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Abstract 

Fibrinogen, one of the most abundant plasma proteins playing a key role in haemostasis, is 

an important modulator of wound healing and host defence against microbes. In the current 

review, we address the role of fibrin(ogen) throughout the process of wound healing and 

subsequent tissue repair. Initially fibrin(ogen) acts as a provisional matrix supporting 

incoming leukocytes and acting as reservoir for growth factors. It later goes on to support 

reepithelialisation, angiogenesis and fibroplasia. Importantly, removal of fibrin(ogen) from 

the wound is essential for wound healing to progress. We also discuss how fibrin(ogen) 

functions through a number of mechanisms to protect the host against bacterial infection; 

by providing a physical barrier, entrapment of bacteria in fibrin(ogen) networks and by 

directing immune cell function. The central role of fibrin(ogen) in defence against bacterial 

infection has made it a target of bacterial proteins, evolved to interact with fibrin(ogen) to 

manipulate clot formation and degradation for the purpose of promoting microbial 

virulence and survival. Further understanding of the dual roles of fibrin(ogen) in wound 

healing and infection could provide novel means of therapy to improve recovery from 

surgical or chronic wounds and help to prevent infection from highly virulent bacterial 

strains, including those resistant to antibiotics.  

  



INTRODUCTION 

Haemostasis begins instantly after injury, with formation of a platelet plug, closely followed 

by a provisional fibrin matrix. However, the role of the blood clot extends far beyond the 

cessation of bleeding. Different constituents of the clot help drive the wound healing 

process forward. Activation of platelets leads to release of vasoactive agents, growth factors 

and chemokines, while the clot itself concentrates the release of cytokines and growth 

factors by acting as a reservoir. In addition to its important role of controlling haemorrhage, 

fibrinogen has the innate capacity to promote wound healing and combat invading bacterial 

pathogens. As a rapidly formed provisional matrix protein, fibrinogen can serve as a lattice 

for incoming cells and growth factors, whilst also providing an early line of defence for host 

protection. Over the decades, significant progress has been made in defining the roles of 

fibrinogen in both wound healing and host defence. 

Fibrinogen is a 340 kDa glycoprotein made up of three pairs of polypeptide chains, Aα, Bβ 

and γ held together by 29 disulfide bonds.1 It is the third most abundant of human plasma 

proteins, after albumin and immunoglobulins, and normally circulates at around 2-4 mg/ml. 

When clot formation is triggered, thrombin cleaves fibrinopeptides from fibrinogen, thus 

resulting in conversion of soluble fibrinogen to an insoluble fibrin polymer forming a 

branching 3D network that is essential for haemostasis (figure 1A-B). The mechanical 

properties of clots are essential to the functions of fibrin in haemostasis.  

 

FIBRINOGEN IN WOUND HEALING 



Once bleeding is controlled, the wound healing process immediately begins with the 

inflammatory phase. The inflammatory phase is characterised by sequential infiltration of 

neutrophils, macrophages and lymphocytes attracted by chemokine release and 

complement activation,2,3 and occurs within hours of injury and continues for at least 7 

days. Neutrophils and macrophages clean the wound by solubilizing damaged cells and 

micro-organisms and phagocytosing the debris.4,5 Macrophages also release growth factors 

that stimulate chemotaxis and proliferation of fibroblasts, smooth muscle and endothelial 

cells and promote angiogenesis.6 The proliferative phase occurs between 3-14 days 

following injury and begins during the inflammatory phase. This phase involves the 

rebuilding of the wound via reepithelialisation, angiogenesis, granulation tissue formation 

and collagen deposition. Epithelialisation begins within hours of injury, in an attempt to re-

establish a protective barrier between the wound and the environment.7 Granulation tissue 

formation is the final stage in the proliferative phase, where fibroblasts proliferate within 

the wound site in response to fibronectin and growth factors.8 Fibroblasts begin 

synthesizing collagen, elastin and other extracellular matrix proteins to replace the 

provisional matrix,9,10 and also differentiate into myofibroblasts, allowing for the 

contraction of the matrix, bringing the wound margins together.11 The final stage in wound 

healing is tissue remodelling or maturation phase, which begins around day 8 and can 

continue for up to a year. The main step in this phase is deposition of an organized network 

of collagen. Abnormalities in this process can lead to compromised wound strength or scar 

formation. 

The orderly formation of the fibrin network following injury and its subsequent removal is 

essential for uninterrupted progression of wound-healing through these phases (figure 2). 

Disruption or alterations in fibrin provisional matrix have been shown to have detrimental 



effects on the healing process, stalling repair in the inflammatory phase. This has been 

highlighted in a number of animal models of conditions that effect clot formation, resulting 

in poor wound healing.12  

 

Role of fibrin(ogen) in the provisional extracellular matrix 

The fibrin network takes on a new role following haemostasis contributing to the provisional 

extracellular matrix (ECM). First described in 1982 by Clark et al., fibrin and fibronectin rich 

matrices were present in biopsies of early stage wound healing, and they stimulated cell 

migration.13 Subsequently, fibrin(ogen) was shown to bind to numerous cells, including 

neutrophils, monocytes, fibroblasts, and endothelial cells aiding migration, proliferation and 

organization (figure 2).14-17 These cells bind directly to fibrin(ogen) by both cell surface 

integrin receptors 18-21 and non-integrin receptors (e.g. VE-Cadherin).22 Fibrin matrices can 

modulate endothelial cell integrin expression, suggesting that a provisional fibrin matrix 

may be involved in regulation of angiogenesis.23 However, inadequate removal of the 

provisional fibrin matrix can lead to healing complications, with plasminogen-deficient mice 

showing markedly delayed cutaneous wound repair, while crossbreeding these mice with 

afibrinogenemic mice nullified the delay in wound healing.24 

 

Inflammatory cells 

The beginning of the inflammatory phase is determined by the influx of neutrophils and 

monocytes into the injury site, with neutrophils arriving first due to their larger abundance 

in circulation. Several factors regulate their influx and activity including chemoattractants, 



such as thrombin-cleaved fibrinopeptides from fibrinogen 25 and plasmin-derived fibrin 

degradation products (figure 2).26 Other non-fibrinogen derived elements also attract 

leukocytes including collagen, elastin, fibronectin, thrombin, complement factors C3a and 

C5a and transforming growth factor beta (TGF-β).27-32  

A leading role of leukocytes is to eliminate contaminating bacteria via phagocytosis, and 

binding of leukocytes to extracellular matrix proteins, such as fibrin or fibronectin, through 

integrin receptors (αMβ2, αvβ3, or Mac-1) modulates this process.33-36 Chemotactic peptides 

(e.g., C5a) increase integrin receptor Mac-1 expression on neutrophil surfaces,37 and this 

mediates their adhesion to the Gly-Pro-Arg sequence in the N-terminal domain of the 

fibrinogen Aα-chain.38 Fibrinogen degradation products also induce release of proteases 

from neutrophils and monocytes,39-43 which help to facilitate leukocyte movement across 

blood vessel basement membranes along with tissue debridement, including degradation of 

fibrin itself. The ability of fibrin(ogen) to modulate phagocytic and digestive processes 

suggests it plays an important role in the transition between the inflammatory and tissue 

repair phases. 

 

Epithelialization  

Reepithelialisation is a crucial step in recovering tissue homeostasis and protecting against 

infection that begins within hours of injury.44 Upon damage to the epidermal basement 

membrane, a provisional matrix containing fibrin and fibronectin forms beneath the 

epidermis amongst stromal type I collagen bundles at the wound margin.45 The epidermis 

does not migrate over the provisional matrix at the wound surface, but instead epithelial 

cells from the wound edge and other residual structures quickly migrate through the 



provisional matrix, dissecting the clot and desiccated eschar from viable tissue (figure 2).13 

The migration path appears to be determined by integrins on cell membranes of migrating 

epidermal cells. In contrast to other epidermal cells, keratinocytes express integrin 

receptors for fibronectin, tenasin and vibronectin,46-48 but they do not interact with 

(fibrin)ogen or denatured collagen because they do not express αVβ3.49 This results in the 

migrating wound epidermis avoiding the fibrin rich clot, migrating down the collagen-rich 

dermal wound margin and over fibronectin-rich granulation tissue. For dissection of the 

migrating wound epidermis to occur, breakdown of the extracellular matrix is thought to be 

facilitated by collagenase and urokinase-type plasminogen activator produced by epidermal 

cells.50-52 Plasminogen-activators are able to activate collagenase as well as plasminogen 

bound to fibrin,53,54 allowing the degradation of both interstitial collagen and fibrin in the 

plane of epidermal migration. This is supported by a study that showed delayed wound 

healing in plasminogen deficient mice following skin injury.24 A lack of fibrin breakdown by 

plasmin led to a reduction in cellular infiltration (especially keratinocytes) into wound site 

matrices, but the delay in wound healing was lost in fibrinogen and plasminogen deficient 

mice. In addition, fibrin can selectively disrupt the adhesion of differentiated keratinocytes 

preventing cells with less growth potential from migrating into the wound.54 

 

Granulation tissue 

Approximately three to six days after injury newly forming tissue, known as granulation 

tissue, begins to form within the wound. Granulation tissue provides a surface for migration 

of epithelial cells, a barrier to infection, myofibroblasts necessary for wound contraction, 

and fibroblasts responsible for collagen formation. Macrophages provide growth factors 



within the granulation tissue to stimulate fibroplasia and angiogenesis, with fibroblasts 

helping to form new extracellular matrix to support cell ingrowth, and new blood vessels 

helping to supply oxygen and nutrients to promote cell metabolism.  

 

Fibroplasia 

Fibroplasia is the formation of extracellular matrix by fibroblasts. The migration and 

proliferation of fibroblasts into the wound begins around 5 days after injury. The clot 

provides a provisional matrix composed of fibrin, fibronectin and vitronectin,13,27,55,56 which 

alongside growth factors, including platelet-derived growth factor (PDGF) 57 and TGF-β,58 

stimulates fibroblast proliferation and migration from periwound tissue. The constituents of 

the provisional matrix contribute to tissue formation by providing a scaffold for cell 

migration and a reservoir of cytokines.59,60  

It has been reported that fibronectin mediates fibroblast migration,59,61 but fibroblasts can 

also directly interact with fibrin (figure 2).16 This likely occurs through Arg‐Gly‐Asp‐Ser 

(RGDS) sites binding to integrin αvβ3, as RGD peptides inhibit the interaction, but other 

integrins may also play a role such as αvβ5 and α5β1.21,61,62 Fibrin directly influences 

fibroblast collagen expression,63 whilst fibrin network structure within the wound appears 

to impact proliferation and migration.64,65 A recent study demonstrated that stiffening of 

the fibrin network with platelet-like particles promoted fibroblast migration and enhanced 

wound healing.66 The movement of fibroblasts into a fibrin clot may also be facilitated by 

active proteolytic breakdown of the matrix by fibroblast derived enzymes, including 

plasminogen activator.59,67 Fibrin degradation product, fragment E, is a potent inducer of 

fibroblast chemotaxis, enhances myofibroblast activation, and is profibrotic in vivo.68 



Fibroblasts that have migrated into the wound switch to their major function, collagen 

production.9 In vitro modelling using fibrin gels has shown that fibroblasts proceed to 

reorganize the fibrin matrix and subsequently remodel it into collagen-containing tissue 

(figure 2).69 

 

Angiogenesis 

Angiogenesis accompanies the fibroplasia process, allowing generation of new blood vessels 

and delivery of oxygen and nutrients to the new granulation tissue. Angiogenesis is a 

complex process, relying on both stimulated migration of endothelial cells and appropriate 

extracellular matrix in the wound bed.70 Fibrin is thought to perform two functions in 

induction and progression of angiogenesis. Firstly, it provides a three-dimensional matrix to 

support endothelial cell migration and generation of new capillary-like structures. 

Fibrinogen has been shown to bind αvβ3‐integrin on endothelial cells in humans via RGD‐

sequence (Aα 572–574),71,72 and additional non-RGD interactions via binding sites on the γ-

chain.73 A porcine full-thickness cutaneous wound model showed that αvβ3 plays a 

fundamental role during invasive angiogenesis in wound healing, demonstrating it is 

expressed specifically on capillary sprouts invading fibrin clots. Inhibition of αvβ3 with cyclic 

peptides or antibodies inhibited granulation tissue formation.17 Interestingly though, mice 

lacking the β3-integrin, and therefore the αvβ3 complex, have increased angiogenesis in late 

wound healing,74 suggesting that the role of αvβ3 in angiogenesis is not clear-cut. Endothelial 

cells also bind to fibrinogen and fibrin via cell surface integrin receptors αvβ5 (via RGD 572-

574) and αvβ1,75-77 intracellular adhesion molecule-1 (ICAM-1) 78 and vascular endothelial 

cadherin (VE-Cadherin).79  



Secondly, fibrin can act as chemotactic agent to induce endothelial cell migration. Fibrin is 

essential for sprouting angiogenesis, but purified fibrin matrices alone do not appear 

enough to induce angiogenesis, and chemotactic agents (vascular endothelial growth factor 

(VEGF) or basic fibroblast growth factor (bFGF)) are required to stimulate angiogenesis.80 

Growth factors VEGF, bFGF and PDGF all bind fibrin(ogen),60,81,82 and this may be an 

important property of the fibrin clot in angiogenesis.  

Fibrin clot structure has also been suggested to influence new vessel formation. Thinner 

fibrin fibres have been shown to reduce endothelial cell tubule formation.83 Cross-linking of 

fibrin αC-regions by FXIIIa increases RGD-dependant interactions of fibrin with endothelial 

αvβ3, αVβ5 and α5β1, promoting integrin clustering and increasing cell adhesion and 

spreading.84 

Degradation products of fibrin(ogen) may also play a role in angiogenesis progression. While 

fibrinogen degradation E-fragment has been reported to inhibit both endothelial migration 

and tubule formation,85 its fibrin derived counterpart fibrin E-fragment has been shown to 

promote proliferation, migration and differentiation of endothelial cells (figure 2).86 The 

inhibitory effects of fibrinogen E-fragment are likely due to a 24-residue stabilized β-bend 

sequence in fibrinopeptide A, known as alphastatin, that inhibits angiogenesis in vitro and in 

vivo.87,88 

 

Fibrinogen deficiency 

Some of the strongest evidence for the role of fibrin(ogen) in tissue repair comes from 

studies that report on wound healing in the absence of fibrinogen. A number of studies have 



described impaired wound healing following surgery or slow healing leg ulcers in patients 

with afibrinogenemia.89-91 In support of this, fibrinogen-deficient mice show disorganised 

patterns of tissue repair including misguided epithelium, delayed wound closure, reduced 

wound tensile strength and reduced ability to resolve dead space in comparison to wild-

type mice.92 This suggests that fibrinogen plays a greater role in wound healing than just 

controlling blood loss, but further studies are needed to explore the role of fibrinogen in 

other types of injury (e.g., burns, bacterial infection and metabolic disease). 

 

Fibrin sealants  

Due to the importance of (fibrin)ogen in the wound healing processes, fibrin sealants are 

strong candidates as a natural biopolymer scaffolds to improve wound healing. There are 

several forms of fibrin-glue or fibrin-sealant available, produced from platelet-rich-plasma 

or from fibrinogen and thrombin mixtures. Fibrin sealants are used widely in surgery to 

achieve haemostasis, and join or seal tissues rapidly, especially when other wound closure 

procedures cannot be performed.93 Furthermore, they can be used as conduit to deliver 

cells, growth factors and drugs to improve wound healing. Use of fibrin as wound healing 

treatment is a hot topic that has been extensively covered by a number of reviews.94-96 A 

recent study demonstrated enhanced cell adhesion, migration, and wound healing in vivo 

when neonatal fibrin was used to form fibrin scaffolds in place of adult fibrin.97 However, 

the effects of treatment with fibrin sealants are not always consistent, and variations in the 

sealant preparations make study comparisons difficult.98 Key factors for this include 

fibrinogen quality and variations in additional factors such as fibronectin, fibrinolysis or 

coagulation proteins (FXIII, plasminogen, plasminogen activator, plasminogen activator 



inhibitor, and thrombin), and growth factors (TGF-β, FGF-2, and VEGF).99 Furthermore, a 

number of clinical studies involve the use of sealants in case series experiments or 

retrospective analysis without comparative results to appropriate controls. Further studies 

are required to refine the use of fibrin sealants in wound healing and elucidate the most 

effective composition to maximise treatment efficacy.  

 

FIBRIN(OGEN) IN BACTERIAL INFECTION 

Fibrinogen not only plays a role during haemostasis and wound healing, but also functions in 

antimicrobial host defence through a number of mechanisms, i.e., by (i) providing a physical 

barrier at the air-liquid interface, (ii) entrapment of bacteria in fibrinogen or fibrin networks 

and (iii) supporting the recruitment and activation of host immune cells. On the other hand, 

the role of host fibrin(ogen) in bacterial infection can be exploited by a number of proteins 

produced by pathogenic bacteria that target fibrin(ogen) and other components of the host 

hemostatic system. These bacterial proteins are able to drive fibrin network formation, 

promote the dissolution of fibrin(ogen) matrices, or simply bind to fibrin(ogen) for the 

benefit of bacterial survival (figure 3).     

 

Role in host defence 

Physical barrier at site of wounds 

We reported that fibrin(ogen) forms a structurally distinct “film” at the air-liquid interface, 

which provides a physical barrier to bacterial movement into a clot.100 In vitro experiments 

demonstrated that infiltration of Escherichia coli, Staphylococcus epidermidis and 

Staphylococcus aureus was prevented for at least 12-27 hours by the presence of the fibrin 



film. We also established a role for the film in vivo, using a murine dermal injury model. 

Proliferation of Pseudomonas aeruginosa was significantly reduced in and around the 

wound in mice with intact fibrin films. Further work is needed to determine the role of the 

fibrin film in prevention of systemic infection, by assessing bacterial numbers in blood and 

organ systems.    

 

Fibrin(ogen) matrices at the site of infection    

Formation of fibrin networks at the site of infection can aid the host by entrapping bacteria 

to limit dissemination, and by supporting the recruitment and activation of host immune 

cells to aid bacterial clearance.101-105 The protective property of fibrinogen against 

intracellular bacterium Listeria monocytogenes has been demonstrated in a murine 

peritoneal infection model.105 Fibrinogen deficient mice had 100% mortality compared to 

wild-type mice and increased bacterial burden in the liver. Further studies with warfarin 

distinguished the relative contributions of fibrin vs. fibrinogen in protection against L. 

monocytogenes. Warfarin treatment exacerbated listeriosis, indicating that fibrin was a key 

determinant to survival that functions by restraining growth of L. monocytogenes within 

infected hepatic tissue, or may restrict cell-to-cell spread of the intracellular bacteria.105    

Entrapment of bacteria by fibrin clot formation also plays a role in preventing the 

dissemination of Streptococcus pyogenes.106 Mice with genetic deficiency in fibrinogen (Fbg-

) were more susceptible to S. pyogenes infection than wild-type mice across a range of 

inoculation doses, and there was increased spread of bacteria to the spleen in Fbg- 

animals.106 Further evidence of fibrinogen’s protective role was reported in an earlier study, 

demonstrating that reduction of fibrinogen levels by injection of snake venom ancrod in a 

murine model of S. pyogenes infection enhanced mortality.107 These data suggest that a 



crucial function of fibrinogen in host defence is through formation of fibrin(ogen) barriers 

(figure 3), limiting bacterial dissemination and supporting local inflammatory clearance 

mechanisms.106  

Cross-linking of fibrin by FXIIIa further helps to immobilise pathogens within the network, to 

aid in their containment and clearance by the host immune system.108 A study by Loof et al. 

showed that clotting was activated at the bacterial surface via the intrinsic coagulation 

pathway, and that entrapment of S. pyogenes within the fibrin network was FXIII-

dependent.109 Transmission electron microscopy was used to visualise bacterial cells cross-

linked to fibrin fibres at multiple sites and further investigation using negative-staining 

electron microscopy revealed cross-linking of fibrinogen to the bacterial surface via bacterial 

M1 protein.109 A murine skin and soft tissue model of S. pyogenes M1 infection 

demonstrated that lack of FXIII leads to increased signs of inflammation and elevated 

bacterial dissemination.110 FXIII-deficient mice showed impaired survival compared to wild-

type mice, with higher bacterial loads detected in blood and spleens compared to wild-type 

mice or FXIII-deficient mice administered FXIII concentrate.110 These data suggest that there 

is a protective role for FXIII during early S. pyogenes skin infection, by immobilising bacteria 

within the fibrin clot. Others have shown that FXIIIa also cross-links S. aureus and E. coli 

surface proteins to fibrin.111   

 

Fibrin(ogen) in immune modulation 

Fibrin(ogen) drives cellular activities by serving as a ligand of integrin and non-integrin 

receptors expressed by inflammatory cells.112-119 These interactions can result in cytokine 

and chemokine expression, degranulation, phagocytosis, cell adhesion, migration and other 

effects on leukocyte function.113,114,116,120,121 The interaction of leukocyte integrin αMβ2 with 



fibrin(ogen) is well-documented.122 αMβ2 is expressed on the surface of key inflammatory 

cells, including neutrophils, monocytes, macrophages and mast cells, and has a role in 

development of an inflammatory response in vivo  by mediating the adhesion of leukocytes 

to the endothelium, and the subsequent transmigration of adherent cells to the sites of 

inflammation.123,124 Engagement of αMβ2 is mediated by the γ-chain of fibrin,125-127 in a site 

which is cryptic, and not accessible when fibrinogen is a soluble monomer.128 The cryptic 

nature of the αMβ2 binding motif ensures that leukocyte receptors are not engaged by 

circulating plasma fibrinogen and instead, αMβ2 is selective for fibrin or for surface-

immobilised fibrinogen, such as that found at sites of tissue damage. 

The significance of the fibrinogen-αMβ2 interaction was demonstrated in mice expressing a 

mutant form of fibrinogen lacking the αMβ2 binding motif.129 These mutants were less able 

to eliminate S. aureus in a murine acute peritonitis model. Whilst the mutant fibrinogen 

retained the ability to clot and induce platelet aggregation, it failed to support the αMβ2-

mediated adhesion of primary neutrophils and macrophages.129 Conversely, in the setting of 

intravenous infection by S. aureus, mice with fibrinogen lacking the αMβ2 binding motif had 

a survival profile indistinguishable from wild-type mice.130 However, fibrinogen deficient 

mice, and those expressing a mutant fibrinogen lacking the clumping factor A (ClfA) binding 

motif exhibited a survival advantage over wild-type mice.130 Mice with mutant fibrinogen 

had reduced bacterial burdens in the hearts and kidneys, a dampened pro-inflammatory 

response, and diminished tissue and organ damage.130 These studies demonstrate that 

while fibrin(ogen) has been repeatedly shown to aid host defence against bacteria, the 

presence of fibrin(ogen) can also be of use to microbial pathogens during infection.  

Fibrinogen can also directly affect an antimicrobial response through release of thrombin 

cleavage products.131 A study by Pahlman et al. demonstrated that a fibrinogen cleavage 



product, termed GHR28, displayed antimicrobial activity against group A streptococcus 

(GAS), group B streptococcus (GBS) and S. aureus, but not E. coli or Escherichia faecalis.132 

Release of fibrinopeptide B from fibrinogen by thrombin exposes a 28 amino acid long 

peptide sequence at the N-terminal of the β chain, which is subsequently released from 

fibrinogen by plasmin cleavage, to form GHR28. GHR28 had antimicrobial activity against 

bacteria that bind fibrinogen to their surface. This peptide caused disruption of the bacterial 

cell wall and leakage of cytosolic content, signs of bacterial killing.132  

 

Manipulation of fibrin(ogen) by bacterial virulence factors   

Modulation of fibrin formation  

The local formation of fibrin networks at the site of infection can be detrimental to the host, 

as incorporation of large numbers of bacteria within fibrinous masses can protect 

microorganisms from phagocytosis by host immune cells. Inside the clot, bacteria are able 

to proliferate, leading to the formation of abscesses.14,133,134 

S. aureus can directly activate prothrombin through the action of two secreted coagulases, 

coagulase (Coa) and von Willebrand factor binding protein (vWbp).135,136 Coa and vWbp 

share sequence and structural homology, particularly in their N-terminal regions. These 

proteins insert N-terminal residues into the activation cleft of zymogen prothrombin, 

triggering non-proteolytic activation, and formation of staphylothrombin complex.137,138 

Staphylothrombin is able to convert fibrinogen to fibrin, which covers bacteria with a 

protective fibrin coat, fibrin-covered bacteria do not activate host immune cells and thus 

evade phagocytosis (figure 3).139 The action of these two coagulases results in formation of 

two distinct types of fibrin network. Coa activity resulted in formation of a fibrin-containing 

pseudocapsule closely associated with bacterial microcolonies in an in vitro abscess model, 



whilst vWbp was responsible for the formation of a fibrinogen/fibrin meshwork situated 

immediately adjacent to the pseudocapsule.140 Both types of fibrin network acted as a 

mechanical barrier against neutrophils.140 In animal infection models, coagulases are 

required for full virulence.141-143 Indeed, Dabigatran (thrombin inhibitor that also inhibits 

staphylothrombin) has been trialled for use in human patients with S. aureus bacteraemia, 

as an adjunct to antibiotic treatment.144  

Coagulase activity can contribute to bacterial virulence, or to host survival, depending on 

the location and route of infection. Subcutaneous injection of S. aureus lacking Coa 

significantly reduced proliferation at the infection site , and lessened systemic spread of 

bacteria.145 Bacteria lacking Coa were more efficiently cleared by the immune system than 

wild type bacteria, which showed increased persistence at the site of infection.145 

Conversely, recent work showed that the presence of coagulase protein vWbp in S. aureus 

during peritoneal infection was favourable to host outcome.146 Mice failed to eliminate S. 

aureus that was deficient in vWbp, however, clearance of these microbes in wild-type mice 

was restored if active thrombin was added exogenously into the peritoneal cavity.146 Wild-

type mice were able to rapidly and efficiently clear S. aureus, whilst Fbg- mice failed to clear 

the microbe, and this difference in early clearance of bacteria led to all wild-type mice 

surviving infection even after 2 weeks, while all Fbg- mice died within 24 hours.146 These 

studies highlight the importance of fibrin(ogen) in host defence against S. aureus in 

peritoneal infection, and more precisely, the importance of fibrinogen conversion to fibrin. 

These findings may explain why it is coagulase negative staphylococci that account for the 

majority of peritoneal infections.146 An earlier study further supports that fibrin formation is 

important for protection against S. aureus infection in peritoneal infection.147 In this study, 

FibAEK mice (with a mutation in the fibrinogen Aα-chain, making it insensitive to thrombin 



cleavage) showed significantly reduced S. aureus clearance from the peritoneal cavity 

following infection.147  

 

Clot degradation by bacteria 

Many bacteria produce proteins which interact with host fibrinolytic pathways, the best 

characterised of which are streptokinase, staphylokinase and Pla proteins. Streptokinase is a 

non-enzymatic plasminogen activator produced by group A, C and G streptococci species.148 

Binding of streptokinase to plasminogen induces a conformational change in the 

plasminogen activation pocket, non-proteolytically converting it into an active form.149-151 

The plasmin-streptokinase complex is protected from inhibition by plasmin specific inhibitor 

α2-antiplasmin.152  

Staphylokinase, produced by S. aureus strains is also a non-enzymatic plasminogen 

activator; however, unlike streptokinase, the staphylokinase-plasmin complex is efficiently 

inhibited by α2-antiplasmin.153 Staphylokinase activation of plasminogen requires a small 

amount of plasmin for efficient activation of plasminogen.154 Staphylokinase binds to 

plasmin with high affinity, and this staphylokinase-plasmin complex cleaves additional 

plasminogen to plasmin.155 It is likely that staphylokinase and streptokinase aid bacterial 

virulence by preventing entrapment of bacteria by fibrin, allowing for dissemination of 

bacteria to distant sites in the host (figure 3). In addition to degradation of fibrin matrices, 

staphylokinase can form complexes with α-defensins secreted from neutrophils, inhibiting 

their bactericidal effect, further promoting bacterial survival.156  

Unlike these non-enzymatic plasminogen activators, Y. pestis express a surface-bound 

protein, Pla, that has protease activity towards plasminogen.157 Pla is able to convert 

plasminogen to plasmin and can also degrade α2-antiplasmin, which aids bacterial escape 



from entrapment in fibrin matrices, and spread through tissue barriers into the 

circulation.158,159 

Other bacteria express plasminogen-binding molecules on their surface, and the bound 

plasminogen can then be subsequently activated by a number of mechanisms. Streptococcal 

M and M-like proteins bind plasminogen, which is activated by streptokinase.160,161 In 

addition to expression of staphylokinase, S. aureus-produced fibronectin binding protein B 

(FnBPB) binds both fibrinogen and plasminogen simultaneously.162 FnBPB on the surface of 

S. aureus captures plasminogen, which can then be activated by staphylokinase, or by 

tPA.162 Whilst streptococci and staphylococci produce their own activators, other bacteria 

such as Borrelia burgdorferi,163-165 Salmonella enteritidis, 166 and E. coli166,167 activate bound 

plasminogen with recruited host tPA or uPA.  

In contrast to these plasminogen activating proteins, some strains of S. pyogenes secrete a 

protein with antifibrinolytic action, called protein SIC (streptococcal inhibitor of 

complement), including strains of the clinically relevant M1 serotype, which are frequently 

isolated from patients with invasive infections and sepsis.168 SIC inhibits plasminogen 

activation by streptokinase, thus enhancing bacterial survival within the clot.169 A study by 

Frick et al. demonstrated that SIC- strain is rapidly killed within the clot compared to a SIC 

expressing strain.169 Frick et al. speculate that SIC may block the antimicrobial activity of 

fibrinogen-derived peptides;132 by inhibiting plasminogen activation during early infection. 

Bacteria are able to grow within the clot protected from antimicrobial peptides so that once 

fibrinolysis is initiated a larger number of bacteria are able to spread to distant sites.169 

Clearly, the manipulation of host fibrin formation and fibrinolysis by bacteria can be 

beneficial to bacterial survival. Bacteria contain virulence factors that elicit opposing 

functions, and so a crucial factor in bacterial survival is the timing of the release of such 



factors. For example, in S. aureus, Coa is produced during the early growth phase170 while 

staphylokinase is produced during the late exponential phase.171 It is likely that early release 

of coagulase allows bacteria to reside and proliferate within protective fibrin clots, before 

their release following staphylokinase-induced breakdown of the fibrin capsule.145  

 

Binding to fibrinogen  

As described above, bacterial proteins bind and interact with prothrombin and to host 

fibrinolytic proteins, stimulating fibrin formation and breakdown, respectively. Bacterial 

virulence factors also directly bind fibrinogen and drive a vast array of functions that benefit 

bacterial survival (figure 3). The topic of interaction between fibrinogen and bacterial 

proteins (particularly of S. aureus) is well documented and covered by a number of 

comprehensive reviews.139,172-174  

The best characterised of the fibrinogen-binding bacterial virulence factors is ClfA of S. 

aureus. Table 1 summarises ClfA and other fibrinogen-binding bacterial protein function.  

 

CONCLUSIONS  

The role of fibrin(ogen) in wound healing and infection control is a story of two sides. 

Fibrinogen serves multiple roles in promoting wound healing and mediating protection from 

infection. However, fibrin(ogen) can negatively impact the wound healing process stalling its 

progression if not removed, whilst bacteria can target the host fibrinogen to promote 

pathogen virulence. Despite recent advancements in our understanding of fibrinogen’s role 

in wound healing and infection, many unanswered questions remain, some of which have 

been alluded to throughout this review. An important focus for the future is to try to 



understand the role that fibrinogen plays in the interplay between wound healing and 

bacterial infection. Further determining the molecular and cellular basis of these processes 

could elucidate novel therapeutic targets to improve recovery from surgical or chronic 

wounds or help to prevent infection from highly virulent bacterial strains, including those 

resistant to antibiotics. 
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FIGURE LEDGENDS 

 

Figure 1. Fibrinogen structure and fibrin formation. A, Fibrinogen consists of three pairs of 

polypeptide chains, Aα, Bβ and γ held together by 29 disulfide bonds. All three chains converge in a 

central E region, which contains the cleavage sites for thrombin (Fibrinopeptides A and B). The 

chains extend out of this central E region through a coil-coiled region to the D regions, where the 

beta and gamma chains reach their C-terminus. The alpha chain extends beyond this D region, as the 

alpha-C chain. B, Fibrinopeptide A is cleaved by thrombin from fibrinogen which aggregate via knob-

hole interactions forming oligomers and then protofibrils. Fibrinopeptide B is then cleaved by 

thrombin, releasing the fibrinogen αC regions, which allows lateral aggregation to occur forming 

fibres. Factor XIIIa initially cross-links γ chains (red), followed by α chains (green). 

 

 

Figure 2. Fibrin(ogen) in wound healing. Once bleeding is controlled the role of the blood clot 

extends far beyond the cessation of bleeding. Fibrinogen is converted to fibrin, which forms a 

cohesive network, and provides a provisional matrix for wound healing to begin. The structural 

composition of fibrin and the binding of fibrin to cells and proteins highly determine the wound 

healing process. Beyond behaving as a provisional matrix, fibrin actively recruits cells to trigger 

fibrin-mediated responses, such as cell adhesion, migration, proliferation, and tubule formation. 

Fibrin degradation products also play a role influencing cell recruitment, proliferation and migration. 

Removal of the fibrin network and its replacement with an organized network of collagen is essential 

for wound healing to proceed to conclusion. 

 

 

Figure 3. Fibrin(ogen) in bacterial infection. Fibrinogen has a role in both host defence and bacterial 

virulence. Fibrin(ogen) can mediate host defence functions through several mechanisms including a 

barrier function whereby fibrin(ogen) acts as a first line of defence. Fibrinogen can also encapsulate 

microbes to prevent their growth and dissemination, and functions to directly or indirectly modulate 

host immune system activity to support recruitment and activation of immune cells. Microbes can 

also use fibrin(ogen) to promote pathogenicity and survival. These mechanisms include using fibrin 

as a shield to evade the immune response, breaking fibrin down to increase dissemination and 

expressing numerous virulence factors capable of engaging fibrin(ogen). 

 

  



 Table 1. Function of select fibrinogen-binding bacterial proteins 
 

 

Bacteria Protein family Protein Fibrinogen binding site Function of fibrinogen binding 

S. aureus  Microbial surface 
components 
recognising adhesive 
matrix molecules 
(MSCRAMM) 

Fibronectin binding protein A 
(FnBPA)  

γ-chain [175] • Binding to immobilised fibrinogen [176], which facilitates early valve colonisation in experimental 
endocarditis [177] 

Clumping factor A, (ClfA) C-terminal region of the γ-
chain [178] 

• Promotes bacterial attachment and colonisation of host tissues and biomedical devices under high 
physiological shear stress [179] 

• Promotes fibrinogen-dependent bacterial clumping in solution, and adherence of S. aureus to 
immobilised fibrin(ogen) [180] 

• Inhibition of phagocytosis [181] 

• Role in abscess formation [182] 

• Platelet activation [183] 

Clumping factor B, (ClfB) Aα-chain [184] • Activation of platelet aggregation [185] 

• Colonisation of the bladder and catheter, contributing to catheter associated urinary tract infections 
[186] 

Bone sialoprotein-binding 
protein, (BbP) 

Aα-chain, residues 561-

575 [187, 188] 
• Binding to immobilised fibrinogen [189] 

• Inhibits thrombin-induced fibrinogen coagulation [189] 

Secretable expanded 
repertoire adhesive 
molecules (SERAM) 

Extracellular fibrinogen binding 
protein, (Efb) 

Aα chain of the D 

fragment [190, 191] 
• Generation of a protective fibrinogen shield that suppresses platelet activation and protects from 

phagocytosis [191, 192] 

• Inhibits ADP-induced, fibrinogen-dependent platelet aggregation [189]   

Extracellular matrix binding 
protein, (Emp) 

Not determined • Role in abscess formation [192] 

Extracellular adherence protein, 
(Eap) 

Not determined • Eap induces fibrinogen binding to platelets and platelet aggregation [193] 

• Inhibits host leukocyte recruitment [194] 

Coagulases Coagulase (Coa) and 

von Willebrand Factor binding 
protein (vWbp) 

Bβ-chain [195] • As well as binding to prothrombin for the generation of a protective fibrin(ogen) shield around S. 
aureus, these coagulases also bind soluble and immobilised fibrinogen [195] 

S.  epidermidis MSCRAMM Serine-aspartate repeat protein 
G (SdrG) 

N-terminus of the Bβ 

chain [196] 
• Inhibits thrombin-induced coagulation by binding to and covering the thrombin cleavage site in the 

fibrinogen Bβ chain [196] 

• Binding to fibrinogen-coated implanted medical devices [197] 

• Platelet activation [198] 

S. pyogenes (Group A 
streptococcus) 

M proteins M proteins D region [199] 

 

• Resistance to phagocytosis [200, 201] 

• Formation of M protein-fibrinogen supramolecular networks [202], which activate neutrophils, resulting 
in release of inflammatory mediator heparin binding protein from neutrophils, causing vascular leakage 
[203] 

• Fibrinogen-M1 protein complex can trigger formation of neutrophil extracellular traps [204] 

• Binding to fibrinogen, allowing for subsequent binding of plasminogen to the M protein-bound 
fibrinogen, and activation by GAS-secreted streptokinase [205] 

S. agalactiae (Group B 
streptococcus) 

 FbsA D region [206] • Binding to fibrinogen, and inducing fibrinogen-dependent platelet aggregation [207, 208] 

• Adherence of S. agalactiae to epithelial cells [209] 

B. burgdorferi  Outer surface protein C (OspC) E fragment [210] • OspC slows clot formation [210] 


