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ABSTRACT 

We have described a number of transformations by mapping the cone signal vector 𝐶, formed by 𝐿𝑀𝑆, 

to opponent space 𝑂, formed by achromatic signal 𝑂𝐴, red-green signal 𝑂𝑟𝑔, and yellow-blue signal 𝑂𝑦𝑏. Two new transformations, Γ𝑜𝑝1 and Γ𝑜𝑝2, are proposed, based on the CIE 2006 spectral luminous 

efficiency function, 𝑉𝐹(𝜆) , and Hurvich’s opponent spectral red-green and yellow-blue responses, 𝐻𝑟𝑔(𝜆) and 𝐻𝑦𝑏(𝜆), without and with constraints, respectively. Γ𝑜𝑝1 is better than Γ𝑜𝑝2 in terms of 

best fit of 𝐻𝑟𝑔(𝜆) and 𝐻𝑦𝑏(𝜆), and both transformations improved previously proposed ones. Finally, 

we discuss the neutral conditions in cone space using each of the new and some of the extant 

transformations, as well as choosing scaling factors so that the neutral conditions in cone space are 

satisfied. 
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INTRODUCTION 

In 2006, the International Commission on Illumination (CIE) recommended 2 and 10 degrees cone 

fundamental responses1-2. Figure 1 shows the CIE 2006 2-degree 𝑙(̅𝜆) (red), 𝑚̅(𝜆) (green) and 𝑠̅(𝜆) 
(blue) cone fundamental spectral responses after normalization (i.e. when each of the responses has a 

unity peak). For a given stimulus with spectral radiance 𝜑(𝜆), cone response signals L, M and S are 

computed from cone fundamental responses using the following equation: 

{  
  𝐿 = ∫ 𝜑(𝜆)𝑙(̅𝜆)𝑑𝜆𝑏𝑎𝑀 = ∫ 𝜑(𝜆)𝑚̅(𝜆)𝑑𝜆𝑏𝑎𝑆 = ∫ 𝜑(𝜆)𝑠̅(𝜆)𝑑𝜆𝑏𝑎

                        (1) 



where a and b are the lower and upper limits, respectively, of the visible range. Achieving cone response 

signals L, M and S for the spectral radiance 𝜑(𝜆) of a certain stimulus is the first stage for all two-step 

vision theories. The second stage is to transfer cone signals to an opponent color space, i.e. an achromatic 

signal, 𝑂𝐴, and two opponent chromatic signals, 𝑂𝑟𝑔 (red-green) and 𝑂𝑦𝑏  (yellow-blue). If we let the Γ transform be a 3-by-3 matrix, the second stage can be described as a matrix and vector multiplication:  O = ΓC                                 (2) 

where vector 𝐶 is formed by cone response signals, vector O is formed by signals in opponent color 

space, and the superscript T means transpose:  𝐶 = (𝐿 𝑀 𝑆)𝑇                            (3) 

and 𝑂 = (𝑂𝐴 𝑂𝑟𝑔 𝑂𝑦𝑏)𝑇.                         (4) 

 

Figure 1. CIE 2006 2-degree cone fundamentals 𝑙(̅𝜆) (red), 𝑚̅(𝜆) (green) and 𝑠̅(𝜆) (blue), ranging from 400nm to 700nm. 

 

Different Γ transforms have been proposed in previous studies. For example, from Figure 3 in the 

paper by Stockman and Brainard3, we have 

Γ𝑆𝐵  = (1 1 01 −1 01 1 −1).                          (5) 

From Figure 1.4 in the book by Hunt and Pointer4 we have 

Γ𝐻𝑃 = (2 1 1/201 −1 01 1 −2 ).                          (6) 

From Figure 1(8.3.4), p. 647, in the book by Wyszecki and Stiles5, we have 

Γ𝑊𝑆  = (1 1 01 −1 01 0 −1).                          (7) 

In 2020, Wuerger et al.6 proposed 

Γ𝑊  = (1 1 01 − 𝐿0𝑀0 01 1 − 𝐿0+𝑀0𝑆0
),                        (8) 



where 𝐿0 , 𝑀0  and 𝑆0  are the cone response signals for the neutral background under the given 

illuminant.   

In 2021, from similarities in wavelength peaks in 16 studies of cone responses and 15 studies of 

opponent chromatic responses, Pridmore7 proposed the following matrix for obtaining the two color 

opponent signals, 𝑂𝑟𝑔 and 𝑂𝑦𝑏 , from vector 𝐶 in Eq. 3: Γ𝑃 = ( 1    − 1      11        0   − 1)                                                        (9) 
Recently, the CIE has set up its Technical Committee (TC) 1-98, “a roadmap towards basing CIE 

colorimetry on cone fundamentals,” for studying the establishment of a new colorimetry based on cone 

response signals. As we have learned from current CIE colorimetry, developed from CIE color-matching 

functions, an opponent color space (e.g. the CIELAB color space) is a key tool for the theoretical and 

practical applications of color science8. The currently unsolved problem is which transform should be 

used for transforming cone response signals to opponent color signals. In this paper, we want to evaluate 

the above-mentioned transforms in terms of their fitting both the CIE spectral luminous efficiency 

function and the opponent chromatic spectral response signals reported by Hurvich9. Figure 2 shows 

Hurvich’s opponent signals: 𝐻𝑟𝑔(𝜆)  (solid curve) is the red-green spectral response and 𝐻𝑦𝑏(𝜆) 
(dotted curve) is the yellow-blue spectral response. More specifically, by using these valuable 

experimental data sets as references, in the current paper we will develop two new Γ transforms (see 

Eq. (2)), and discuss the neutral conditions in cone space for using each of the transforms defined by 

Eqs. (5)-(9) and the new transforms. We will also discuss how to choose scaling factors so that the neutral 

conditions in cone space are satisfied. 

 
Figure 2. Opponent red-green 𝐻𝑟𝑔(𝜆) and yellow-blue 𝐻𝑦𝑏(𝜆) spectral responses redrawn from Hurvich (1981).  

 

 

NEW TRANSFORMS 

Firstly, from Eq. (2), if we let 

 𝐶 = 𝑐(𝜆) = (𝑙(̅𝜆) 𝑚̅(𝜆) 𝑠̅(𝜆) )𝑇,                   (10) 

the achromatic and opponent 𝑂 signals are also dependent on the wavelength. Hence, we will let 

 𝑂 = 𝑜(𝜆) = (𝑜𝐴(𝜆) 𝑜𝑟𝑔(𝜆) 𝑜𝑦𝑏(𝜆))𝑇 .                 (11) 



Since 𝑂𝐴 is the achromatic signal in the opponent color space, we can expect 𝑜𝐴(𝜆) to be close 

to the spectral luminous function. Several spectral luminous efficiency functions are available, including 

the Judd extension10, the CIE 1931 color-matching function 𝑦̅(𝜆), and the 𝑉𝐹(𝜆), based on CIE 2006 

2-degree cone fundamentals1-2. Since this paper focuses on cone fundamentals, we have chosen the 𝑉𝐹(𝜆) function as our reference.  

 

Figure 3. The CIE spectral luminous efficiency function 𝑉𝐹(𝜆) (black), plus two normalized (unity peak) functions, 𝑜𝐴1(𝜆) (red) 

and 𝑜𝐴2(𝜆) (blue) (see main text), ranging from 400nm to 700nm. 

 

Let 𝑜𝐴1(𝜆) = 𝑜𝐴(𝜆), obtained using the transforms defined by Eqs. (5), (7), or (8), and 𝑜𝐴2(𝜆) =𝑜𝐴(𝜆), obtained using the transform defined by Eq. (6). Figure 3 shows 𝑉𝐹(𝜆) (black), as well as the 

normalized (unity peak) 𝑜𝐴1(𝜆) (red) and 𝑜𝐴2(𝜆) (blue) functions. As we can see, the normalized 𝑜𝐴1(𝜆)  (red) and 𝑜𝐴2(𝜆)  (blue) functions are quite close to 𝑉𝐹(𝜆)  (black). In particular, 𝑉𝐹(𝜆) 
(black) and 𝑜𝐴2(𝜆) (blue) nearly overlap for wavelengths greater than 475nm. In fact, from CIE1-2, we 

have: 𝑉𝐹(𝜆) = 0.68990272𝑙(̅𝜆) + 0.34832189𝑚̅(𝜆).               (12) 

Hence, if the desired Γ transform (Eq. (2)) has the general form of 

Γ = (𝑡11 𝑡12 𝑡13𝑡21 𝑡22 𝑡23𝑡31 𝑡32 𝑡33),                          (13) 

then the best choice for the first row of Γ is: (𝑡11 𝑡12 𝑡13) = (0.68990272 0.34832189 0) .                        (14) 

Next, we will consider the two opponent red-green, 𝑂𝑟𝑔, and yellow-blue, 𝑂𝑦𝑏 , signals. When we 

consider that 𝐶 = 𝑐(𝜆), defined by Eq (10), we can expect that 𝑜𝑟𝑔(𝜆) and 𝑜𝑦𝑏(𝜆) (see Eq. (11)) will 

be close to the red-green 𝐻𝑟𝑔(𝜆) and yellow-blue 𝐻𝑦𝑏(𝜆) spectral responses (see Fig. 2), respectively.  

Let us consider the red-green channel first. From Eqs. (5)-(8) and (13), the first case (denominated 

RG-Case1) for the transform is  (𝑡21 𝑡22 𝑡23) = (1 −x 0).                    (15) 



When x = 1, the situation is that of Eqs. (5)-(7), and when x = 𝐿0𝑀0, the situation is that of Eq. (8). 

We computed the best x so that 𝑜𝑟𝑔(𝜆) is closest to 𝐻𝑟𝑔(𝜆), and it was found that 𝑥 = 1.50273093. 

From Eq. (9) (denominated RG-Case2) we have (𝑡21 𝑡22 𝑡23) = (1 −1 1).                   (16) 

In addition, we computed the best (𝑡21 𝑡22 𝑡23)  so that 𝑜𝑟𝑔(𝜆)  is closest to 𝐻𝑟𝑔(𝜆) 
(denominated RG-Case3), resulting in a least squares problem11 with the following solution: (𝑡21 𝑡22 𝑡23) = (1.19285019 −1.74043682 0.35227109).      (17) 

The fourth case (denominated RG-Case4) was to find the best (𝑡21 𝑡22 𝑡23) so that 𝑜𝑟𝑔(𝜆) is 

closest to 𝐻𝑟𝑔(𝜆) with constraint by the following Eq. (18): 𝑡21 + 𝑡22 + 𝑡23 = 0,                          (18) 

resulting in a constrained least squares problem11 with the solution: (𝑡21 𝑡22 𝑡23) = (1.20150523 −1.67794634 0.47644111).       (19) 

Note that the above constraint (Eq. (18)) and the constraint considered later (Eq. (25)) are for the Γ 

transform (see Eq. (2)), mapping neutral in LMS cone space to neutral in opponent color space, with the 

neutral signals 𝐿0, 𝑀0, and 𝑆0 satisfying 𝑆0 = 𝐿0 = 𝑀0. This is widely used in the color and vision 

community4-5 and will be further considered in the next section. 

Figure 4 shows Hurvich’s opponent red-green function 𝐻𝑟𝑔(𝜆) (black), and the red-green spectral 

responses achieved from RG-Case1 (red), RG-Case2 (blue), RG-Case3 (magenta), and RG-Case4 

(yellow). It can be clearly seen that their order of closeness to the black curve is:  magenta, yellow, red, 

and blue. Hence, RG-Case3 is the best, followed by RG-Case4, RG-Case1, and RG-Case2. 

We can measure the closeness between 𝐻𝑟𝑔(𝜆) and the red-green spectral responses achieved by 

each of our four above cases by using different tools, such as the root mean square error (RMSE)12 or 

the goodness of fit coefficient (GFC) used in previous literature13. Let 𝑞 be a vector with 𝑛 elements, 

and 𝑝 an approximation to 𝑞, also with 𝑛 elements. RMSE and GFC between 𝑞 and 𝑝 are defined 

by: 𝑅𝑀𝑆𝐸 = √1𝑛∑ (𝑞𝑖 − 𝑝𝑖)2𝑛𝑖=1                          (20)  

and 𝐺𝐹𝐶 = 𝑞𝑇𝑝/(||𝑞||2||𝑝||2) with ||𝑞||2 = √∑ (𝑞𝑖)2𝑛𝑖=1  , ||𝑝||2 = √∑ (𝑝𝑖)2𝑛𝑖=1    .   (21) 

  



 
Figure 4. Hurvich’s opponent red-green 𝐻𝑟𝑔(𝜆) function (black), together with the red-green spectral responses from RG-Case1, 

RG-Case2, RG-Case3 and RG-Case4, respectively (see main text).  

 

Thus, if 𝑞 = 𝑝, RMSE=0. The closer 𝑝 and 𝑞 are, the smaller RMSE is. For GFC, it is always 

equal or smaller than 1, and the closer to 1 the better the agreement between 𝑝 and 𝑞. Table 1 lists the 

RMSE (column 2) and GFC (column 3) values between Hurvich’s opponent red-green function 𝐻𝑟𝑔(𝜆) 
and the spectral responses achieved for each of our four cases. It can be seen from both measurements 

that the four cases, ordered from best to worst, are RG-Case3, RG-Case4, RG-Case1, and RG-Case2, 

which is in agreement with the results shown in Figure 4. 

Note that from Eq. (15) with x = 1.50273093 for RG-Case1, we cannot expect the transforms Γ𝑆𝐵 , Γ𝐻𝑃 , Γ𝑊𝑆  and Γ𝑊  (Eqs. (5)-(8)) to perform better than RG-Case3 and RG-Case4, in terms of 

fitting Hurvich’s opponent red-green function, 𝐻𝑟𝑔(𝜆) . Similarly, RG-Case2, corresponding to the 

transform Γ𝑃 (Eqs. (9) and (16)), is not expected to perform better than RG-Case3 and RG-Case4 in 

terms of fitting Hurvich’s opponent red-green function 𝐻𝑟𝑔(𝜆). 
 

Table 1: RMSE12 and GFC13 values between Hurvich’s opponent red-green (RG) and yellow-blue (YB) functions and the four 

corresponding models (Case1-Case4) considered in the current article (see main text). 

 RG  YB 

 RMSE GFC  RMSE GFC 

Case1 0.139 0.920  0.800 0.754 

Case2 0.391 0.475  0.369 0.907 

Case3 0.047 0.991  0.075 0.971 

Case4 0.085 0.970  0.127 0.914 

 

We next considered the yellow-blue channel, and distinguished four cases as well. The first, 

denominated YB-Case1, is the following:  (𝑡31 𝑡32 𝑡33) = (1 1 −y).                    (22) 



When y = 1 ,  y = 2 ,  and y = − 𝐿0+𝑀0𝑆0  , we are presented with the situations indicated in 

previous Eqs. (5), (6) and (8), respectively. The best y value for 𝑜𝑦𝑏(𝜆), in order of closeness to 𝐻𝑦𝑏(𝜆), is 𝑦 = 0.92299502. 
The second case, denominated YB-Case2, is the following: (𝑡31 𝑡32 𝑡33) = (1 0 −1).                   (23) 

This case was given by Eq. (7) and by Eq. (9) in the recent paper9 by Pridmore. 

The third case, denominated YB-Case3, is to find the best (𝑡31 𝑡32 𝑡33) so that 𝑜𝑦𝑏(𝜆) is 

closest to 𝐻𝑦𝑏(𝜆). Again, we must solve a least squares problem11 and it was found that (𝑡31 𝑡32 𝑡33) = (0.24289310 0.13401208 −0.69913752).         (24) 

Finally, in the fourth case, denominated YB-Case4, we computed the best (𝑡31 𝑡32 𝑡33) so that 𝑜𝑦𝑏(𝜆) is closest to 𝐻𝑦𝑏(𝜆), with the constraint defined by the following Eq. (25): 𝑡31 + 𝑡32 + 𝑡33 = 0.                         (25) 

In this last case it was found that (𝑡31 𝑡32 𝑡33) = (0.25717223 0.23710911 −0.49428134).       (26) 

As noted above, constraints in Eqs. (18) and (25) allow the Γ transform (see Eq. (2)) to map the 

neutral in L, M and S space to the neutral in opponent space when the neutral stimulus signals 𝐿0, 𝑀0, 

and 𝑆0 satisfy 𝑆0 = 𝐿0 = 𝑀0.  

 

Figure 5. Hurvich’s opponent yellow-blue 𝐻𝑦𝑏(𝜆) function (black), together with the yellow-blue spectral responses from YB-

Case1, YB-Case2, YB-Case3 and YB-Case4, respectively (see main text).  

   

Figure 5 shows Hurvich’s opponent yellow-blue spectral function, 𝐻𝑦𝑏(𝜆) (black), together with 

the yellow-blue spectral responses found from YB-Case1 (red), YB-Case2 (blue), YB-Case3 (magenta), 

and YB-Case4 (yellow). It can be observed that their order of closeness to the black curve is: magenta, 

yellow, blue, and red. Hence, YB-Case3 is the best, followed by YB-Case4, YB-Case2, and YG-Case1. 

Table 1 lists the RMSE (column 4) and GFC (column 5) values between Hurvich’s opponent yellow-

blue spectral function 𝐻𝑦𝑏(𝜆) and the yellow-blue spectral responses achieved for each of our four cases. 

It can be seen from both measurements that the best cases are YB-Case3, YB-Case4, YB-Case2, and 

YB-Case1, in this order, which is consistent with the results observed in Figure 5.  

Note that from Eq. (22) with y = 0.92299502 for YB-Case1 we cannot expect transforms Γ𝑆𝐵, Γ𝐻𝑃, and Γ𝑊 (Eqs. (5), (6), (8)) to perform better than for YB-Case3 and YB-Case4 in terms of fitting 



Hurvich’s opponent yellow-blue function 𝐻𝑦𝑏(𝜆) . In addition, for YB-Case 2, corresponding to 

transforms Γ𝑊𝑆 and Γ𝑃, we cannot expect these to have a better performance than for YB-Case3 and 

YB-Case4 in terms of their fitting Hurvich’s opponent yellow-blue function 𝐻𝑦𝑏(𝜆). 
From all the above discussions, we can conclude that the best transform is based on Eq. (14) for the 

achromatic signal, Eq. (17) for the red-green signal, and Eq. (24) for the yellow-blue signal. We have 

named this transform Γ𝑜𝑝1, given by: 

Γ𝑜𝑝1  = (0.68990272/𝑘𝐿 0.34832189/𝑘𝑀 01.19285019 −1.74043682 0.352271090.24289310 0.13401208 −0.69913752) .         (27) 

Similarly, we can point out that the second best transform, denominated Γ𝑜𝑝2, is the one achieved 

from Eqs. (14), (19) and (26): 

Γ𝑜𝑝2  = (0.68990272/𝑘𝐿 0.34832189/𝑘𝑀 01.20150523 −1.67794634 0.476441110.25717223 0.23710911 −0.49428134) .         (28) 

Here, 𝑘𝐿, 𝑘𝑀 (and 𝑘𝑆) are scaling factors used to compute the cone response signals (see Eq. (1)) 

that will be considered in the next section (see Eq. (32)). Up to now, we have assumed that 𝑘𝐿 = 1 and 𝑘𝑀 = 1 have the best fit for the spectral luminous efficiency function 𝑉𝐹(𝜆).   

Note that the above analyses and proposed new transforms used the Hurvich’s opponent response 
functions9 as reference. Although different sets of opponent response functions are available in the 

literature (see Table 1 in reference 7), we used Hurvich’s opponent response functions because they have 

been widely used in previous literature, including the recent paper by Pridmore (Figure 2 in reference 7). 

 

DISCUSSIONS AND CONCLUSIONS 

In color science, an Γ  transform is useful if O = ΓC  maps the neutral color vector 𝐶0 =(𝐿0 𝑀0 𝑆0)𝑇  to opponent space 𝑂 = (𝑂𝐴 𝑂𝑟𝑔 𝑂𝑦𝑏)𝑇  with 𝑂𝑟𝑔 = 0  and 𝑂𝑦𝑏 = 0 , which is 

referred to as a neutral-to-neutral condition for the Γ transform considered. It can be verified that the Γ𝑊 transform given by Wuerger et al.6 (see Eq. (8)) always satisfies this condition. However, for the 

other transforms described here we can deduce the neutral condition in cone space for the neutral color 

vector 𝐶0 = (𝐿0 𝑀0 𝑆0)𝑇 using this neutral-to-neutral condition.  

For example, when using the transform Γ𝑆𝐵 defined by Eq. (5), to obtain 𝑂𝑟𝑔 = 0 and 𝑂𝑦𝑏 = 0 

we must have the neutral condition in cone space: 𝐿0 = 𝑀0 and 𝑆0 = 2𝐿0 = 2𝑀0 .                    (29) 

Note that when using the transforms Γ𝐻𝑃, Γ𝑊𝑆, and Γ𝑜𝑝2, defined by Eqs. (6), (7), (28), respectively, 

the sum of the coefficients in the second and third rows of the matrices is zero, and hence, the neutral-

to-neutral condition is fulfilled when the neutral color vector 𝐶0 satisfies 

 𝑆0 = 𝐿0 = 𝑀0 .                         (30) 

For the transform Γ𝑃, defined by Eq. (9), the neutral-to-neutral condition is fulfilled if the neutral 

color vector 𝐶0 satisfies 𝑆0 = 𝐿0 ,  𝑀0 = 2𝐿0 = 2𝑆0 .                      (31) 

To allow the neutral color stimulus to satisfy any of the neutral conditions defined by Eqs. (29)-

(31), we must introduce the scaling factors 𝑘𝐿, 𝑘𝑀, and 𝑘𝑆 into Eq. (1) to compute the cone response 

signals 𝐿𝑀𝑆, so that 



{  
  𝐿 = 𝑘𝐿 ∫ 𝜑(𝜆)𝑙(̅𝜆)𝑑𝜆𝑏𝑎𝑀 = 𝑘𝑀 ∫ 𝜑(𝜆)𝑚̅(𝜆)𝑑𝜆𝑏𝑎𝑆 = 𝑘𝑆 ∫ 𝜑(𝜆)𝑠̅(𝜆)𝑑𝜆𝑏𝑎

 .                      (32) 

Let 𝜑0(𝜆) be the spectral radiance for a given neutral stimulus. Then, in order to satisfy the neutral 

condition Eq. (29) in cone space, the scaling factors 𝑘𝐿, 𝑘𝑀, and 𝑘𝑆 in Eq. (32) are determined by the 

following Eq. (33) for a given constant 𝑐 (for example 𝑐 = 1 or 100): 

  𝑘𝐿 ∫ 𝜑0(𝜆)𝑙(̅𝜆)𝑑𝜆𝑏𝑎 = 𝑘𝑀 ∫ 𝜑0(𝜆)𝑚̅(𝜆)𝑑𝜆𝑏𝑎 = 𝑐 = 0.5𝑘𝑆 ∫ 𝜑0(𝜆)𝑠̅(𝜆)𝑑𝜆𝑏𝑎       (33) 

In order to satisfy the neutral condition Eq. (30) in cone space, the scaling factors 𝑘𝐿, 𝑘𝑀, and 𝑘𝑆 

in Eq. (32) are determined by the following Eq. (34) for a given constant 𝑑 (for example 𝑑 = 1 or 

100): 𝑘𝐿 ∫ 𝜑0(𝜆)𝑙(̅𝜆)𝑑𝜆𝑏𝑎 = 𝑘𝑀 ∫ 𝜑0(𝜆)𝑚̅(𝜆)𝑑𝜆𝑏𝑎 = 𝑘𝑆 ∫ 𝜑0(𝜆)𝑠̅(𝜆)𝑑𝜆𝑏𝑎 = 𝑑       (34) 

However, in order to satisfy the neutral condition Eq. (31) in cone space, the scaling factors 𝑘𝐿, 𝑘𝑀, and 𝑘𝑆 in Eq. (32) are determined by the following Eq. (35) for a given constant 𝑓 (for example 𝑓 = 1 or 100): 𝑘𝐿 ∫ 𝜑0(𝜆)𝑙(̅𝜆)𝑑𝜆𝑏𝑎 = 𝑘𝑆 ∫ 𝜑0(𝜆)𝑠̅(𝜆)𝑑𝜆𝑏𝑎 = 𝑓 = 0.5𝑘𝑀 ∫ 𝜑0(𝜆)𝑚̅(𝜆)𝑑𝜆𝑏𝑎        (35) 

Determining the scaling factors can also be done by using the newly derived transform Γ𝑜𝑝1. Let 

the second and third rows of the transform Γ𝑜𝑝1 form a matrix A. Then we find the singular value 

decomposition11 for A: 𝐴 = 𝑈𝐷𝑉𝑇. Here, the superscript T is the transpose of a matrix, while 𝑈 and 𝑉 are 2-by-2 and 3-by-3 orthogonal matrices, respectively. The 2-by-3 matrix 𝐷 has a special form, 

given by: 𝐷 = (𝜎1 0 00 𝜎2 0)                           (36) 

where 𝜎1 and 𝜎2 are the singular (non-negative) values of the matrix A. 

Let 𝑣 be the third column of the orthogonal matrix 𝑉. It can then be verified that 𝐴𝑣 = (0 0)𝑇. 

In fact, 

   𝑣 = (0.73201193 0.57550407 0.36462803)𝑇.         (37) 

Hence, the neutral-to-neutral condition using the transform Γ𝑜𝑝1 is satisfied if the neutral color 

vector 𝐶0 satisfies 𝐶0 = (𝐿0 𝑀0 𝑆0)𝑇 = 𝑣 .                   (38) 

In the preceding, we have discussed the neutral-to-neutral conditions for several different 

transforms. A transform is useful if the associated neutral-to- neutral condition is satisfied. We have also 

discussed the neutral condition in cone space for each of the transforms considered, and how to choose 

the scaling factors 𝑘𝐿, 𝑘𝑀, and 𝑘𝑆 to satisfy these neutral conditions. However, different applications 

may require different neutral conditions in cone space, which may limit the choice of transforms. In color 

science, a widely accepted neutral condition is that the three channel response values 𝐿0, 𝑀0, 𝑆0 are 

equal, resulting in the neutral condition in Eq. (30), which ensures that transforms Γ𝐻𝑃 (see Eq. (6)), Γ𝑊𝑆 (see Eq. (7)), and Γ𝑜𝑝2 (see Eq. (28) satisfy the neutral-to-neutral condition. Among these three 

transforms, Γ𝑜𝑝2 is the best in terms of fitting the spectral luminous efficiency function 𝑉𝐹(𝜆) and 

Hurvich’s opponent red-green and yellow-blue responses, 𝐻𝑟𝑔(𝜆) and 𝐻𝑦𝑏(𝜆). 



When the three cone response values 𝐿0, 𝑀0, 𝑆0 do not satisfy any of the neutral conditions given 

by Eqs. (29)-(31) and (38) in cone response space, for a particular application the transform Γ𝑊 (see Eq. 

(8)) can be used, as this transform does satisfy the neutral-to-neutral condition for any neutral stimulus 

in cone space. However, in this case, a better transform can be developed in terms of fitting of the spectral 

luminous efficiency function 𝑉𝐹(𝜆)  and Hurvich’s opponent red-green and yellow-blue responses, 𝐻𝑟𝑔(𝜆) and 𝐻𝑦𝑏(𝜆). In fact, if we let the transform be Γ𝑜𝑝3, having 9 parameters (see Eq. (13)), the first 

row of Γ𝑜𝑝3 is the same as the first row of Γ𝑜𝑝1 (or Γ𝑜𝑝2), and the second and third rows of Γ𝑜𝑝3 

should satisfy: 

   (𝐻𝑟𝑔(𝜆)𝐻𝑦𝑏(𝜆)) = (𝑡21 𝑡22 𝑡23𝑡31 𝑡32 𝑡33) 𝑐(𝜆) ,                  (39) 

where 𝑐(𝜆) is defined by Eq. (10). Furthermore, the second and third rows of Γ𝑜𝑝3 should satisfy the 

following constraint: (00) = (𝑡21 𝑡22 𝑡23𝑡31 𝑡32 𝑡33) 𝐶0 ,                   (40) 

where 𝐶0 = (𝐿0 𝑀0 𝑆0)𝑇. Note that condition in Eq. (39) must be satisfied for each wavelength 𝜆, 

and hence we need to find a least squares solution for Eq. (39). Condition in Eq. (40) is the neutral-to-

neutral condition for the transform Γ𝑜𝑝3 , and so the final transform can be obtained by solving a 

constrained least squares problem11. 

In conclusion, we have examined several transforms (see Eqs. (5)-(9)) mapping the cone signal 

vector 𝐶 formed by 𝐿𝑀𝑆 to opponent color space 𝑂 (see Eqs. (2)-(4)). We have also derived two new 

transforms, designated as Γ𝑜𝑝1  (Eq. (27)) and Γ𝑜𝑝2  (Eq. (28)), based on the fit of the CIE spectral 

luminous efficiency function 𝑉𝐹(𝜆)  and Hurvich’s opponent red-green and yellow-blue responses, 𝐻𝑟𝑔(𝜆) and 𝐻𝑦𝑏(𝜆), without and with constraints (see Eqs. (18) and (25)), respectively. Γ𝑜𝑝1 is better 

than Γ𝑜𝑝2 in terms of best fit for 𝐻𝑟𝑔(𝜆) and 𝐻𝑦𝑏(𝜆). Both Γ𝑜𝑝1 and Γ𝑜𝑝2 are better than any of the 

transforms previously proposed (Eqs. (5)-(9)), in terms of fit of Hurvich’s red-green and yellow-blue 

opponent spectral responses. Using the transform Γ𝑜𝑝1, the neutral-to-neutral condition requires that the 

scaling factors 𝑘𝐿, 𝑘𝑀, and 𝑘𝑆 must be determined so that a neutral stimulus in cone space is obtained 

(Eqs. (37)-(38)). For the transform Γ𝑜𝑝2, the neutral-to-neutral condition requires that the scaling factors 𝑘𝐿 , 𝑘𝑀, and 𝑘𝑆  be determined so that the neutral condition in Eq. (30) be satisfied. If the neutral 

condition in cone space is different from that defined by Eqs. (30) or (38), an Γ𝑜𝑝3 transform can be 

obtained by solving the constrained least squares problem defined by Eqs. (39) and (40).       
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