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INTRODUCTION

Understanding	 the	 dose–	concentration–	effect	 relation-
ship	is	fundamental	in	drug	development	and	mathemat-
ical	 models	 are	 instrumental	 to	 aid	 data	 interpretation.1	

Pharmacokinetic-	pharmacodynamic	 (PKPD)	 models	
can	support	the	prediction	of	the	right	dose.	The	PK	part	
describes	 the	 body’s	 impact	 on	 the	 molecular	 drug	 con-
centration	by	investigating	the	relationship	between	dose	
and	 plasma	 concentrations	 to	 gain	 information	 on	 drug	
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Abstract
Mathematical	models	in	oncology	aid	in	the	design	of	drugs	and	understanding	
of	their	mechanisms	of	action	by	simulation	of	drug	biodistribution,	drug	effects,	
and	 interaction	 between	 tumor	 and	 healthy	 cells.	 The	 traditional	 approach	 in	
pharmacometrics	is	to	develop	and	validate	ordinary	differential	equation	models	
to	quantify	trends	at	the	population	level.	In	this	approach,	time-	course	of	bio-
logical	measurements	is	modeled	continuously,	assuming	a	homogenous	popula-
tion.	Another	approach,	agent-	based	models,	focuses	on	the	behavior	and	fate	of	
biological	entities	at	the	individual	level,	which	subsequently	could	be	summa-
rized	to	reflect	the	population	level.	Heterogeneous	cell	populations	and	discrete	
events	are	simulated,	and	spatial	distribution	can	be	incorporated.	In	this	tuto-
rial,	an	agent-	based	model	is	presented	and	compared	to	an	ordinary	differential	
equation	 model	 for	 a	 tumor	 efficacy	 model	 inhibiting	 the	 pERK	 pathway.	 We	
highlight	strengths,	weaknesses,	and	opportunities	of	each	approach.

http://www.psp-journal.com
https://doi.org/10.1002/psp4.12703
mailto:
http://creativecommons.org/licenses/by-nc/4.0/
mailto:vn.thuy.truong@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fpsp4.12703&domain=pdf&date_stamp=2022-02-01


134 |   TRUONG et al.

absorption,	 distribution,	 metabolism,	 and	 excretion.	
Active	 drugs	 and	 their	 metabolites	 are	 measured	 in	 an	
accessible	biologic	fluid,	such	as	blood,	plasma,	or	urine.	
From	 these	 assays,	 concentration-	time	 curves	 of	 the	
plasma	 and	 tissue	 drug	 concentration	 are	 obtained,	 and	
PK	 measures	 and	 parameters,	 such	 as	 area	 under	 the	
curve,	maximum	concentration,	clearance,	volume	of	dis-
tribution,	 and	 elimination	 half-	life,	 are	 determined.	 PK	
studies	 also	 consider	 intrinsic	 and	 extrinsic	 factors	 that	
influence	 individual	 and	 population	 systemic	 exposure.	
Critical	intrinsic	factors	include	gender,	ethnicity,	genetic	
polymorphism,	 and	 renal	 or	 hepatic	 organ	 dysfunction,	
and	important	extrinsic	factors	are	drug-	drug	interactions	
and	 concomitant	 administration	 of	 drug	 products	 with	
food.2,3	The	PD	part	describes	the	impact	of	the	drug	mol-
ecule	on	 the	body	 (i.e.,	 receptor	binding,	 receptor	 sensi-
tivity,	post-	receptor	effects,	and	chemical	interactions).2	It	
includes	 all	 pharmacological	 and	 pathophysiological	 re-
sponses,	and	therapeutical	effect	following	administration	
of	a	drug	or	placebo.	PD	studies	are	designed	to	inform	a	
drug’s	mechanism	of	action	and	 the	dose-	response	 rela-
tionship.	Response	can	be	expressed	as	a	direct	or	indirect	
measure	of	efficacy	and/or	safety	of	the	drug	using	either	
biomarkers,	surrogate	endpoints,	or	clinical	endpoints	to	
quantify	the	PD	effect.3

Mathematical	PKPD	models	can	be	generated	and	ap-
proached	in	different	ways.	In	this	work,	we	apply	agent-	
based	 models	 (ABMs)	 and	 compare	 its	 properties	 with	
the	more	traditional	ordinary	differential	equation	(ODE)	
approach.

ODEs	 are	 often	 used	 to	 model	 the	 change	 of	 drug	
concentration	 and	 effect	 over	 time.	 As	 a	 method	 where	
behavior	 for	 each	 entity	 of	 the	 system	 is	 regulated	 on	 a	
population	level,	ODEs	are	suitable	to	model	phenomena	
that	are	centrally	coordinated,	for	example,	by	a	set	of	mass	
transfer	 binding	 reactions.4	 Examples	 are	 concentration	
gradients	(e.g.,	nutrient,	oxygen	gradients,	or	PK	and	PD	
models).	Data	for	this	modeling	approach	may	come	from	
the	periphery,	the	tissue,	or	at	the	whole	organism	level.	
Solutions	 of	 differential	 equations	 typically	 describe	 the	
mean	 behavior	 of	 the	 system	 over	 time.5	Variability	 can	
be	introduced	in	one	or	more	parameters,	as	used	in	the	
nonlinear	 mixed-	effects	 approach.6	 Complicated	 models	
that	include	not	only	changes	in	time	but	also	space,	for	
example,	 spatial	 differences	 in	 drug	 effect	 or	 concentra-
tion,	use	partial	differential	equations	(PDEs)	that	depend	
on	several	variables	and	contain	partial	derivatives.2,7

Agent-basedmodeling

Biological	phenomena	have	heterogeneous	characteristics	
(e.g.,	cancer	with	regions	of	hypoxia,	necrosis,	quiescence,	

and	proliferation).	In	addition,	cancer	growth	depends	on	
the	 changing	 micro-	environment	 (e.g.,	 oxygen,	 glucose,	
and	pH	gradients).	Drug	resistance	can	manifest	as	a	con-
sequence	of	the	limited	diffusion	of	an	effective	amount	of	
the	drugs	far	into	the	tumor	core	due	to	irregular	vascular	
structure.	In	such	settings,	time,	space	but	also	the	charac-
teristics	of	each	individual	cell	or	group	of	cells	and	their	
interaction	with	the	surrounding	environment	are	impor-
tant	for	modeling	drug	effects.7

ABMs	simulate	heterogeneity	with	one	or	a	set	of	dif-
ferent	 agents	 that	 have	 attributes	 and	 act	 autonomously	
in	 an	 environment	 according	 to	 certain	 rules.	 To	 apply	
this	concept	to	PKPD	modeling,	cells	or	a	group	of	cells	
can	be	represented	as	agents,	whereas	the	drug	amount	is	
simulated	with	Boolean	values,	ODEs,	PDEs,	or	as	agents.	
Attributes	of	 the	cell	agents	could	be	 location,	mutation	
rate,	growth	rate,	drug	resistance,	or	antigenicity.	Agents	
can	interact	in	an	environment	which	can	consist	of	dif-
ferent	 conditions	 (i.e.,	 spatial	 location,	 concentration	 of	
drugs,	nutrients,	receptors,	or	other	agents).	Interactions	
with	 the	environment	and	neighboring	agents	are	based	
on	intracellular	decision-	making	rules	that,	for	example,	
describe	the	behavior	of	tumor	cells	when	interacting	with	
immune	cells	or	the	tumor-	microenvironment.	An	agent	
undergoes	growth,	proliferation,	quiescence,	apoptosis,	or	
necrosis	as	a	response	to	surrounding	environmental	con-
ditions	or	interaction	with	other	agents.8	As	such,	ABM	is	
considered	as	a	method	coordinated	on	the	cellular	level	
with	an	emergent	behavior	from	cell-	cell	and	cell-	moieties	
interactions	 that	 is	 not	 centrally	 coordinated	 by	 a	 set	 of	
mass	 transfer	 binding	 reactions.	 It	 can	 handle	 complex	
biological	 phenomena	 and	 local	 phenomena	 driven	 by	
discrete	decision.	Agents	act	only	upon	local	information	
on	the	state	of	 the	system,	rather	than	being	affected	by	
the	global	system	state.9	In	this	way,	ABMs	are	well-	suited	
to	represent	the	transition	of	emergent	behavior	between	
one	 scale	 of	 organization	 (i.e.,	 microscopic	 scale)	 to	 be-
havior	 observed	 at	 another	 (i.e.,	 macroscopic	 scale).4,9	
Simple	activities	at	the	microscopic	scale	can	cause	com-
plex	behavior	on	the	macroscopic	scale.9–	13	For	example,	
mutation	at	the	cellular	level	can	create	patterns	of	growth	
and	extent	of	metastasis	at	the	tumoral	and	stromal	level.	
Unexplained	patterns	can	be	discovered,	such	as	circum-
stances	where	the	tumor	cells	are	completely	eliminated	
by	the	immune	system,	without	the	need	for	any	cancer	
therapies.134	Adaption	of	the	agents	to	changing	circum-
stances	 is	 possible	 upon	 changing	 environmental	 condi-
tions.	Agents	can	have	memory	where	information	about	
the	environment	is	stored	and	future	behavior	can	be	mod-
ified	according	to	past	stages.4	This	can	be	used	in	model-
ing	priming	of	T	cells	or	memory	T	cells.	Heterogeneity	is	
generated	by	the	variability	in	the	attributes	of	each	agent	
(i.e.,	mutation,	resistance,	antigenicity,	or	number	of	DNA	
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breaks	after	radiation),	the	decision	rules,	and	the	stochas-
tic	process	governing	those.13

Every	agent	may	have	a	spatial	distinct	position.	Lattice-	
based	 models	 restrict	 positions	 to	 a	 fixed	 grid;	 off-	lattice	
models	 do	 without	 this	 restriction.14	 To	 create	 a	 lattice-	
based	 model,	 regular	 structured	 grids	 (Cartesian	 [2D	 or	
3D],	dodecahedral	[3D]),	or	unstructured	grids	are	used.14,15	
Lattice-	based	methods	can	be	further	classified	by	their	spa-
tial	resolution,	meaning	how	many	lattice	sites	are	used	for	
creating	cells.14	Cellular	automaton	models	contain	at	most	
a	single	cell	 in	one	lattice	site.	Discrete	lattice-	based	rules	
are	used	to	update	a	single	cell	at	every	time	step.	To	reduce	
grid	artifacts,	 lattice	sites	are	updated	 in	random	order.	A	
cell	can	remain,	move	to	an	unoccupied	adjacent	lattice	site	
(randomly	or	by	a	directional	stimulus	such	as	chemo-		or	
haptotaxis),	die	and	vacate	a	lattice	site,	or	divide	and	allo-
cate	a	progenitor	cell	in	a	neighboring	site.	The	number	of	
neighbor	cells	depend	on	the	shape	of	the	grid.	In	a	square	
lattice,	 cells	 have	 four	 or	 eight	 neighbors	 (von	 Neumann	
or	Moore	neighborhood)	or	cells	can	be	surrounded	by	six	
symmetrically	located	cells	in	a	hexagonal	grid.14,15	Lattice	
gas	 cellular	 automaton	 (LGCA)	 models	 contain	 multiple	
cells	 in	 one	 lattice.	 Instead	 of	 tracking	 every	 single	 cell,	
LGCA	traces	a	group	of	cells	that	moves	through	channels	
from	individual	lattice	sites.14	Cellular	Potts	models	utilize	
multiple	lattice	sites	to	simulate	one	cell.

Off-	lattice	models	can	be	categorized	into	center-	based	
models	 that	 focus	 on	 cell	 volumes	 and	 boundary-	based	
methods	that	model	cell	boundaries.14	Center-	based	meth-
ods	 can	 be	 differentiated	 into	 three	 approaches:	 center-	
based	models,	 subcellular	element	models,	 and	clusters.	
Center-	based	models	simulate	each	cell’s	center	of	mass	or	
volume	by	using	one	agent	per	cell.	Cell	positions	are	up-
dated	after	exchanges	of	adhesive,	repulsive,	locomotive,	
and	 drag-	like	 forces	 between	 cell	 centers.14	 Subcellular	
element	 models	 display	 cell	 morphology	 in	 greater	 de-
tail	by	having	multiple	agents	for	subcellular	elements	of	
each	 cell.	 A	 different	 option	 is	 clusters,	 where	 an	 agent	
simulates	a	cluster	of	cells	or	functional	units	(e.g.,	breast	
glands	or	colon	crypts).	Boundary-	based	methods	include	
vertex-based	models	or	front-tracking	methods.	In	vertex-	
based	models,	forces	on	the	vertices	are	computed,	which	
is	 useful	 in	 modeling	 confluent	 tissues.	 Front-	tracking	
methods,	such	as	the	immersed	boundary	method,	can	be	
used	for	greater	spatial	resolution.14

ProgrammingABMs

An	environment	suitable	for	beginners	is	provided	by	the	
software	 Netlogo,	 in	 which	 models	 can	 be	 created	 and	
executed,	 and	 the	 results	 visualized.	 ABMs	 can	 be	 im-
plemented	 in	 object-	oriented	 programming	 languages,	

such	as	Python,	 Java,	C,	or	C++.16	Differences	between	
those	 languages	 are	 user	 friendliness,	 speed,	 and	 avail-
able	libraries.	Python	is	beginner	friendly	and	has	a	rich	
environment	 of	 standard	 libraries	 whereas	 Java,	 C,	 and	
C++	are	often	faster.	An	advantage	of	coding	the	model	
is	 that	 the	 researcher	 has	 control	 over	 all	 aspects	 of	 the	
model,	and	additional	features	can	be	easily	implemented	
or	 changed.	 Disadvantages	 are	 the	 time	 spent	 program-
ming	and	the	need	for	programming	skills.	Because	many	
models	use	the	same	or	similar	building	blocks	with	small	
variations,	libraries	for	different	programming	languages	
are	 available	 which	 provide	 frameworks	 and	 templates	
that	allow	users	to	design	a	customized	model.	Examples	
are	MASON	for	Java,	SWARM	for	Java	and	Objected	C,	
Repast	for	Java	and	C++,	Chaste	as	a	source	code	in	C++,	
and	 MESA	 for	 Python.	 A	 benefit	 is	 the	 reduced	 model	
construction	time.	Disadvantages	could	be	the	time	spend	
to	learn	the	functions	of	the	library	and	that	the	needed	
feature	might	not	be	directly	available.16–	18

EXAMPLE:PKPD -ABMANDPKPD -
ODEMODELFORSIMULATING
ANTI- CANCERTREATMENTWITH
COBIMETINIB

This	 tutorial	 aims	 to	 introduce	 ABM,	 which	 is	 widely	
used	in	social	sciences	and	systems	biology.19,20	It	gives	a	
simple	example	of	a	PKPD-	ABM	of	anti-	cancer	treatment	
with	the	MEK	inhibitor	cobimetinib,	targeting	the	RAF/
MEK/ERK	pathway,	which	plays	an	important	role	in	cell	
proliferation	and	survival.	This	signaling	pathway	is	initi-
ated	by	binding	of	growth	factors,	cytokines,	and	extracel-
lular	mitogens,	which	activates	receptor	tyrosine	kinases	
and	leads	to	a	reaction	cascade	resulting	in	activation	of	
MEK	 and	 phosphorylation	 of	 ERK.	 As	 a	 consequence,	
cellular	responses	are	cell	proliferation	and	survival.	The	
RAF/MEK/ERK	 pathway	 is	 frequently	 mutated	 in	 can-
cer	 cells	 leading	 to	 increased	 proliferation	 and	 survival.	
Cobimetinib	aims	to	counteract	this	by	decreasing	phos-
phorylation	and	as	a	consequence	decrease	cell	prolifera-
tion	and	cell	survival.21,22

The	 ABM	 simulates	 the	 behavior	 of	 tumor	 cells	 as	
agents	 during	 treatment	 with	 cobimetinib.	The	 environ-
ment	is	given	by	the	time	course	and	effect	of	the	admin-
istered	drug.	To	keep	this	model	simple,	no	cell	 location	
is	 introduced.	 Cell	 death	 and	 division	 occur	 on	 the	 mi-
croscopic	scale	and	a	summary	of	cell	behavior	provides	
the	total	number	of	tumor	cells	on	the	macroscopic	scale.	
The	 model	 is	 implemented	 in	 the	 Python	 programming	
language.	The	 code	 can	 be	 found	 at	 https://github.com/
VanTh	uyTru	ong/Tutorial.	A	PKPD	model	previously	pub-
lished	by	Wong	et	al.22	implemented	in	ODE,	was	used	to	

https://github.com/VanThuyTruong/Tutorial
https://github.com/VanThuyTruong/Tutorial
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simulate	 the	cobimetinib	concentration	 time	course	and	
the	 phosphorylation	 of	 ERK.	The	 model	 is	 used	 here	 as	
an	illustrative	example	and	implemented	as	described	in	
the	original	reference,	 for	 the	sole	purpose	of	numerical	
simulation.	To	account	 for	 the	PK,	a	hybrid	approach	 is	
considered,	 with	 PK	 being	 governed	 by	 an	 ODE	 system	
and	combined	with	a	tumor	ABM	to	determine	the	inter-
actions	of	cells	in	the	presence	of	drug	concentrations.	To	
compare	 the	 behavior	 of	 the	 hybrid	 PKPD-	ABM	 tumor	
model,	 a	 PKPD-	ODE	 tumor	 model	 is	 implemented	 to	
highlight	 the	 relative	 strengths	 and	 limitations	 of	 each	
method.

PKmodel

The	PKs	of	the	drug	was	characterized	by	an	ODE	model	
that	links	dose	taken	orally	to	a	plasma	compartment	and	
a	 tumor	micro-	environment	compartment	 (see	part	a	 in	
Figure 1).	The	PKs	in	the	tumor	compartment	induces	a	
reduction	of	phosphorylation	of	the	ERK	pathway	(part	b)	
that	is	used	as	the	driving	force	to	implement	the	PKPD	
model,	either	as	a	full	ODE	model	(part	c1)	or	as	a	hybrid	
ODE-	ABM	(part	c2).

We	use	the	model	by	Wong	et	al.22	to	describe	kinetics	
of	 drug	 concentration	 in	 oral,	 plasma,	 and	 tumor	 com-
partments	after	a	weight-	based	oral	dose	of	cobimetinib.	
The	ODEs	are	linear,	with	absorption	rate	k0	from	the	oral	
to	 the	 plasma	 compartment,	 clearance	 rate	 β	 from	 the	
plasma,	and	inter-	compartmental	rate	γ	from	the	plasma	
to	the	tumor	compartment.	Transfer	from	the	tumor	to	the	
plasma	is	represented	by	the	inter-	compartmental	rate	α.	
Because	the	drug	is	a	small	molecule,	 it	 is	assumed	that	
drug	excess	is	high	and	loss	due	to	target	binding,	catab-
olism,	or	elimination	in	the	tumor	compartment	is	negli-
gible.	Therefore,	no	elimination	rate	is	introduced	in	the	
tumor	compartment.	The	time	courses	follow	the	follow-
ing	ODEs:

The	initial	condition	X0(0)	 is	the	given	dose	(1,	3,	
or	 10  mg/kg	 of	 body	 weight)	 converted	 to	 µmoles/
kg.	(The	molecular	weight	of	cobimetinib	is	531.3 g/
mol.)	 The	 initial	 drug	 amount	 in	 the	 plasma	 com-
partment	Xp(0)	and	 in	 the	 tumor	compartment	Xt(0)	

is	 zero.	 Our	 parameter	 values	 are	 based	 on	 those	 of	
Wong	et	al.22

PDmodel

The	PD	model23	describes	the	effect	of	cobimetinib	by	the	
following	 relationship	 between	 Xt(t)	 and	 the	 percentage	
pERK	decrease,	d(t):

where	 IC50	 is	 the	 cobimetinib	 amount	 in	 the	 tumor	 com-
partment	at	which	the	percentage	pERK	decrease	is	half	of	
Imax,	the	maximum	percentage	pERK	decrease,	and	h	is	the	
Hill	coefficient.22

Depending	on	the	initial	pERK	value,	k(0),	and	the	per-
centage	pERK	decrease	caused	by	the	drug	d(t)	at	time	t,	
the	pERK	value	is:

In	 Figure  1,	 we	 illustrate	 the	 two	 types	 of	 tumor	
model,	 based	 on	 Equation	 5,	 that	 we	 will	 consider:	
agent-	based	(c2)	and	population-	based	(c1).	In	the	ABM,	
we	 assign	 a	 different	 initial	 value	 ki(0)	 to	 each	 tumor	
cell,	 drawn	 uniformly	 in	 the	 range	 (0,	 kmax).	 Values	 of	
ki(0)	 greater	 than	 100	 represent	 cells	 that	 have	 activat-
ing	 mutations	 in	 B-	RAF	 resulting	 in	 higher	 activation	
of	 MEK.	 Individual	 values	 of	 ki(t)	 evolve	 according	 to	
Equation	 5.	 In	 the	 population-	based	 model,	 a	 single	
value	k(t)	represents	the	average	pERK	status	of	the	pop-
ulation	of	 tumor	cells.	That	 is,	 cell-	to-	cell	variability	 is	
introduced	 in	 the	agent-	based	model;	 the	 total	number	
of	cells	is	an	integer	that	depends	on	time	because	indi-
vidual	cells	may	die	or	divide	according	to	pERK	levels.	
The	population-	based	model,	on	the	other	hand,	is	a	set	
of	ODEs	where	one	value	of	k(t)	represents	the	influence	
of	the	drug	on	the	population	of	tumor	cells	in	the	ODE.	
The	population	size	is	also	governed	by	an	ODE,	which	
we	now	introduce.

PKPD-ODE

The	 population-	based	 model	 is	 the	 PKPD-	ODE	 model	
shown	as	c1	 in	Figure 1.	A	single	pERK	value	k(t)	∈	 (0,	
kmax)	 characterizes	 the	 tumor	 cell	 population	 and	 is	 up-
dated	according	to	Equation	5.

The	 size	 of	 the	 tumor	 cell	 population	 at	 time	 t,	 T(t),	
obeys:

(1)dX0
dt

= − k0X0

(2)
dXp

dt
= k0X0 + �Xt − �Xp − �Xp

(3)dXt
dt

= �Xp − �Xt

(4)d (t) =
Xt (t)

h

ICh
50

+ Xt (t)
h
Imax

(5)k (t) =
100 − d (t)

100
k (0)
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The	 constant	 λ	 >	 0	 models	 the	 mean	 birth	 rate.	
Death	is	modelled	as	a	decreasing	function	of	k(t).	We	
choose	µ	=	2λ,	which	has	the	effect	that	birth	and	death	
balance	when	k (t) = 1

2
kmax	and	facilitates	the	compar-

ison	with	ABM.	We	use	 the	value	λ	=	0.0828	day−1	of	
Wong	et	al.22

PKPD-ABM

In	the	ABM,	each	tumor	cell	is	impacted	by	the	pERK	de-
crease	individually.	One	agent	is	a	tumor	cell	i	with	a	value	
ki(t)	as	an	attribute,	representing	its	degree	of	intracellular	
phosphorylation	of	ERK,	determined	by	the	amount	of	drug	
in	 the	 tumor	 compartment	 Xt(t)	 according	 to	 Equation	 3	
from	the	PK	model.	As	the	drug	concentration	lowers,	the	
cell’s	pERK	value	returns	toward	its	initial	value	ki(0),	unless	
the	cell	dies	according	to	the	decision-	making	algorithm.

(6)dT

dt
= �T −

(

1 −
k (t)

kmax

)

�T

F I G U R E  1  Model	structure.	(a)	The	PK	model	describes	tumor	disposition	of	cobimetinib.	(b)	The	PKPD	model	links	the	percentage	
pERK	decrease,	d(t),	to	the	amount	of	cobimetinib	inside	the	tumor	compartment.	Phosphorylated	ERK	plays	an	important	role	in	cell	
division.	Therefore,	pERK	could	be	seen	as	a	biomarker	of	tumor	growth	and	a	decrease	of	pERK	causes	a	decrease	in	cell	division.	(c1)	the	
ODE	model	simulates	the	effect	of	the	pERK	decrease	on	the	number	of	tumor	cells	in	the	population.	k(t)	is	the	pERK	value	inside	one	
population.	The	mean	number	of	cells	increases	with	birth	rate	λ	and	decreases	with	death	rate	µ.	A	high	pERK	value	favors	birth,	a	low	
value	favors	decay	over	growth.	(c2)	An	ABM,	where	tumor	cell	death	or	division	is	driven	by	the	percentage	pERK	decrease	caused	by	the	
amount	of	cobimetinib	inside	the	tumor	compartment,	d(t),	and	the	individual	pERK	value	of	each	tumor	cell,	ki(t).	(a–	c1)	together	result	
in	a	PKPD-	ODE	and	(a–	c2)	together	result	in	a	PKPD-	ABM.	ABM,	agent-	based	model;	IC50,	half-	maximal	inhibitory	concentration;	ODE,	
ordinary	differential	equation;	PKPD,	pharmacokinetic	pharmacodynamic
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Decision-	making	algorithm	(microscopic	scale)

The	fate	of	a	cell	is	governed	by	a	set	of	rules	depend-
ing	on	its	ERK	phosphorylation	level	(see	Figure 1	part	

c2).	 pERK	 thresholds	 determine	 the	 behavior	 of	 the	
cells.	 A	 cell	 whose	 pERK	 value	 is	 above	 the	 division	
threshold	 is	 said	 to	 be	 in	 the	 division	 pool;	 a	 pERK	
value	 below	 the	 death	 threshold	 consigns	 the	 cell	 to	

F I G U R E  2 . 1  Simulation	of	the	ODE	model	and	ABM	with	a	single	oral	dose	of	3 mg/kg.	pERK	values	are	initially	uniformly	
distributed.	The	parameter	values	are	given	in	Table S1.	Figure	a	shows	the	PKPD	model,	common	to	the	ODE	model	and	ABM.	Figure	b	
and	d	show	multiple	trajectories	of	the	PKPD-	ODE	model,	each	with	the	same	initial	cell	population	size	but	a	different	initial	pERK	value.	
Figure	c	shows	individual	pERK	values	in	one	realization	of	the	ABM	Here,	each	cell	has	a	different	initial	pERK	value,	chosen	from	the	
uniform	distribution	in	(0,	200).	Figure	e	shows	the	total	cell	numbers	in	100 such	realizations.

(a) PKPD model: Drug amounts in the plasma and
tumour compartment (PK, left-hand scale) and per-
centage pERK decrease (PD, right-hand scale)

(b) ODE: Individual pERK value of every cell
population

(c) ABM: Each line is the pERK value of one cell
in one realisation

(d) ODE: Overall cell number of 100 tumour cell
populations

(e) ABM model: Overall tumour cell numbers in
100 realisations
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the	death	pool.	Inside	the	division	or	death	pool,	a	di-
vision	or	death	event	happens	with	a	certain	probabil-
ity	per	unit	 time.	 In	between	 these	 thresholds,	a	cell	
remains	quiescent.

The	ABM	is	a	Markov	process	that	can	be	summarized	
as	 follows.	 At	 time	 t,	 the	 number	 of	 tumor	 cells	 is	 N(t),	
each	cell	with	its	pERK	value.	The	probability	that	cell	 i	
divides	in	the	interval	(t,t	+	∆t)	is	λi(t)∆t	where

(a) ABM: Overall number of tumour cells in one
realisation

(b) ABM: Number of cells inside the division,
death and quiescence pools over time in one pop-
ulation

(c) ABM: pERK value of each cell in one popu-
lation at 0 hours

(d) ABM: pERK value of each cell at 10.5 hours
in one population

(e) ABM: pERK value of each cell at 61.3 hours
in one population

(f) ABM: pERK value of each cell at 253.1 hours
in one population

F I G U R E  2 . 2  One	realization	of	the	ABM.	In	Figure	2.2c–		f ,	one	dot	represents	the	pERK	value	of	one	cell	at	one	timepoint.	The	ABM	
may	provide	a	more	realistic	model	because	it	captures	heterogeneity,	different	scales,	and	emergent	behavior.	On	the	other	hand,	ODE	is	
suitable	for	modeling	well-	mixed	compartments	with	mass	transfer	and	simple	interactions	at	one	scale	level.	A	video	of	the	scatter	plots	
can	be	found	at	https://github.com/VanTh	uyTru	ong/Tutor	ial/blob/main/video	s/3mgkg	%20sin	gle%20dos	e%20uni	form%20dis	tribu	tion.mp4	
ABM,	agent-	based	model;	ODE,	ordinary	differential	equation;	PKPD,	pharmacokinetic	pharmacodynamic

https://github.com/VanThuyTruong/Tutorial/blob/main/videos/3mgkgsingledoseuniformdistribution.mp4
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Similarly,	the	probability	that	cell	i	dies	in	the	interval	
(t,t	+	∆t)	is	µi(t)∆t	where

We	use	the	Gillespie	algorithm,	which	is	a	fair	method	
for	designating	which	of	these	2N(t)	possible	events	is	the	
first,	after	t,	to	occur.	We	construct	the	following	sums:

(7)�i (t) = �max
{

ki (t) −
1

2
kmax , 0

}

(8)�i (t) = �max
{

1

4
kmax − ki (t) , 0

}

F I G U R E  3 . 1  Simulation	of	a	single	dose	of	3 mg/kg.	The	pERK	values	are	initially	bimodally	distributed.	Figures	a	and	c	show	the	
PKPD-	ODE,	Figures	b	and	d	show	the	PKPD-	ABM	as	comparison.	Additional	simulation	of	the	behavior	of	one	population	in	the	PKPD-	ABM	
can	be	found	in	the	supplementary.	A	video	of	the	scatter	plots	can	be	found	at	https://github.com/VanThuyTruong/Tutorial/blob/main/video	
s/bimodal%20pERK.mp4	ABM,	agent-	based	model;	ODE,	ordinary	differential	equation;	PKPD,	pharmacokinetic	pharmacodynamic

(a) ODE: pERK values. Each line corresponds
to a different initial condition.

(b) ABM: pERK values of individual cells in one
realisation

(c) ODE: tumour cell numbers in 100 tumour cell
populations.

(d) ABM model: Overall tumour cell number in
100 realisations

(e) ABM: Number of cells inside the division,
death and quiescence pools in one population.

https://github.com/VanThuyTruong/Tutorial/blob/main/videos/bimodalpERK.mp4
https://github.com/VanThuyTruong/Tutorial/blob/main/videos/bimodalpERK.mp4
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We	 decide	 which	 type	 of	 event	 occurs,	 then	 de-
cide	 which	 cell	 it	 happens	 to.	 With	 probability	 Λ(t)/
(M(t)  +  Λ(t)),	 the	 first	 event	 after	 time	 t	 is	 a	 division	
event.	 In	 that	 case,	 the	 probability	 that,	 of	 the	 N(t)	
possible	cells,	it	is	cell	i	that	divides,	is	λi(t)/Λ(t).	With	
probability	M(t)/(M(t) + Λ(t)),	the	first	event	after	time	
t	is	a	death	event.	In	that	case,	the	probability	that	cell	
i	dies	is	µi(t)/M(t).	The	initial	pERK	value	of	the	parent	
cell	at	the	time	of	division	is	inherited	by	the	daughter	
cells.

An	example	of	this	decision-	making	algorithm	is	given	
in	the	Supplementary	Material.

Simulationoutcomes

Different	simulation	scenarios	were	explored.	The	drug	
dose	and	the	distribution	of	initial	pERK	were	varied	for	
each	simulation.	The	ODE	model	shows	the	behavior	at	
the	 population	 level	 with	 the	 overall	 cell	 number	 (see	
for	example	Figure 2.1d	where	each	blue	line	represents	
one	 tumor	 population)	 and	 the	 homogeneous	 pERK	
value	 of	 each	 population	 (see	 for	 example	 Figure  2.1b	
where	each	purple	line	describes	the	pERK	value	inside	
one	population).	The	ABM	gives	further	insight	in	each	
cell	of	the	population	with	the	pERK	value	of	each	cell	
over	time	(see	for	example	Figure	2.1c where	each	color	
represents	one	cell)	and	the	number	of	cells	in	the	divi-
sion,	quiescence,	and	death	pool	(see	for	example	Figure	

(9)Λ (t) =
∑N(t)

i=1
�i (t) and M (t) =

∑N(t)

i=1
�i (t)

F I G U R E  4  The	effect	of	changing	birth	and	death	thresholds	is	explored	with	a	simulation	of	a	single	dose	of	3 mg/kg.	The	
pERK	values	are	initially	uniformly	distributed.	Figures	a	and	b	show	the	PKPD-	ABM	with	a	death	threshold	of	100%	pERK	and	
a	division	threshold	of	150%	pERK,	as	comparison.	Figures c–	d	show	the	behavior	of	one	population	in	the	PKPD-	ABM.	Scatter	
plots	for	this	simulation	are	in	the	supplementary	(Figures S4e–	h).	A	video	of	the	scatter	plots	can	be	found	at	https://github.com/
VanTh	uyTru	ong/Tutor	ial/blob/main/video	s/150%20div	ision	%20thr	eshold.mp4.	ABM,	agent-	based	model;	PKPD,	pharmacokinetic	
pharmacodynamic

(a) ABM: pERK value of each cell in one pop-
ulation with with a division threshold of 150%
and a death threshold of 100%

(b) ABM model: Overall tumour cell number of
100 realisations with a division threshold of 150%
and a death threshold of 100%

(c) ABM: Overall number of tumour cells within
one realisation

(d) ABM: Number of cells inside the division,
death and quiescence pool over time in one pop-
ulation

https://github.com/VanThuyTruong/Tutorial/blob/main/videos/150divisionthreshold.mp4
https://github.com/VanThuyTruong/Tutorial/blob/main/videos/150divisionthreshold.mp4
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2.2b).	It	is	possible	to	track	the	pERK	value	of	each	cell	
inside	the	population	over	time	in	Figure	2.1c.	A	cell	can	
die	and	cause	the	line	to	end	or	give	birth	to	an	offspring	

which	 creates	 a	 new	 line	 starting	 from	 the	 time-	point	
of	birth	(marked	with	a	cross).	The	crosses	describe	the	
discrete	 time	 points	 for	 events	 caused	 by	 the	 Gillespie	

F I G U R E  5 . 1  Simulation	of	a	multiple	treatment	cycles	of	1 mg/kg	every	24 h.	The	pERK	values	are	initially	uniformly	distributed.	
Figure	a	shows	the	PKPD	model,	Figures	b	and	d	show	the	PKPD-	ODE	model,	Figures	c	and	e	show	the	PKPD-	ABM	as	comparison.	
Figure S5.2	in	the	supplementary	show	the	behavior	of	one	population	in	the	PKPD-	ABM	(model	c2	in	Figure 1).	A	video	of	the	scatter	plots	
can	be	found	at	https://github.com/VanTh	uyTru	ong/Tutor	ial/blob/main/video	s/multi	ple%20cyc	les%201mg	kg.mp4.	ABM,	agent-	based	
model;	ODE,	ordinary	differential	equation;	PKPD,	pharmacokinetic	pharmacodynamic

(a) PKPD model: Drug amount in the plasma and
tumour compartment (PD, left-hand scale) and per-
centage pERK decrease (PD, right-hand scale)

(b) ODE: Individual pERK value of every cell
population

(c) ABM: Each line is the pERK value of one cell
in one realisation

(d) ODE: Overall cell number of 100 tumour cell
populations

(e) ABM model: Overall tumour cell number of
100 realisations

https://github.com/VanThuyTruong/Tutorial/blob/main/videos/multiplecycles1mgkg.mp4
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algorithm.	 The	 scatter	 plots	 show	 each	 cell	 inside	 the	
population	with	 its	pERK	value	at	 specific	 time	points	
(see	 Figure	 2.2c–	f)	 and	 videos	 at	 https://github.com/
VanTh	uyTru	ong/Tutor	ial/tree/main/videos	 show	 the	
all	scatter-	plots	with	cell	birth	and	death	over	the	simu-
lation	period.

Single	dose	treatment	with	3 mg/kg

First,	 a	 treatment	 with	 a	 single	 dose	 is	 simulated	 with	
3 mg/kg	per	body	weight	(see	Figures	2.1	and	2.2).	The	ini-
tial	pERK	value	for	the	ODE	model	and	ABM	are	sampled	
from	a	uniform	distribution	in	the	range	0−200.	The	ODE	

T A B L E  1 	 Comparison	between	ODE	and	ABM	features	and	implementation	principles	for	the	model-	based	approach	used	to	
characterize	PK	and	PKPD	properties

Comparator ODE ABM

Scale Macroscopic
Mean	behavior	at	system	level

Microscopic
Individual	behaviors	at	cellular	level	driving	emergent	

behavior	at	the	system	level

Dynamics	of	
interaction

Mass	transfer	dictated	by	stoichiometric	equilibrium	
and	compartmentalization	of	the	system

Rule-	based	individual	agent	interaction	and	stochasticity

Population Homogenous Heterogenous

Space Not	typically	implemented Typically	implemented

Memory Not	typically	implemented Typically	implemented

Stochastic	model Between	subject	variability	and	residual	unexplained	
variability

Implemented	at	the	population	level	by	assuming	
parameter	probabilistic	distributions

Implicit	feature	of	single	agent	and	governed	by	
stochasticity

No	distributional	assumption

Model	building Rigorous	statistical	framework	for	model	selection
Data-	driven

Hypothesis	generation	and	hypothesis-	testing	iterative	
learning

Simulation-	based	and/or	data	calibration	depending	on	
empirical	evidence

Model	qualification Simulation-	based	diagnostic	(visual	predictive	check)
Data-	based	model	qualification	(goodness	of	fit)

Model	calibration	based	on	single	cell	data	(in	vivo/
in	vitro/ex	vivo	experiments)	or	any	data	source	of	
relevance	for	the	biological	system	of	interest	(micro-		
or	macro-	level)

Limitations Oversimplification
Structural	rigidity	(e.g.,	compartmentalization)
Scalability

Overparameterization
Model	discrimination
Uncertainty	in	outcomes

Strengths Well	established	modeling	framework
Simple	implementation

Emergent	behavior	to	find	plausible	mechanisms	for	
unforeseen	outcomes	(e.g.,	resistance	or	necrosis)

Easier	to	scale

Computational	
resources

Typically	not	a	limitation	unless	large	number	of	
differential	equations	required

Complex	ABMs	demand	high	computational	power	and	
cause	long	running	times

Model	comparison Straightforward	due	to	similar	model	structure	and	
model	discrimination	criteria

More	complicated	than	ODE	due	to	multiplicity	of	rules,	
choice	of	attributes	and	stochasticity	driving	emergent	
behaviors

Communication Challenging	due	to	theoretical	concept	with	mass	
transfer	and	binding	kinetics	(mathematical	
knowledge	required)

Familiar	concept	in	PKPD	with	large	example	pool
Well-	established	with	regulatory	agencies

Easier	to	communicate	than	ODE	with	non-	modeler	
audience	as	more	biologically	interpretable

Not	extensively	used	by	PKPD	modelers	and	regulators
More	challenging	to	defend	as	less	data-	driven	than	ODE	

due	to	paucity	of	data	at	the	subscale	level

Applicability Modeling	of	well-	mixed	compartments	with	mass	
transfer	and	simple	interactions	at	one	scale	level

PK	models,	PD	models,	and	traditional	
pharmacometric	models	of	exposure-	response

Quantitative	system	pharmacology	models	with	
known	or	observable	macro-	level	outcomes

Simulation	of	complex	biological	systems	with	subscale	
components	(atomic,	molecular,	cellular,	tissue,	organism)

System	biology	models	and	quantitative	system	
pharmacology	models	with	limited	empirical	data	
and	most	relevant	to	elucidate	unexpected	behaviors	
(micro-	known	to	produce	macro-	unknown)

Abbreviations:	ABM,	agent-	based	model;	ODE,	ordinary	differential	equation;	PKPD,	pharmacokinetic	pharmacodynamic.

https://github.com/VanThuyTruong/Tutorial/tree/main/videos
https://github.com/VanThuyTruong/Tutorial/tree/main/videos
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model	simulates	100	tumor	cell	populations	with	different	
initial	pERK	(see	Figure	2.1b),	whereas	the	ABM	follows	
the	fate	of	100	tumor	cells	for	a	given	patient	(see	Figure	
2.1c).	In	both	models	exposure-	driven	pERK	reduction	in-
duces	tumor	shrinkage	followed	by	regrowth	as	the	drug	
level	falls	(see	Figure	2.1b–	e).	A	difference	is	that	the	ABM	
is	able	to	track	cell	death	and	division	of	each	cell	(Figure	
2.1c).

Simulating	 100	 times	 with	 the	 ABM	 (Figure	 2.1e)	
yields	100	different	population	histories	because	 the	 ini-
tial	pERK	distribution	in	each	trial	is	different	due	to	the	
stochasticity	of	 the	Gillespie	algorithm.	We	observe	 that	
the	 total	number	of	cells	 in	a	population	may	be	higher	
in	comparison	to	the	ODE	model,	because	the	cells	with	a	
higher	pERK	values	are	more	likely	to	survive	and	divide	
(see	Figure	2.1d	and	2.1e).

Figure	2.1c,	2.2a–	f	provide	a	closer	look	into	one	pop-
ulation.	We	see	that	the	pERK	value	of	a	majority	of	cells	
falls	under	the	death	threshold	(see	Figure	2.2d),	those	cells	
go	into	the	death	pool	(see	Figure	2.2b)	and	therefore	can	
die,	which	decreases	the	number	of	cells	(see	Figure	2.2a).	
When	the	drug	level	falls,	the	cells	recover	and	the	pERK	
value	increases	(see	Figure	2.2e).	After	~ 70 hours,	the	drug	
concentration	is	low	enough	for	the	cells	to	gain	a	pERK	
value	above	the	division	threshold	and	enter	the	division	
pool,	 those	 cells	 cause	 a	 population	 growth	 (see	 Figures	
2.2a,	 2.2b,	 2.2f).	 This	 simulation	 shows	 that	 cells	 with	 a	
low	pERK	level.	which	are	assumed	not	being	mutated,	are	
most	affected	by	the	drug	while	drug	treatment	leads	to	an	
evolution	of	mutated	cells	with	a	high	pERK	value.

Bimodal	distribution	of	pERK	values

The	 next	 example	 aims	 to	 recapitulate	 a	 tumor	 where	
cells	 have	 a	 distribution	 of	 pERK	 levels	 based	 on	 two	
given	 phenotypes.	 We	 construct	 bimodal	 distributions	
from	two	normal	distributions	where	50	cells	in	the	ABM	
or	50	populations	in	the	ODE	model	have	a	pERK	value	
with	a	mean	of	60%	pERK,	whereas	50	cells	in	the	ABM	or	
50	populations	in	the	ODE	model	have	a	pERK	value	with	
a	mean	of	190%	pERK.	The	standard	deviations	are	10%	
in	both	distributions.	A	single	dose	of	3 mg/kg	was	cho-
sen,	hence	the	PKPD	of	the	examples	in	Figures 2	and	3	
are	identical.	The	ODE	model	shows	distinct	behavior	for	
populations	with	different	pERK	values	(see	Figure	3.1c),	
although	the	ABM	does	not	display	the	bimodality	on	the	
population	 level	 (Figure	 3.1d).	 In	 the	 ABM,	 the	 hetero-
geneity	is	shown	on	the	microscopic	level	(see	additional	
Figure S3.2c	in	the	Supplementary	Material)	and	the	cell	
number	is	summed	up	for	the	macroscopic	level	(popula-
tion	level).	Therefore,	 the	bimodality	 is	only	seen	at	 the	
microscopic	level.	Taking	a	closer	look	into	the	example,	

we	see	that	for	the	ABM,	the	number	of	tumor	cells	ini-
tially	falls	(Figure	3.1d).	This	is	caused	by	the	cells	of	the	
population	with	the	mean	pERK	of	60%,	which	are	either	
in	the	death	or	quiescence	pool	(see	Figures S3.2c,	S3.2d	
in	the	Supplementary	Material).	They	die	out	or	remain	
in	the	quiescence	pool	and	therefore	are	not	able	to	con-
tribute	to	the	population	growth	(see	in	the	supplemen-
tary	Figures	S3.1b,	S3.2c-	S3.2f ).	The	cells	with	high	pERK	
value	around	190%	are	resilient	to	the	drug	treatment,	be-
cause	the	decrease	of	active	pERK	caused	by	the	drug	is	
not	enough	to	bring	 those	cells	under	 the	death	 thresh-
old.	 Then,	 the	 drug	 amount	 in	 the	 tumor	 compartment	
decreases	and	these	tumor	cells	leave	the	quiescence	pool	
and	enter	the	division	pool	where	they	can	divide	again	
and	cause	an	increase	of	the	total	cell	number	(see	Figure	
S3.2b,	 Figure  S3.2e).	 The	 tumor	 cells	 start	 dividing	 and	
pass	 their	 pERK	 value	 at	 the	 division	 time-	point	 to	 the	
daughter	 cells.	 Looking	 at	 Figure  S3.2f,	 we	 see	 that	 the	
offsprings	have	initially	lower	pERK	values	than	the	par-
ent	cell,	because	the	pERK	decrease	caused	by	the	drug	
immediately	affects	them.	During	the	time	course	of	the	
simulation,	their	pERK	value	increases	until	they	regain	
their	inherited	pERK	values	(Figures 3.1b,	S3.2f).	Because	
of	the	heritage	of	the	pERK	value,	a	typical	pattern	evolves	
and	in	the	time	course	of	 the	simulation	there	will	be	a	
tumor	 population	 with	 a	 high	 metabolic	 phosphoryla-
tion	pool	(compare	Figures	S3.2c	and	S3.2f).	The	overall	
population	growth	is	driven	by	the	cells	with	a	high	pERK	
value	(see	Figures	3.1b	and	3.1d).	Therefore,	comparing	
the	overall	cell	number	of	100	simulations	with	a	uniform	
pERK	distribution	(Figure	2.1e)	and	the	bimodal	distribu-
tion	(Figure	3.1d)	we	see	similar	behavior	with	a	constant	
population	 growth	 after	 a	 slight	 decrease	 until	 ~  50  h.	
This	simulation	emphasizes	that	tumor	growth	is	driven	
by	mutated	cells	with	a	high	pERK	value.	This	can	be	seen	
due	to	the	heterogeneity.

Higher	division	and	death	threshold

The	 effect	 of	 changing	 birth	 and	 death	 thresholds	 is	 ex-
plored	 in	 Figure  4.	 The	 parameters	 are	 the	 same	 as	 in	
Figure 2	except	for	the	division	threshold	of	150%	pERK	
instead	 of	 100%	 pERK,	 and	 a	 death	 threshold	 of	 100%	
pERK	instead	of	50%	pERK.	This	is	compared	to	an	ODE	
model	(Figures	2.1b	and	2.1d)	and	an	ABM	with	the	death	
and	division	threshold	of	50%	and	100%	pERK	(see	Figures	
2.1c	and	2.1e).	A	treatment	of	a	single	dose	of	3 mg/kg	is	
given.

The	 higher	 division	 and	 death	 thresholds	 lead	 to	 a	
longer	residence	of	the	tumor	cells	in	the	quiescence	and	
death	pools	(see	Figure 4d,	and	additional	simulation	in	
the	Figures	S4e-	S4h).	Despite	the	drug	washout	over	time,	
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the	 majority	 of	 cells	 are	 not	 able	 to	 reach	 the	 division	
pool	(Figure S4g),	which	lowers	the	growth	of	the	tumor	
population.

Multiple	treatment	cycles

A	treatment	of	1 mg/kg	administered	every	24 h	with	10	
cycles	was	simulated	in	Figure 5.1	with	the	ODE	and	ABM	
to	derive	pERK	and	tumor	cell	dynamic	time-	course.	The	
pERK-	time	course	in	the	ABM	has	less	regular	onset-	offset	
granularity	due	to	the	time	steps	of	the	Gillespie	algorithm	
(Figure	5.1c).	The	time	points	are	sparse	because	the	time	
steps	in	the	Gillespie	algorithm	depend	on	the	number	of	
cells	 in	 the	 death	 and	 division	 pools	 and	 most	 cells	 are	
trapped	in	the	quiescence	pool	(see	Figure S5.2b).	Overall,	
the	ODE	and	ABM	show	similar	behavior.	As	seen	in	the	
Supplementary	Material,	 cells	oscillate	between	division	
and	quiescence	pools	 (Figures S5.2d,e).	This	results	 in	a	
decrease	of	cell	number.	There	is	a	peak	every	24 h	in	the	
division	 pool,	 followed	 by	 a	 peak	 in	 the	 death	 pool	 (see	
time	 points	 every	 24  h	 in	 Figure  S5.2b).	 Upon	 chronic	
treatment,	 the	 pERK	 level	 within	 tumor	 cells	 slowly	
drops,	causing	the	total	cell	number	to	decrease	and	tumor	
shrinkage	 (Figures  S5.2b	 and	 S5.2a).	 After	 ~  200  hours,	
the	 cells	 in	 the	 death	 pool	 have	 all	 died,	 whereas	 some	
cells	with	initially	high	pERK	values	remain	dormant	in	
the	 quiescence	 pool	 (see	 Figure  S5.2b).	 This	 resembles	
drug	resistance	of	mutated	cells	with	a	high	pERK	value.

DISCUSSIONANDCONCLUSIONS

Table 1	compares	ABMs	and	ODE	models,	using	proper-
ties	 (scale,	 dynamics	 of	 interactions,	 population,	 space,	
memory,	 and	 stochastic	 model),	 strengths	 and	 limita-
tions,	and	implementation	(model	building	and	qualifica-
tion,	communication,	and	applicability).	A	key	feature	of	
ABMs	 is	 heterogeneity	 at	 the	 cellular/microscopic	 level:	
every	agent	has	an	individual	set	of	attributes.	Emergent	
behavior	 may	 arise,	 without	 central	 coordination,	 from	
local	 phenomena	 driven	 by	 discrete	 decisions	 and	 in-
teractions	 between	 individual	 agents.	 Adaptation	 of	 the	
agents	to	environmental	changes	is	possible	with	rules	set	
by	the	modeler,	enabling	memory	to	be	stored	to	modify	
future	behavior.	Agents	may	also	have	a	geographical	lo-
cation.4,5,9,13	Due	to	their	properties,	ABMs	are	naturally	
suited	to	the	diverse	tumor	microenvironment,	where	in-
teractions	 between	 different	 cell	 types	 play	 critical	 roles	
in	 cancer	 development,	 progression,	 and	 control.	 The	
agents	 in	 our	 anticancer	 treatment	 example	 are	 tumor	
cells,	each	with	a	different	level	of	pERK.	Depending	on	a	
cell’s	current	pERK	value,	it	is	susceptible	to	either	death	

or	division,	governed	by	stochastic	processes.	Tumor	cells	
with	high	pERK	values	divide	and	pass	their	pERK	values	
onto	their	offspring,	whereas	the	cells	with	a	lower	pERK	
value	die	or	stay	quiescent.	Thus,	the	average	pERK	value	
in	a	cell	population	may	increase.

Other	 examples	 of	 ABMs	 include	 the	 model	 of	
Cockrell	and	Axelrod,24	simulating	the	heterogeneous	cell	
types	and	their	proliferation	kinetics	inside	human	colon	
crypts,	 where	 quiescent	 stem	 cells	 are	 at	 the	 bottom	 of	
the	crypt,	proliferating	cells	are	close	to	the	bottom	third,	
and	differentiated	cells	 are	placed	 in	 the	 top	 two	 thirds.	
Proliferating	 cells	 are	 killed	 by	 cytotoxic	 drugs,	 whereas	
quiescent	 stem	 cells	 are	 resistant	 to	 cytotoxic	 drugs	 due	
to	their	low	probability	of	dividing.24	The	on-	lattice	ABMs	
of	Kather	et	al.	were	used	 to	predict	survival,	and	guide	
new	strategies	for	immunotherapy,	in	a	colorectal	cancer	
patient	cohort.25	Effects	of	chemotherapy,	immunothera-
pies,	and	cell	migration	inhibitors	alone	and	in	combina-
tion	were	simulated.26

In	 ODE	 models,	 individual	 agents	 and	 individual	 in-
teractions	 are	 not	 explicitly	 considered.	 Instead,	 macro-	
level	 outputs	 are	 driven	 by	 mass	 transfer	 dictated	 by	
stoichiometric	equilibrium	and	compartmentalization	of	
the	system	(e.g.,	blood	and	tumor	compartments).	In	our	
ODE	model,	all	the	cells	have	the	same	pERK	value	and	
constitutes	 a	 homogenous	 population;	 death	 or	 division	
of	individual	cells	is	not	recorded.	ODEs	may	be	used	to	
represent	a	subset	of	outcomes	following	therapeutic	in-
terventions	at	the	macro-	level.9,13	Elements	of	stochastic-
ity	 may	 be	 introduced	 by	 assuming	 that	 parameters	 are	
drawn	from	probability	distributions	(to	model	between-	
subject	variability)	and	that	measurements	are	subject	to	
noise.	 In	 ODE	 models,	 adaptation	 to	 changing	 circum-
stances	may	be	prespecified	in	the	parameter	settings	and	
initial	conditions.	In	most	circumstances,	ODE	models	do	
not	have	inherent	memory	features	and	do	not	possess	a	
trace	of	the	input	variables	within	the	system	unless	PDE	
are	implemented	to	localize	the	interactions.4,13

Although	 ABMs	 take	 many	 different	 forms,	 all	 ODE	
models	have	 the	same	mathematical	 structure,	common	
to	many	areas	of	science.	Algorithms	for	numerical	solu-
tions	of	ODEs	are	widely	available	and	understood,	as	are	
methods	 of	 data	 fitting	 and	 calibration	 against	 observed	
data.27,28	ODE	models	can	have	a	simply	descriptive	pur-
pose,	or	both	a	predictive	and	a	descriptive	purpose.	The	
simplest	models,	with	the	fewest	parameters,	provide	an	
approximation	whose	accuracy	relies	on	stochasticity	not	
being	preponderant.5

In	 principle,	 ODE	 models	 are	 based	 on	 population-	
level	 assumptions	 and	 data,	 whereas	 ABMs	 are	 con-
structed	 from	 understanding	 at	 the	 level	 of	 individual	
agents.	 For	 example,	 in	 vitro	 assays29	 or	 immunohis-
tochemical	 data26	 may	 inform	 a	 model.	 When	 data	 for	
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macroscopic	 phenomena	 are	 not	 available,	 an	 ABM	 can	
be	built	as	a	hypothesis-	testing	device,	where	assumptions	
lead	 to	 observable	 collective	 behavior	 via	 simulation.30	
Of	 course,	 the	 more	 complicated	 a	 model,	 the	 more	 pa-
rameters	it	contains,	the	greater	is	the	risk	of	overfitting	
and	 nonidentifiability.31	 Another	 example	 is	 the	 tumor	
microenvironment	 modeled	 by	 Kather	 et	 al.,26	 which	
can	 be	 calibrated	 in	 a	 patient-	specific	 way.	 In	 the	 mod-
els	 we	 have	 introduced,	 the	 ABM	 requires	 more	 input	
than	 the	 ODE:	 the	 initial	 distribution	 of	 pERK	 values,	
and	 the	 death	 and	 birth	 thresholds.	 Analytical	 methods	
are	 required	 when	 parameters	 do	 not	 represent	 directly	
observable	 quantities.	 In	 that	 case,	 statistical	 estimation	
techniques,	such	as	maximum	likelihood	estimation	or	the	
method	of	moments,	are	applied	to	a	given	dataset	to	se-
lect	appropriate	values.	If	analytical	methods	are	not	suit-
able	for	a	given	ABM,	methods	involving	the	generation	
of	simulated	data	need	to	be	considered.	Those	methods	
can	be	classified	 in	frequentist	approaches	and	Bayesian	
approaches.	Frequentist	approaches	are	distance-	based	or	
likelihood-	based	 (e.g.,	 the	 simulated	 minimum	 distance	
method	 or	 the	 methods	 of	 simulated	 moments).32	 One	
example	for	calibration	of	ABMs	using	machine	learning	
would	 be	 the	 work	 from	 Lamperti	 et	 al.33	 Cockrell	 and	
An34	simulate	systemic	inflammatory	response	syndrome,	
with	an	ABM	used	to	compare	treatment	options	with	dif-
ferent	dosing	regimens	and	drug	combinations.

ABMs	can	be	computationally	challenging,	depending	
on	their	complexity	and	the	chosen	model	paradigm.14	In	
cellular	Potts	models,	changes	in	cell	shape	and	direct	cell-	
cell	 interaction	are	directed	by	Monte	Carlo	 simulations	
and	 energy	 minimalization.	 Off-	lattice	 methods	 bring	
the	 benefit	 of	 a	 more	 realistic	 simulation	 because	 cells	
can	have	various	positions	with	respect	to	each	other	and	
freedom	to	move	in	any	direction	instead	of	being	ordered	
on	a	grid.	However,	this	comes	with	the	disadvantage	of	
higher	computational	cost,	because	special	algorithms	are	
necessary	 to	 efficiently	 handle	 cell-	cell	 neighborhoods.	
During	movement	or	division	of	cells,	cell	collisions	with	
nearby	cells	need	to	be	considered,	which	can	be	challeng-
ing	in	densely	packed	areas	or	populations.	Improved	ap-
proximations	of	cell	biomechanics	 invariably	come	with	
computational	cost.14,15	ODEs,	in	contrast,	seldom	require	
large	computational	resources.

A	strength	of	ABMs	is	the	use	of	biological	rules	which	
makes	communication	of	the	model	easier	and	more	in-
tuitive	for	a	non-	modeling	audience.	Components	of	two	
ABMs	 can	 be	 combined	 in	 a	 modular	 fashion	 to	 create	
meta-	models.	 Each	 ABM	 can	 have	 different	 agents	 and	
outcomes,	 making	 comparison	 between	 different	 mod-
els	 challenging.	 On	 the	 other	 hand,	 advantages	 of	 ODE	
based	 models	 commonly	 used	 in	 the	 PKPD	 community	
are	the	simplicity	of	implementation,	and	relative	ease	in	

fitting	experimental	data	in	a	statistically	robust	manner	
with	 clear	 decision	 rules	 for	 model	 selection	 and	 well-	
established	tools	for	model	qualification.	Communication	
with	 non-	modeler	 audiences	 relies	 on	 understanding	 of	
mass	transfer	and	binding	kinetics.

Multiscale	 modeling	 aims	 to	 include	 various	 spatio-	
temporal	 scales	 from	 atomic	 to	 molecular,	 cellular,	
multicellular,	organ,	and	whole	body.	When	explicit	rep-
resentation	 of	 individuals	 is	 not	 needed,	 a	 continuous	
description	 with	 differential	 equations	 can	 be	 used.	 On	
the	molecular	scale,	interactions	(e.g.,	receptor-	ligand	in-
teractions,	consumption	and	production	of	oxygen,	nutri-
ent,	 and	 cell-	cell	 signaling	 molecule	 concentration)	 can	
be	 described	 with	 ODEs.	To	 model	 local	 conditions	 and	
environmental	 changes,	 such	 as	 availability	 of	 oxygen,	
nutrient,	and	hormones	controlled	by	diffusion	from	mo-
lecularly	rich	regions	(e.g.,	blood	vessels	and	tumor	edge),	
PDEs	may	be	used.	ODEs	or	PDEs	may	be	integrated	into	
simulations	to	lower	computational	cost.	This	type	of	hy-
bridization	of	a	discrete	model	 in	a	continuum	environ-
ment	is	often	found	in	the	most	complete	descriptions	of	
the	tumor	morphology.8

Comparing	 hybrid	 multiscale	 ABMs	 to	 a	 multiscale	
ODE	 model,	 as	 in	 the	 work	 of	 Milberg	 et	 al.,35	 we	 can	
see	additional	differences	between	 those	methods.	Their	
physiology-	based	 quantitative	 pharmacology	 model	 pre-
dicts	how	the	interaction	of	the	immune	system	and	the	
tumor	microenvironment	 in	a	patient	affects	checkpoint	
blockade	 therapies	 administered	 as	 mono-	,	 combo-	,	 and	
sequential	 therapies.	Agents	may	be	 located	 in	compart-
ments:	lymph	node,	blood,	tumor,	lungs,	gastrointestinal	
tract,	spleen,	and	liver,	and	the	periphery.	Heterogeneity	
is	represented	in	the	percent	expression	of	each	immune	
checkpoint	in	the	cancer	cells	as	an	input	into	the	model.	
The	model	consists	of	282	ODEs	and	218	algebraic	equa-
tions	to	describe	interactions	between	cells	and	trafficking	
of	cells.35	 In	contrast,	an	ABM-	based	 implementation	of	
this	model	would	require	only	six	agents	(with	attributes	in	
parentheses):	Antigen,	antigen	presenting	cells	(resident,	
mature,	 and	 aCTLA4	 expression),	 CD8+	 T-	cells	 (naïve,	
primed,	activated,	CTLA4,	and	PD-	1),	Tregs	(CTLA4	and	
PD1),	myeloid	derived	suppressive	cells,	and	tumor	cells	
(proliferating	 and	 PD-	L1).	 The	 behavior	 of	 these	 agents	
is	then	controlled	by	a	total	of	16	interaction	rules,	with	
each	cell	type	making	use	of	a	subset	of	these.	In	princi-
ple,	this	could	be	much	more	efficiently	implemented	and	
easily	adapted	should	further	interactions	or	cell	types	be	
required.

There	 are	 various	 hybrid	 multiscale	 ABMs	 in	 the	 lit-
erature.	 Oduola	 and	 Li	 modeled	 cancer	 growth	 during	
treatment	 with	 lapatinib	 using	 a	 multiscale	 model	 with	
a	stochastic	hybrid	system,36	where	concentration	of	pro-
teins	 and	 gene	 expression	 levels	 were	 represented	 with	
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ODEs.	 The	 cellular	 level	 contains	 a	 cellular	 automata	
model	on	a	grid.	A	multiscale	ABM	of	tumor	angiogenesis	
is	provided	by	Olsen	et	al.37	This	model	includes	the	mo-
lecular	level	(VEGF	and	diffusion),	cellular	level	(genetic	
control	and	space),	 and	 tissue	 level	 (cells,	blood	vessels,	
and	angiogenesis).	Cancer	cells	are	modeled	as	agents	on	
a	 three-	dimensional	 grid.	 Chaplain	 and	 Powathil	 devel-
oped	two	hybrid	multiscale	models	that	study	the	effects	
of	 cancer	 treatments,	 including	 a	 combination	 of	 radia-
tion	 and	 chemotherapy.38,39	The	 microenvironment	 con-
tains	 the	 concentration	 of	 oxygen	 modeled	 with	 a	 PDE.	
At	 the	 subcellular	 level,	 the	 cell	 cycle	 depends	 on	 con-
centration	 of	 complexes	 that	 are	 described	 with	 ODEs.	
Cellular	automata	and	Potts	models	simulate	the	cellular	
level.	Cess	and	Finley	created	a	multiscale	ABM	of	macro-
phages	and	T	cells	within	a	tumor.40	Tumor	cells,	M1	and	
M2	 macrophages,	 and	T	 cells	 are	 modeled	 as	 agents	 on	
a	 two-	dimensional	 lattice,	 whereas	 diffusible	 mediators,	
such	as	IL-	4	and	IFN-	γ,	are	simulated	with	PDEs.	Neural	
networks	are	used	to	reduce	the	mechanistic	model	into	a	
simple	input/output	model.	The	multiscale	compartment	
model	by	Gong	et	al.41	describes	the	biological	processes	
involved	in	tumor	development	and	anti-	tumor	immune	
response.	 Cytotoxic	 T	 lymphocytes	 and	 cancer	 cells	 are	
modeled	as	agents	in	a	three-	dimensional	space,	with	di-
vision,	migration,	cytotoxic	killing,	and	immune	evasion.	
PDEs	 describe	 the	 molecular	 scale	 (IL-	2	 secretion	 and	
transport).

ABMs	are	computational	models	with	heterogeneous	
agents	in	which	the	behavior	of	individual	agents	is	fun-
damental.9	 Simulations	 may	 be	 intuitive	 because	 they	
recapitulate	 biological	 processes.	 ABMs	 are	 suitable	 for	
simulating	complex	biological	systems	with	subscale	com-
ponents	 (molecular,	 cellular,	 tissue,	 and	 organism)	 and	
inherent	emerging	behavior.	On	the	other	hand,	systems	
of	ODEs	are	well-	suited	for	simulating	processes	that	can	
be	 approximated	 as	 homogeneous,	 well-	mixed	 systems,	
and	would	be	best	suited	for	traditional	pharmacometric	
analyses	with	sufficient	data	(population	PK	and	PD	mod-
els,	 and	 physiology-	based	 PK	 models),	 or	 for	 simplistic	
theoretical	PKPD	models.	For	quantitative	clinical	phar-
macology	models,	ODEs	can	also	be	 implemented	to	re-
capitulate	complex	biological	 systems	but	would	rely	on	
extensive	model	assumptions,	including	parameter	distri-
butions.35	In	summary,	ABMs	can	provide	more	detailed	
insights	 into	 complex	 biological	 systems	 and	 are	 often	
complemented	 with	 ODEs	 in	 hybrid	 multiscale	 models.	
Both	methodologies	have	their	strengths	and	weaknesses,	
depending	 on	 context	 and	 purpose.	 With	 the	 advent	 of	
more	single-	cell	experiments,	gene	expression,	and	spatial	
transcriptomics,	and	other	technological	advances	in	im-
aging,	we	anticipate	that	the	use	of	ABMs	in	discovery	and	
drug	development	will	increase	with	direct	applications	in	

PKPD	and	pharmacometrics	to	help	elucidate	dose	sched-
uling	 and	 rationalize	 combination	 strategy	 in	 oncology	
and	other	therapeutic	areas.
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