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Abstract 36 

Cutaneous leishmaniasis (CL) is caused by Leishmania donovani in Sri Lanka.  37 

Pentavalent antimonials (e.g. sodium stibogluconate; SSG) remain first line drugs for 38 

CL with no new effective treatments emerging.   We studied whole blood and lesion 39 

transcriptomes from Sri Lankan CL patients at presentation and during SSG 40 

treatment.  From lesions but not whole blood, we identified differential expression of 41 

immune-related genes, including immune checkpoint molecules, after onset of 42 

treatment.  Using spatial profiling and RNA-FISH, we confirmed reduced expression of 43 

PD-L1 and IDO1 proteins on treatment in lesions of a second validation cohort and 44 

further demonstrated significantly higher expression of these checkpoint molecules on 45 

parasite-infected compared to non-infected lesional CD68+ monocytes / macrophages.  46 

Crucially, early reduction in PD-L1 but not IDO1 expression was predictive of rate of 47 

clinical cure (HR = 4.88) and occurred in parallel with reduction in parasite load. Our 48 

data support a model whereby the initial anti-leishmanial activity of antimonial drugs 49 

alleviates checkpoint inhibition on T cells, facilitating immune-drug synergism and 50 

clinical cure.  Our findings demonstrate that PD-L1 expression can be used as a 51 

predictor of rapidity of clinical response to SSG treatment in Sri Lanka and support 52 

further evaluation of PD-L1 as a host directed therapeutic in leishmaniasis.  53 

 54 

 55 

56 
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Introduction 57 

Every year, approximately 600,000 – 1 million new cases of cutaneous leishmaniasis (CL) 58 

occur, with a broad global distribution, often leading to stigma and reduced life chances and 59 

placing a burden on health services (1-3).  Treatment options for CL have changed little in 60 

over 70 years, since pentavalent antimonial drugs were first introduced, and there are limited 61 

new treatments on the horizon (3).  Sri Lanka is endemic for CL, with the first autochthonous 62 

case being reported in 1992 (4).  Sri Lankan CL is caused by Leishmania donovani 63 

zymodeme MON-37 parasite (5-7), usually associated with visceral leishmaniasis in other 64 

endemic countries.  Current treatment for CL in Sri Lanka involves weekly intra-lesional or 65 

daily intra-muscular administration of sodium stibogluconate (SSG), with or without 66 

cryotherapy, based on the site and size of the lesion and response to treatment. Cure often 67 

takes many months, and some patients may fail to respond completely or withdraw from 68 

treatment (8).  69 

 70 

Most of our understanding of the host immune response in  CL stems from experimental 71 

models, and human disease is much less understood (9). Immune checkpoint molecules have 72 

been implicated in disease progression in pre-clinical models (10-17), but their role in human 73 

CL has not been explored. It is widely proposed that immune-drug synergy is required for 74 

effective treatment and that host directed therapy (HDT) may have a future role in patient 75 

management (18-20), but few validated targets have emerged. Here, we searched for early 76 

correlates of treatment response that might be used to stratify patient response. Our results 77 

indicate an intimate relationship between intracellular parasitism and immune checkpoint 78 

molecule expression, with PD-L1 emerging as a promising target for HDT in Sri Lanka. 79 
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Results and Discussion 80 

We first conducted a targeted transcriptomic analysis of the lesion site in a test cohort of 6 81 

patients with typical homogeneous nodulo-ulcerative CL lesions (3 females, 3 males; mean 82 

age ± standard deviation, 34 ± 11 years; (Supplemental Figures 1-3 and Supplemental Table 83 

1).  Principal component analyses of lesion transcriptomic data showed separation of pre- and 84 

on-treatment samples in most patients (Figure 1A) and 120 differentially expressed genes 85 

were identified (DEGs; FDR adjusted p-value<0.01; Figure 1B).  In contrast,  no DEGs were 86 

identified by RNA-seq in whole blood (Supplemental Figure 4) suggesting that unlike CL 87 

caused by L. braziliensis (21),  CL due to L. donovani in Sri Lanka is not accompanied by an 88 

overt systemic immune response. 89 

  90 

Following treatment, the majority of DEGs in dermal lesions were downregulated (87%; 91 

105/120) suggesting a reduction in inflammation following treatment (105 downregulated, 15 92 

upregulated; Figure 1B and Supplemental Table 3). Genes for cellular functions and 93 

regulation, chemokines, membrane receptors, T cell function and regulation were amongst 94 

the top 20 DEGs (Figure 1C). Further, STRING analysis (22) identified Lymphocyte 95 

migration (GO: 0002687, FDR= 1.06E-14; including interferon inducible chemokines like 96 

CXCL9, CXCL10, CXCL11, CCL19, CCL8)) and regulators of immune response (GO: 97 

0002684, FDR=1.94E-11; including IDO1, LAG3 and CD274/PDL1) as highly enriched 98 

pathways (Figure 1D).  Transcripts of inflammatory mediators including CXCL10, GZMB, 99 

CCL2 and CCR7 (receptor for CCL19), previously shown to be associated with other forms 100 

of murine (23-25) or human CL (26-28) were also downregulated with initiation of treatment 101 

(Supplemental Table 3). 102 

 103 
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We next conducted multiplexed antibody digital spatial profiling (29) for 59 immune targets, 104 

selecting regions of interest (ROIs) based on expression of CD3+ and/or CD68+ 105 

(Supplemental Figure 5 and Figure 2, A-F).  The t-SNE dimensional reduction on a total of 106 

33 regions of interest (ROIs) analysed from three patients (P4, P6 and P7) (Figure 2G) 107 

indicated a considerable degree of inter-patient heterogeneity in pre-treatment lesional protein 108 

profiles, but with clear discrimination for each patient between pre- and on-treatment ROIs.  109 

Upon treatment, IDO1 and PD-L1 as well as PD-1 were selectively reduced in expression 110 

(Figure 2, H and I). STRING analysis of all discoveries based on FDR (5%) also indicated 111 

significant enrichment in GO: 002684, as well as a pathway associated with regulation of T 112 

cell activation (GO: 0050863; Supplemental Figure 6, A-B).  113 

 114 

As IDO1 and PD-L1 have been targeted in cancer immunotherapy and hold promise for drug 115 

re-purposing, we next sought to further validate these findings using quantitative IHC in an 116 

independent cohort of CL patients (5 females, 18 males; mean age ± standard deviation, 44 ± 117 

11 years; time to diagnosis 7.76 ± 8.2 months; Supplemental Figures 7 and 8 and 118 

Supplemental Table 4) sampled at baseline and after 4 weeks of treatment.  Using an 119 

accepted cut-off of >5% of cells being positive (30), all patients (n=23) expressed IDO1 120 

(Histochemical (H)-score (31) median = 81.2; range 16 - 165) and 20/23 patients had a 121 

reduction in the abundance of IDO1+ cells on treatment (H-score median = 32; range 1 – 171; 122 

p=0.0023; Figure 2J).  All patients were PD-L1 positive at presentation (n=23; H-score 123 

median = 82.8; range 12-164) and 20/23 patients exhibited a reduction in the number of PD-124 

L1 expressing cells on treatment (Figure 2J; H-score median = 36.7; range 12.3-36.7; 125 

p=0.0008).  Collectively, these data indicate that IDO1 and PD-L1 are highly expressed in the 126 

lesions of Sri Lankan CL patients and reduction in expression of these two checkpoint 127 

molecules represents an early response to SSG.  128 
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Though in vitro studies have indicated that intracellular parasitism by Leishmania could 129 

impact on the expression of immune checkpoint molecules (32-34), this has not been 130 

established in situ during human disease. To address this question, we combined IHC with 131 

RNA-FISH (35) to identify Amastin transcripts (as a surrogate for viable amastigotes) with a 132 

bespoke StrataQuest image analysis pipeline (Supplemental Figure 9, A-F). In 7 patients 133 

studied that were Amastin+ at presentation (Supplemental Methods, Supplemental Table 5), 134 

PD-L1 expression co-localised with CD68+ macrophages (Figure 3A, Supplemental Figure 135 

10C) and parasitized cells were both PD-L1+ and PD-L1- (Figure 3A). We binned the 136 

Amastin+ PDL1+ and Amastin – PDL1+ cells based on PD-L1 mean fluorescent intensity 137 

(Figure 3, B-D) and found that cells containing abundant Amastin transcripts expressed more 138 

PD-L1 than cells with less or no Amastin transcripts (Figure 3, B-E, Supplemental Figure 9, 139 

G-L and Supplemental Figure 10).  To independently corroborate this observation, we 140 

showed that a Sri Lankan strain of L. donovani was also capable of inducing up-regulation of 141 

PD-L1 expression on human monocyte-derived macrophages in vitro (Supplemental Figure 142 

11, A-F) , as previously described for L. major (34). Similarly, IDO1 extensively co-localised 143 

with CD68+ cells (Supplemental Figure 11A) and both IDO1+CD68+ and IDO1-CD68+ cells 144 

were infected (Supplemental Figure 11B). Using a similar gating strategy (Supplemental 145 

Figure 11C-H; n=3 patients), we found that cells with abundant Amastin transcripts expressed 146 

more IDO1 than those with fewer or no Amastin transcripts (Supplemental Figure 11, I-K). 147 

These data show that, although a notable population of uninfected CD68+ cells contribute to 148 

PD-L1 and IDO-1 expression within CL lesions, intracellular parasitism leads to heightened 149 

expression of these checkpoint molecules in lesional monocytes and macrophages.  150 

 151 

Finally, we tested whether reduction in IDO1 or PD-L1 expression early during therapy could 152 

be used as a prognostic marker for treatment response.  Patients with the greatest reduction in 153 
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PD-L1 expression (i.e. greater than the geomean of the pre-treatment: on-treatment 154 

expression ratio; n=12 patients) (Figure 4, A-B) cured earlier than those that had lower or no 155 

reduction in PD-L1 expression (p=0.015). Patients with lower PD-L1 expression after 4 156 

weeks of treatment (i.e. lower than the geomean of on-treatment expression; n=12 patients) 157 

also cured faster (p=0.0045; Figure 4B).  We assessed the association of PD-L1 with disease 158 

cure rate using univariate Cox Proportional Hazard regression (Supplemental Figure S13A; 159 

Hazard Ratio (HR) = 3.96, p=0.008). Upon adjustment for age and gender of the participants, 160 

HR increased to 4.88 (p= 0.007; Figure 4D), indicating that patients that maximally reduced 161 

PD-L1 expression upon treatment were about 5 times more likely to cure earlier.  Conversely, 162 

patients remaining parasite PCR+ at 4 weeks post treatment had a significantly longer cure 163 

time (Figure 4E) and higher PD-L1 expression (Figure 4F).  Surprisingly, reduction in IDO1 164 

expression, calculated as either pre-treatment: on-treatment expression ratio or IDO1 165 

expression at 4 weeks (n=12 vs 11), did not correlate with cure rate (Supplemental Figure 13, 166 

B and C).  Thus, the relationship between declining PD-L1 expression and rate of cure 167 

(Figure 4, E-F) appears selective. 168 

 169 

We conclude that expression of IDO1 and PD-L1 immune checkpoint molecules is a 170 

common feature of Sri Lankan CL and that intracellular parasitism is associated with 171 

heightened expression of these immunoregulatory proteins in lesional macrophages. Tissue 172 

expression of both IDO1 and PD-L1 reduces significantly within 2-4 weeks of treatment 173 

onset and well in advance of clinical cure, and a reduction in PD-L1 is associated with a more 174 

rapid therapeutic response.  The elevated expression of negative immune regulators on 175 

macrophages at the lesion site, as shown here, has clear parallels with tumour-associated 176 

macrophages (36) and extends our understanding of how Leishmania parasites influence the 177 

function of their host cell during human disease (37). Though longitudinal sampling of the 178 
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same macrophage population was not possible, it seems likely that reduction of PD-L1 179 

expression is facilitated by the leishmanicidal action of SSG, suggesting a model for drug-180 

immune synergy whereby early rounds of SSG treatment reduce intracellular parasite burden 181 

leading to reduced checkpoint inhibition and re-engagement of T cell effector function.  Our 182 

data, together with strong pre-clinical evidence of an inhibitory role of PD-L1 in various 183 

forms of leishmaniasis (10, 12, 38) supports the candidacy of PD-L1 blockade as an adjunct 184 

HDT in Sri Lankan CL.  In addition, our data suggest the possibility that changes in PD-L1 185 

expression early after treatment could be considered as a biomarker to trigger drug tapering 186 

or drug cessation.   187 

 188 

189 
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Methods 190 

Information is provided in Supplemental methods.  191 

Study approval 192 

The study was conducted in accords with the principles of the Declaration of Helsinki and 193 

was approved by the Ethical Review Committee of the Faculty of Medical Sciences, 194 

University of Jayewardenepura (Ref: 780/13 & 52/17) and the Department of Biology, 195 

University of York.  Written informed consent, including for lesion photographs, was 196 

received from participants prior to inclusion in this study.  197 

 198 

 199 

200 
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Figure legends 323 

324 
Figure 1.  Differential expression and network analysis of genes regulated by drug 325 

treatment in lesions of Sri Lankan CL patients. 326 

Immune-targeted tissue transcriptomics was conducted on tissue sections from test cohort 327 

patients comparing transcriptomes at presentation and on treatment. (A) Principal component 328 

analysis was performed to show differences between pre- and on-treatment transcriptome of 329 

each patient based on 770 gene nCounter PanCancer Immunology Panel (n=6) (B) 330 

Differentially expressed genes comparing pre-treatment biopsies with biopsies taken after 331 

two weeks on treatment (SSG). Cut off (red line) drawn at equivalent of adjusted p-value 332 

=0.01 and Log (Fold change) of 1(C) Top 30 genes that changed in expression on SSG 333 

treatment. (D) STRING protein-protein interaction network (22)(https://string-db.org) 334 

analysis of genes listed in Supplemental Table 3 down-regulated on SSG treatment. 335 

Pathways represent GO: 0072676, Lymphocyte migration (red spheres) and GO: 0002684, 336 

positive regulation of immune system process (blue spheres). Top 20 genes are shown 337 

(Log2fold change ≥1.15) for clarity.   338 
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 339 
Figure 2. Digital Spatial Profiling (DSP) of CL lesions. 340 

 341 

DSP was performed on tissue sections from test cohort individuals comparing ROIs from pre 342 

and on-treatment biopsies. (A-F) ROIs on CD3+ and/or CD68+ rich areas from pre and on-343 

treatment biopsies from patients P4, P6 and P7 (CD68, green; CD3, red; Syto13, blue). 20x 344 

magnification; scale bar, 500µm (G) t-SNE plot based on 20 PCA loadings coloured on 345 

patient ID. (H) Differential protein expression analysis comparing pre-treatment to on-346 

treatment ROIs. Red lines indicate adjusted p value cut off of 1% (Mann-Whitney test with 347 

FDR correction based on Benjamini, Krieger, and Yekutieli two stage set-up method) and 348 

and Log2FC = 0.5 (n=33 ROIs) (I) IDO1, PD-1 and PD-L1 expression in pre- and on-349 

treatment ROIs.  Mann Whitney rank test (n=33 ROIs). (J) Immunohistochemistry (IHC) was 350 

performed on sections from patients pre and on-treatment from the validation cohort and 351 

quantitated using StrataQuest (see Methods) (n=23). Wilcoxon matched-pairs signed rank 352 

test. Dotted lines show upper and lower quantile in I-J, median by solid line. 353 

 354 
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Figure 3 Imunofluorescence analyses of PD-L1 in infected and uninfected cells 355 

Dual IHC-FISH using an Amastin probe was performed on pre-treatment sections of patients 356 

enrolled in the validation cohort. (A)  A 400x confocal image showing infection of PD-357 

L1+CD68+ (arrows) and PD-L1-CD68+ (arrowhead) cells. Scale bar, 50 pixels (B) 358 

Relationship between PD-L1 expression and parasite burden (Amastin dot count). 359 

Scattergram from a representative patient (P24 at presentation) showing Amastin+ low (cyan), 360 

medium (red) and high (green) PD-L1 expressing cells with respect to parasite abundance. 361 

(C) Fluorescence intensity distributions of infected and uninfected PD-L1 cells (D) Mean 362 

fluorescent intensity of PD-L1 expression on Amastin- cells compared to Amastin+ cells from 363 

a representative patient P24.  The upper and lower whisker represents highest and lowest 364 

value that is within 1.5 * interquartile range. N=9159 parasite positive cells and N=41520 for 365 

parasite negative cells.  Significance score was generated using Wilcoxon signed rank test. 366 

(E) PD-L1 expression on Amastin+PD-L1+ cells vs. Amastin-PD-L1+ cells (n=7 patients). 367 

Significance score was generated using Students two-tailed paired t-test after testing for 368 

normality using Shapiro Wilk and Kolkogorov-Smirnov tests. 369 
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 370 
 371 

Figure 4 Clinical correlates of PDL1 reduction on treatment in CL patients 372 

 373 

(A) Patients (validation cohort; n=23) were stratified based on high (>geomean value; n=11) 374 

and low (< geomean value; n=12) pre-: on-treatment expression ratio.  (B) Kaplan-Meier 375 

curve based on pre-:on-treatment ratio of PD-L1 expression (high vs low). (C) Patients 376 

stratified based on on-treatment expression of PD-L1 (> geomean value; n=11 vs < geomean 377 

value; n=12). (D) Multivariate Cox Proportional Hazards model plotted as a forest plot. p-378 

values for each covariate represent Wald statistic value and overall statistical significance is 379 

also indicated. (E) Patients stratified by LITS1 PCR status (n= 9 PCR+ vs n=14 PCR- or +/- 380 

(equivocal)) on treatment. (F) PD-L1 expression in LITS PCR+ vs. PCR- individuals on 381 

treatment. Dotted lines show upper and lower quantile, solid line shows median. P-value 382 

generated using two-tailed Mann-Whitney test. Vertical line drawn in B, C, E on the X axis 383 

shows time when on-treatment biopsies were collected. Curves in B, C, E were compared 384 

using Log-rank (Mantel-Cox) test. Blue and red shaded area show 95% CI of the two groups. 385 
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