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Abstract
Human behavior and interaction in road traffic is highly complex, with many open scientific questions of high applied
importance, not least in relation to recent development efforts toward automated vehicles. In parallel, recent decades have
seen major advances in cognitive neuroscience models of human decision-making, but these models have mainly been
applied to simplified laboratory tasks. Here, we demonstrate how variable-drift extensions of drift diffusion (or evidence
accumulation) models of decision-making can be adapted to the mundane yet non-trivial scenario of a pedestrian deciding if
and when to cross a road with oncoming vehicle traffic. Our variable-drift diffusion models provide a mechanistic account
of pedestrian road-crossing decisions, and how these are impacted by a variety of sensory cues: time and distance gaps in
oncoming vehicle traffic, vehicle deceleration implicitly signaling intent to yield, as well as explicit communication of such
yielding intentions. We conclude that variable-drift diffusion models not only hold great promise as mechanistic models of
complex real-world decisions, but that they can also serve as applied tools for improving road traffic safety and efficiency.

Keywords Evidence accumulation · Gap acceptance · Human-robot interaction

Introduction

Human locomotion, as performed by individuals either
alone or in concert with others, has been an object of
scientific study for a long time (Gibson & Crooks, 1938),
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and has engendered a wide range of often cross-disciplinary
computational modeling research, spanning domains such
as perception, motor control, decision-making, social
interaction, human-robot coexistence, and more (Fajen &
Warren, 2003; Hoogendoorn & Bovy, 2003; Lee, 1976;
Markkula et al., 2018; Turnwald et al., 2016). In road
traffic, the successes or failures of human movement and
sharing of space has particularly large societal implications,
in terms of mobility, productivity, and human safety, and
consequently considerable effort has been invested into
understanding and modeling how humans locomote both
as vehicle drivers and vulnerable road users (Helbing,
2001; Markkula et al., 2012; Plöchl & Edelmann, 2007).
These efforts have further intensified recently, to support
development of increasingly automated vehicles (Camara
et al., 2020; Sadigh et al., 2018; Schwarting et al., 2019).
By many accounts, successful widespread deployment of
automated vehicles will be limited by the extent to which
these vehicles can encapsulate a sufficent understanding—
typically in the form of computational models—of road user
behavior and interaction (Brown & Laurier, 2017; Camara
et al., 2020; Markkula et al., 2020; Schieben et al., 2019).

Existing approaches to computational modeling of road
user behavior mirror the modeling paradigms in the
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wider cognitive and behavioral sciences, including cogni-
tive architectures (Salvucci, 2006), ecological psychology
(Fajen, 2013), classical and optimal control theory (Plöchl
& Edelmann, 2007), rational decision-making (Choudhury
et al., 2007), game theory (Elvik, 2014; Hoogendoorn
& Bovy, 2003), as well as data-driven modeling using
machine learning approaches (Behbahani et al., 2019; Ma
et al., 2016). However, most of these existing models have
either emphasized detailed modeling of individual road user
behavior, or more coarse-grained modeling of interactions
of larger number of road users, for example, to study high-
level traffic flow. Computational modeling of the subtler
details of local interactions between individuals is still in its
infancy (Camara et al., 2020; Markkula et al., 2020).

One type of model that has been uncommon in road user
modeling, but which has over recent decades become promi-
nent in more basic psychology and cognitive neuroscience
research, is drift diffusion, or evidence accumulation, mod-
els of decision-making. Broadly speaking, these models
assume that decisions are made by means of noisy integra-
tion of evidence for or against decision alternatives, up to a
threshold at which the decision is made. The saliency of the
available evidence (for example, the movement coherence
of a set of dots on a visual display, in a paradigm where the
task is to judge the overall direction of dot motion) affects
evidence accumulation rate and thus overall response times,
and the noise in the accumulation process introduces vari-
ability, allowing these models to predict full distributions of
choices made and the corresponding response times (Gold
& Shadlen, 2007; Ratcliff et al., 2016). These general ideas
can take a range of more specific computational forms,
some of which explicitly leverage neuroscientic concepts
and modeling components (Bogacz & Gurney, 2007; Pur-
cell et al., 2010; Usher &McClelland, 2001; Wong &Wang,
2006), for example, inhibition between competing deci-
sions, similar to lateral inhibition in the brain. Other model
formulations take a more behavioral than neural perspec-
tive, such as the well-known drift diffusion model (DDM)
(Ratcliff, 1978; Ratcliff et al., 2016) or linear ballistic accu-
mulator (LBA) (Brown & Heathcote, 2008). Overall, there
is now a large literature showing that this general class
of model can be highly successful at accounting for both
behavioral responses as well as neural data, in both humans
and non-human primates, across a range of laboratory
paradigms on especially perceptual decision-making (e.g.,
discrimination of random dot motion direction) and value-
based choice (e.g., between different food items) (Brosnan
et al., 2020; Busemeyer et al., 2019; Ratcliff et al., 2016).
However, it is less well known to what extent models of
this nature can describe human decision-making well also
in more applied and embodied contexts, for example, relat-
ing to human sensorimotor control and movement in the real
world.

We and others have investigated the application of
drift diffusion-type models in the road traffic context,
with promising results initially for low-level locomotion
decisions on applying braking or steering control (Markkula
et al., 2018; Piccinini et al., 2020; Xue et al., 2018), more
recently also extending to multi-agent interaction situations
(Boda et al., 2020; Giles et al., 2019; Kovaceva et al., 2020;
Markkula et al., 2018; Zgonnikov et al., 2020). One key
step for bringing these models to bear in these contexts has
been to relax the limitation to stationary or intermittently
changing sensory input. This limitation has been the norm
in laboratory paradigms, in part because for stationary
input, model likelihood functions can be written in closed
mathematical form, which simplifies model-fitting (Navarro
& Fuss, 2009; Wiecki et al., 2013). However, in the context
of real-world sensorimotor behavior, sensory evidence is
more often than not continuously changing over time, as
emphasized, for example, in the ecological psychology and
perceptual control theory research traditions (Gibson, 1958;
Lee, 1976; Powers, 1978). These generalizations to real-
world tasks and time-varying evidence bring challenges,
thus far not fully resolved, both in terms of model-fitting
methodology and in terms of the more limited sample sizes
that typically arise when doing controlled data collection in
conditions with high external validity.

A specific type of road traffic scenario that has been the
focus of increasingly intense human-automation interaction
research (but which is of course relevant to traffic safety also
in non-automated traffic) is pedestrian road-crossing. The
majority of the research in this area has been observational
(Lobjois & Cavallo, 2007; Schneemann & Gohl, 2016;
Varhelyi, 1998), but some previous mathematical models
exist. In the context of large-scale traffic simulation,
logistic regression models have long been used to model
pedestrian “gap acceptance” between vehicles in a stream
of traffic (Brewer et al., 2006; Schroeder, 2008; Yannis
et al., 2013), and the use of such models in automated
vehicle algorithms has also been proposed (Jayaraman
et al., 2021; Kapania et al., 2019). However, these models
are limited to a discrete acceptance/rejection decision
per gap, and do not account for the timing of road-
crossing decisions, which has implications for traffic flow
and acceptance of automated vehicles (Dey et al., 2020;
Lee et al., 2020; Markkula et al., 2018). The existing
models also do not account for how pedestrians respond
to vehicles yielding to them, a process which is known to
be non-trivial: Human drivers tend to communicate with
pedestrians both implicitly, for example, using exaggerated
deceleration, and explicitly with communicative signals
(Domeyer et al., 2019; Markkula et al., 2020). Studies
are currently investigating the extent to which automated
vehicles should indicate their intentions in similar ways, for
example, by means of external human-machine interfaces
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(eHMIs), either leveraging conventional signals such as
headlight flashes, or using novel designs (Faas et al.,
2020; Lee et al., 2019; Lee et al., 2020). However, these
communicative aspects of vehicle-pedestrian interactions
remain poorly understood, and have not been the subject of
computational modeling.

We have previously shown that connected networks of
one or more drift diffusion type models driven by time-
varying sensory input can capture qualitative patterns in
how pedestrian road-crossing decisions depend on time
gaps and yielding deceleration (Markkula et al., 2018), and
we have also reported a tentative attempt at fitting these
models to quantitative human data (Giles et al., 2019).
These preliminary results were promising, but we concluded
that the tested models were overly complex in relation to
the adopted fitting methods and the relatively small data
set; the simplest model with just a single drift diffusion
unit performed essentially as well as the more complex
alternatives. This type of simplified model was then tested
by Zgonnikov et al. (2020) on a related traffic scenario–
drivers deciding to turn across oncoming traffic–and was
found capable of reproducing response time distributions of
“turn” versus “wait” decisions, thus confirming that existing
discrete gap acceptance/rejection models of turning drivers
can be generalised, using drift diffusion models with time-
varying input, to model also the timing of these decisions.
This study was however limited to only constant speed,
non-yielding oncoming traffic.

Here, we pursue two main objectives: First, we wish
to determine whether the type of variable-drift diffusion
model successfully applied to gap acceptance decisions
of turning drivers by Zgonnikov et al. (2020) can also
account for pedestrian road-crossing decisions. Second, we
attempt to go beyond pure gap acceptance, generalizing to
situations where vehicles may be yielding to the decision-
maker, with or without additional implicit or explicit
communicative cues. To achieve these objectives, we start
from our original, inconclusive pedestrian modeling efforts
in Giles et al. (2019) and extend these by incorporating
an additional, larger data set with higher face validity,
and by leveraging more powerful model-fitting methods.
In a first section below, we introduce the basic model and
fitting methods. Then, we describe the first modeling study,
reusing the dataset in Giles et al. (2019) to investigate
and model the impact of vehicle kinematics (both non-
yielding and yielding with different deceleration profiles)
on pedestrian crossing decisions. Thereafter, we describe
the second study, and show how our model can be extended
to and validated on this second data set, which also
includes explicit communication using eHMI. We then
provide a general discussion and conclusions, addressing
both the topic of applied use of our models in automated
vehicle interaction design, and the implications of our

findings for decision-making modeling in the more basic
sciences.

Computational Modeling

Model Definition

The model is based on Gaussian drift diffusion where
the drift can vary over time and the drift is considered
to be the momentary evidence in favor of crossing the
road. A decision is made when the value of the diffusion
process reaches a decision threshold. The evidence comes
from sensory input, which in this work is formulated to
reflect the visual information that the pedestrian recieves of
the approaching vehicle. The architecture of the model is
illustrated in Fig. 1.

The variable drift diffusion process can be written in
mathematical form as a stochastic differential equation:

dA

dt
= −αA(t) + s(t) + ε(t) (1)

where A(t) is the accumulated evidence, α is a damping
parameter, s(t) is the time-varying sensory input, and ε(t)

is the white noise process with power σ .
A decision is made at time t ′ when the evidence threshold

A′ is passed:

t ′ = min(t) s.t. A(t) > A′ (2)

We are interested in the distribution of t ′ given a
trajectory specified by some s(t) (in our case, different
kinematical trajectories of vehicle approach). Simple
closed form solutions for this distribution are not known
(Downes & Borovkov, 2008). To evaluate the decision time
distributions, we adopt a numerical scheme presented in
“Numerical Approximation”.

Generalized Time to Arrival

For the current application of pedestrian crossing, the time-
varying sensory input s(t) is based on a generalized time
to arrival signal τ̄ (t) that comprises the apparent time to
arrival (TTA) of the vehicle at the pedestrian’s location
which we denote1 τ(t) = D(t)/v(t), TTA’s first time
derivative τ̇ (t), the distance between pedestrian and vehicle
D(t), the vehicle speed v(t), an indicator variable for an
external human-machine interface being active H(t), and a
passing threshold which saturates the sensory input when

1The symbol τ is used here to refer to time to arrival, without
implication whether or not the time to arrival is estimated by the
participants from optical expansion information, as suggested by the
tau theory of ecological psychology (Lee, 1976; Lobo et al., 2018).
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Fig. 1 Schematical illustration
of the variable-drift diffusion
model of pedestrian crossing
decisions
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τ(t) < τp (i.e., τp indicates the TTA at which the pedestrian
judges the vehicles to have passed them):

τ̄ (t) = τ(t) (TTA effect)

+βD(D(t)/v′ − τ(t)) (Distance effect)

+βτ̇ (τ̇ (t) + 1) (Acceleration effect)

+βH H(t) (eHMI effect)

+∞ if τ(t) < τp, 0 otherwise (Vehicle passed)

(3)

The different β∗ above are coefficients for the different
terms and v′ (fixed to 50 km/h in this study) is the
prior speed, i.e., the typical speed the pedestrian assumes
the vehicle is driving at before seeing it. The τ̇ term
is formulated so that βτ̇ does not affect constant speed
scenarios where τ̇ (t) = −1.

To get the sensory input s(t), the generalized TTA is
passed through a sigmoidal transformation:

s(t) = arctan(m(τ̄ (t) − τ̄ ′)) (4)

where m is a scaling factor and τ̄ ′ is a threshold, loosely
analogous to the “critical gap” threshold considered in
many existing pedestrian gap acceptance models, at which
crossing and not crossing is equally likely (Schroeder,
2008). The greater the margin of the generalized TTA
above (or below) this threshold, the faster the evidence A

in favor of crossing increases (or decreases) in the model.
The arctan transformation prevents arbitrarily high rates of
evidence accumulation, which would otherwise occur when
a vehicle has passed the pedestrian, and no further vehicle
is approaching behind it, such that τ is infinity. The choice
of arctan is somewhat arbitrary and other sigmoid functions
would likely give similar results.

Overall, it may be noted that the model evidence A is
determined by (i) a weighted sum of a number of different
inputs (Eq. 3), (ii) a sigmoidal activation function (Eq. 4),
and (iii) noise and exponential damping (Eq. 1), such that it
effectively corresponds to a single neural node representing
a population of neurons, as assumed in many neurally
inspired models of decision-making and behavior (Schöner,
2007; Usher & McClelland, 2001).

It may also be noted that if all generalized TTA coef-
ficients β∗ = 0, the model essentially reduces to a
threshold τ̄ ′ on the apparent TTA τ , such that positive
evidence in favor of crossing the road will accumulate
whenever the apparent TTA is above this threshold. The
addition of sensory input terms in Eq. 3 to “generalize” the
TTA is a formalization of the phenomenon that observed
crossing decisions cannot be explained solely byTTA, but are
also modulated by other factors (Petzoldt, 2014). In this
paperwewill introduce the different terms inEq. 3 incremen-
tally to study their respective contributions to the model’s
behavior and ability to fit human crossing decisions.

Numerical Approximation

For computational purposes the Eq. 1 is approximated using
a discrete time stochastic process:

ΔA[i] = A[i] − A[i − 1]
= (−αA[i − 1] + s[i])Δt + ε[i] (5)

where Δt is the time step duration and ε[i] ∼ N(0, Δtσ 2).
The time step duration for all analyses in this study was
1/30 s.

To approximate the distribution of A[i], we adopted
an approximation scheme which closely resembles the
forward Euler solver of the GDDM framework for solving
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generalized drift diffusion models (Shinn et al., 2020) such
as the presented VDDM. In brief, this method divides
the time-evidence plane into a grid, and calculates a
complete numerical probability distribution for the diffusing
evidence at each time step, effectively until all of the
evidence probability mass has been absorbed at the decision
threshold. In contrast with Monte Carlo methods for
decision time estimation, our method yields, for a given
model parameterization and sensory input s[i], a fully
deterministic probability distribution of decision times,
something which substantially simplifies the model fitting.
For further details, please refer to Shinn et al. (2020),
our provided source code at https://github.com/jampekka/
vddfit/, and literature about stochastic differential equation
approximations (Särkkä & Solin, 2019).

Model Fitting

As mentioned, the approximation described in “Numerical
Approximation” yields a distribution for the crossing time
t ′ given the input signal s[i] and the parameters. We
estimated the model parameters by numerically maximizing
the likelihood of the observed decision times (equivalent
to maximum-a-posteriori with flat priors). To remedy
problems with local optima, we use the basinhopping
method with 10 iterations with Powell’s conjugate direction
method as the local optimizer, as implemented in Scipy
(Virtanen et al., 2020).

For Study 1, we assessed the effect of the distance
coefficient βD and acceleration coefficient βτ̇ using nested
model selection, and all other parameters were free to vary.
Due to this, and likely redundancy in the parameterization
(see “Results”), inferences on parameterization of Study 1
model should be restricted to these.

For Study 2, all the parameters except the passing
threshold τp and eHMI coefficient βH (see Eqs. 4 and 3)
were fixed at values obtained in Study 1 (for rationale,
see “Extending the Model to Two-Vehicle Scenarios”).
Data from all participants were pooled and a single set of
parameters was fitted for each study. This in contrast with
most existing literature on evidence accumulation models,
where models are typically fitted per participant. Typical
evidence accumulation laboratory paradigms permit many
repetitions per participant, and thus allow for assessing
between-participants variation. Such repetitions were not
feasible here, because of time constraints (each trial takes up
to about 30 s to complete). It could also be argued that large
numbers of repetitions could cause substantial behavior
adaptation effects (Engström& Ljung Aust, 2011), reducing
the external validity of these studies. For these reasons, a
simplifying assumption made here is that all participants
can be described with a single model parameterization. A
more principled approach to account for within and between

individual variation would be a hierarchical formulation, but
this was not pursued due to the additional technical and
mathematical complications entailed.

The likelihood distributions (equivalent to posterior
distributions with flat priors) of the parameter values
were estimated using the Adaptive Metropolis method
(Haario et al. 2001) using 2000 samples, with 1000 first
samples discarded. The algorithm was initialized from the
estimated maximum likelihood values produced by the
method described above. Most of the analyses in this paper
are made based on the maximum likelihood point estimates,
whereas we use the likelihood distributions mainly to assess
potential parameter redundancies (see “Results”).

Study 1

The aim of Study 1 was to design a minimally complex
pedestrian road-crossing experiment that would allow fitting
of models predicting crossing onset times, across a range
of kinematical trajectories for the approaching vehicle. All
procedures were approved by the relevant University of
Leeds Research Ethics committee, reference AREA 18-004.
Below we describe first the experiment,2 and thereafter we
present our methods and results for fitting our model to
first constant-speed scenarios and then to scenarios with a
yielding vehicle.

Experiment

Twenty participants (age 24–60, average 27.9 years; 11
male, 9 female) were recruited from a University participant
pool, and provided informed consent before taking part in
the experiment. Standing upright and wearing an HTC Vive
Virtual Reality (VR) headset, the participants experienced
a VR scene, created in Unity 2018, consisting of a straight
two-lane road of total width 5.85 m, with a zebra crossing
at the participant’s location; see Fig. 2 for an illustration.

In each trial, the participant first looked straight across
the zebra crossing (see the inset in Fig. 2b), and turned their
head to the right to look for oncoming (left hand driving)
traffic when they felt ready to do so. Unbeknownst to the
participants, their turning of the head triggered the start of
a preprogrammed scenario, whereby a car was positioned
in the virtual world at a certain initial distance and speed
(see the large image in Fig. 2b). The participants’ task was
to cross the road as soon as they felt safe to do so, either
before or after the car had passed them, by pressing a button
on the HTC Vive’s controller. Upon this button press, the

2Initial work on the dataset collected in this experiment has been
previously reported in a conference paper (Giles et al., 2019), but we
provide a full description of the experiment here nonetheless.
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Fig. 2 Study 1. (a) Schematic
bird’s eye view of the pedestrian
crossing scenario (not to scale).
(b) Example views of the virtual
scene as shown in the head-
mounted display, at the start of
each trial (inset) and once the
participant turned their head to
look for oncoming traffic

location of their viewpoint in the VR world moved in a
straight line across the road at a speed of 1.31m/s (a typical
average walking speed (Chandra & Bharti, 2013)); during
this time their head rotation still controlled the rotation
of the VR viewpoint. An alternative approach would have
been to let the pedestrians physically walk to cross the
virtual road, but in Study 1 we opted for this button-pressing
approach instead, to make it easier to identify the timing
of the crossing decision, and to minimise the impact of
different preferred walking speeds between participants as
a possible source of variability in their crossing decisions.
Once the participant reached the other side of the road, the
trial concluded, an all-white VR scene was shown with an
instruction on where to look (in the direction straight across
the zebra crossing) before pressing the controller button
again to start a new trial.

The participants were allowed to practice this task until
they were comfortable with it, and then followed a sequence
of 16 trials per participant. In each of these trials, the
vehicle approach behavior was different, following one of
three scenario types: In six constant-speed scenarios, the
vehicle appeared at a distance D0 (all distances measured
longitudinally along the road from the participant’s location
to the front of the car) and maintained a constant speed v0
while approaching and passing the zebra crossing. In eight
yielding scenarios, the vehicle appeared at initial distance
and speed D0 and v0, and immediately decelerated at a
constant rate to stop at a distance Dstop from the participant.
There were also two scenarios where the vehicle only
decelerated down to a speed of 5 km/h before passing the

zebra crossing, but these were excluded from analysis here
due to a scenario programming error corrupting some of
the collected data. Full details about all of the included
scenarios are provided in Table 1, where also the initial time
to arrival τ0 = D0/v0 is listed.

We chose these scenarios and scenario parameters to
allow us to model the impact on crossing decisions of (i)
TTA and distance, previously observed to both separately
influence gap acceptance decisions in constant-speed
scenarios (Petzoldt, 2014), and (ii) yielding decelerations of
different magnitudes.

Table 1 Vehicle approach scenarios in Study 1

Scenario type v0 (m/s) D0 (m) τ0 (s) dstop (m)

Constant speed 6.94 15.90 2.29 N/A

13.89 31.81 2.29 N/A

6.94 31.81 4.58 N/A

13.89 63.61 4.58 N/A

6.94 47.71 6.87 N/A

13.89 95.42 6.87 N/A

Yielding 6.94 15.90 2.29 4

13.89 31.81 2.29 4

13.89 31.81 2.29 8

6.94 31.81 4.58 4

13.89 63.61 4.58 4

13.89 63.61 4.58 8

6.94 47.71 6.87 4

13.89 95.42 6.87 4
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Table 2 Model fits for Study 1

σ α m τ ′ A′ τp βD βτ̇ loglik

0.64 1.84 0.59 1.64 0.84 −0.14 0.75 0.59 −400.9

0.71 1.90 0.43 2.57 0.84 −0.17 0 0.38 −416.3

0.28 4.34 0.74 0.23 0.45 −0.18 0.32 0 −417.6

0.30 4.22 0.62 0.42 0.47 −0.17 0 0 −420.7

1 0 1 2 1 0 0 0 −595.8

Fixed parameters (used also as initial values) in bold

Results

The parameters estimated from Study 1 data are listed
in Table 2 and their marginal likelihood distributions are
illustrated in Fig. 3. The nested model selection for distance
coefficient βD and acceleration coefficient βτ̇ shows
considerable improvement in the likelihood, especially

when both parameters are free to vary (log likelihood
improvement 19.8, AIC improvement 35.6), indicating that
under the model vehicle distance and accleration cues had
a significant impact on pedestrian crossing, beyond the
impact of the pure TTA cue.

The marginal likelihood ranges (equivalent to posterior
credible intervals with flat priors) of the parameters

Fig. 3 Optimized parameter values (black vertical lines) and their
estimated marginal likelihoods (histograms). Left and rightmost ticks
mark the 95% highest density range. The distributions should be inter-
preted with caution, as strong pairwise correlations can be seen in

some parameters, indicating likely redundancy in the parameteriza-
tion. Figure 14 in the Appendix shows pairwise covariation in the
distribution
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are also relatively tight, and notably both generalized
TTA coefficients for distance βD and acceleration βτ̇

significantly differ from zero. However, the parameter
posterior distributions exhibit high (Pearson ρ up to
0.92) correlation among parameters, likely redundancy in
parameterization, and thus limiting the interpretation of the
marginal distributions. Pairwise covariation of the posterior
estimates can be assessed in the Appendix Fig. 14.

Below, we provide further insight into the model fits,
separately for the constant-speed and yielding scenarios.

Constant-Speed Scenarios

To begin with, we consider the constant-speed scenarios,
only including the time-to-arrival τ and distance D terms of
the generalized TTA expression in Eq 3. As seen in Figs. 4
and 5, the model clearly captures the bimodal pattern of
early vs late crossers (crossing before and after the vehicle,
respectively) and its strong dependency on initial time to
arrival, as well as the general shape of the crossing onset
time distributions.

Furthermore, Fig. 5 shows that given vehicles approach-
ing at identical TTAs, those with higher speeds, or con-
versely longer distances, exhibit earlier crossing decisions.
This behavior is not possible to explain with models rely-
ing solely on TTA, which is a common assumption in
ecological psychology for object avoidance (Merchant &
Georgopoulos, 2006), but which the current model is able to
capture due to the distance term. Without a nonzero distance
coefficient βD the model would produce identical distribu-
tions for the two scenarios with different speeds but same
initial TTA (the differently colored lines in Fig. 5), while
the observed distributions are clearly not identical in the
higher initial TTA cases (see also Fig. 10). As mentioned,
this is reflected also in the 95 % marginal likelihood range
of the βD coefficient, from 0.6 to 0.9, i.e., excluding zero
(Fig. 3).

Yielding Scenarios

As has been previously observed, pedestrian crossing
behavior in situations where a vehicle yields also tends
to be bimodal, with some crossings seen early on, and
a second mode of crossings once the vehicle is close
to standstill, with few crossings in between (Dey et al.,
2020; Schneemann & Gohl, 2016). As can be seen in
Figs. 6 and 7 this general pattern of behavior was present
also in our data, and was captured rather well by the
model.

Again in line with previous reports (Dietrich et al., 2020),
increased deceleration magnitudes (higher Dstop distances)
led to a shift toward earlier crossing onset times. This can
be seen in Fig. 7 as the difference of the green and black

lines in both measured and model-predicted data. However,
this observation in itself does not permit the conclusion that
the participants made use of deceleration cues to make their
crossing decision, since the apparent TTA is also affected
by the deceleration. Qualitatively, a model relying on TTA
only would also predict earlier crossing onsets for increased
deceleration. However, since our model considers both
cues separately we can tease apart their model-estimated
contributions, and our results do indicate that participants
took the crossing decision more readily in the presence of
deceleration cues than what would be predicted from the
deceleration-induced change in TTA alone. Visually this
effect can be seen in Fig. 6 as the difference between the
blue and orange curves (the latter showing the behavior of
the model with βτ̇ set to zero) and quantitatively in the
model selection in Table 2 and in the parameter estimates in
Fig. 3, with a 95% marginal likelihood interval from 0.4 to
0.7 for coefficient βτ̇ .

The overall predictive power of the mean crossing times
across different scenarios can be seen in Fig. 8. Note that
mean crossing time is by no means a perfect summary of
the observed and model-predicted crossing times, given the
multimodality and strong skew of the distributions, but not
least from an applied perspective we still find this aggregate
view of model performance useful.

Study 2

The aim of Study 2 was twofold. First, to test the models
fitted as part of Study 1 on a separate, larger dataset,
collected in a setting with higher face validity. Second, to
attempt extension of the model to scenarios with eHMI
indications of yielding intention. Study 2 is somewhat akin
to an out-of-sample predictive test for the model developed
and fitted for Study 1. However, due to clear differences
in the experimental environment and vehicle scenarios (see
next section), we allow for one free parameter (namely the
generalized TTA coefficient τp to account for these changes
(see “Extending the Model to Two-Vehicle Scenarios”
below). While this means that we don’t have a pure out-of-
sample replication, it should be noted that τp only controls
a very limited aspect of the model’s behavior.

Experiment

This experiment was originally developed to study the
combined impact of vehicle approach kinematics and
different types of eHMI on human road-crossing behavior;
full methodological details and non-modeling analyses of
the same dataset are reported by Lee et al. (2020). All
procedures were approved by the relevant University of
Leeds Research Ethics committee, reference LTTRAN-
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Fig. 4 Model response to an example constant-speed scenario. Top
panel shows cumulative density functions and probability densities
for observed (black) and model predicted (blue) crossing decision
times. Mid-panel shows the TTA (blue) and distance (black) of the

approaching vehicle over time. Bottom panel visualizes the evidence
distribution (approximately the distribution ofA(t) of Fig. 1 and Eq. 1)
and its evolution over time

107. Forty participants (age 19–36, average 28.5 years;
23 male, 17 female) were recruited via a participant pool,
message board notices, and social media posts, and provided
informed consent before taking part. The experiment took
place in the University of Leeds HIKER (Highly Immersive
Kinematic Experimental Research) lab, a CAVE-based
pedestrian simulator with projection on three walls and a
9 m × 4 m floor space on which participants could walk

freely, while their head position and orientation was being
tracked, for perspective correction and movement recording.
The experimental paradigm was adapted from (Lobjois
& Cavallo, 2007): As shown in Fig. 9a, the participant
started each trial standing at a specified location next to
a 3.5 m wide single-lane street, along which two vehicles
approached. The instruction to the participants was to “cross
(or decide not to cross) between the two approaching cars

Fig. 5 Cumulative probability functions for decision times in the con-
stant speed scenarios. The three panels show scenarios with identical
TTA and different speeds within these scenarios are displayed as lines
of different colors. As we assume, for simplicity, that all individuals

have the same parameterization, these can be interpreted as the model
predicted crossing times for any pedestrian crossing in an identical
kinematic setting
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Fig. 6 Model response to an
example yielding scenario. To
highlight the independent effect
of deceleration in the model, the
dashed orange line shows
predicted cumulative
distribution if the TTA change
coefficient βτ̇ = 0 (see
“Generalized Time to Arrival”).
For further figure explanation,
see Fig. 4

[...] when you feel comfortable to do so, such as you would
in real traffic.”

The participants were allowed to practice the task
until they were familiar with it, and then followed three
experimental blocks with a short break between each. Each
block included 48 trials, which were identical between
blocks, but with the order randomised per participant and
block. As in Study 1, the trials followed two main scenario
types: constant-speed scenarios and yielding scenarios, but
the kinematics were different from Study 1. For both
scenario types, there were 12 kinematic variations, across
all combinations of three initial vehicle speeds v0 ∈

{11.11, 13.33, 15.56}m/s and four initial time gaps between
the vehicles τ0 ∈ {2, 3, 4, 5} s. In constant-speed scenarios,
both vehicles maintained their initial speed throughout,
whereas in the yielding scenarios, the second vehicle
started decelerating when 38.5 m from the participant,
with a constant deceleration so as to stop 2.5 m from the
participant. Each kinematic variation was repeated twice
in each block. Table 3 provides a summary overview of
the trials in each block. A between-participant factor was
also included: For twenty of the participants (Group 2
in Table 3), for half of the yielding trials an eHMI on
the second vehicle was activated at deceleration onset, as

Fig. 7 Cumulative density functions for decision times in the deceleration scenarios. The rows have identical initial speed and the columns have
identical initial TTA. Different distances of the vehicle to the pedestrian at full stop (Dstop) are represented in black and green (4m and 8m
respectively)
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Fig. 8 Predicted vs observed
average crossing times across
the different scenarios in Study
1. Mean absolute deviation
(MAD) of the predictions across
scenarios is 0.37 s. MAD for
constant speed scenarios is
0.22 s and for yielding scenarios
it is 0.47 s

an explicit communication of yielding intent. The original
study included three experimental groups, and two different
eHMI; here we are only using the groups who experienced
either no eHMI (Group 1) or a flashing headlights eHMI
(Group 2). The latter took the form of three quick flashes
of the front headlights, chosen for being a commonly used
signal for yielding intentions in the UK. As described by
Lee et al. (2020), a third group of participants experienced
a slow pulsing light band eHMI, but since the effect of
this eHMI on participant behavior was considerably smaller,
we did not include these participants in our analyses here.
The eHMIs were not mentioned at all in the information
provided to the participants before the experiment, since a
goal of the original study was to investigate how quickly
participants would deduce the meaning of the eHMI signals.
Lee et al. (2020) found that the impact of the flashing
headlights eHMI on crossing decisions was already present
from the first experimental block, hence we are not
considering learning effects here.

Extending theModel to Two-Vehicle Scenarios

To extend the model to accommodate two vehicles, the
crossing decision for both is modeled using the same single
evidence accumulation, and in line with the experimental
instructions the simulated pedestrian is only allowed to

cross between the two vehicles; otherwise, the pedestrian
does not cross at all. In the model, this is enforced by
altering the parameterization so that for the first vehicle
τ ′ is fixed at ∞ (such that the model will never cross
before the first vehicle), and for the second vehicle τp is
set to −∞ (such that the model will never pass after the
second vehicle). All the other parameters are shared for both
vehicles.

To account for the differences in the experimental
settings, the passed threshold τp was optimized separately
(in conjunction with a new eHMI parameter τH discussed in
the next section), arriving at value 0.33 s, whereas all other
parameters were fixed to values fitted in Study 1 (see Fig. 3).

The nested model selection, listed in Table 4, shows
considerable incease in model likelihood when both the pass
threshold τp and eHMI coefficient βH are free to vary (log
likelihood improvement 3668.9, AIC improvement 7333.8).
For τp this indicates that the model parameterization needs
at least this adjustment for the new scenario of Study 2.
Improvement due to incorporating the βH (log likelihood
improvement 175.2 and AIC improvement 348.4 after
optimized τp) implies that eHMI has an additional effect on
crossing times under this model.

The motivation for adapting the τp parameter was the
observation that in Study 2, participants sometimes began
crossing the road slightly before the first vehicle had passed
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Fig. 9 Study 2. (a) Schematic
bird’s eye view of the pedestrian
crossing scenario. (b) An
example view of the pedestrian
crossing scenario in the HIKER
CAVE environment. In this
photo, the first car is just passing
the participant, and the second
car is visible in the distance

Vehicle

Pedestrian

Distance

Speed
Vehicle*

Speed*

GapDistance*

(a)

(b)

them (negative crossing times in Fig. 10), presumably due
to a perceived time pressure from the approaching second
vehicle. This type of time pressure was not present in Study
1 when passing after the (sole) vehicle.

Figure 10 shows that the model generalizes quite well to
the Study 2 data. The overall share of participants crossing
between the two vehicles is on average predicted well
(rightmost ends of lines in the figure). The effect of the
initial distance is at least qualitatively correctly predicted,
but with clear overestimation of the effect in the case of
initial TTA of 3.0 s.

A systematic lack of model fit can be seen in the “elbow”
of the CDF, where the model seems to have more variation

Table 3 Trials per block in Study 2

Scenario
type

eHMI present
(Group 1)

eHMI present
(Group 2)

Number
of trials

Constant
speed

N/A N/A 12 kinematic variations
× 2

Yielding No Yes 12 kinematic variations

No No 12 kinematic variations

See the text for a description of the kinematic scenario variations

in the latencies of the crossing decision (seen in the CDF
as more gradual increases over time of the share crossed).
This tendency can to some extent also be seen in the Study
1 results (especially the TTA 6.9 s panel in Fig. 10); in the
Discussion we consider possible reasons for this lack of fit.

Yielding and eHMI

For half of the participants in Study 2, the vehicle activated
eHMI (flashed headlights) to the participant when it started
decelerating. As described in “Generalized Time to Arrival”,
the eHMI was incorporated in the model by adding it as an
indicator variable H(t) (0 when no eHMI, 1 when eHMI

Table 4 Model fits for Study 2

Pass threshold τp eHMI coefficient βτ̇ loglik

0.33 0.94 −7151.2

0.34 0 −7326.4

−0.14 1.05 −10607.1

−0.14 0 −10820.1

Fixed parameters (used also as initial values) in bold. Other parameters
from Study 1 fit
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Fig. 10 Cumulative probability functions for decision times in the constant speed scenarios in Study 2. The four panels show scenarios with
identical TTA and different speeds within these scenarios are displayed as lines of different colors. The time axis is zero when the first car passes
the pedestrian position

was active) to the generalized time to arrival (see Fig. 1
and Eq. 3). As can be seen in Fig. 11, the model was able
to reproduce relatively well the crossing onset distributions
both in eHMI and non-eHMI scenarios. The maximum
likelihood value for the coefficient βH was found to be

0.94, suggesting that flashing headlights is (marginally)
equivalent to an increase of 0.94 s of TTA for pedestrian
crossing decisions.

The significant contribution of eHMI to the crossing time
distribution can be seen in Fig. 11 in both observed and

Fig. 11 Cumulative probability functions for decision times in the deceleration scenarios of Study 2. The rows have identical initial speed and the
columns have identical initial TTA. Blue lines are trials with no eHMI and orange lines are trials with eHMI
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model-predicted crossing times, where lower crossing times
are systematically more likely when eHMI is present. It
should be noted that the magnitude of the impact of eHMI
is dependent on other features of the vehicle’s trajectory.
For example, in very high initial TTA situations (rightmost
row of Fig. 11) pedestrians tend to cross even before eHMI
is enacted, whereas the eHMI’s contribution is higher for
low-to-mid TTA scenarios (leftmost rows). This interaction
is qualitatively predicted by the model, although some
quantitative differences can be seen; the “elbow” exhibits
some lack of fit, as already seen for the constant speed
scenarios and in Study 1, and the quantitative crossing times
are also off for some scenarios.

Figure 12 provides a summary overview of the prediction
performance for mean crossing times. The accuracy in
predicting the mean crossing times across scenarios is is
similar to Study 1 (see Fig. 12). Most directly comparable
are the yielding scenarios with no eHMI and yielding
scenarios of Study 1, for which the mean absolute deviations
are essentially identical (Study 2 0.44 s vs Study 1 0.47 s).
The prediction error increases with eHMI scenarios slightly
to 0.52 s. The error for constant speed trials is somewhat
lower for Study 2 (0.18 s vs 0.22 s), but the constant speed
means for Study 2 are somewhat arbitrary due to imputation
(see caption of Fig. 12).

Discussion

Below we provide a discussion of what new insights our
results bring regarding pedestrian road-crossing decisions
and how to model them, as well as of the limitations of
our work. Then, we discuss possible implications and future
directions for computational modeling of cognition and
behavior in general, as well for applied work on automated
vehicles and traffic safety.

Computational Modeling of Road-crossing Decisions

The work by Zgonnikov et al. (2020) demonstrated that,
for car drivers turning across oncoming non-yielding traffic,
variable-drift diffusion models allow modeling of not only
the frequency of gap acceptance as a function of vehicle
TTA and distance, but also the distributions of timing of
these decisions. Our results replicate this finding for a
pedestrian road-crossing scenario. We parameterised our
model using one dataset and tested its performance on
another, finding that our model accounted rather well for the
substantial variations of crossing onset distributions across
a wide range of kinematical conditions.

We extend beyond the constant-speed scenarios con-
sidered by Zgonnikov et al. (2020) by also considering

Fig. 12 Predicted vs observed
average crossing times across the
different scenarios in Study 2.
For non-eHMI yielding trials the
Mean absolute deviation (MAD)
of the predictions is 0.44 s. For
the with-eHMI trials the MAD
is 0.52 s. In the experiment the
pedestrian could not pass after
the vehicle, so for constant
speed scenarios all crossing
times greater than the initial
TTA are censored. To compute a
mean for the censored scenarios,
a crossing time of 5.0 s (the
longest possible constant speed
trial) was inputed. Note that this
makes the MAD for constant
speed trials somewhat arbitrary,
but as computed it is 0.18 s, and
the overall MAD across all
scenarios is 0.38 s.
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scenarios with yielding deceleration, again across the two
separate experiments. The presence of yielding makes the
situation under study significantly more complex from
a decision-making point of view, since now the oncom-
ing car may be considered not only as an object moving
through space, but as (controlled by) an agent who can have
one of several different intentions with respect to oneself
(Pezzulo et al., 2019). It has been previously established that
pedestrian crossing in front of yielding vehicles tends to fol-
low a bimodal pattern, with one early mode and one mode
which occurs later, once the vehicle is approaching a full
stop, but with few occurrences of crossing in between (Dey
et al., 2020; Schneemann & Gohl, 2016). Our model was
able to capture this pattern well, again across a wide range of
kinematical scenarios over the two datasets, and our model
also provides a mechanistic explanation for why this pattern
arises: According to our model, the early crossing decisions
are effectively equivalent to those which are observed in
constant-speed scenarios, and occur because the pedestrian
judges the apparent gap to be large enough to cross, regard-
less of whether the car yields or not. However, as the car
approaches further, even though it is decelerating the appar-
ent TTA will further decrease for a while (see Fig. 6, and
see Lee (1976) for a mathematical analysis of τ̇ ), such that
pedestrians who did not cross early are even less likely to
cross in this period of time. The apparent TTA then starts
to increase dramatically a short while before the car comes
to a full stop, giving rise, in our model, to the late mode of
crossing onsets.

There are interesting nuances, however, to the exact
timing of this second mode. Past work has shown that larger
deceleration magnitudes lead to faster crossing decisions
(Dietrich et al., 2020), but it has not been clarified whether
this is simply because the car comes to a full stop earlier
when the deceleration is greater, or whether it is also due
to some form of intent recognition on the part of the
pedestrian, facilitated by more obvious deceleration cues.
Indeed, our model-based analyses permit the conclusion that
crossing decisions to decelerating vehicles are faster than
one would expect from a pedestrian who solely responds
to the deceleration-induced change in the apparent gap. By
including the time derivative of TTA (τ̇ ) as a source of
decision evidence, our model was able to capture the timing
of the late mode of crossing onsets. In other words, we
provide evidence that pedestrian road-crossing decisions do
involve a process akin to intent recognition (or acceleration
estimation, which to some extent is equivalent). That this
would be the case seems intuitively true from everyday
experience, but has not been previously conclusively
demonstrated, as far as we are aware.

Since yielding intent can be recognised from deceleration
behavior, deceleration has been referred to as a form
of implicit communication from drivers to surrounding
road users (Dey et al., 2020; Domeyer et al., 2019;
Markkula et al., 2020). In Study 2, we also considered

explicit communication, in the form of headlight flashes
that, on some trials, indicated the onset of yielding.
Previous empirical work has shown that explicit indications
of yielding (either by headlight flashes or more novel
eHMIs) increase the tendency for crossing in front of an
approaching vehicle, and speeds up the decision to do
so, but again this phenomenon has not been subject to
computational modeling. Our model assumes that explicit
eHMI indications of yielding are considered by the
pedestrian as an additional piece of evidence in favour of
a road-crossing decision. The evidence “boost” that was
added at eHMI activation was kinematics-independent, but
it can be noted in Fig. 11 (and indirectly in Fig. 13) that the
model nevertheless managed to capture the clear interaction
between kinematics and eHMI presence, with largest impact
of eHMI for smaller TTAs. This pattern arises naturally
from the model, because at larger TTAs there is already
strong kinematic evidence in favour of crossing, such that
added evidence from eHMI will have a relatively minor
impact (even more so given the saturating transfer function
constraining s(t)).

Limitations

Although the model was able to capture all of the main
qualitative effects of the studied factors on road-crossing

Fig. 13 Observed and predicted average pedestrian time savings due
to implicit and explicit communication of vehicle yielding intentions.
Each data point is the difference in average crossing decision time
between two scenarios, where the only difference between scenarios
was the absence or presence of an exaggerated yielding deceleration
(orange; Study 1) or an eHMI indication of yielding (blue; Study 2).
Overall R2 = 0.90 and mean absolute deviation 0.28 s
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decisions, it is clear that the quantitative model fits were
not perfect for all scenarios. There seems to be at least two
systematic shortcomings in the model’s predictions:

First, a specific shortcoming of the model is a tendency
to exhibit a non-negligible crossing probability at low
apparent TTAs in some situations where close to no human
participants initiated crossing. This is visible as smoother
model CDFs versus more stepwise empirical CDFs in
especially the constant-speed scenarios (Figs. 5 and 10),
particularly those with high initial TTAs, and particularly so
in Study 2 (Fig. 10).

Second, while the distance term in the model allowed
capturing the overall increased tendency to cross with
increased vehicle distance (or differently put, with increased
speed for a fixed TTA), again the quantitative fits
were not perfect. As can be seen in Figs. 5 and 10,
the observed impact of the distance manipulation was
greatest at intermediate initial TTAs around 4–5 s, and
the model captures this nonlinear interaction qualitatively,
but exaggerates it quantitatively (see the same figures,
and also Fig. 7). Our formulation of the distance term
in the model was mathematically equivalent to the one
used by Zgonnikov et al. (2020), but was reformulated
here to more clearly express one possible explanation for
the phenomenon as such: Our formulation suggests that
the distance-dependency arises due to pedestrians’ prior
expectations of vehicles driving at a certain speed, such
that higher than expected speeds lead to over-estimates of
generalized TTA, and vice versa.

Some of the shortcomings mentioned above can likely
be attributed to the simplifying assumptions made: one
parameterization for all individuals, constant accumula-
tion noise variance and decision boundaries, and inde-
pendent linear summation of the different sources of
evidence.

The choice of using a single parameterization across
participants was made mainly for technical purposes. A
hierarchical estimation of parameters would be conceptually
straightforward using well known methods, such as partial
pooling and MCMC, but would likely require more per-
participant repetitions, especially compared to Study 1. The
other simplifying assumptions we made affect also the
structure of the model, and changing them would require
further theoretical development.

Inferences of the model’s parameter values are hindered
by high correlations in the posterior estimates. The
correlations are likely due to redundant parameterization
in the presented formulation. Future work should try
to find a more parsimonious model formulation which
would give clearer interpretation for the parameters and
more quantitatively link more naturalistic tasks to what is
known from evidence accumulation models in simpler task
environments.

The generalizability of the parameter values or distribu-
tions to new data is not fully understood, and especially due
to the relatively large amount of parameters (8 in Study 1)
to a limited dataset (320 crossings in Study 1), there is a
risk of overfitting. This is addressed somewhat by Study
2, although due to the re-estimation of the passed thresh-
old τp this doesn’t serve as a pure replication. Future work
should address the generalizability with replication data or
with computational methods such as cross validation with a
larger data set.

A relatively straightforward extension to the model
would be to allow a collapsing decision boundary for
the accumulated evidence, to capture potential time
pressure effects. This is a somewhat standard extension
in drift diffusion models with existing implementations
available (Shinn et al., 2020), and has been recently
applied also to road-crossing modeling by Zgonnikov et
al. (2020), in their case to account for a small but statistically
significant decrease of response times with decreasing
TTAs. Similar approaches could be used to study, e.g.,
time-varying accumulation noise.

The general approach we adopted for modeling the
input sensory evidence to be accumulated, describing it
as a generalised TTA constructed from separate sources
of evidence in favor of crossing, worked relatively well
overall, but there are many possible variations to Eq. 3
that we did not investigate here. Not least our assumption
that the various factors affecting the generalised TTA
are independent and additive seems likely to be an
oversimplification. For example, as shown by Lee et
al. (2019), the visibility of eHMI varies with distance,
suggesting inclusion of the distance D(t) also in the H(t)

term in Eq. 3, and possibly something similar could be the
case also for perception of acceleration (the τ̇ term).

The sensory model could also be improved by incorpo-
rating more details of what is known about the limitations of
human sensory system. Similar discussion and some devel-
opment is happening within car following models used for
traffic simulation (Saifuzzaman & Zheng, 2014), e.g., using
visually projected angles of an object rather than its dis-
tance from the observer. However, such models typically
cause non-linearities within the model, which would require
also further deviation from the Gaussian-linear assumptions
of classical drift-diffusion models. On the other hand for
example a Bayesian observer based modeling would estab-
lish further links to recent developments in computational
neuroscience (Friston, 2012), as has been proposed for car
following (Pekkanen et al., 2018).

More generally, it is worth pointing out that our results do
not permit conclusions about the exact sensory information
made use of by our participants while deciding on their
road-crossing. It is possible that some of the success of
our model is due to our basing it on sensory quantities
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that are visually accessible to human observers, such as
τ and τ̇ , but it may just as well be that the participants
used some other sensory information that roughly covaries
with these quantities. To draw more specific conclusions
in this respect, one would need experiments and model
comparisons targeting these questions specifically.

Implications for Wider Computational Modeling
of Cognition and Behavior

Besides the task-specific future modeling directions dis-
cussed above, there are also possible implications from our
work for computational modeling of decision-making more
in general.

As mentioned in the introduction, most evidence
accumulation modeling work in the literature focuses on
abstract tasks of perceptual discrimination or value-based
choice. Our results instead add to a more limited (but
growing) body of support for drift diffusion type models in
locomotion and general sensorimotor interaction with the
world (Boda et al., 2020; Giles et al., 2019; Kovaceva et al.,
2020; Markkula et al., 2018; Markkula et al., 2018; Piccinini
et al., 2020; Xue et al., 2018; Zgonnikov et al., 2020). In
this type of context, decisions are less purely “perceptual” or
“cognitive,” and instead arguably more embodied in nature,
yet interestingly the same type of decision mechanisms
seem to apply. This is a largely unexplored research area,
with many potentially fruitful directions to pursue. One
aspect of decision-making that becomes more obvious in
this context is that sensorimotor tasks are often highly
dynamic, such that the associated decision evidence tends
to vary over time, often continuously so. This highlights
the similarity of evidence accumulation models with
frameworks like dynamic field theory, where dynamic
sensory input can also be accumulated up to thresholds
where new behaviors occur Schöner (2007); making the link
between these modeling approaches more explicit could be
one interesting direction. Another could be to extend the
existing battery of laboratory paradigms used for evidence
accumulation modeling, by developing paradigms providing
continuously time-varying decision information, rather than
static or intermittently changing decision evidence as in
most existing paradigms. New paradigms emphasising
continuously time-varying evidence could be devised both
in tasks with some external validity, such as we have done
here, or tasks that may be more artificial in nature but which
may allow collection of larger datasets and thus allow fitting
of models to individual participants.

Addressing more complicated tasks and models brings
about some technical considerations. For conventional
drift diffusion models, and various extensions, closed
form solutions or efficient numerical approximations are
available (Navarro & Fuss, 2009; Wiecki et al., 2013).

For some more general models, such as supporting an
arbitrarily varying drift rate, however, such solutions or
approximations are typically not known or even necessarily
possible.

Drift diffusion type-models are mathematically stochas-
tic difference or differential equations (SDE) and are rel-
atively easy to sample from (at least in discrete time
formulations or approximations), but parameter estimation
and statistical inferrence becomes complicated, as evi-
denced by our previous inconclusive attempts (Giles et al.,
2019). To simplify estimation and inference, we opted here
to instead use discretized approximations of the underly-
ing distributions and relatively simple Euler stepping solu-
tion of the SDE. More sophisticated methods for solving
and approximating SDEs are known and actively studied
(Smith, 2000; Särkkä & Solin, 2019) and applying such
could increase the accuracy of the approximation and curb
computational complexity.

Applied Implications

The model we propose here may be useful in applied
settings in a few different ways, for example, to predict
and optimize the impact of automated vehicle design on
traffic flow efficiency. As summarized in Fig. 13, our
model was rather successful at predicting the average time
savings for the pedestrians achieved in our studies when
the vehicle communicated its yielding intentions implicitly
(via exaggerated deceleration; Study 1) or explicitly (via
eHMI; Study 2). It is worth noting that the time savings
for the vehicle passengers would typically be larger, due to
the acceleration dynamics of vehicles (both deceleration and
subsequent acceleration take time) (Markkula et al., 2018).

The model may also be useful as a component in
algorithms for real-time sensor data interpretation. Making
use of models of pedestrian behavior in automated vehicle
algorithms is an active area of research, but so far the
models used have been relatively simplistic (Camara et al.,
2020; Jayaraman et al., 2021; Kapania et al., 2019).
Another important role of human behavior models in
vehicle development is as agents in simulation environments
for virtual testing (Behbahani et al., 2019; Camara et al.,
2020; Markkula et al., 2018). For both of these applications,
since the current model only considers the specific case
of a pedestrian who is stationary at the kerb, one would
likely want to adapt the model into a larger framework for
behavior prediction, to allow modeling of a richer variety of
scenarios.

Also beyond the context of vehicle automation, the
model may be of use for studying and improving safety in
conventional, non-automated traffic, where car-pedestrian
collisions account for a substantial fraction of casualties
(Schneider, 2020; Organization, 2018). The model, or future
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improvements of it, could, for example, be used to study
the probability of unsafe pedestrian crossing behavior as a
function of road design decisions affecting, for example,
vehicle speed and visibility.

Conclusion

We have demonstrated that variable-drift diffusion models
can be used to account for timing of pedestrian road-
crossing decisions, and how these are affected by a number
of different factors: (i) The impact of vehicle kinemat-
ics (distance, speed, and deceleration) of the approach-
ing vehicle was established across two independent—and
methodologically rather different—studies, with the sec-
ond study serving to validate the model fits obtained
from the first study. (ii) It was known since before that
vehicle deceleration magnitudes affect pedestrian cross-
ing decisions, but our model analyses permit the con-
clusion that this effect does not arise solely due to the
impact of the deceleration on the apparent time gap, but
rather due to a separate process whereby the pedestri-
ans recognize the yielding intent of the vehicle. (iii) We
also show how the impact of explicit communication of

Appendix

Fig. 14 Marginal and pairwise posterior distributions of parameters for Study 1. High correlations (up to 0.92 for α and τ ′) are observed for some
variables, indicating that the parameterization is likely redundant and marginal distributions should be interpreted with caution

yielding intent (e.g., eHMI) can be modelled as provid-
ing an extra source of evidence in favour of initiating
road-crossing.

One central feature of our model was our assumption
that different sources of decision evidence could be
seen as independent additions to a generalised time to
arrival quantity, which was then thresholded to yield the
momentary evidence accumulation, and we found that this
approach worked rather well in general. However, the
quantitative fits between observed and model-predicted
behavior were far from perfect for all scenarios, and future
work may refine the exact formulation of the model,
for example, in terms of the translation from sensory
input to decision evidence, to further improve the model’s
predictions.

We have illustrated and discussed how our model
can be put to applied use in research and development
work on vehicle automation and road safety. From a
perspective of computational cognitive models more in
general, we conclude that variable-drift diffusion models
provide a promising framework for describing human
decision-making also in complex real-world situations,
where continuous integration of multiple sources of time-
varying evidence is necessary for successful behavior.
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Schöner, G. (2007). Dynamical systems approaches to cognition. In
R. Sun (Ed.) Cambridge handbook of computational cognitive
modeling. Cambridge University Press.

Schroeder, B. J. (2008). A behavior-based methodology for evaluating
pedestrian-vehicle interaction at crosswalks. Ph.D. thesis, North
Carolina State University.

Schwarting, W., Pierson, A., Alonso-Mora, J., Karaman, S., & Rus,
D. (2019). Social behavior for autonomous vehicles. Proceedings
of the National Academy of Sciences, 116(50), 24972–24978.
https://doi.org/10.1073/pnas.1820676116.

Shinn, M., Lam, N. H., & Murray, J.D. (2020). A flexible framework
for simulating and fitting generalized drift-diffusion models. eLife,
9, e56938. https://doi.org/10.7554/eLife.56938.

Smith, P. L. (2000). Stochastic dynamic models of response time
and accuracy: A foundational primer. Journal of Mathematical
Psychology, 44(3), 408–463.

Turnwald, A., Althoff, D., Wollherr, D., & Buss, M. (2016).
Understanding human avoidance behavior: Interaction-aware
decision making based on game theory. International Journal of
Social Robotics, 8(2), 331–351.

Usher, M., & McClelland, J. L. (2001). The time course of perceptual
choice: The leaky, competing accumulator model. Psychological
Review, 108(3), 550–592.

Varhelyi, A. (1998). Drivers’ speed behaviour at a zebra crossing: A
case study. Accident Analysis & Prevention, 30(6), 731–743.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright,
J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., May-
orov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., . . . van
Mulbregt, P. (2020). SciPy 1.0 contributors: SciPy 1.0: Fundamen-
tal algorithms for scientific computing in python. Nature Methods,
17, 261–272. https://doi.org/10.1038/s41592-019-0686-2.

Wiecki, T. V., Sofer, I., & Frank, M.J. (2013). Hddm: Hierarchical
bayesian estimation of the drift-diffusion model in python.
Frontiers in Neuroinformatics, 7, 14.

Wong, K. F., &Wang, X. J. (2006). A recurrent network mechanism of
time integration in perceptual decisions. Journal of Neuroscience,
26(4), 1314–1328. https://doi.org/10.1523/JNEUROSCI.3733-05.
2006.

Xue, Q., Markkula, G., Yan, X., & Merat, N. (2018). Using perceptual
cues for brake response to a lead vehicle: Comparing threshold and
accumulator models of visual looming. Accident Analysis & Pre-
vention, 118, 114–124. https://doi.org/10.1016/j.aap.2018.06.006.

Yannis, G., Papadimitriou, E., & Theofilatos, A. (2013). Pedestrian gap
acceptance for mid-block street crossing. Transportation Planning
and Technology, 36(5), 450–462. https://doi.org/10.1080/03081060.
2013.818274.

Zgonnikov, A., Abbink, D., & Markkula, G. (2020). Should I stay or
should I go? Evidence accumulation drives decision making in
human drivers. https://doi.org/10.31234/osf.io/p8dxn. Publisher:
PsyArXiv.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

80 Comput Brain Behav  (2022) 5:60–80

https://doi.org/10.1073/pnas.1820676116
https://doi.org/10.7554/eLife.56938
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
https://doi.org/10.1016/j.aap.2018.06.006
https://doi.org/10.1080/03081060.2013.818274
https://doi.org/10.1080/03081060.2013.818274
https://doi.org/10.31234/osf.io/p8dxn

	Variable-Drift Diffusion Models of Pedestrian Road-Crossing Decisions
	Abstract
	Introduction
	Computational Modeling
	Model Definition
	Generalized Time to Arrival

	Numerical Approximation
	Model Fitting

	Study 1
	Experiment
	Results
	Constant-Speed Scenarios
	Yielding Scenarios


	Study 2
	Experiment
	Extending the Model to Two-Vehicle Scenarios
	Yielding and eHMI

	Discussion
	Computational Modeling of Road-crossing Decisions
	Limitations
	Implications for Wider Computational Modeling of Cognition and Behavior
	Applied Implications

	Conclusion
	Appendix
	Declarations
	References




