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INTRODUCTION

Understanding the dose–concentration–effect relation-
ship is fundamental in drug development and mathemat-
ical models are instrumental to aid data interpretation.1 

Pharmacokinetic-pharmacodynamic (PKPD) models 
can support the prediction of the right dose. The PK part 
describes the body’s impact on the molecular drug con-
centration by investigating the relationship between dose 
and plasma concentrations to gain information on drug 
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Abstract
Mathematical models in oncology aid in the design of drugs and understanding 
of their mechanisms of action by simulation of drug biodistribution, drug effects, 
and interaction between tumor and healthy cells. The traditional approach in 
pharmacometrics is to develop and validate ordinary differential equation models 
to quantify trends at the population level. In this approach, time-course of bio-
logical measurements is modeled continuously, assuming a homogenous popula-
tion. Another approach, agent-based models, focuses on the behavior and fate of 
biological entities at the individual level, which subsequently could be summa-
rized to reflect the population level. Heterogeneous cell populations and discrete 
events are simulated, and spatial distribution can be incorporated. In this tuto-
rial, an agent-based model is presented and compared to an ordinary differential 
equation model for a tumor efficacy model inhibiting the pERK pathway. We 
highlight strengths, weaknesses, and opportunities of each approach.
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absorption, distribution, metabolism, and excretion. 
Active drugs and their metabolites are measured in an 
accessible biologic fluid, such as blood, plasma, or urine. 
From these assays, concentration-time curves of the 
plasma and tissue drug concentration are obtained, and 
PK measures and parameters, such as area under the 
curve, maximum concentration, clearance, volume of dis-
tribution, and elimination half-life, are determined. PK 
studies also consider intrinsic and extrinsic factors that 
influence individual and population systemic exposure. 
Critical intrinsic factors include gender, ethnicity, genetic 
polymorphism, and renal or hepatic organ dysfunction, 
and important extrinsic factors are drug-drug interactions 
and concomitant administration of drug products with 
food.2,3 The PD part describes the impact of the drug mol-
ecule on the body (i.e., receptor binding, receptor sensi-
tivity, post-receptor effects, and chemical interactions).2 It 
includes all pharmacological and pathophysiological re-
sponses, and therapeutical effect following administration 
of a drug or placebo. PD studies are designed to inform a 
drug’s mechanism of action and the dose-response rela-
tionship. Response can be expressed as a direct or indirect 
measure of efficacy and/or safety of the drug using either 
biomarkers, surrogate endpoints, or clinical endpoints to 
quantify the PD effect.3

Mathematical PKPD models can be generated and ap-
proached in different ways. In this work, we apply agent-
based models (ABMs) and compare its properties with 
the more traditional ordinary differential equation (ODE) 
approach.

ODEs are often used to model the change of drug 
concentration and effect over time. As a method where 
behavior for each entity of the system is regulated on a 
population level, ODEs are suitable to model phenomena 
that are centrally coordinated, for example, by a set of mass 
transfer binding reactions.4 Examples are concentration 
gradients (e.g., nutrient, oxygen gradients, or PK and PD 
models). Data for this modeling approach may come from 
the periphery, the tissue, or at the whole organism level. 
Solutions of differential equations typically describe the 
mean behavior of the system over time.5 Variability can 
be introduced in one or more parameters, as used in the 
nonlinear mixed-effects approach.6 Complicated models 
that include not only changes in time but also space, for 
example, spatial differences in drug effect or concentra-
tion, use partial differential equations (PDEs) that depend 
on several variables and contain partial derivatives.2,7

Agent-­based modeling

Biological phenomena have heterogeneous characteristics 
(e.g., cancer with regions of hypoxia, necrosis, quiescence, 

and proliferation). In addition, cancer growth depends on 
the changing micro-environment (e.g., oxygen, glucose, 
and pH gradients). Drug resistance can manifest as a con-
sequence of the limited diffusion of an effective amount of 
the drugs far into the tumor core due to irregular vascular 
structure. In such settings, time, space but also the charac-
teristics of each individual cell or group of cells and their 
interaction with the surrounding environment are impor-
tant for modeling drug effects.7

ABMs simulate heterogeneity with one or a set of dif-
ferent agents that have attributes and act autonomously 
in an environment according to certain rules. To apply 
this concept to PKPD modeling, cells or a group of cells 
can be represented as agents, whereas the drug amount is 
simulated with Boolean values, ODEs, PDEs, or as agents. 
Attributes of the cell agents could be location, mutation 
rate, growth rate, drug resistance, or antigenicity. Agents 
can interact in an environment which can consist of dif-
ferent conditions (i.e., spatial location, concentration of 
drugs, nutrients, receptors, or other agents). Interactions 
with the environment and neighboring agents are based 
on intracellular decision-making rules that, for example, 
describe the behavior of tumor cells when interacting with 
immune cells or the tumor-microenvironment. An agent 
undergoes growth, proliferation, quiescence, apoptosis, or 
necrosis as a response to surrounding environmental con-
ditions or interaction with other agents.8 As such, ABM is 
considered as a method coordinated on the cellular level 
with an emergent behavior from cell-cell and cell-moieties 
interactions that is not centrally coordinated by a set of 
mass transfer binding reactions. It can handle complex 
biological phenomena and local phenomena driven by 
discrete decision. Agents act only upon local information 
on the state of the system, rather than being affected by 
the global system state.9 In this way, ABMs are well-suited 
to represent the transition of emergent behavior between 
one scale of organization (i.e., microscopic scale) to be-
havior observed at another (i.e., macroscopic scale).4,9 
Simple activities at the microscopic scale can cause com-
plex behavior on the macroscopic scale.9–13 For example, 
mutation at the cellular level can create patterns of growth 
and extent of metastasis at the tumoral and stromal level. 
Unexplained patterns can be discovered, such as circum-
stances where the tumor cells are completely eliminated 
by the immune system, without the need for any cancer 
therapies.134 Adaption of the agents to changing circum-
stances is possible upon changing environmental condi-
tions. Agents can have memory where information about 
the environment is stored and future behavior can be mod-
ified according to past stages.4 This can be used in model-
ing priming of T cells or memory T cells. Heterogeneity is 
generated by the variability in the attributes of each agent 
(i.e., mutation, resistance, antigenicity, or number of DNA 
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breaks after radiation), the decision rules, and the stochas-
tic process governing those.13

Every agent may have a spatial distinct position. Lattice-
based models restrict positions to a fixed grid; off-lattice 
models do without this restriction.14 To create a lattice-
based model, regular structured grids (Cartesian [2D or 
3D], dodecahedral [3D]), or unstructured grids are used.14,15 
Lattice-based methods can be further classified by their spa-
tial resolution, meaning how many lattice sites are used for 
creating cells.14 Cellular automaton models contain at most 
a single cell in one lattice site. Discrete lattice-based rules 
are used to update a single cell at every time step. To reduce 
grid artifacts, lattice sites are updated in random order. A 
cell can remain, move to an unoccupied adjacent lattice site 
(randomly or by a directional stimulus such as chemo- or 
haptotaxis), die and vacate a lattice site, or divide and allo-
cate a progenitor cell in a neighboring site. The number of 
neighbor cells depend on the shape of the grid. In a square 
lattice, cells have four or eight neighbors (von Neumann 
or Moore neighborhood) or cells can be surrounded by six 
symmetrically located cells in a hexagonal grid.14,15 Lattice 
gas cellular automaton (LGCA) models contain multiple 
cells in one lattice. Instead of tracking every single cell, 
LGCA traces a group of cells that moves through channels 
from individual lattice sites.14 Cellular Potts models utilize 
multiple lattice sites to simulate one cell.

Off-lattice models can be categorized into center-based 
models that focus on cell volumes and boundary-based 
methods that model cell boundaries.14 Center-based meth-
ods can be differentiated into three approaches: center-
based models, subcellular element models, and clusters. 
Center-based models simulate each cell’s center of mass or 
volume by using one agent per cell. Cell positions are up-
dated after exchanges of adhesive, repulsive, locomotive, 
and drag-like forces between cell centers.14 Subcellular 
element models display cell morphology in greater de-
tail by having multiple agents for subcellular elements of 
each cell. A different option is clusters, where an agent 
simulates a cluster of cells or functional units (e.g., breast 
glands or colon crypts). Boundary-based methods include 
vertex-based models or front-tracking methods. In vertex-
based models, forces on the vertices are computed, which 
is useful in modeling confluent tissues. Front-tracking 
methods, such as the immersed boundary method, can be 
used for greater spatial resolution.14

Programming ABMs

An environment suitable for beginners is provided by the 
software Netlogo, in which models can be created and 
executed, and the results visualized. ABMs can be im-
plemented in object-oriented programming languages, 

such as Python, Java, C, or C++.16 Differences between 
those languages are user friendliness, speed, and avail-
able libraries. Python is beginner friendly and has a rich 
environment of standard libraries whereas Java, C, and 
C++ are often faster. An advantage of coding the model 
is that the researcher has control over all aspects of the 
model, and additional features can be easily implemented 
or changed. Disadvantages are the time spent program-
ming and the need for programming skills. Because many 
models use the same or similar building blocks with small 
variations, libraries for different programming languages 
are available which provide frameworks and templates 
that allow users to design a customized model. Examples 
are MASON for Java, SWARM for Java and Objected C, 
Repast for Java and C++, Chaste as a source code in C++, 
and MESA for Python. A benefit is the reduced model 
construction time. Disadvantages could be the time spend 
to learn the functions of the library and that the needed 
feature might not be directly available.16–18

EXAMPLE: PKPD -­ABM AND PKPD -­
ODE MODEL FOR SIMULATING 
ANTI- ­CANCER TREATMENT WITH 
COBIMETINIB

This tutorial aims to introduce ABM, which is widely 
used in social sciences and systems biology.19,20 It gives a 
simple example of a PKPD-ABM of anti-cancer treatment 
with the MEK inhibitor cobimetinib, targeting the RAF/
MEK/ERK pathway, which plays an important role in cell 
proliferation and survival. This signaling pathway is initi-
ated by binding of growth factors, cytokines, and extracel-
lular mitogens, which activates receptor tyrosine kinases 
and leads to a reaction cascade resulting in activation of 
MEK and phosphorylation of ERK. As a consequence, 
cellular responses are cell proliferation and survival. The 
RAF/MEK/ERK pathway is frequently mutated in can-
cer cells leading to increased proliferation and survival. 
Cobimetinib aims to counteract this by decreasing phos-
phorylation and as a consequence decrease cell prolifera-
tion and cell survival.21,22

The ABM simulates the behavior of tumor cells as 
agents during treatment with cobimetinib. The environ-
ment is given by the time course and effect of the admin-
istered drug. To keep this model simple, no cell location 
is introduced. Cell death and division occur on the mi-
croscopic scale and a summary of cell behavior provides 
the total number of tumor cells on the macroscopic scale. 
The model is implemented in the Python programming 
language. The code can be found at https://github.com/
VanTh​uyTru​ong/Tutorial. A PKPD model previously pub-
lished by Wong et al.22 implemented in ODE, was used to 

https://github.com/VanThuyTruong/Tutorial
https://github.com/VanThuyTruong/Tutorial
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simulate the cobimetinib concentration time course and 
the phosphorylation of ERK. The model is used here as 
an illustrative example and implemented as described in 
the original reference, for the sole purpose of numerical 
simulation. To account for the PK, a hybrid approach is 
considered, with PK being governed by an ODE system 
and combined with a tumor ABM to determine the inter-
actions of cells in the presence of drug concentrations. To 
compare the behavior of the hybrid PKPD-ABM tumor 
model, a PKPD-ODE tumor model is implemented to 
highlight the relative strengths and limitations of each 
method.

PK model

The PKs of the drug was characterized by an ODE model 
that links dose taken orally to a plasma compartment and 
a tumor micro-environment compartment (see part a in 
Figure 1). The PKs in the tumor compartment induces a 
reduction of phosphorylation of the ERK pathway (part b) 
that is used as the driving force to implement the PKPD 
model, either as a full ODE model (part c1) or as a hybrid 
ODE-ABM (part c2).

We use the model by Wong et al.22 to describe kinetics 
of drug concentration in oral, plasma, and tumor com-
partments after a weight-based oral dose of cobimetinib. 
The ODEs are linear, with absorption rate k0 from the oral 
to the plasma compartment, clearance rate β from the 
plasma, and inter-compartmental rate γ from the plasma 
to the tumor compartment. Transfer from the tumor to the 
plasma is represented by the inter-compartmental rate α. 
Because the drug is a small molecule, it is assumed that 
drug excess is high and loss due to target binding, catab-
olism, or elimination in the tumor compartment is negli-
gible. Therefore, no elimination rate is introduced in the 
tumor compartment. The time courses follow the follow-
ing ODEs:

The initial condition X0(0) is the given dose (1, 3, 
or 10  mg/kg of body weight) converted to µmoles/
kg. (The molecular weight of cobimetinib is 531.3 g/
mol.) The initial drug amount in the plasma com-
partment Xp(0) and in the tumor compartment Xt(0) 

is zero. Our parameter values are based on those of 
Wong et al.22

PD model

The PD model23 describes the effect of cobimetinib by the 
following relationship between Xt(t) and the percentage 
pERK decrease, d(t):

where IC50 is the cobimetinib amount in the tumor com-
partment at which the percentage pERK decrease is half of 
Imax, the maximum percentage pERK decrease, and h is the 
Hill coefficient.22

Depending on the initial pERK value, k(0), and the per-
centage pERK decrease caused by the drug d(t) at time t, 
the pERK value is:

In Figure  1, we illustrate the two types of tumor 
model, based on Equation 5, that we will consider: 
agent-based (c2) and population-based (c1). In the ABM, 
we assign a different initial value ki(0) to each tumor 
cell, drawn uniformly in the range (0, kmax). Values of 
ki(0) greater than 100 represent cells that have activat-
ing mutations in B-RAF resulting in higher activation 
of MEK. Individual values of ki(t) evolve according to 
Equation 5. In the population-based model, a single 
value k(t) represents the average pERK status of the pop-
ulation of tumor cells. That is, cell-to-cell variability is 
introduced in the agent-based model; the total number 
of cells is an integer that depends on time because indi-
vidual cells may die or divide according to pERK levels. 
The population-based model, on the other hand, is a set 
of ODEs where one value of k(t) represents the influence 
of the drug on the population of tumor cells in the ODE. 
The population size is also governed by an ODE, which 
we now introduce.

PKPD-­ODE

The population-based model is the PKPD-ODE model 
shown as c1 in Figure 1. A single pERK value k(t) ∈ (0, 
kmax) characterizes the tumor cell population and is up-
dated according to Equation 5.

The size of the tumor cell population at time t, T(t), 
obeys:

(1)dX0
dt

= − k0X0

(2)
dXp

dt
= k0X0 + �Xt − �Xp − �Xp

(3)dXt
dt

= �Xp − �Xt

(4)d (t) =
Xt (t)

h

ICh
50

+ Xt (t)
h
Imax

(5)k (t) =
100 − d (t)

100
k (0)
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The constant λ > 0 models the mean birth rate. 
Death is modelled as a decreasing function of k(t). We 
choose µ = 2λ, which has the effect that birth and death 
balance when k (t) = 1

2
kmax and facilitates the compar-

ison with ABM. We use the value λ = 0.0828 day−1 of 
Wong et al.22

PKPD-­ABM

In the ABM, each tumor cell is impacted by the pERK de-
crease individually. One agent is a tumor cell i with a value 
ki(t) as an attribute, representing its degree of intracellular 
phosphorylation of ERK, determined by the amount of drug 
in the tumor compartment Xt(t) according to Equation 3 
from the PK model. As the drug concentration lowers, the 
cell’s pERK value returns toward its initial value ki(0), unless 
the cell dies according to the decision-making algorithm.

(6)dT

dt
= �T −

(

1 −
k (t)

kmax

)

�T

F I G U R E  1   Model structure. (a) The PK model describes tumor disposition of cobimetinib. (b) The PKPD model links the percentage 
pERK decrease, d(t), to the amount of cobimetinib inside the tumor compartment. Phosphorylated ERK plays an important role in cell 
division. Therefore, pERK could be seen as a biomarker of tumor growth and a decrease of pERK causes a decrease in cell division. (c1) the 
ODE model simulates the effect of the pERK decrease on the number of tumor cells in the population. k(t) is the pERK value inside one 
population. The mean number of cells increases with birth rate λ and decreases with death rate µ. A high pERK value favors birth, a low 
value favors decay over growth. (c2) An ABM, where tumor cell death or division is driven by the percentage pERK decrease caused by the 
amount of cobimetinib inside the tumor compartment, d(t), and the individual pERK value of each tumor cell, ki(t). (a–c1) together result 
in a PKPD-ODE and (a–c2) together result in a PKPD-ABM. ABM, agent-based model; IC50, half-maximal inhibitory concentration; ODE, 
ordinary differential equation; PKPD, pharmacokinetic pharmacodynamic
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Decision-making algorithm (microscopic scale)

The fate of a cell is governed by a set of rules depend-
ing on its ERK phosphorylation level (see Figure 1 part 

c2). pERK thresholds determine the behavior of the 
cells. A cell whose pERK value is above the division 
threshold is said to be in the division pool; a pERK 
value below the death threshold consigns the cell to 

F I G U R E  2 . 1   Simulation of the ODE model and ABM with a single oral dose of 3 mg/kg. pERK values are initially uniformly 
distributed. The parameter values are given in Table S1. Figure a shows the PKPD model, common to the ODE model and ABM. Figure b 
and d show multiple trajectories of the PKPD-ODE model, each with the same initial cell population size but a different initial pERK value. 
Figure c shows individual pERK values in one realization of the ABM Here, each cell has a different initial pERK value, chosen from the 
uniform distribution in (0, 200). Figure e shows the total cell numbers in 100 such realizations.

(a) PKPD model: Drug amounts in the plasma and
tumour compartment (PK, left-hand scale) and per-
centage pERK decrease (PD, right-hand scale)

(b) ODE: Individual pERK value of every cell
population

(c) ABM: Each line is the pERK value of one cell
in one realisation

(d) ODE: Overall cell number of 100 tumour cell
populations

(e) ABM model: Overall tumour cell numbers in
100 realisations
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the death pool. Inside the division or death pool, a di-
vision or death event happens with a certain probabil-
ity per unit time. In between these thresholds, a cell 
remains quiescent.

The ABM is a Markov process that can be summarized 
as follows. At time t, the number of tumor cells is N(t), 
each cell with its pERK value. The probability that cell i 
divides in the interval (t,t + ∆t) is λi(t)∆t where

(a) ABM: Overall number of tumour cells in one
realisation

(b) ABM: Number of cells inside the division,
death and quiescence pools over time in one pop-
ulation

(c) ABM: pERK value of each cell in one popu-
lation at 0 hours

(d) ABM: pERK value of each cell at 10.5 hours
in one population

(e) ABM: pERK value of each cell at 61.3 hours
in one population

(f) ABM: pERK value of each cell at 253.1 hours
in one population

F I G U R E  2 . 2   One realization of the ABM. In Figure 2.2c– f , one dot represents the pERK value of one cell at one timepoint. The ABM 
may provide a more realistic model because it captures heterogeneity, different scales, and emergent behavior. On the other hand, ODE is 
suitable for modeling well-mixed compartments with mass transfer and simple interactions at one scale level. A video of the scatter plots 
can be found at https://github.com/VanTh​uyTru​ong/Tutor​ial/blob/main/video​s/3mgkg​%20sin​gle%20dos​e%20uni​form%20dis​tribu​tion.mp4 
ABM, agent-based model; ODE, ordinary differential equation; PKPD, pharmacokinetic pharmacodynamic

https://github.com/VanThuyTruong/Tutorial/blob/main/videos/3mgkgsingledoseuniformdistribution.mp4
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Similarly, the probability that cell i dies in the interval 
(t,t + ∆t) is µi(t)∆t where

We use the Gillespie algorithm, which is a fair method 
for designating which of these 2N(t) possible events is the 
first, after t, to occur. We construct the following sums:

(7)�i (t) = �max
{

ki (t) −
1

2
kmax , 0

}

(8)�i (t) = �max
{

1

4
kmax − ki (t) , 0

}

F I G U R E  3 . 1   Simulation of a single dose of 3 mg/kg. The pERK values are initially bimodally distributed. Figures a and c show the 
PKPD-ODE, Figures b and d show the PKPD-ABM as comparison. Additional simulation of the behavior of one population in the PKPD-ABM 
can be found in the supplementary. A video of the scatter plots can be found at https://github.com/VanThuyTruong/Tutorial/blob/main/video​
s/bimodal%20pERK.mp4 ABM, agent-based model; ODE, ordinary differential equation; PKPD, pharmacokinetic pharmacodynamic

(a) ODE: pERK values. Each line corresponds
to a different initial condition.

(b) ABM: pERK values of individual cells in one
realisation

(c) ODE: tumour cell numbers in 100 tumour cell
populations.

(d) ABM model: Overall tumour cell number in
100 realisations

(e) ABM: Number of cells inside the division,
death and quiescence pools in one population.

https://github.com/VanThuyTruong/Tutorial/blob/main/videos/bimodalpERK.mp4
https://github.com/VanThuyTruong/Tutorial/blob/main/videos/bimodalpERK.mp4
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We decide which type of event occurs, then de-
cide which cell it happens to. With probability Λ(t)/
(M(t)  +  Λ(t)), the first event after time t is a division 
event. In that case, the probability that, of the N(t) 
possible cells, it is cell i that divides, is λi(t)/Λ(t). With 
probability M(t)/(M(t) + Λ(t)), the first event after time 
t is a death event. In that case, the probability that cell 
i dies is µi(t)/M(t). The initial pERK value of the parent 
cell at the time of division is inherited by the daughter 
cells.

An example of this decision-making algorithm is given 
in the Supplementary Material.

Simulation outcomes

Different simulation scenarios were explored. The drug 
dose and the distribution of initial pERK were varied for 
each simulation. The ODE model shows the behavior at 
the population level with the overall cell number (see 
for example Figure 2.1d where each blue line represents 
one tumor population) and the homogeneous pERK 
value of each population (see for example Figure  2.1b 
where each purple line describes the pERK value inside 
one population). The ABM gives further insight in each 
cell of the population with the pERK value of each cell 
over time (see for example Figure 2.1c where each color 
represents one cell) and the number of cells in the divi-
sion, quiescence, and death pool (see for example Figure 

(9)Λ (t) =
∑N(t)

i=1
�i (t) and M (t) =

∑N(t)

i=1
�i (t)

F I G U R E  4   The effect of changing birth and death thresholds is explored with a simulation of a single dose of 3 mg/kg. The 
pERK values are initially uniformly distributed. Figures a and b show the PKPD-ABM with a death threshold of 100% pERK and 
a division threshold of 150% pERK, as comparison. Figures c–d show the behavior of one population in the PKPD-ABM. Scatter 
plots for this simulation are in the supplementary (Figures S4e–h). A video of the scatter plots can be found at https://github.com/
VanTh​uyTru​ong/Tutor​ial/blob/main/video​s/150%20div​ision​%20thr​eshold.mp4. ABM, agent-based model; PKPD, pharmacokinetic 
pharmacodynamic

(a) ABM: pERK value of each cell in one pop-
ulation with with a division threshold of 150%
and a death threshold of 100%

(b) ABM model: Overall tumour cell number of
100 realisations with a division threshold of 150%
and a death threshold of 100%

(c) ABM: Overall number of tumour cells within
one realisation

(d) ABM: Number of cells inside the division,
death and quiescence pool over time in one pop-
ulation

https://github.com/VanThuyTruong/Tutorial/blob/main/videos/150divisionthreshold.mp4
https://github.com/VanThuyTruong/Tutorial/blob/main/videos/150divisionthreshold.mp4
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2.2b). It is possible to track the pERK value of each cell 
inside the population over time in Figure 2.1c. A cell can 
die and cause the line to end or give birth to an offspring 

which creates a new line starting from the time-point 
of birth (marked with a cross). The crosses describe the 
discrete time points for events caused by the Gillespie 

F I G U R E  5 . 1   Simulation of a multiple treatment cycles of 1 mg/kg every 24 h. The pERK values are initially uniformly distributed. 
Figure a shows the PKPD model, Figures b and d show the PKPD-ODE model, Figures c and e show the PKPD-ABM as comparison. 
Figure S5.2 in the supplementary show the behavior of one population in the PKPD-ABM (model c2 in Figure 1). A video of the scatter plots 
can be found at https://github.com/VanTh​uyTru​ong/Tutor​ial/blob/main/video​s/multi​ple%20cyc​les%201mg​kg.mp4. ABM, agent-based 
model; ODE, ordinary differential equation; PKPD, pharmacokinetic pharmacodynamic

(a) PKPD model: Drug amount in the plasma and
tumour compartment (PD, left-hand scale) and per-
centage pERK decrease (PD, right-hand scale)

(b) ODE: Individual pERK value of every cell
population

(c) ABM: Each line is the pERK value of one cell
in one realisation

(d) ODE: Overall cell number of 100 tumour cell
populations

(e) ABM model: Overall tumour cell number of
100 realisations

https://github.com/VanThuyTruong/Tutorial/blob/main/videos/multiplecycles1mgkg.mp4
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algorithm. The scatter plots show each cell inside the 
population with its pERK value at specific time points 
(see Figure 2.2c–f) and videos at https://github.com/
VanTh​uyTru​ong/Tutor​ial/tree/main/videos show the 
all scatter-plots with cell birth and death over the simu-
lation period.

Single dose treatment with 3 mg/kg

First, a treatment with a single dose is simulated with 
3 mg/kg per body weight (see Figures 2.1 and 2.2). The ini-
tial pERK value for the ODE model and ABM are sampled 
from a uniform distribution in the range 0−200. The ODE 

T A B L E  1   Comparison between ODE and ABM features and implementation principles for the model-based approach used to 
characterize PK and PKPD properties

Comparator ODE ABM

Scale Macroscopic
Mean behavior at system level

Microscopic
Individual behaviors at cellular level driving emergent 

behavior at the system level

Dynamics of 
interaction

Mass transfer dictated by stoichiometric equilibrium 
and compartmentalization of the system

Rule-based individual agent interaction and stochasticity

Population Homogenous Heterogenous

Space Not typically implemented Typically implemented

Memory Not typically implemented Typically implemented

Stochastic model Between subject variability and residual unexplained 
variability

Implemented at the population level by assuming 
parameter probabilistic distributions

Implicit feature of single agent and governed by 
stochasticity

No distributional assumption

Model building Rigorous statistical framework for model selection
Data-driven

Hypothesis generation and hypothesis-testing iterative 
learning

Simulation-based and/or data calibration depending on 
empirical evidence

Model qualification Simulation-based diagnostic (visual predictive check)
Data-based model qualification (goodness of fit)

Model calibration based on single cell data (in vivo/
in vitro/ex vivo experiments) or any data source of 
relevance for the biological system of interest (micro- 
or macro-level)

Limitations Oversimplification
Structural rigidity (e.g., compartmentalization)
Scalability

Overparameterization
Model discrimination
Uncertainty in outcomes

Strengths Well established modeling framework
Simple implementation

Emergent behavior to find plausible mechanisms for 
unforeseen outcomes (e.g., resistance or necrosis)

Easier to scale

Computational 
resources

Typically not a limitation unless large number of 
differential equations required

Complex ABMs demand high computational power and 
cause long running times

Model comparison Straightforward due to similar model structure and 
model discrimination criteria

More complicated than ODE due to multiplicity of rules, 
choice of attributes and stochasticity driving emergent 
behaviors

Communication Challenging due to theoretical concept with mass 
transfer and binding kinetics (mathematical 
knowledge required)

Familiar concept in PKPD with large example pool
Well-established with regulatory agencies

Easier to communicate than ODE with non-modeler 
audience as more biologically interpretable

Not extensively used by PKPD modelers and regulators
More challenging to defend as less data-driven than ODE 

due to paucity of data at the subscale level

Applicability Modeling of well-mixed compartments with mass 
transfer and simple interactions at one scale level

PK models, PD models, and traditional 
pharmacometric models of exposure-response

Quantitative system pharmacology models with 
known or observable macro-level outcomes

Simulation of complex biological systems with subscale 
components (atomic, molecular, cellular, tissue, organism)

System biology models and quantitative system 
pharmacology models with limited empirical data 
and most relevant to elucidate unexpected behaviors 
(micro-known to produce macro-unknown)

Abbreviations: ABM, agent-based model; ODE, ordinary differential equation; PKPD, pharmacokinetic pharmacodynamic.

https://github.com/VanThuyTruong/Tutorial/tree/main/videos
https://github.com/VanThuyTruong/Tutorial/tree/main/videos
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model simulates 100 tumor cell populations with different 
initial pERK (see Figure 2.1b), whereas the ABM follows 
the fate of 100 tumor cells for a given patient (see Figure 
2.1c). In both models exposure-driven pERK reduction in-
duces tumor shrinkage followed by regrowth as the drug 
level falls (see Figure 2.1b–e). A difference is that the ABM 
is able to track cell death and division of each cell (Figure 
2.1c).

Simulating 100 times with the ABM (Figure 2.1e) 
yields 100 different population histories because the ini-
tial pERK distribution in each trial is different due to the 
stochasticity of the Gillespie algorithm. We observe that 
the total number of cells in a population may be higher 
in comparison to the ODE model, because the cells with a 
higher pERK values are more likely to survive and divide 
(see Figure 2.1d and 2.1e).

Figure 2.1c, 2.2a–f provide a closer look into one pop-
ulation. We see that the pERK value of a majority of cells 
falls under the death threshold (see Figure 2.2d), those cells 
go into the death pool (see Figure 2.2b) and therefore can 
die, which decreases the number of cells (see Figure 2.2a). 
When the drug level falls, the cells recover and the pERK 
value increases (see Figure 2.2e). After ~ 70 hours, the drug 
concentration is low enough for the cells to gain a pERK 
value above the division threshold and enter the division 
pool, those cells cause a population growth (see Figures 
2.2a, 2.2b, 2.2f). This simulation shows that cells with a 
low pERK level. which are assumed not being mutated, are 
most affected by the drug while drug treatment leads to an 
evolution of mutated cells with a high pERK value.

Bimodal distribution of pERK values

The next example aims to recapitulate a tumor where 
cells have a distribution of pERK levels based on two 
given phenotypes. We construct bimodal distributions 
from two normal distributions where 50 cells in the ABM 
or 50 populations in the ODE model have a pERK value 
with a mean of 60% pERK, whereas 50 cells in the ABM or 
50 populations in the ODE model have a pERK value with 
a mean of 190% pERK. The standard deviations are 10% 
in both distributions. A single dose of 3 mg/kg was cho-
sen, hence the PKPD of the examples in Figures 2 and 3 
are identical. The ODE model shows distinct behavior for 
populations with different pERK values (see Figure 3.1c), 
although the ABM does not display the bimodality on the 
population level (Figure 3.1d). In the ABM, the hetero-
geneity is shown on the microscopic level (see additional 
Figure S3.2c in the Supplementary Material) and the cell 
number is summed up for the macroscopic level (popula-
tion level). Therefore, the bimodality is only seen at the 
microscopic level. Taking a closer look into the example, 

we see that for the ABM, the number of tumor cells ini-
tially falls (Figure 3.1d). This is caused by the cells of the 
population with the mean pERK of 60%, which are either 
in the death or quiescence pool (see Figures S3.2c, S3.2d 
in the Supplementary Material). They die out or remain 
in the quiescence pool and therefore are not able to con-
tribute to the population growth (see in the supplemen-
tary Figures S3.1b, S3.2c-S3.2f ). The cells with high pERK 
value around 190% are resilient to the drug treatment, be-
cause the decrease of active pERK caused by the drug is 
not enough to bring those cells under the death thresh-
old. Then, the drug amount in the tumor compartment 
decreases and these tumor cells leave the quiescence pool 
and enter the division pool where they can divide again 
and cause an increase of the total cell number (see Figure 
S3.2b, Figure  S3.2e). The tumor cells start dividing and 
pass their pERK value at the division time-point to the 
daughter cells. Looking at Figure  S3.2f, we see that the 
offsprings have initially lower pERK values than the par-
ent cell, because the pERK decrease caused by the drug 
immediately affects them. During the time course of the 
simulation, their pERK value increases until they regain 
their inherited pERK values (Figures 3.1b, S3.2f). Because 
of the heritage of the pERK value, a typical pattern evolves 
and in the time course of the simulation there will be a 
tumor population with a high metabolic phosphoryla-
tion pool (compare Figures S3.2c and S3.2f). The overall 
population growth is driven by the cells with a high pERK 
value (see Figures 3.1b and 3.1d). Therefore, comparing 
the overall cell number of 100 simulations with a uniform 
pERK distribution (Figure 2.1e) and the bimodal distribu-
tion (Figure 3.1d) we see similar behavior with a constant 
population growth after a slight decrease until ~  50  h. 
This simulation emphasizes that tumor growth is driven 
by mutated cells with a high pERK value. This can be seen 
due to the heterogeneity.

Higher division and death threshold

The effect of changing birth and death thresholds is ex-
plored in Figure  4. The parameters are the same as in 
Figure 2 except for the division threshold of 150% pERK 
instead of 100% pERK, and a death threshold of 100% 
pERK instead of 50% pERK. This is compared to an ODE 
model (Figures 2.1b and 2.1d) and an ABM with the death 
and division threshold of 50% and 100% pERK (see Figures 
2.1c and 2.1e). A treatment of a single dose of 3 mg/kg is 
given.

The higher division and death thresholds lead to a 
longer residence of the tumor cells in the quiescence and 
death pools (see Figure 4d, and additional simulation in 
the Figures S4e-S4h). Despite the drug washout over time, 
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the majority of cells are not able to reach the division 
pool (Figure S4g), which lowers the growth of the tumor 
population.

Multiple treatment cycles

A treatment of 1 mg/kg administered every 24 h with 10 
cycles was simulated in Figure 5.1 with the ODE and ABM 
to derive pERK and tumor cell dynamic time-course. The 
pERK-time course in the ABM has less regular onset-offset 
granularity due to the time steps of the Gillespie algorithm 
(Figure 5.1c). The time points are sparse because the time 
steps in the Gillespie algorithm depend on the number of 
cells in the death and division pools and most cells are 
trapped in the quiescence pool (see Figure S5.2b). Overall, 
the ODE and ABM show similar behavior. As seen in the 
Supplementary Material, cells oscillate between division 
and quiescence pools (Figures S5.2d,e). This results in a 
decrease of cell number. There is a peak every 24 h in the 
division pool, followed by a peak in the death pool (see 
time points every 24  h in Figure  S5.2b). Upon chronic 
treatment, the pERK level within tumor cells slowly 
drops, causing the total cell number to decrease and tumor 
shrinkage (Figures  S5.2b and S5.2a). After ~  200  hours, 
the cells in the death pool have all died, whereas some 
cells with initially high pERK values remain dormant in 
the quiescence pool (see Figure  S5.2b). This resembles 
drug resistance of mutated cells with a high pERK value.

DISCUSSION AND CONCLUSIONS

Table 1 compares ABMs and ODE models, using proper-
ties (scale, dynamics of interactions, population, space, 
memory, and stochastic model), strengths and limita-
tions, and implementation (model building and qualifica-
tion, communication, and applicability). A key feature of 
ABMs is heterogeneity at the cellular/microscopic level: 
every agent has an individual set of attributes. Emergent 
behavior may arise, without central coordination, from 
local phenomena driven by discrete decisions and in-
teractions between individual agents. Adaptation of the 
agents to environmental changes is possible with rules set 
by the modeler, enabling memory to be stored to modify 
future behavior. Agents may also have a geographical lo-
cation.4,5,9,13 Due to their properties, ABMs are naturally 
suited to the diverse tumor microenvironment, where in-
teractions between different cell types play critical roles 
in cancer development, progression, and control. The 
agents in our anticancer treatment example are tumor 
cells, each with a different level of pERK. Depending on a 
cell’s current pERK value, it is susceptible to either death 

or division, governed by stochastic processes. Tumor cells 
with high pERK values divide and pass their pERK values 
onto their offspring, whereas the cells with a lower pERK 
value die or stay quiescent. Thus, the average pERK value 
in a cell population may increase.

Other examples of ABMs include the model of 
Cockrell and Axelrod,24 simulating the heterogeneous cell 
types and their proliferation kinetics inside human colon 
crypts, where quiescent stem cells are at the bottom of 
the crypt, proliferating cells are close to the bottom third, 
and differentiated cells are placed in the top two thirds. 
Proliferating cells are killed by cytotoxic drugs, whereas 
quiescent stem cells are resistant to cytotoxic drugs due 
to their low probability of dividing.24 The on-lattice ABMs 
of Kather et al. were used to predict survival, and guide 
new strategies for immunotherapy, in a colorectal cancer 
patient cohort.25 Effects of chemotherapy, immunothera-
pies, and cell migration inhibitors alone and in combina-
tion were simulated.26

In ODE models, individual agents and individual in-
teractions are not explicitly considered. Instead, macro-
level outputs are driven by mass transfer dictated by 
stoichiometric equilibrium and compartmentalization of 
the system (e.g., blood and tumor compartments). In our 
ODE model, all the cells have the same pERK value and 
constitutes a homogenous population; death or division 
of individual cells is not recorded. ODEs may be used to 
represent a subset of outcomes following therapeutic in-
terventions at the macro-level.9,13 Elements of stochastic-
ity may be introduced by assuming that parameters are 
drawn from probability distributions (to model between-
subject variability) and that measurements are subject to 
noise. In ODE models, adaptation to changing circum-
stances may be prespecified in the parameter settings and 
initial conditions. In most circumstances, ODE models do 
not have inherent memory features and do not possess a 
trace of the input variables within the system unless PDE 
are implemented to localize the interactions.4,13

Although ABMs take many different forms, all ODE 
models have the same mathematical structure, common 
to many areas of science. Algorithms for numerical solu-
tions of ODEs are widely available and understood, as are 
methods of data fitting and calibration against observed 
data.27,28 ODE models can have a simply descriptive pur-
pose, or both a predictive and a descriptive purpose. The 
simplest models, with the fewest parameters, provide an 
approximation whose accuracy relies on stochasticity not 
being preponderant.5

In principle, ODE models are based on population-
level assumptions and data, whereas ABMs are con-
structed from understanding at the level of individual 
agents. For example, in vitro assays29 or immunohis-
tochemical data26 may inform a model. When data for 
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macroscopic phenomena are not available, an ABM can 
be built as a hypothesis-testing device, where assumptions 
lead to observable collective behavior via simulation.30 
Of course, the more complicated a model, the more pa-
rameters it contains, the greater is the risk of overfitting 
and nonidentifiability.31 Another example is the tumor 
microenvironment modeled by Kather et al.,26 which 
can be calibrated in a patient-specific way. In the mod-
els we have introduced, the ABM requires more input 
than the ODE: the initial distribution of pERK values, 
and the death and birth thresholds. Analytical methods 
are required when parameters do not represent directly 
observable quantities. In that case, statistical estimation 
techniques, such as maximum likelihood estimation or the 
method of moments, are applied to a given dataset to se-
lect appropriate values. If analytical methods are not suit-
able for a given ABM, methods involving the generation 
of simulated data need to be considered. Those methods 
can be classified in frequentist approaches and Bayesian 
approaches. Frequentist approaches are distance-based or 
likelihood-based (e.g., the simulated minimum distance 
method or the methods of simulated moments).32 One 
example for calibration of ABMs using machine learning 
would be the work from Lamperti et al.33 Cockrell and 
An34 simulate systemic inflammatory response syndrome, 
with an ABM used to compare treatment options with dif-
ferent dosing regimens and drug combinations.

ABMs can be computationally challenging, depending 
on their complexity and the chosen model paradigm.14 In 
cellular Potts models, changes in cell shape and direct cell-
cell interaction are directed by Monte Carlo simulations 
and energy minimalization. Off-lattice methods bring 
the benefit of a more realistic simulation because cells 
can have various positions with respect to each other and 
freedom to move in any direction instead of being ordered 
on a grid. However, this comes with the disadvantage of 
higher computational cost, because special algorithms are 
necessary to efficiently handle cell-cell neighborhoods. 
During movement or division of cells, cell collisions with 
nearby cells need to be considered, which can be challeng-
ing in densely packed areas or populations. Improved ap-
proximations of cell biomechanics invariably come with 
computational cost.14,15 ODEs, in contrast, seldom require 
large computational resources.

A strength of ABMs is the use of biological rules which 
makes communication of the model easier and more in-
tuitive for a non-modeling audience. Components of two 
ABMs can be combined in a modular fashion to create 
meta-models. Each ABM can have different agents and 
outcomes, making comparison between different mod-
els challenging. On the other hand, advantages of ODE 
based models commonly used in the PKPD community 
are the simplicity of implementation, and relative ease in 

fitting experimental data in a statistically robust manner 
with clear decision rules for model selection and well-
established tools for model qualification. Communication 
with non-modeler audiences relies on understanding of 
mass transfer and binding kinetics.

Multiscale modeling aims to include various spatio-
temporal scales from atomic to molecular, cellular, 
multicellular, organ, and whole body. When explicit rep-
resentation of individuals is not needed, a continuous 
description with differential equations can be used. On 
the molecular scale, interactions (e.g., receptor-ligand in-
teractions, consumption and production of oxygen, nutri-
ent, and cell-cell signaling molecule concentration) can 
be described with ODEs. To model local conditions and 
environmental changes, such as availability of oxygen, 
nutrient, and hormones controlled by diffusion from mo-
lecularly rich regions (e.g., blood vessels and tumor edge), 
PDEs may be used. ODEs or PDEs may be integrated into 
simulations to lower computational cost. This type of hy-
bridization of a discrete model in a continuum environ-
ment is often found in the most complete descriptions of 
the tumor morphology.8

Comparing hybrid multiscale ABMs to a multiscale 
ODE model, as in the work of Milberg et al.,35 we can 
see additional differences between those methods. Their 
physiology-based quantitative pharmacology model pre-
dicts how the interaction of the immune system and the 
tumor microenvironment in a patient affects checkpoint 
blockade therapies administered as mono-, combo-, and 
sequential therapies. Agents may be located in compart-
ments: lymph node, blood, tumor, lungs, gastrointestinal 
tract, spleen, and liver, and the periphery. Heterogeneity 
is represented in the percent expression of each immune 
checkpoint in the cancer cells as an input into the model. 
The model consists of 282 ODEs and 218 algebraic equa-
tions to describe interactions between cells and trafficking 
of cells.35 In contrast, an ABM-based implementation of 
this model would require only six agents (with attributes in 
parentheses): Antigen, antigen presenting cells (resident, 
mature, and aCTLA4 expression), CD8+ T-cells (naïve, 
primed, activated, CTLA4, and PD-1), Tregs (CTLA4 and 
PD1), myeloid derived suppressive cells, and tumor cells 
(proliferating and PD-L1). The behavior of these agents 
is then controlled by a total of 16 interaction rules, with 
each cell type making use of a subset of these. In princi-
ple, this could be much more efficiently implemented and 
easily adapted should further interactions or cell types be 
required.

There are various hybrid multiscale ABMs in the lit-
erature. Oduola and Li modeled cancer growth during 
treatment with lapatinib using a multiscale model with 
a stochastic hybrid system,36 where concentration of pro-
teins and gene expression levels were represented with 
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ODEs. The cellular level contains a cellular automata 
model on a grid. A multiscale ABM of tumor angiogenesis 
is provided by Olsen et al.37 This model includes the mo-
lecular level (VEGF and diffusion), cellular level (genetic 
control and space), and tissue level (cells, blood vessels, 
and angiogenesis). Cancer cells are modeled as agents on 
a three-dimensional grid. Chaplain and Powathil devel-
oped two hybrid multiscale models that study the effects 
of cancer treatments, including a combination of radia-
tion and chemotherapy.38,39 The microenvironment con-
tains the concentration of oxygen modeled with a PDE. 
At the subcellular level, the cell cycle depends on con-
centration of complexes that are described with ODEs. 
Cellular automata and Potts models simulate the cellular 
level. Cess and Finley created a multiscale ABM of macro-
phages and T cells within a tumor.40 Tumor cells, M1 and 
M2 macrophages, and T cells are modeled as agents on 
a two-dimensional lattice, whereas diffusible mediators, 
such as IL-4 and IFN-γ, are simulated with PDEs. Neural 
networks are used to reduce the mechanistic model into a 
simple input/output model. The multiscale compartment 
model by Gong et al.41 describes the biological processes 
involved in tumor development and anti-tumor immune 
response. Cytotoxic T lymphocytes and cancer cells are 
modeled as agents in a three-dimensional space, with di-
vision, migration, cytotoxic killing, and immune evasion. 
PDEs describe the molecular scale (IL-2 secretion and 
transport).

ABMs are computational models with heterogeneous 
agents in which the behavior of individual agents is fun-
damental.9 Simulations may be intuitive because they 
recapitulate biological processes. ABMs are suitable for 
simulating complex biological systems with subscale com-
ponents (molecular, cellular, tissue, and organism) and 
inherent emerging behavior. On the other hand, systems 
of ODEs are well-suited for simulating processes that can 
be approximated as homogeneous, well-mixed systems, 
and would be best suited for traditional pharmacometric 
analyses with sufficient data (population PK and PD mod-
els, and physiology-based PK models), or for simplistic 
theoretical PKPD models. For quantitative clinical phar-
macology models, ODEs can also be implemented to re-
capitulate complex biological systems but would rely on 
extensive model assumptions, including parameter distri-
butions.35 In summary, ABMs can provide more detailed 
insights into complex biological systems and are often 
complemented with ODEs in hybrid multiscale models. 
Both methodologies have their strengths and weaknesses, 
depending on context and purpose. With the advent of 
more single-cell experiments, gene expression, and spatial 
transcriptomics, and other technological advances in im-
aging, we anticipate that the use of ABMs in discovery and 
drug development will increase with direct applications in 

PKPD and pharmacometrics to help elucidate dose sched-
uling and rationalize combination strategy in oncology 
and other therapeutic areas.
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