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Abstract Organic sorbents alter physicochemical soil
properties and mitigate heavy metal (HM) bioavailabil-
ity. However, some sorbents are labile and, therefore,
introduce the risk of HM release into soil after
mineralisation. Before field application, new stable or-
ganic sorbents such as woodchip biochar (BIO) and
brown coal waste (BCW) need to be tested and com-
pared with standard organic amendments like farmyard
manure (FYM). An incubated pot experiment was con-
ducted to investigate the efficacy of FYM, BIO and
BCW (added to soil in pots at 5 and 10% w/w) to alter
soil physicochemical properties and mitigate bioavail-
ability of Cd, Pb and Zn spiked in treatments at different
doses (in mg kg−1); 0 (not spiked), 1 (1 Cd, 70 Pb, 100

Zn) and 2 (3 Cd, 500 Pb, 700 Zn), and incubated for
9 weeks. At the end of the experiment, the EDTA-
extractable HM fractions, pH, cation exchange capacity
(CEC) and specific surface area (SSA, to check trends)
were determined in all treated soils. Results showed that
FYM, BCW and BIO generally improved all soil prop-
erties (except reduced pH from BCWand apparent SSA
reduction from FYM) and accounted for respective
maximum abatements of Cd (50.2, 69.9 and 25.5%),
Pb (34.2, 64.3 and 17.4%) and Zn (14.9, 17.7 and
11.8%) bioavailability in soil. FYM and BCW were
more effective at 10% w/w especially in the low con-
taminated soil, whereas the highest efficacy for BIOwas
at 5% w/w and in the high contaminated soil. The
efficacies of sorption by the organic sorbents varied
for different HMs and were in the orders: BCW >
FYM > BIO for Cd, FYM > BCW > BIO for Pb and
BIO > BCW > FYM for Zn. Soil pH and CEC were
strongly correlated with HM bioavailability in all treat-
ments and implied that immobilisation of HMs occurred
via complex formation, ion exchange and pH-dependent
specific adsorption. All three sorbents were beneficial as
soil amendments, and in terms of HMmitigation, BCW
had the highest efficacy, followed by FYM and then
BIO. Considering the documented high soil stability of
BCW and BIO, these results are promising for further
trialling at field scale.
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1 Introduction

Soil is a major sink for heavy metal(loid)s (HMs)
which are released into the environment from diverse
geogenic and anthropogenic sources and processes
(Malina 2004; Lwin et al. 2018). Unlike other envi-
ronmental contaminants (e.g. pesticides), most HMs
are non-biodegradable and therefore exhibit a high
degree of persistence in soil with increased toxicity to
humans, fauna and flora (Wuana and Okieimen
2011). The choice of remediation technique for
HM-contaminated soils depends on the planned land
use and the targeted remediation percentage (e.g.
total mitigation versus % mitigation to comply with
guideline values) (Gomiero 2016; Beesley et al.
2015).

The use of biochar and brown coal waste (BCW)
for improving the physicochemical and biological
characteristics of soil to promote HM sorption and
immobilisation is a growing research area (Amoah-
Antwi et al. 2020). The immobilising effect of these
porous organic materials on HMs can be attributed to
increases in soil pH, cation exchange capacity (CEC)
and specific surface area (SSA) (Kwiatkowska et al.
2006; Sokołowska et al. 2007; Lwin et al. 2018).
Biochar and BCW are highly carbonised recalcitrant
materials with high organic matter (OM) and humic
acid contents and therefore promote the formation of
a higher proportion of stable soil aggregates (e.g.
organo-metallic complexes and precipitates) com-
pared with other conventional organic sorbents (e.g.
compost and FYM) (Beesley et al. 2015). Even
though a range of studies have reported significant
reductions in HM bioavailability using conventional
organic sorbents, their large labile OM pools are
indicative of high mineralisation rates and tendency
to release HMs into soil (Shaha et al. 2012; Placek
et al. 2017). Generally, in soil amended with proc-
essed and stable OM sources, metals are easily trans-
formed from their exchangeable forms to more stable
organic phases (Lwin et al. 2018). Biochar and BCW
have abundant negatively charged functional groups
(e.g. phenol and carboxyl compounds) which pro-
gressively accumulate in soil during humification
and are known as integral components of organo-
metallic complexation reactions (Turgay et al. 2011).

Biochar produced from different feedstock materials
can affect the mobility of different HMs in diverse ways
(Lomaglio et al. 2017), the extent of which is also

dictated by soil type. For example, biochars derived
from agricultural wastes significantly immobilised Pb,
Zn and Cu but increased As and Sb mobility (Ahmad
et al. 2017). The same study found the low-temperature
biochars to be more effective in alkaline soils, whereas
the high-temperature types in acidic soils. Brown coal
waste, on the other hand, is reportedly effective for
mitigating bioavailability of HMs in acidic soils, but
its use could progress with further drops in soil pH
(Kwiatkowska-Malina andMaciejewska 2013; Simmler
et al. 2013). As a result, BCW can be used along with
liming to ameliorate soil acidity to enhance sorption
efficacy (Karczewska et al. 1996). However, this can
aggravate the risk of releasing previously sorbed HMs
into soil solution (Loganathan et al. 2012) owing to
competition with the added Ca (from liming) for binding
sites in the soil complex, especially if soil pH is not
substantially increased. Other studies have incorporated
crops (e.g. maize and winter rye) into the amended soil
and found varying positive outcomes of biochar and
BCW amendments on HM bioavailability (Skłodowski
et al. 2006; Alaboudi et al. 2019). However, despite a
plethora of research on biochar, there is still lack of
coherence over its efficacy for the sorption of different
HMs in a range of soils (Khan et al. 2015; Woldetsadik
et al. 2016; Lomaglio et al. 2017). On the other hand,
BCW is a slowly emerging soil amendment, and there-
fore, its effects on HMs are not yet fully elucidated
(Amoah-Antwi et al. 2020).

To ensure the best possible outcomes from biochar
and BCW applications in terms of mitigating HM
contamination, supplementary studies will be needed
to provide evidence-based scientific approaches
which can be scaled up to field studies. The present
pot-scale incubation experiment was conducted on
bare soil amended with conifer woodchip biochar
(BIO) and BCW, and FYM, and then artificially
contaminated with a mixture of Cd, Pb and Zn. Since
FYM is a widely used soil sorbent with known ef-
fects on HM release in soil, it was included as a
comparative treatment. This study is designed for
restoration of both low and high contaminated soils
to high-value terrestrial biomes including arable
lands, forests and grasslands. The objectives of the
study were to (i) evaluate the effects of BIO, BCW
and FYM amendments on the bioavailability of Cd,
Pb and Zn in soil and (ii) assess the relationship
between selected physicochemical soil properties
(pH and CEC) and HM bioavailability.
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2 Materials and Methods

2.1 Soil and Organic Sorbents

Soil was collected (to a depth of 0–30 cm) from a
previously cultivated (triticale) field at the Skierniewice
Experimental Station in central Poland (20° 34′ E, 51°
58′ N). The soil, a loamy sand (87% sand, 6% silt, 7%
clay) haplic luvisol (WRB 2015), was air-dried for
3 days, rolled and then stones and plant litter were
removed. The soil was crushed in a ceramic mortar
and passed through a 2-mm dry sieve. A 25 g soil
sample was taken and physicochemical properties were
determined (Table 1).

The BIO was made using conifer wood chips via
low-temperature (280 °C) flash pyrolysis (temperature
increase of 10 °C/min; residence time of 10 min) under-
taken at a commercial facility (Fluid Spółka Akcyjna,
Poland). The applied pyrolysis technology allows to
achieve stable production in autothermity when the
average temperature inside the reactor remains above
630 °C. This temperature enables the maintenance of an
autothermal anaerobic carbonisation process in retorts
with an average temperature above 260 °C. The rela-
tively low pyrolysis temperature used in this study was
to lower energy demands and thus to produce a more
sustainable and cost-effective biochar for soil remedia-
tion purposes. The BCW was obtained from the
Bełchatów Coal Mine located in central Poland and
had a moisture content of 34%, whereas FYM (a mix-
ture of straw and cow dung with a moisture content of
78%) was from a livestock farm in Skierniewice, Po-
land. All organic sorbents were air-dried for 3 days.
From each of the dried sorbents, 25 g was sampled,
crushed gently in a ceramic mortar and passed through

a 2-mm sieve and then analysed for physicochemical
characteristics (Table 1).

2.2 Pot-Scale Incubation Experiment

Sixty-three plastic pots (diameter × height = 5 × 15 cm)
were filled with 125 g of sieved soil (bulk density of
1.75 g/cm3, water holding capacity (WHC) of 27%
m/m) using a funnel. Therewere seven treatments which
are comprised of three organic sorbents added to soil in
the pots at two rates, 5% w/w (BIO-1, BC-1 and FYM-
1) and 10% w/w (BIO-2, BC-2 and FYM-2), which are
equivalent to 26.25 and 52.50 t ha−1, respectively, in
addition to an unamended control. After mixing evenly,
these resulted in respectiveWHCs (in %m/m) of 33, 26,
40, 34, 28, 44 and 27.

The amended soils were then spiked with a ternary
mixture of HMs (Cd, Pb and Zn) to create three definite
ecological levels of multi-element contamination, where
the highest dose of each metal is close to the upper
threshold prescribed in the guidelines for HMs in soil
and groundwater (NEPC 1999; Toth et al. 2016). Cad-
mium, Pb and Znwere spiked separately into each of the
amended soils in the pots at different doses using their
respective aqueous solutions, Cd(NO3)2 × 4H2O,
Pb(NO3)2 and ZnSO4 × 7H2O, and then blended uni-
formly. Doses 1 and 2 reflected, respectively, the fol-
lowing concentrations in soil (in mg kg−1)—1 (Cd), 70
(Pb), 100 (Zn); and 3 (Cd), 500 (Pb) and 700 (Zn)—
whereas dose 0 represented the unspiked treatments. All
treatments were performed in three replicates. Through-
out the experiment, soil water content was adjusted to
50% of the WHC estimated for each of the treatments.
Such water content was chosen because it has been
shown to be suitable for plant growth in light soils

Table 1 Characteristics of soil and organic sorbents studied in the pot experiment

Materials pH Exchangeable cations CEC Total C/N SSA

H2O KCl Ca Na K Mg Cd Pb Zn C N S

cmol kg−1 cmol kg−1 mg kg−1 % m2 g−1

Soil 6.53 5.57 0.46 0.05 0.26 0.16 0.92 < 0.01 0.01 0.40 0.72 0.07 0.01 10.29 0.75

BCW 5.85 5.40 18.66 0.22 3.24 2.23 24.35 < 0.01 0.03 0.25 43.80 0.53 1.26 82.64 2.15

BIO 10.02 9.49 25.56 0.37 3.47 1.98 31.15 < 0.01 0.01 0.40 82.60 0.87 0.05 94.94 4.80

FYM 9.66 8.75 13.00 5.85 17.96 10.47 47.28 n.d. 0.03 2.68 35.30 2.25 0.85 15.69 1.01

CEC cation exchange capacity, SSA specific surface area, BCW brown coal waste, BIO conifer wood chips biochar, FYM farmyard manure,
n.d. not detected
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(Xue et al. 2017). The pots were set up on tables in a

well-ventilated laboratory at room temperature for

9 weeks of incubation to ensure maximum sorption

and equilibrium. Typically, adsorption of metals in in-

cubated soils increases rapidly in the first 24 h followed

by equilibrium between 4 and 8 weeks (Casagrande

et al. 2004; Wuana and Okieimen 2011; Anemana

et al. 2020).

After incubation, pots were emptied, and soil was air-

dried and then homogenised for determination of phys-

icochemical properties. Soil pH was measured potenti-

ometrically in 1 M KCl (1:2.5 w/v) (Kabała et al. 2016)

and the CEC in 1 M CH3COONH4 buffered solution at

pH 7.0 (Zgorelec et al. 2019). For statistical determina-

tion of the relationships between soil pH and other

parameters, pH was converted to hydrogen ion concen-

tration ([H+]) by the formula:

Hþ½ � ¼ 10−pH ð1Þ

In addition, the SSAwas analysed for one sample per

treatment using the Brunauer-Emmett- Teller (BET)

method to examine the trends.

2.3 Extraction of Heavy Metals

The European Commission’s Standards, Measurements

and Testing programme (SM&T) for soil recommends

the single-step extraction using ethylenediaminetetra-

acetic acid (EDTA) as the certification approach for

determining the bioavailable fraction of metals in soil

(Olaniran et al. 2013). Even though dilute solutions of

unbuffered salts (e.g. CaCl2 and NH4NO3) are also

suitable for extracting labile HMs from soil, a chelating

organic reagent was generally preferred in this study

because in addition to the exchangeable- and

carbonate-bound metals it can also dislodge the reduc-

ible fractions (Bakircioglu et al. 2011). These metal

fractions can be immobilised by organic sorbents, espe-

cially the highly stable types which have low

mineralisation rates and pose less risks of releasing

bound HMs into soil.

The extraction of the bioavailable fractions of Cd, Pb

and Zn was conducted as follows: firstly, 5 g of soil

from each incubated pot was placed in 200 mL sample

tubes; then, 50 mL of 0.05 M EDTA was added; and

tubes were placed on a rotary shaker and operated at

30 rpm for 1 h at room temperature. The extracts were

separated from soil residue into centrifuge tubes and

centrifuged at 3000 rpm for 10 min. Following centri-

fugation, the supernatant was passed through a vacuum

filter, stored at 4 °C until metal analysis by atomic

absorption spectrometry (AAS, Thermo Scientific™

iCE 3000, Germany). The percentage reduction

(%Red) of the bioavailable fractions of HMs in the

treated soils relative to the unamended control was

calculated as follows:

%Red ¼
Unamended control−Treatment

Unamended control
X 100 ð2Þ

2.4 Statistical Analyses

The Kruskal-Wallis rank sum test was carried out to

determine the statistical differences in treatment groups

of bioavailable HM fractions (across all doses of Cd, Pb

and Zn), pH and CEC of soil followed by Nemenyi’s

test for multiple comparisons (Tukey) at a significance

level of p < 0.05. Regression analyses were done using

Spearman’s rank correlation coefficients (r) for pairwise

comparison (p < 0.05, p < 0.01 and p < 0.001) of multi-

ple parameters comprising the bioavailable HM frac-

tions and soil properties (pH and CEC). All statistical

analyses were carried out using R software (version

1.3.959).

3 Results and Discussion

3.1 Effects of Organic Sorbents on Soil Properties

The effects of organic sorbents on soil pH and CEC after

incubation are presented in Table 2. The results reveal

significant (p < 0.05) increases in soil pH from the re-

spective 5 and 10% w/w treatments of BIO (1.9, 2.3 pH

units) and FYM (2.9, 3.1 pH units) compared with the

control. On the other hand, BCW amendment led to

marginal, insignificant (p < 0.05) reductions in pH

(0.2, 0.4 pH units). The higher amendment rate of all

treatments appeared to have a greater impact (though,

not significantly different), irrespective of whether soil

pH increased or decreased. The pH increases from BIO

were consistent with its documented high liming capac-

ity (Lwin et al. 2018; Yuan et al. 2011), especially

considering the acidic nature of the original soil

(Table 1). Although the ash content of BIO was not

quantified, increases in pH from biochar, particularly

the low-temperature types, are attributed to the release
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of groups such as carbonates of alkali and alkaline earth

metals, silica and sesquioxides in the form of ashes to

soil (Nigussie et al. 2012). Due to the high acid-

neutralising capacity of ashes, biochar is often recom-

mended as a substitute liming material for soil amend-

ment (Arocena and Opio 2003). Even though the di-

verse functional groups in humic acids from BCW

provide additional reactive sites in soil, they are com-

posed mostly of acidic carboxylic and phenolic groups

which confer acidity to the material. Therefore, the drop

in soil pHwhich was greater at the higher BCW rate was

conceivable, especially without liming. This is in agree-

ment with Simmler et al. (2013) who reported reduced

soil pH (0.1–0.6 units) from BCW (lignite) amend-

ment. However, BCW has a high buffering capacity

and considering that the pH drops were low (<

0.5 units), this may imply a potential for long-term

stabilisation of soil pH (Krol-Domańska and

Smolinska 2012). Again, haplic luvisols reportedly

have strong buffering properties (Kwiatkowska et al.

2008), and they could also be a reason for the insig-

nificant (p < 0.05) BCW impacts on soil pH while also

suggesting that the pH increases from BIO and FYM

could have been higher in other less-buffered acidic

soils. Our results are also consistent with the findings

by Singh et al. (2009) who observed a significant

increase in the pH of an acidic soil from FYM amend-

ment. The researchers also suggested co-application

with lime for enhanced mitigation of acidity. Though

the release of organic acids from labile OM decom-

position reportedly leads to reduced soil pH (Aziz

et al. 2017), FYM, which has a higher mineralisation

potential, proved to be a better ameliorant of soil

acidity than the more recalcitrant sorbents (i.e. BIO

and BCW). Other studies, however, have shown that

FYM can also be a useful neutralising agent for alka-

line soil amendment (Brar et al. 2015; Mahmood et al.

2017). Consequently, co-application of carbonised

organic sorbents, especially BCW, with FYM can be

given due consideration to exploit their complimen-

tary benefits (i.e. pH regulation and buffering) in

different soils. The [H+] across BIO and FYM treat-

ments had strong negative correlations with CEC (r =

−0.77 and − 0.90; Tables 3 and 4, respectively) indi-

cating that their addition to soil may have increased

the exchange sites and capacity for Al and Fe binding,

leading to pH increases. This correlation was strongly

positive in the BCW treatments (r = 0.75, Table 5)

and suggests that the resulting low soil pH may have

been caused by masking of the benefit of a large CEC

(as above) by the acidic nature of BCW.

The CEC of soil responded positively to increasing

application rates of organic sorbent and resulted in

multi-fold increases from BCW (6, 8 times), BIO (5, 6

times) and FYM (22, 39 times), compared with the

control. Generally, CEC has been shown to increase if

the exchangeable Ca content of the amendment ma-

terial is higher than that of the target soil. In this study,

the exchangeable Ca contents of all treatments were at

least 28-fold higher than the original soil (Table 1),

thus resulting in the high CEC increases across treat-

ments. In a 12-week incubation experiment, biochar

induced CEC increases only in soils that had lower

initial exchangeable Ca contents, whereas CEC de-

creased with higher starting exchangeable Ca con-

tents across10 different soils (Hailegnaw et al.

2019). In the upper horizon of light mineral soils, it

is estimated that by increasing OM content (e.g. via

organic amendment), the CEC increases by 20–95%

(Oades et al. 1989). This may be a reason why CECs

of the highly labile FYM soil treatments were mark-

edly higher than from BIO and BCW, which are

extensively processed with relatively smaller frac-

tions of available OM. Again, the high increases in

CEC from the FYM amendment could be due to the

Table 2 Effects of organic sorbents on pH and CEC of soil

(unspiked samples after incubation)

Treatment pH in KCl CEC

cmol kg−1

Control 5.54 ± 0.08 c 0.92 ± 0.13 e

BCW-1 5.34 ± 0.08 c 5.93 ± 0.35 cd

BCW-2 5.19 ± 0.18 c 7.73 ± 0.87 c

BIO-1 7.40 ± 0.27 b 4.61 ± 0.68 d

B1O-2 7.80 ± 0.21 b 5.44 ± 0.29 cd

FYM-1 8.40 ± 0.17 a 20.27 ± 1.35 b

FYM-2 8.59 ± 0.14 a 36.07 ± 2.31 a

LSD0.05 0.48 3.09

CEC cation exchange capacity, BCW brown coal waste, BIO

conifer wood chips biochar, FYM farmyard manure. Treatments

at levels 1 (BCW-1, BIO-1 and FYM-1) and 2 (BCW-2, BIO-2

and FYM-2) represent organic amendments at 5 and 10% w/w,

respectively. LSD0.05—least significant difference at the level α =

0.05. Values are treatment means (± SD). Sample sizes are pH

(n = 3) and CEC (n = 3) for all treatments. Treatments that do not

share a letter are significantly different according to Nemenyi’s

test for multiple comparisons (Tukey) at a significant level of

p < 0.05



formation of a high organic colloid proportion in soil
(Nkechi et al. 2013). This is supported by Dhiman
et al. (2019) who reported that CEC was higher in the
topsoil due to a higher organic C content than in the
sub-surface soil. Despite this, FYM reportedly de-
creased CEC of an acidic soil (0–15 cm) which then

increased when FYM was applied as a composite
amendment with biochar (Gautam et al. 2017). In-
creases in CEC from BIO could be due to its high
SSA and the presence of variable charges which tend
to increase base saturation, while the complete disso-
ciation of the carboxylic groups of OM may be

Table 3 Correlation among soil properties (pH and CEC) and concentrations of bioavailable fractions of Cd, Pb and Zn in BIO-amended
soils

[H+] CEC Cd dose 0 Cd dose 1 Cd dose 2 Pb dose 0 Pb dose 1 Pb dose 2 Zn dose 0 Zn dose 1 Zn dose 2

[H+] 1.00

CEC − 0.77*** 1.00

Cd dose 0 − 0.33 0.33 1.00

Cd dose 1 − 0.02 0.05 0.82* 1.00

Cd dose 2 0.62** − 0.45 0.48 0.60* 1.00

Pb dose 0 0.78** − 0.87** − 0.27 0.00 0.50 1.00

Pb dose 1 0.48 − 0.23 0.33 0.50* 0.82** 0.33 1.00

Pb dose 2 0.68** − 0.58** − 0.25 −0.07 0.57 0.57* 0.77 1.00

Zn dose 0 − 0.32 0.38 0.98*** 0.75 0.50 −0.28 0.40 −0.18 1.00

Z n dose1 0.70** − 0.67** 0.28 0.58 0.82* 0.72* 0.53 0.42 0.22 1.00

Zn dose 2 0.73** − 0.52* 0.33 0.60 0.90*** 0.55* 0.75** 0.57* 0.32 0.92** 1.00

[H+ ] hydrogen ion concentration (converted from pH), CEC cation exchange capacity, BIO wood chip biochar. Doses 0, 1 and 2 of each
heavy metal represent the concentrations of bioavailable fractions in unspiked, low contaminated and high contaminated soils, respectively

Correlation coefficients were determined by Spearman’s rank correlation (p < 0.05) from parameters with sample sizes: n = 18 (Cd dose 0,
Cd dose 1, Cd dose 2, Pb dose 0, Pb dose 1, Pb dose 2, Zn dose 0, Zn dose 1 and Zn dose 2) and n = 9 (CEC, pH). Significance at p < 0.05,
p < 0.01 and p < 0.001are presented as *, **, and ***, respectively

Table 4 Correlation among soil properties (pH and CEC) and concentrations of bioavailable fractions of Cd, Pb and Zn in FYM-amended
soils

[H+] CEC Cd dose 0 Cd dose 1 Cd dose 2 Pb dose 0 Pb dose 1 Pb dose 2 Zn dose 0 Zn dose 1 Zn dose 2

[H+] 1.00

CEC − 0.90** 1.00

Cd dose 0 0.77** − 0.67** 1.00

Cd dose 1 0.87 − 0.93*** 0.65* 1.00

Cd dose 2 0.68* − 0.88* 0.68* 0.80* 1.00

Pb dose 0 0.68 − 0.73* 0.70* 0.70** 0.72 1.00

Pb dose 1 0.62 − 0.77** 0.23 0.87*** 0.60 0.58** 1.00

Pb dose 2 0.53** − 0.63** 0.65* 0.73 0.77** 0.40 0.50 1.00

Zn dose 0 0.38 − 0.47 0.27 0.43 0.35 0.73 0.58 0.00 1.00

Zn dose 1 0.35 − 0.47 0.10 0.40 0.42 0.60* 0.62 0.03 0.87*** 1.00

Zn dose 2 0.57 − 0.73* 0.70 0.70** 0.80* 0.75* 0.57* 0.63 0.68 0.55 1.00

[H+ ] hydrogen ion concentration (converted from pH), CEC cation exchange capacity, FYM farmyard manure. Doses 0, 1 and 2 of each
heavy metal represent the concentrations of bioavailable fractions in unspiked, low contaminated and high contaminated soils, respectively

Correlation coefficients were determined by Spearman’s rank correlation (p < 0.05) from parameters with sample sizes: n = 18 (Cd dose 0,
Cd dose 1, Cd dose 2, Pb dose 0, Pb dose 1, Pb dose 2, Zn dose 0, Zn dose 1 and Zn dose 2) and n = 9 (CEC, pH). Significance at p < 0.05,
p < 0.01 and p < 0.001 are presented as *, **, and ***, respectively
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responsible for the observed effects from BCW (Yuan
et al. 2011; Skodras et al. 2014).

Results from the BET measurements for the 5 and
10% w/w treatments were, respectively, as follows (in
m2 g−1): BCW (0.77, 0.99), BIO (0.89, 0.85) and FYM
(0.61, 0.66), compared with the control (0.75). These
showed increases in SSA of soil by BCW (2.7, 32.0%)
and BIO (18.7, 13.3%), whereas reductions were found
from the FYM (18.7, 12.0%) treatments, relative to the
control. The presence of a highly porous structure of
humified materials (i.e. BIO and BCW) is primarily
responsible for their high SSA, the lack of which could
be responsible for the reverse effect from FYM amend-
ment. In line with these findings, Arthur et al. (2015)
reported that biochar amendment increased the SSA of a
sandy loam soil. The stability of an amendment material
is crucial for developing a stable micropore soil
structure to sustain SSA increases along with
enhancement of other physical soil properties (Chu
et al. 2018). This highlights why the high stability of
BCW and BIO was an important factor for their selec-
tion as tools for abatement of HMs in soil.

3.2 Immobilisation of HMs by Organic Sorbents

The total concentrations of Cd, Pb and Zn in both the
soil and organic sorbents are presented in Table 1. The
use of organic sorbents as remediative agents in soil has

been questioned due to claims that they could be sources
of contaminants including HMs. However, unlike other
studies (Hamid et al. 2018; Mbarki et al. 2020) which
found high HM concentrations in some organic sorbents
(up to 5.7 mg kg−1 Cd, 12.9 mg kg−1 Pb and
116 mg kg−1 Zn), their contents in the sorbents used in
this study were much lower and within acceptable range
for use in soil systems (Barth et al. 2008). Figures 1, 2
and 3 show the EDTA-extractable fractions of Cd, Pb
and Zn, respectively, from soils contaminated with a
mixture of HMs spiked into soil at three doses. Given
the low metal contribution from the soil and organic
materials, the total HM contents at each dose are pre-
sented as their respective spiked concentrations. The
total HM content of soil is an estimation of saturation
and potential supply of metals to the solution phase
(Rieuwerts et al. 1998) and, thus, can influence their
bioavailability. This study therefore seeks to present the
different doses as three distinct levels of metal release
from bound to the exchangeable phase.

In the unspiked soil (dose 0), the bioavailable Cd in
all treatments were several folds higher than the sum of
total Cd in both soil and the organic sorbents for each of
the treatments. Cadmium bioavailability in the 5 and
10% w/w treatments in most cases were, respectively,
lower compared with the control by: BCW (32.4, 2.5%)
and FYM (19.3, 27.2%) (Fig. 1a). On the other hand,
bioavailability was 24.0% lower in the BIO-1 but 50.5%

Table 5 Correlation among soil properties (pH and CEC) and concentrations of bioavailable fractions of Cd, Pb and Zn in BCW-amended
soils

[H+] CEC Cd dose 0 Cd dose 1 Cd dose 2 Pb dose 0 Pb dose 1 Pb dose 2 Zn dose 0 Zn dose 1 Zn dose 2

[H+] 1.00

CEC 0.75* 1.00

Cd dose0 − 0.27 − 0.12 1.00

Cd dose1 − 0.75* − 0.85*** 0.12 1.00

Cd dose2 − 0.72 − 0.67* − 0.03 0.58** 1.00

Pb dose0 − 0.62 − 0.77* 0.07 0.67** 0.73** 1.00

Pb dose1 − 0.97* − 0.73** 0.23 0.68** 0.63 0.48 1.00

Pb dose2 − 0.30 − 0.45 − 0.65 0.58* 0.52*** 0.55* 0.23 1.00

Zn dose0 0.58 0.40 − 0.72*** − 0.50 − 0.07 − 0.02 − 0.63 0.35 1.00

Zn dose1 − 0.18 − 0.42 − 0.48* 0.47 0.67** 0.67* 0.05 0.87* 0.48 1.00

Zn dose2 − 0.72 − 0.62 0.57* 0.42 0.38 0.27 0.82* − 0.25 − 0.78* − 0.32 1.00

[H+ ] hydrogen ion concentration (converted from pH), CEC cation exchange capacity, BCW brown coal waste. Doses 0, 1 and 2 of each
heavy metal represent the concentrations of bioavailable fractions in unspiked, low-contaminated and high-contaminated soils, respectively

Correlation coefficients were determined by Spearman’s rank correlation (p < 0.05) from parameters with sample sizes: n = 18 (Cd dose 0,
Cd dose 1, Cd dose 2, Pb dose 0, Pb dose 1, Pb dose 2, Zn dose 0, Zn dose 1 and Zn dose 2) and n = 9 (CEC, pH). Significance at p < 0.05,
p < 0.01 and p < 0.001are presented as *, **, and ***, respectively
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higher in the BIO-2 treatments. Only the BCW-2 treat-
ment was not significantly different from the control at
p < 0.05. In the soil with a low HM concentration (dose
1, 1.0 mg kg−1 Cd), reductions in bioavailability from
organic treatments compared with the control were
BCW (32.2, 69.9%) and FYM (10.2, 50.3%) (Fig. 1b).
There was also reduced bioavailability from BIO-1
(18.0%), whereas BIO-2 led to a marginal increase
(2.9%). Apart from the BIO treatment (not significantly
different, p < 0.05, at the 10% w/w rate), an increasing
amendment rate in the other treatments led to higher
reductions in Cd bioavailability. In the high HM-
contaminated soil (dose 2, 3.0 mg kg−1 Cd), reductions
in bioavailability compared with the control were BCW
(1.3, 42.2%) and BIO (25.5, 9.3%) and FYM (10.2,
20.8%), (Fig. 1c). The BCW-1 treatment was not sig-
nificantly different (p < 0.05) from the control. The
BCW-2 treatment was the most effective for Cd immo-
bilisation and had the highest sorptive capacity in both

Fig. 1 Concentrations of the bioavailable fractions of Cd in soil
contaminated by HMs at dose 0 (a), dose 1 (b) and dose 2 (c) after
treatment by different organic materials. Values are treatment
means (± se), n = 6. Bars that do not share a letter are significantly
different according to Nemenyi’s test for multiple comparisons

(Tukey) at a significant level of p < 0.05. BCW brown coal waste,
BIO conifer wood chips biochar, FYM farmyard manure. Treat-
ments at levels 1 (BCW-1, BIO-1 and FYM-1) and 2(BCW-2,
BIO-2 and FYM-2) represent organic amendments at 5 and 10%
w/w, respectively

515 Page 8 of 17 Water Air Soil Pollut (2020) 231: 515

the low and high contaminated soils. This could also

imply that at the higher BCW rate, there may have been

corresponding increases in the OM content and reactive

surfaces of soil which enhanced Cd sorption and com-

plex formation. These observations are consistent with

the findings from other pot studies which observed

higher Cd immobilisation from increasing application

rates of a BCW preparation, the so-called ‘Rekulter’, in

a high contaminated soil by 54% (Skłodowski et al.

2006) and a low contaminated soil by 13%

(Kwiatkowska 2006). In both cases, the reduction in

Cd bioavailability was accompanied by increases in

the organic carbon content and pH of soil. However,

in the former study, rye was cultivated on the treated

soils and may have contributed to the significantly

higher reduction in Cd bioavailability via translocation.

In contrast to BCW, the lower application rate (5%w/w)

of BIO had consistently higher sorptive capacity for Cd

than the higher rate (10% w/w) in both the low and high



contaminated soils. This is in agreement with the
findings from other studies, such as that of Puga et al.
(2015) who found 5% w/w biochar to be the most
effective for Cd immobilisation in a contaminated
technosol (0.9 mg kg−1 Cd) but indicated that sorption
efficacy increased with increasing biochar rate (between
0 and 5% w/w). Another study by Woldetsadik et al.
(2016) which involved a silty loam with low Cd
(0.30 mg kg−1) and sandy loam soil with high Cd
(2.58 mg kg−1) contents found respective bioavailability
reductions of 65 and 68% after cow manure biochar
amendment. However, coffee husk biochar amendment
of the same two soils led to respective bioavailability
increases of 102 and 115%. The study also found that
treatments were slightly more effective in the high Cd-
contaminated soil, which is in line with the findings
from the present study where both BIO-1 and BIO-2
immobilised more Cd (7 and 12%) in the high than low
contaminated soils, respectively. Like BCW, Cd

immobilisation increased at the higher application rate
of FYM and was greater in the low contaminated soil. In
a similar study, FYM applied at 10% w/w to a calcare-
ous soil irrigated with HM-contaminated wastewater
was the most efficient sorbent among a range of amend-
ments (poultry manure, diammonium phosphate and
triple super phosphate) and led to greater reductions in
Cd bioavailability (Khan et al. 2012). However, maxi-
mum sorptionwas achieved after 30 days and there were
subsequent increases in Cd bioavailability (days 45 and
90), which may be indicative of its release from organo-
metallic complexes as a result of OM decomposition.

The bioavailable Pb concentrations in the unspiked
soils (dose 0) across all treatments were also higher than
the respective sum of total Pb in the soil and individual
organic sorbents. However, compared with the control,
Pb bioavailability was lower in the respective 5 and 10%
w/w treatments of BIO (51.9, 59.1%) (Fig. 2a). While
Pb bioavailability was also lower at the higher

Fig. 2 Concentrations of the bioavailable fractions of Pb in soil
contaminated by HMs at dose 0 (a), dose 1 (b) and dose 2 (c) after
treatment by different organic materials. Values are treatment
means (± se), n = 6. Bars that do not share a letter are significantly
different according to Nemenyi’s test for multiple comparisons

(Tukey) at a significant level of p < 0.05. BCW brown coal waste,
BIO conifer wood chips biochar, FYM farmyard manure. Treat-
ments at levels 1 (BCW-1, BIO-1 and FYM-1) and 2(BCW-2,
BIO-2 and FYM-2) represent organic amendments at 5 and 10%
w/w, respectively
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application rates of BCW (64.3%) and FYM (57.6%),
there were no significant differences when applied at
their lower rates, compared with the control. In the soil
with a low HM concentration (70 mg kg−1 Pb), organic
sorbents, relative to the control, reduced Pb bioavailabil-
ity by BCW (12.5, 14.1%) and BIO (17.4, 5.8%) and
FYM (3.2, 34.2%) (Fig. 2b). At this level of contami-
nation (dose 1), the trends in Pb sorption were similar to
those found with Cd where the higher BCW and FYM
and then lower BIO application rates were more effec-
tive than their corresponding alternative rates. The ef-
fects of BCW-1, BIO-2 and FYM-1 on Pb bioavailabil-
ity were not significantly different (p < 0.05) from the
control. All treatments of the high contaminated soil
(500 mg kg−1 Pb) led to reduced Pb bioavailability
compared with the control: BCW (2.1, 14.0%), BIO
(14.7, 15.9%) and FYM (16.5, 25.6%) (Fig. 2c). In
agreement with these results, the FYM amendment of
a calcareous sandy loamwith 100, 200 and 400 mg kg−1

Pb after 30 days of incubation led to maximum Pb
immobilisation in the low contaminated soil (51%)
through precipitation with CaCO2 (Aziz et al. 2017).
While FYM was more effective than BIO which also
accounted for higher Pb immobilisation than BCW, an
increasing application rate of all sorbents led to en-
hanced Pb sorption in the high contaminated soil. These
results are consistent with the findings of Yang et al.
(2016) who reported higher reductions (up to 20%) in
extractable Pb from an increasing bamboo biochar ap-
plication rate in a sandy loam paddy soil with a high Pb
concentration (527 mg kg−1), and Skłodowski et al.
(2006) who found an increasing rate of Rekulter to be
more effective for Pb immobilisation in a loamy sand
soil (~ 120 mg kg−1 Pb). Despite this, other researchers
have reported discrepancies in the effects of BCW and
biochar on Pb bioavailability. For example, lignite fly
ash amendment induced no further reduction in the
bioavailable fractions of Pb beyond the 5% w/w appli-
cation rate (Stouraiti et al. 2002), while there were no
significant effects from BCW applied to soil at 0–10%
w/w (Uzinger et al. 2014). Khan et al. (2015) also
reported that different biochars (from rice straw, rice
husk and saw dust) had no significant sorptive effects
on the bioavailable fraction of Pb in a non-calcareous
soil (14 mg kg−1 Pb).

Just as for Cd and Pb, the EDTA-extractable fractions
of Zn in the unspiked soil (dose 0) across all treatments
were higher than the respective sum of total Zn in the
soil and individual organic sorbents. Compared with the
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control, Zn bioavailability was lower in the BIO-1

(42.6%) and FYM-2 (71.3%), but higher in the BCW-

1 (330.8%), BCW-2 (70.9%), BIO-2 (189.62%) and

FYM-1 (222.8%) treatments (Fig. 3a). In the low con-

taminated soil (100 mg kg−1 Zn), Zn bioavailability was

lower in BCW-2 (17.7%), BIO-1 (11.7%), BIO-2

(9.9%) and FYM-2 (14.9%) but higher in BCW-1

(12.2%) and FYM-1 (24.7%) treatments compared with

the control (p < 0.05) (Fig. 3b). Zinc sorption by BCW

and FYM was more effective at the higher application

rate, whereas BIO at the lower rate. In the high contam-

inated soil (700 mg kg−1 Zn), reductions in Zn bioavail-

ability compared with the control were BCW (10.8,

5.8%), BIO (11.8, 8.3%) and FYM (0.9, 7.5%),

(Fig. 3c). The BIO-1 and BCW-1 treatments were the

most effective while FYM-1 failed to significantly

(p < 0.05) immobilise Zn. In comparison, a 4-week pot

incubation study involving FYM amendment (1, 2 and

3% w/w) of an alluvial clay soil led to reduced Zn

bioavailability (up to 26%) in the 2% treatment through

precipitation with phosphates and carbonates released

from OM decomposition (Sabir et al. 2014). On the

other hand, Uzinger et al. (2014) found that Zn sorption

increased at higher BCW rates (0–10% w/w) in an

acidic soil with a range of low and high concentrations

(0–1500 mg kg−1 Zn). This appears to confirm our

findings in the low contaminated soil where Zn sorption

was greater at the higher BCW rate but also contradicts

the observations in the high contaminated soil. Also in

agreement with the present findings is a study by Zhou

et al. (2017) which found the 5% w/w biochar be the

most effective for Zn immobilisation (29.8%) in a low

contaminated soil (43.9 mg kg−1 Zn). However,

Namgay et al. (2010) reported that increasing wood

biochar application (0, 5 and 15 g kg−1) increased the

extractable Zn fractions in a sandy orthic tenosol with a

similarly low Zn concentration (50 mg kg−1). However,

on this occasion, the significant increases in Zn bioavail-

ability were due to the high elemental content of the

biochar and thus indicate the need for careful selection

of biochar feedstock. A lower rate of walnut leaves

biochar (2% w/w, 600 °C) was found to reduce Zn

bioavailability (49.1%) in a heavily contaminated (>

2000 mg kg−1 Zn) calcareous soil (Kabiri et al. 2019),

which again highlights how differences in biochar feed-

stock and soil concentrations of the target metal can

influence amendment outcomes.

The mobility of the HMs in soil solution differs

between the more soluble types (e.g. Zn and Cd) and



Pb, which tends to form strong complexes with soil
(Moreno-Jiménez et al. 2016). The solubility of HMs
is dictated in part by the extent of their association with
organic components (e.g. humic acids), phyllosilicates
and variable charge minerals (e.g. Fe, Mn, Al and Ti
oxides) (Violante et al. 2010). Consequently, the effects
of organic sorbents on HM immobilisation in this study
varied considerably at each level of contamination. The
efficacies of HM sorption were found to be in the orders
of BCW > FYM > BIO for Cd, FYM > BCW > BIO for
Pb and BIO > BCW > FYM for Zn. Generally, BCW
and FYM were more effective at the 10% w/w, while
BIO at the 5% w/w application rates. In addition to the
distinctive mobility of each metal, variations in the
surface functional groups of the organic sorbents may
be responsible for the different sorption efficacies. The
functional groups in materials with high humic acid
contents (e.g. carbonised organic materials) being hard
Lewis bases, are known to have higher affinities for Pb
(a borderline hard Lewis acid) compared with Cd and

Zn which are soft Lewis acids (Chaturvedi et al. 2006).
Consequently, different studies (Stouraiti et al. 2002;
Namgay et al. 2010; Yang et al. 2016) have found the
efficiency of amendment with carbonised organic mate-
rials to be in the order of Pb > Cd ≥ Zn. This has been
attributed the preferential sorption of Pb over Cd and Zn
after incorporating organic sorbents. However, in this
study, the efficacies of HM immobilisation by the sor-
bents, especially the carbonised types, were in the order
of Cd > Pb > Zn, in both the low and high contaminated
soils. Sorption of Cd by organic materials is mainly
through precipitation and interaction with the ubiquitous
surface functional groups (phenolic, carbonyl and car-
boxyl) which may be higher in the carbonised sorbents
due to their higher degree of humificat ion
(Kwiatkowska-Malina 2018; Chen et al. 2020). These
compounds, along with possible changes in metal spe-
ciation during the incubation period may have influ-
enced a higher Cd adsorption than Pb, despite the odds.
Organic sorbents release large amounts of phosphates

Fig. 3 Concentrations of the bioavailable fractions of Zn in soil
contaminated by HMs at dose 0 (a), dose 1 (b) and dose 2 (c) after
treatment by different organic materials. Values are treatment
means (± se), n = 6. Bars that do not share a letter are significantly
different according to Nemenyi’s test for multiple comparisons

(Tukey) at a significant level of p < 0.05. BCW brown coal waste,
BIO conifer wood chips biochar, FYM farmyard manure. Treat-
ments at levels 1 (BCW-1, BIO-1 and FYM-1) and 2 (BCW-2,
BIO-2 and FYM-2) represent organic amendments at 5 and 10%
w/w, respectively
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and carbonates which form complexes and precipitates
(e.g. the P-phase hopeite) on the outer surface or
monodentate inner-sphere surface complex of OM with
metals, primarily Zn (Qian et al. 2016). The low Zn
sorption efficiencies across all treatments in this study
seem to indicate that phosphate- and carbonate-linked
mechanisms were not extrusive. Especially in the FYM
treatments, the lower Zn immobilisation may have re-
sulted from the formation of soluble organo-metallic
complexes which increased metal availability in the
solution phase (Aziz et al. 2017). The distinct surface
chemistries across treatments and their sorptive capaci-
ties for each of the HMs in this study suggest that
composite organic sorbents comprising of different
combinations of FYM, BCW and BIO can be
approbative for amendment of multi-element contami-
nated soils. Immobilisation of HMs by organic sorbents
is known to be less efficient in multi-element soils than
mono-element types due to competitive adsorption
(Zhou et al. 2017). Thus, the sorptive efficiencies of
FYM, BIO and BCW for each of the HMs measured
in this study could be substantially higher in mono-
metal contaminated soils. The increases in the extract-
able fractions of Cd, Pb and Zn after incubation in the
unspiked soil could not have been contributed by the
organic sorbents, especially considering their substan-
tially low HM contents. It is possible, however, that
during incubation, there may have been metals of
lithogenic origin previously unaccounted for by acid
digestion, which were transiently released from strongly
sorbed Al and Fe precipitates through temporal changes
such as desorption or weathering (Violante et al. 2010).
The reference to estimates of metals in acid digestates of
soil as ‘pseudo-total’ fractions was perhaps clearly
demonstrated through these analyses of the unspiked
soil as the true total values were most likely many
folds higher than estimated.

3.3 Relationship Between HM Bioavailability and Soil
Properties (pH and CEC)

Due to the extremely low concentrations of HMs in the
unspiked soil and the erratic effects of organic sorbents
on their stabilisation, the relationships between the bio-
available metal fractions and soil properties (pH and
CEC) were inconsistent (Tables 3, 4 and5). Therefore,
the discussions below will focus mainly on the relation-
ships determined in the low (dose 1) and high (dose 2)
contaminated soils. The studied organic sorbents

modified soil pH, CEC and SSA and thus influenced
HM mobility. The transfer of Cd, Pb and Zn cations
from solution to solid phase in soil is somewhat linked
to changes in these properties through processes such as
physical adsorption, surface (co)precipitation (with car-
bonates, phosphates or silicates), ion exchange and
complex formation with functional groups (Huang
et al. 2016). There is gradual consensus building that
the use of pH notation does not provide adequate quan-
titative evaluation of hydrogen ion activity in soil. Thus,
for each treatment, [H+] was converted from pH and
used for establishing correlations between the acid-base
status and the concentration of bioavailable HM frac-
tions in soil.

For BCW treatments, correlations between the [H+]
and bioavailable HM fractions were generally negative
and very strong for Pb (dose 1, significant at p < 0.05),
strong for Cd (doses 1 and 2) and Zn (dose 2), weak for
Pb (dose 2) and very weak for Zn (dose 1) (Table 5).
The correlations between the CEC and bioavailable
HM fractions ranged from moderately negative to
strongly negative for all metals at both doses 1 and 2
and found to be significant (p < 0.05) at both doses of
Cd and dose 1 of Pb. These results suggest that increas-
ing soil CEC and [H+] (or decreasing pH) were both
associated with decreasing HM bioavailability in the
BCW-treated soils. For the BIO treatments, correlations
between the [H+] and bioavailable HM fractions were
strongly positive for all HMs in the high contaminated
soils and significant at p < 0.01, whereas in the low
contaminated soils, these were strongly positive for
Zn and moderately positive for Pb, while negligible
for Cd (Table 3). Taken together, the relationship be-
tween [H+] and HM bioavailability was strongly posi-
tive. On the other hand, the CEC and bioavailable
fractions of HMs at all doses were generally negatively
correlated (especially for Pb and Zn), with the only
exception being Cd in the low contaminated soil where
no correlation was found. These imply that increasing
soil CEC and pH (or decreasing [H+]) were closely
associated with reduced HM bioavailability for BIO
treatments. For FYM treatments, both pH and CEC
were found to be strongly negatively correlated with
the bioavailable HM fractions in soil (Table 4) and, like
for BIO treatments, increases in pH and CEC were
linked with reduced HM bioavailability.

Results from this study corroborate findings from
other researches which found that HM sorption was
accompanied by pH increases when soil was amended
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by biochar and FYM (Uchimiya et al. 2010; Lwin et al.
2018) and reductions when BCW was used (Uzinger
et al. 2014). The high pH of FYM (Table 1) along with
the initial release of anions from decomposition which
tend to consume protons in soil may be responsible for
the increased pH (Opala et al. 2012) and HM immobi-
lisation in the FYM treatments. In the case of BIO
application, this could be due to a concurrent decline
in aliphatic character and accretion of aromatic com-
pounds in soil leading to hydrogen ion attenuation and
enhanced metal sorption. By increasing carbonised pro-
portions in soil, there is a non-stoichiometric release of
cations which can mediate HM immobilisation through
complexation and sorption via delocalized carbon π

electrons interaction (Polo and Utrilla 2002). Also, an
increase in the net negative surface charge of soil may
have resulted from the increasing solution pH in the BIO
and FYM treatments and can explain the enhanced HM
sorption. These suggest that the dominant mechanisms
may include specific adsorption by surface ligands
through covalent bonding and may be facilitated by a
high soil SSA as observed in the BIO treatments. Since
FYM reduced SSA of soil and limited the possibility of
ligand-specific reactions, sorption of HMs was most
likely non-specific. On the other hand, a reverse pH-
dependent HM immobilisation was found in the BCW
treatments compared with the FYM and BIO treatments
in this study or other approaches found in the literature.
This may have occurred via complex formation and
surface adsorption by humic acids in BCW, and it is
understood that the latter mechanism is partly pH medi-
ated. A plausible explanation for the high HM immobi-
lisation by BCW even with the resultant acidic soil pH,
could be due to the presence of complimentary surface
functional groups and the low optimum pH required for
Cd, Pb and Zn immobilisation. There is a critical pH
range for each metal, usually smaller than two units, the
so-called adsorption edge which is characterised by a
rapid increase in metal sorption (Soares et al. 2011).
According to Loganathan et al. (2012) the adsorption
edge values for Cd, Pb and Zn in soil are in the range of
pH = 4–6 with that for Cd slightly lower than the others.
An inference, somewhat, can be drawn from the ob-
served high efficacy of BCWamendment for Cd immo-
bilisation considering that the resultant soil pH values
were all within the absorption edge range. However,
BIO and FYM (and not BCW) were the most efficient
treatments for Zn and Pb, respectively, and thus indicate
a disproportionate pH dependence that is contingent

firstly on the type of organic material, and then, the
intrinsic properties of the target metal. Other studies
(Alamgir et al. 2011; Yuan et al. 2011; Uzinger et al.
2014; Anemana et al. 2020) have provided further evi-
dence of bioavailable HM abatement through ion ex-
change following soil amendments with FYM, BIO and
BCW. The CEC of soil provides an estimation of the
amount of ion exchange sites (Rieuwerts et al. 1998),
and thus the strong correlations between HM bioavail-
ability and CEC in all treatments imply that ion ex-
change is a dominant immobilising mechanism.

The decomposition of OM (higher rates in FYM
treatments) reduces the CEC and SSA of soil and can
lead to increased mobility of HMs (Lwin et al. 2018)
and again illustrates why the nature and stability of
organic sorbents are such critical selection criteria for
their application in long-term amelioration of HM-
contaminated soils. The release of HMs into soil with
FYM amendment after an initial period of immobilisa-
tion is attributed to a higher rate of OM decomposition
and the formation of soluble organo-metallic complexes
mediated via oxygen depletion and changing redox
conditions of soil (Catlett et al. 2002; Aziz et al.
2017). On the other hand, mineralisation in processed
organic materials is slow, and there is evidence of strong
long-term buffering effects from BCWand BIO (linked
to pH and/or CEC) which stabilise organometallic com-
plexes in soil (Skłodowski et al. 2006; Bian et al. 2014;
Lucchini et al. 2014) and reflect favourably on their
immediate and long-term HM sorption efficacies. Due
to their contradictory effects on soil pH, BIO and BCW
may have extensive uses in soils with varying levels of
acidity. While BCW is naturally abundant and a wide
range of biochar feedstock materials are locally avail-
able, the economic feasibility of their field-scale appli-
cation is still being trialled (Amoah-Antwi et al. 2020)
and, therefore, would require a gradual upscale of re-
search to ascertain their suitability as alternatives to
FYM and other organic sorbents.

4 Conclusions

All treatments investigated, i.e. FYM, BIO and BCW,
improved soil pH, CEC and SSA leading to enhanced
Cd, Pb and Zn sorption and mitigation. FYM, BCWand
BIO amendments resulted in respective maximum re-
ductions in bioavailability of Cd (50.2, 69.9 and 25.5%),
Pb (34.2, 64.3 and 17.4%) and Zn (14.9, 17.7 and
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