERA DeepWind'2021
Journal of Physics: Conference Series 2018 (2021) 012011

IOP Publishing
doi:10.1088/1742-6596/2018/1/012011

8

signal component. The shift in normalised cumulative energy observed in Figure 9 (a) was
found to hold in general as the fault progressed. As illustrated by Figure 9 (b), which shows
an intermediate damage state energy spectra from the faulty main-bearing, fault progression
was found to be accompanied by the normalised energy curve moving down and to the right.
It can also be seen in Figure 9 (b) that the intermediate fault data (red) has a dominant first
BPFO harmonic, whereas closer to failure (black) the energy contributions of BPFO 1-3 are
more uniform.

Cumulative energy characteristics observed in the current study indicate a degradation path
where the shape of the consecutive curves results in a reduction of the overall area under the
curve. This is similar to the evaluation of performance of a supervised classifier with the area
under the curve (AUC) metric of a Receiving Operating Characteristic (ROC) curve (see for
example [24, 25, 26]). The summarising property of AUC is potentially apt to depict, in a single
value, the state of the dispersion of energy in the spectrum. As such, it can be used along with
other summary statistics to compare successive values for sustained changes (trends) which may
indicate a progression towards failure. This implies that the AUC of cumulative energy spectra
for main-bearing vibrations signals could potentially prove a useful feature to include in fault
detection algorithms. In this case, the shift of the normalised cumulative energy curve observed
here would manifest as a reducing value of area over time.

Finally, time domain statistics of the measured vibration signals were analysed with a view
to identifying any obvious trends. Figure 9 (c) shows chronological values of vibration signal
variance, room-mean-square (RMS), peak-to-peak ratio (P2P), peak-to-RMS ratio (P2R) and
signal-to-noise (SNR) ratio. For the number of measurements available, no discernible trends in
the above quantities are apparent as the bearing moves towards failure, except perhaps in SNR
where there is a possible downward trend over time. The relatively constant values seen for
variance, RMS, P2P and P2R over time indicate it is likely not the case that natural variations
(i.e. noise) in these quantities are masking underlying trends. At this stage, not enough data
is available to say whether the observed SNR reductions are statistically significant and more
work will be undertaken to better determine if this is the case. The P2P results seen here are in
contrast to those of [12], where this statistic was found to be a useful indicator of a main-bearing
fault. The fault type occurring in this previous work is not given, hence it could be the case
that different time-domain features act as indicators for different fault types. It should also be
noted that, in [12], a significantly larger dataset of P2P values was analysed. It could therefore
be the case that with more data a similar trend would manifest here; however, if this were the
case one would expect to see more variability in the P2P values shown in Figure 9.

4. Discussion

In this study, data from an outer race main-bearing failure was analysed. Results of the
SCADA data analysis (Section 2) indicated that, as expected and in agreement with other
studies [19], temperatures were observed to increase as the bearing moved closer to failure,
reflecting increased frictional effects in the system. However, some subtleties associated with
the data were also investigated, with findings indicating that thermal inertia effects should
be considered when developing fault detection models. It was further demonstrated that
improved relationships between key variables can be obtained by pre-processing measured data
to artificially incorporate inertial effects. Such pre-processing procedures might therefore be
incorporated into fault detection algorithms in order to improve sensitivities. Alternatively,
results could be interpreted as providing insight as to the types of features necessary for inclusion
in learning models (removing the need for the data itself to be manipulated outwith the learning
procedure); explicitly, features should be included that allow for inertial type effects to be
accounted for, such as smoothed measurements and lags of measured values. The choice between
pre-processing or feature-level inclusion of these effects will largely depend on sophistication of
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the chosen fault detection methodology.
It is also worth noting that while average based smoothing and time shifting of signals has

been commonly used to ‘clean’ data prior to learning in the past, the current study indicates
that this step could provide more than just improved input-output correlations. As shown in
Section 2.2, optimal lags were found to reduce in mean value closer to failure, indicating they
may form a useful additional learning feature in their own right. More generally, this could be
extended to the use of other measures of system inertia for monitoring of main-bearing health.
This suggest that, whilst main-bearing temperature itself is certainly a key indicator of system
health, other measurable properties are present which shouldn’t be overlooked.

Similarly, in the vibration data case, signal characteristics were found to display classical
features as the bearing moves to failure. In particular, harmonics associated with the known fault
type were clearly visible. Additionally, the cumulative signal energy spectra and its associated
area-under-the-curve metric was identified as another single variable feature on which fault
detection might be based.

5. Conclusions

In this study, supervisory and vibration datasets were analysed with regards to their fault
detection potential on an example of a wind turbine outer raceway fault. Classical signs of
failure were present in both cases, with additional effects also investigated. It was found that
thermal inertia present in the system warranted specific consideration, with changes in inertia
associated time-lags potentially offering a new learning variable. Vibration data analysis showed
that cumulative energy spectra might also provide a single variable on which sustained changes
might be used to indicate a developing fault.
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