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Letter

Critical research challenges facing
Mucoromycotina ‘fine root
endophytes’

Mucoromycotina ‘fine root endophytes’ form globally
widespread, nutritional mutualisms with plants

Mucoromycotina ‘fine root endophytes’ (MFRE), referred to
previously as Glomus tenue (Greenall) or more recently Planticon-
sortium tenue (Walker et al., 2018), are a globally distributed group
of soil fungi (Orchard et al., 2017a) that form endosymbioses with
plants from acrossmost of the land plant phylogeny (Hoysted et al.,
2018, 2019; Rimington et al., 2019). Despite much progress
having been made in characterizing plant–MFRE symbioses in the
last decade, significant challenges remain. Here, we mark out these
challenges and discuss future directions for promoting research in
this rapidly developing field.

MFRE, within Endogonales (Mucoromycotina, Mucoromy-
cota), are recognized as phylogenetically (Bidartondo et al., 2011;
Spatafora et al., 2016; Orchard et al., 2017b) and functionally
(Field et al., 2015, 2019; Hoysted et al., 2019) distinct from the
more commonly studied arbuscular mycorrhizal fungi (AMF),
which belong to the Glomeromycotina (or Glomeromycota)
(Spatafora et al., 2016). Research using isotope tracers has shown
thatMFRE exchange both phosphorus andnitrogen for plant-fixed
carbon when in association with liverworts (Field et al., 2015,
2016, 2019) and with the vascular plant Lycopodiella inundata
(Hoysted et al., 2019, 2021b), while a cryo-scanning electron
microscopy (SEM) and X-ray microanalysis study suggests MFRE
may play a role in phosphorus assimilation in Trifolium subterra-
neum (Albornoz et al., 2020). Where it has been measured, MFRE
have been shown to transfer a significant amount of nitrogen to
their host plant (Field et al., 2016, 2019; Hoysted et al., 2019,
2021a), suggesting that there may be a complementary role for
these fungal symbionts alongside AMF. In contrast to their well-
established role in plant phosphorus nutrition, the extent to which
AMF contribute directly to host plant nitrogen nutrition has been
subject to some debate (Smith & Smith, 2011; Hodge & Storer,
2015; Thirkell et al., 2016) which is now pertinent given the
widespread misidentification of fungal endosymbionts, including
MFRE, as AMF (Orchard et al., 2017a; Field et al., 2019). Ameta-
analysis of the literature on MFRE revealed that many past studies
have neglected to focus on MFRE due to difficulties in distin-
guishing between MFRE and AMF morphologies (Orchard et al.,
2017a), the challenge of isolatingMFRE, and the absence ofMFRE
from plant specimens as a result of degradation brought about by
sample storage conditions and duration (Orchard et al., 2017c). As
the importance of MFRE in plant nutrition is increasingly

recognized, further research into their form and function has
become critical for understanding of the flows of carbon and
nutrients through plant and soil communities. Such findings may
have potentially important implications for applications of myc-
orrhizal fungi in sustainable agriculture (Thirkell et al., 2017).

The choice of plant host for MFRE in experiments represents a
critical consideration for researchers, particularly given that
relatively little is known about compatibility and variability in
function of MFRE symbionts across plant clades. To date, the
majority of experiments have been conducted using a relatively
limited range of plant hosts, focusing on species where MFRE but
not AMF have been detected molecularly across multiple wild
populations (e.g. Lycopodiella inundata and some Haplomitriop-
sida liverwort species), or those which are readily colonized by
MFRE in soil-based inocula (e.g. Trifolium spp.). The breadth of
host range for MFRE symbionts, inclusive of compatibility,
structure and function of plant–MFRE associations, warrants
further investigation (Sinanaj et al., 2020). Experiments involving
the use of plants, particularly those where genomes are available,
that might be considered as models for symbiosis research (e.g.
Medicago, Lotus) would be especially valuable in unpicking the
molecular and physiological mechanisms underpinning the sym-
biosis.

Using light microscopy, MFRE are generally recognizable by
their fine hyphae (< 1.5 µm diameter) with small intercalary and
terminal swellings and ‘fan-like’ branching structures (Thippa-
yarugs et al., 1999). These contrast with the relatively coarse hyphae
(> 3 µm diameter) of AMF (or ‘coarse root endophytes’) (Field &
Pressel, 2018). Arbuscules (highly branched intracellular fungal
structures) are characteristic of plant–AMF symbioses; however,
their occurrence and appearance in MFRE symbioses across host
plants and even plant lifecycles (Hoysted et al., 2021a), is variable
(Orchard et al., 2017b; Hoysted et al., 2019). Morphological
plasticity has also been noted in transmission and scanning electron
micrographs of the ultrastructure of symbioses in plants where only
MFRE were detected (Field et al., 2015; Hoysted et al., 2019),
making it challenging to distinguish them in planta in co-
colonizations with AMF (Field et al., 2016). In contrast with the
generally very well-characterized AMF spores, those of MFRE are
poorly documented. Brief descriptions of their appearance and size
occur but are unaccompanied by images (Hall, 1977; McGee,
1987); in fact, only a single unvalidated image of an Endogonales
MFRE spore has been published to date (Orchard et al., 2017a).

The prevailing symbiotic scenario among mycorrhiza-forming
vascular plants is colonization by multiple fungal symbionts
(Hoysted et al., 2019;Teste et al., 2020).Over the years, techniques
for the detection and characterization of mycorrhizal fungi have
been refined, including molecular detection methods using fungal-
specific primers that target marker genes (White et al., 1990), the
MaarjAM curated database dedicated to AMF sequences (€Opik
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et al., 2010), and inoculation methods using either axenic fungal
cultures (Mugnier &Mosse, 1987) or fungal spores extracted from
soil (Gerdemann & Nicolson, 1963) to generate plants colonized
exclusively by specific species ofmycorrhizal fungi. This approach is
particularly challenging for MFRE, as their spores are poorly
characterized and difficult to isolate, and available fungal isolates
are few (Field et al., 2015). This represents perhaps the most
pressing obstacle toMFRE research progress, highlighting the need
for MFRE–plant experimental systems that allow researchers
greater control over biotic and abiotic factors that may influence
form and function of MFRE symbioses. Here, we discuss the three
state-of-the-art approaches currently available to investigate these
associations, including use of soil sieving, wild plants and axenic
fungal isolates, together with the caveats that should be considered
where each method is employed.

Soil sieving

Inoculum production through soil sieving (Gerdemann & Nicol-
son, 1963; An et al., 1990; Orchard et al., 2017b) is currently the
only published technique for colonizing experimental vascular
plants with MFRE, while excluding the other arbuscule-forming
symbionts, AMF (Albornoz et al., 2020). This method, based on
the observation that AMF spores appear to be much larger than
those produced by MFRE, involves wet-sieving soil collected from
a site known to contain MFRE to obtain the material that
accumulates between sieves of pore sizes 200 µmand50 µm.This is
then dried and used as a soil inoculum enriched in MFRE. The
inoculum is mixed with autoclaved sand or soil at a ratio of 1 : 81
(Orchard et al., 2017b) or 1 : 162 (Albornoz et al., 2020) to
produce a substrate for plant growth (Fig. 1). There are several
factors with this method that require consideration (Table 1). The
diameters of AMF spores typically range from 91 µm to > 300 µm
(Gerdemann & Nicolson, 1963) but can be smaller (see supple-
mentary material of Aguilar-Trigueros et al., 2019). As such, AMF
spores and other propagules such as hyphal fragments (Bingle &
Paul, 1986) cannot be consistently excluded from inocula
produced using the sieve sizes specified earlier, which generate
inoculum containing spores and/or hyphae ≥50 µm and up to
200 µm. MFRE spore diameters are reported to range from 10 to
12 µm (Hall, 1977) or 25 to 35 µm (McGee, 1987) and thus could
pass through a 50 µm sieve. As a result of this uncertainty and the
ambiguity in descriptions of MFRE spore morphologies, it is
difficult to determine the quality of a soil inoculum immediately
after it is produced.Checks on inoculumquality and/or viability for
monoxenic AMF cultures or AMF spores extracted from soil
involve the microscopic quantification of spore density and
morphological confirmation of spore identities (Daniels & Skip-
per, 1982). This is currently not possible forMFRE inocula and is a
limitation across methodologies for obtaining MFRE-colonized
plants (Table 1). The quality of an MFRE-enriched soil inoculum
only becomes apparent when it is used in a substrate to grow plants.

Dilution of soil-based inocula aims to ensure a plant will ‘more
likely encounter a single unit of inoculum and contain a single
fungus’ (Orchard et al., 2017b).While thismay be the case, the unit
of inoculum that colonizes the plant is determined largely by chance

and can equally be MFRE or AMF if the growth substrate retains
AMF propagules c. 50–200 µm. As such, this inoculation strategy
may not be effective at exposing plants to similar amounts of fungal
propagules and generating roots with consistent MFRE coloniza-
tion, which can be a limitation to ensuring replicable experimental
conditions. An improvement to this method, as used in Albornoz
et al. (2020), is to first use the soil inoculum to produce an MFRE
pot culture. Plants are grown in pots containing diluted soil
inoculum, after which the substrate within pots containing the
highest amount of MFRE and lowest amount of AMF is sieved
again to produce soil inoculum to grow more plants. This process
encourages the proliferation of MFRE hyphal networks in the
substrate and can be repeated until plants grown in the sieved
substrate are consistently colonized by MFRE. This process can be
labour intensive and time consuming, especially when propagating
a pot culture to produce enough material for an experiment with a
large number of replicate plants.

Appropriate quality control measures are necessary when
using any soil-based inoculation method, regardless of whether
the resultant soil inoculum comes directly from wild soil or
from a sieved soil pot culture. AMF contamination, which is
the biggest issue of this method, should be monitored through
molecular and morphological identification of fungi in plants
and their substrate. As with other methodologies for obtaining
MFRE-colonized plants, the more quality control checks that
are carried out, the more accurate the data on the fungal
symbionts present. Entire root systems, which inevitably have
patchy colonization regardless of inoculation method, cannot be
simultaneously analysed molecularly if other informative but
destructive techniques, e.g. root clearing and staining for
microscopy, are used. This means symbionts may go undetected
molecularly due to the limited amount of root material used for
sequencing. However, co-colonizations can go undiagnosed due
to the morphological plasticity of AMF and MFRE (Field et al.,
2016). As such, it is critical that enough plant material is
available to adequately sample (multiple plants, multiple pots,
multiple time points) for these checks when using soil
inoculation methods.

We tested the effectiveness of soil sieving protocols for growing
vascular plants predominantly or exclusively colonized byMFRE in
four experiments using long-term pasture soil (Supporting Infor-
mation Fig. S1; seeMethods S1). In Experiment 1, we followed the
methods of Albornoz et al. (2020) and grewTrifolium repens in pots
containing sieved soil inoculum combined with either autoclaved
soil or autoclaved sand. In Experiment 2, we grew Medicago
truncatula using the methods of Orchard et al. (2017b). Given the
necessary considerations outlined earlier, in both of these exper-
iments we used smaller sieve sizes than those published. To refine
the protocols further and increase the chance of MFRE coloniza-
tion, we explored the effect of growing M. truncatula in substrate
containing colonized root fragments taken from Experiment 2,
with or without sieved soil inoculum (Experiment 3). In Exper-
iment 4, we grew Trifolium repens in substrate containing root
fragments and sieved soil inoculum. We hypothesized that
supplementing the growth substrate with root fragments (derived
from plants grown in MFRE-enriched substrate), in addition to
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sieved soil inoculum, would increase colonization of plant roots by
MFRE through exposure to more MFRE propagules and hyphal
networks.

At the harvest stage of each experiment, plant roots were stained
with acidified ink to quantify fungal colonization (Vierheilig et al.,
1998) and hyphal extractions with Trypan blue staining were
carried out on substrate from each pot (Brundrett et al., 1994). In
Experiment 1, we found no evidence of fungal colonization in plant
roots, while soil hyphal extractions revealed that six pots out of a
total of 35 contained few AMF-like hyphal fragments (Fig. S2). As
no MFRE were detected in the substrate of any pots, we were not
able to generate any inoculum to grow a second generation of plants
to recreate the second stage of the methods of Albornoz et al.
(2020). In Experiment 2, root staining revealed colonization with

MFRE and AMF in one pot; colonization with only MFRE in two
pots; and no fungal colonization in one pot (Table S1). Values for
the percentage total root length (%TRL) colonized by MFRE
varied, ranging between 1.4% and 92.9% (Fig. 2a). This wide
range for MFRE was similar to results reported in Orchard et al.
(2017b) where %TRL colonization ranged between c. 18% and
c. 77% between pots (n = 3). Using molecular methods (see
Methods S1 for details), we detected MFRE in root samples from
all four pots using the Endogonales-specific primers EndAD1f and
EndAD2r (Desir�o et al., 2013). The inclusion of root fragments in
the substrates of Experiments 3 and 4 resulted in plant roots with
variable levels of MFRE colonization, and increased AMF
colonization within roots and in the substrate (Figs 2a–d, S3).
Our data confirmmethods using soil inoculum obtained fromwild

Fig. 1 Current methods used for obtaining plants colonized by Mucoromycotina fine root endophytes (MFRE). (a) Soil is sieved to remove rocks and plant
material and then wet-sieved through a couple of sieves to obtain a soil inoculum enriched in MFRE. This is dried in an oven and mixed with soil or sand to
produce a substrate for plant growth. (b) Plants are carefully dug up from a site where MFRE are present and transferred into a pot filled with autoclaved
substrate and experimental features such as plastic coreswithmesh-coveredwindows accessible to fungal hyphae,which can be filledwith isotope tracers and
rotated to conduct functional experiments. (c) Treubia lacunosa is cut up to obtain a segment of the thallus midrib that is colonized byMFRE. The segment is
placedonto sterilemedia to allowMFREhyphae togrowout andbe isolatedonto freshmediawhere they canproliferate andbeused in experimentswith plants
grown under sterile conditions, or as a blended pure culture mixed with soil for pot-based experiments.
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soils are prone to result in inconsistent colonization of plant roots
by MFRE fungi.

Experiments with wild-collected plants

Plants colonized byMFRE have been sourced from the wild for use
in several experiments examining the nutritional significance of
MFRE symbioses (Fig. 1) (Field et al., 2015, 2016, 2019; Hoysted
et al., 2019). To do this, a field site is identified where MFRE are
prevalent by collecting environmental samples, including plant
roots, and identifying the fungal symbionts using staining and
molecular methods. Following this, whole plants are carefully
removed from the site and transferred into pots containing
autoclaved substrate. Although the use of wild plants allows
glasshouse experiments to be more representative of natural
habitats, there are critical biological considerations that must not
be overlooked in such experiments (Table 1).

The soil adhering to the roots of wild plants contains microbial
communities that are transferred to the pots, adding a further level
of complexity to the experimental system. Rhizosphere bacteria are

known to associate with mycorrhizal fungi (Garbaye, 1994;
Bonfante et al., 2019); however, the extent of bacterial impacts
on fungal fitness and function under different environmental
conditions is largely unknown, particularly for MFRE. For
researchers wishing to disentangle the effects that MFRE have on
plants from those of rhizobacteria, the use of wild-collected plants
presents difficulties that can only be mitigated with complex and
sometimes expensive experimental features. Custom-made plastic
cores with mesh-covered windows accessible to fungal hyphae but
not plant roots (Johnson et al., 2001), can be buried within the
substrate of pots to account for microbial nutrient cycling (Fig. 1)
(Field et al., 2015). Comparisons between the same plant species
obtained from different field sites should be drawn with caution, as
variations in microbial community, including MFRE diversity,
between sites could lead to ambiguity in results. This is also
applicable when comparing data from independent experiments on
wild plants colonized by different fungal symbionts, e.g. MFRE
and AMF may host distinct microbiomes. The types of research
questions that wild-collected plants would be suitable for address-
ing include those exploring the function, recruitment and compe-
tition of MFRE in an ecological context where various other biota
may be present.

Although staining and molecular identification of fungal
symbionts in roots must be carried out as a quality control when
selecting sites to source wild plants from and at the end of
experiments whenwild plants are harvested, this does not guarantee
a complete picture of fungal colonization or the absence of AMF.
Some stained fungal structures may be only remnant cell walls,
lacking cytoplasm and functional capabilities. Patchy fungal
colonization is a limitation when DNA sequencing fungi from
small segments of root, as primers can fail to detect fungi due to
their spatial distribution. The specificity of primers to certain clades
of fungi is also an issue (Bidartondo et al., 2011), which can be
overcome by using a selection of primer sets to capture fungal
diversity. Despite these measures, there is always a chance that
fungal symbionts may go undetected, which also brings into
questionwhether plant species, populations or individuals can truly
form exclusive MFRE, or AMF, associations in nature. Currently,
candidate MFRE-specialist plants include several Haplomitriop-
sida liverwort species (Field et al., 2015; Rimington et al., 2020)
and the lycophyte Lycopodiella inundata (Rimington et al., 2015;
Hoysted et al., 2019) where, so far, AMF have never been detected
across repeated sampling from multiple, geographically separated
populations at various timepoints across a number of years. A single
report of rare AMF occurrence in Haplomitrium mnioides mainly
colonized byMFRE (Yamamoto et al., 2019) was based on limited
molecular evidence and without anatomical details and thus
requires further investigation (Rimington et al., 2020).

Production of fungal inocula through axenic culture

The gold standard for the production of fungal inocula is isolation
and axenic culture of symbiotic fungi, which result in propagules of
the desired fungus without contamination with other fungi or
bacteria. It is now critical that a rich collection of MFRE isolates,
potentially within existing AMF collections, is established,

Table 1 Key challenges of the three approaches currently available for
obtaining Mucoromycotina fine root endophytes (MFRE)-colonized plants.

Method Essential considerations

Soil sieving � Sieve sizes mean arbuscular mycorrhizal fungi (AMF)
propagules cannot be consistently excluded.

� Soil microbial communities are present in the soil
inocula.

� Composition of soil inocula may be incompatible with
the plant species chosen for pot experiments.

� Different starting soils result in different qualities of
inocula, making it difficult to draw comparisons
between independent experiments.

� Plants grown in soil inocula may have patchy colo-
nization, which means fungal symbionts, including
MFRE, may go undetected.

� Time-consuming.

Wild-collected
plants

� AMF propagules are not excluded from substrate.
� Only few candidate MFRE specialist plant species are

known.
� Soil microbial communities are present in the soil

inocula.
� Plants collected fromdifferent siteshavedifferent root–

microbe associations, making it difficult to draw com-
parisons between independent experiments.

� Patchy root colonization means fungal symbionts,
including MFRE, may go undetected.

� Ethical considerations when collecting plants (e.g.
protected status of species or sites).

Axenic culture � Microbial communities thatoccuralongside fungi in soil
are absent, thus, little ecological insight.

� Only a single axenicMFRE culture has been established
to date.

� Viability of cultures can change over time.
� No available checks for quality/viability of MFRE

cultures.
� Fungi may evolve phenotypes in culture, which may

influence their ability to colonize plant roots.
� Time-consuming and costly to establish.
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inclusive of fungi isolated from the breadth of MFRE plant hosts,
across environmental and geographic gradients to truly capture the
diversity of symbiotic MFRE fungi. Existing techniques for
isolation of MFRE currently remain underdeveloped and require
dedicated efforts in developing new protocols and media for their
effective isolation and growth.

The first successful axenic culture of MFRE was established and
reported in Field et al. (2015) where surface-sterilized segments of
colonized thallus from the liverwort Treubia lacunosa were placed
onto sterile fungal media to allow MFRE hyphae to grow out and
establish in the media. The cultured fungus was then introduced to
and recolonized the axis of another liverwort (Haplomitrium
gibbsiae) in vitro. These MFRE grew in sterile media without a
plant host before introduction to H. gibbsiae (Field et al., 2015),
suggesting they may have facultative saprotrophic capabilities in
nature. This trait could give researchers the opportunity, so far
unavailable for AMF, to perform in vitro experiments to address
fundamental questions regarding the function and development of
MFRE in isolation; for example, the range of nutrient sources that
MFRE are able to access independently and substances such as
fungal exudates and enzymes that may be specific to this group.
Alternatively, blended pure MFRE cultures could be used as
inoculum in pot-based experiments (Fig. 1), but this method
remains untested.

As with other methods, care should be taken when interpreting
data from experiments using fungal isolates (Table 1). Pure cultures
of MFRE do not contain the microbial communities that occur
alongside fungi in soil.While this allows determination of the direct
impact ofMFRE on plant hosts, it may not reflect their true role in

natural ecosystems. A full understanding of the diversity of MFRE
is needed to ensure that the isolated strains are representative and
compatible with the chosen experimental plants. The vitality of
cultures is also an important aspect that should be taken into
account, as propagule production and the viability of cultures can
change over time. For example, it has been suggested that
mycorrhiza-forming fungi may evolve particular phenotypes and
adaptations as a result of the growth conditions that they are
exposed to while in culture, which may influence their ability to
colonize plant roots (Rillig et al., 2020).

Future directions

The three experimental methods discussed here have each provided
important insights into the form and function of plant–MFRE
associations and will continue to do so, particularly if used in
combination to determine the direct contributions ofMFRE fungi
to plants alongside those from interacting rhizosphere microbes.
Soil sieving methods have the potential to expand the selection of
plant species we are able to study MFRE in, albeit with variable
colonization success. Wild-collected plants offer more consistent
fungal colonization and are a valuable window into the significance
of MFRE-associations in their natural habitat but do not resolve
issues with AMF co-colonization in most vascular plants. Fungal
isolation and axenic culture techniques will allow the function of
plant–MFRE associations to be determined directly in a controlled
environment free of additional biota. Although this system may
constrain ecological insights, it is likely to be the only feasible
avenue bywhichwemay study the fundamental biology ofMFRE–

(a)

(c) (d)

(b)

Fig. 2 Fungal colonization in plant roots
inoculated with Mucoromycotina fine root
endophytes (MFRE) using sieved soil
protocols. (a) Percentage total root length (%
TRL) colonized by MFRE and arbuscular
mycorrhizal fungi (AMF) inMedicago

truncatula grown in three different substrates
(Experiments 2 and 3; n = 4 and n = 5,
respectively). Error bars showstandarderror of
the mean. (b) %TRL colonized by MFRE and
AMF in Trifolium repens grown in sieved soil
inoculum and root fragments (Experiment 4;
n = 6). Error bars show standard error of the
mean. Light micrographs of ink stained fungal
structures in (c) the roots and (d) substrate of
Trifolium repens harvested from Experiment
4. Bars, 50 µm.
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plant symbioses (e.g. signalling and development). Developing the
appropriate tools, including a suite of MFRE isolates from a wide
variety of plants, is essential for the future development of the field.
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