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Abstract We present a background model for dark matter

searches using an array of NaI(Tl) crystals in the COSINE-

100 experiment that is located in the Yangyang underground

laboratory. The model includes background contributions

from both internal and external sources, including cosmo-

genic radionuclides and surface 210Pb contamination. To

build the model in the low energy region, with a threshold

of 1 keV, we used a depth profile of 210Pb contamination

in the surface of the NaI(Tl) crystals determined in a com-

parison between measured and simulated spectra. We also

considered the effect of the energy scale errors propagated

from the statistical uncertainties and the nonlinear detector

response at low energies. The 1.7 years COSINE-100 data

taken between October 21, 2016 and July 18, 2018 were used

for this analysis. Our Monte Carlo simulation provides a non-

a e-mail: ejjeon@ibs.re.kr (corresponding author)

b e-mail: yjko@ibs.re.kr (corresponding author)

Gaussian peak around 50 keV originating from beta decays

of bulk 210Pb in a good agreement with the measured back-

ground. This model estimates that the activities of bulk 210Pb

and 3H are dominating the background rate that amounts to

an average level of 2.85 ± 0.15 counts/day/keV/kg in the

energy region of (1–6) keV, using COSINE-100 data with a

total exposure of 97.7 kg·years.

1 Introduction

COSINE-100 is an NaI-based experiment for the direct

detection of dark matter particles, with an array of 106 kg

NaI(Tl) crystals. It has been operating at the Yangyang under-

ground laboratory (Y2L) since September 2016 [1–3]. One

of the COSINE-100 goals is to test DAMA/LIBRA’s asser-

tion of an observation of annual modulation signal [4,5]. The
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DAMA/LIBRA collaboration claimed that their results with

the release of Phase-II data and 1 keV energy threshold rein-

forces the annual modulation signature at 9.5 σ CL in the

energy region of (1–6) keV [5]. There are several groups,

such as ANAIS [6], PICOLON [7], and SABRE [8], using

the same low-background NaI(Tl) crystals with the goal of

reproducing the DAMA/LIBRA results.

To verify the DAMA/LIBRA modulation signal, a com-

plete understanding of the background energy spectrum is

required. We have developed a background model by per-

forming Monte Carlo (MC) simulations using the Geant4

toolkit [9]. We used 1.7 years of COSINE-100 data taken

from October 21, 2016 to July 18, 2018 with a 106 kg array

of low background NaI(Tl) crystals. We used the measured

spectrum obtained with a threshold of 1 keV electron equiv-

alent energy [10]. To build a complete background model

we investigated the low-energy contribution from the surface
210Pb contamination in the NaI(Tl) crystals [11], in addi-

tion to background simulations of radioactive contaminants,

such as natural radioisotopes and cosmogenically activated

isotopes inside NaI(Tl) and background sources from the

exterior of the crystals.

2 The COSINE-100 experiment

The main detector of COSINE-100 is a 106 kg array of eight

ultra-pure NaI(Tl) crystals (named as C1–C8) stacked in two

layers. Each crystal’s lateral surfaces are wrapped in roughly

10 layers of 250 µm-thick PTFE reflective sheets (Teflon)

and they are hermetically encased in copper tubes with wall

thickness of 1.5 mm and quartz windows (12.0 mm thick)

at each end. The encapsulated NaI(Tl) crystal assembly is

equipped with two 3-inch Hamamatsu R12669SEL photo-

multiplier tubes (PMTs) that are each configured to generate

two readouts, a high-gain signal from the anode and a low-

gain signal from the 5th-stage dynode that are acquired in

independent channels. This is because R12669SEL PMTs

suffer from non-linear behavior when the signal energy is

higher than about 1 MeV and, thus, the dynode signal is

amplified with a linear response for energies up to 3 MeV

[12]. The crystals array is immersed in a 2200-liter liquid

scintillator (LS) that serves both as an active veto and as a

passive shield. Four shielding layers exist comprising plastic

scintillator panels, a lead-brick castle, a copper box, and the

tank of LS. Figure 1 shows the detector geometry and the

details of the experimental setup is described in Ref. [1].

We present here the background modeling to represent

1.7 years of COSINE-100 data with a total effective mass

of 61.3 kg from crystals C2, C3, C4, C6 and C7, excluding

three crystals due to a high noise rate and low light yields. The

five crystals used in this analysis have light yields of about

15 photoelectrons/keV and allowed an energy threshold of

2 keV in the previous analysis [1]. We consider crystal sig-

nals when corresponding to at least four photoelectrons and

LS signals when exceeding a 20 keV energy threshold [13].

Crystal events are classified as multiple-hit if they are accom-

panied by a concomitant signal in one or more other crystals

or in the LS. Events for which none of the two occurred are

classified as single-hit.

2.1 Energy calibration

To determine the light characteristics of the crystals, includ-

ing light yields, energy scales, and energy resolutions, a cali-

bration has been performed using internal β- and γ -ray peaks

from radioactive contaminants in the crystals, as well as

using γ -ray sources. Regarding two readouts from the PMT,

the high-gain anode signals are used for low energy events

up to 70 keV, while the 5th-stage dynode signals are used

above this energy. The peaks at 238 keV from 212Pb, 295 and

352 keV from 214Pb, 1173 keV from 60Co, 1462 keV from
40K, 2614 keV from 208Tl, and 609, 1764, and 2204 keV from
214Bi are used for the high-energy calibration. The peaks at

0.9 keV from 22Na, 3.2 keV from 40K, 25.5 keV from 109Cd,

30.5 keV from 121Te, 49 keV from 210Pb, and 67.8 keV from

Fig. 1 Detector geometry

(front view) used in the Geant4

simulation. a Two white-colored

cylindrical shapes inside the

center box represent the NaI(Tl)

detectors supported by the

acrylic frame (red) inside the

LS. b Eighteen 5-inch PMTs are

attached to two sides of the

copper box to detect

LS-produced photons

123



Eur. Phys. J. C           (2021) 81:837 Page 3 of 9   837 

Fig. 2 Detector response to the calibration data points is described by

Eq. 1 (red line) for five NaI(Tl) crystals at low energy. Data points are
22Na, 40K, 109Cd, 121Te, 210Pb, and 125I from left to right

Table 1 Cosmogenic radionuclides in the NaI(Tl) crystals identified in

other studies and considered here [17]. We list the contributing cosmo-

genic isotopes with their half lives

Cosmogenic Half-life [18]

Isotopes (days)

125I 59.4

121Te 19.17 [19]

121mTe 164.2 [19]

123mTe 119.3

125mTe 57.4

127mTe 106.1

113Sn 115.1

109Cd 462

22Na 950

3H 4494

129I 1.57 × 107 year [20]

125I are used for the low-energy calibration; peaks from short-

lived cosmogenic isotopes (e.g. 125I and 121Te) are obtained

using the 59.5 day data.

In addition, a nonlinear detector response of NaI(Tl) crys-

tals in the low energy region, as reported in Ref. [14], is

studied and modeled empirically as a function of energy, E,

as following:

f (E) = p0 ·
ln[(E − p1)/p2]

[(E − p1)/p2]
3

+ p3, (1)

where pi=0,1,2,3 are free-floating parameters. The charge-to-

energy ratios of the calibration data points for five NaI(Tl)

crystals are fitted by Eq. 1, as shown in Fig. 2.

3 Background simulations

We use the Geant4-based simulation framework developed

for modeling the background spectra of the first 59.5-day

of COSINE-100 [15], although we now adopted G4 version

10.4.2. The newer version better describes the non-Gaussian

peak around 50 keV from the beta decay of 210Pb; it is

attributed to 46.5 keV emissions of conversion/Auger elec-

trons and γ /X-ray together with about 4 keV mean energy

of beta electrons from the decay to the excited state of 210Bi,

which results in a non-Gaussian peak. It was not well repro-

duced by the simulations using G4 version 9.6.2.

Each simulated event records all energies deposited in the

crystals within an event window of 10 µs from the time when

a decay is generated, to account for the conditions in the data

acquisition system (DAQ) of the experimental setup [12].

Consecutive decays occurring in a short time, such as 212Bi–
212Po decays with 212Po’s half-life of 300 ns, appear together

in a 10 μs time window, resulting in pileup events. They are

treated as a single event in the simulation. Based on this

framework, we carried out MC simulations for all the pos-

sible background sources to build a complete model of the

background measurements with 1 keV energy threshold.

The simulated spectrum was convolved with the energy

resolution as a function of energy obtained during the cali-

bration, described in Sect. 2.1.

3.1 Internal and external backgrounds

With the first 59.5 days of data, the detector background was

investigated with simulated background spectra. We simu-

lated full decay chains of 238U and 232Th inside the eight

NaI(Tl) crystals assuming a chain equilibrium [15]. However,

the background levels may vary over the time if the internal

activities are not in a chain equilibrium. We indeed found

an evident increase in the 228Th background level during the

1.7 years of data when compared with the 59.5 day data.

Consequently, the 238U and 232Th decay chains are treated

as broken at the long-lived parts of the chain in the simula-

tions, i.e. into five groups and three groups, respectively. The

activities of each group are free parameters in the fit to the

data spectrum.

We simulated external background sources in the COSINE-

100 experiment configuration: PMTs, greases, copper cases,

bolts, cables, acrylic supports, liquid scintillator, copper box,

and a steel structure that supports the lead block housing. The

background due to the 235U chain from the PMTs, which was

also reported by [16] is included. The contribution of γ s from

the 208Tl decay in 232Th decay chains in materials outside

the shielding as an environmental background is included to

identify the peak at 2.614 MeV.

3.2 Cosmogenic radioisotopes

Table 1 lists all the cosmogenic radioactive isotopes pro-

duced in the NaI(Tl) crystals in COSINE-100, as reported

in Ref. [17], with their half-lives; short-lived isotopes, for
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Fig. 3 Background modeling

for low energy single hit events

for Crystal 6. Background

models not including 129I (left)

and including 129I cosmogonic

component (right) are shown.

The solid green line corresponds

to the 129I isotope. The dashed

blue line, the black dots, and the

thick red line represent internal
210Pb isotope, data, and the total

MC, respectively

which half-lives are less than a year, are 125I, 121Te, 121mTe,
123mTe, 125mTe, 127mTe, and 113Sn and long-lived isotopes are
109Cd, 22Na, 3H, and 129I. There are three long-lived nuclides

namely 3H, 22Na, and 109Cd, which have low energy deposits

and are, therefore, potentially troublesome. The beta-decay

spectrum of tritium has an endpoint energy of 18 keV. The

electron capture decay of 22Na produces 0.87 keV emissions,

and the electron capture decay of 109Cd contributes peaks at

25.5 keV and around 3.5 keV which are at the binding ener-

gies of the Ag K-shell and L-shell electrons. In addition,

the electron capture decays of 113Sn and 121mTe produce an

X-ray peak at the L-shell energy of 3 keV. These short-lived

(T1/2 < 1 year) cosmogenic isotopes are not expected to con-

tribute significantly to the crystals in the long term. However,

some backgrounds from them are still expected as averaged

activities during 1.7 years. It is thus essential to understand

their background contributions to the low energy spectra

regions, especially in the (1–6) keV dark matter signal region

of interest (ROI). We, therefore, simulated backgrounds from

cosmogenic radioactive isotopes, listed in Table 1. The simu-

lated background spectral shapes are used in the data fitting,

while the background rates are left free in the fit. The fitted

results are compared with the measurements reported in Ref.

[17] and the details of these comparisons are discussed in

Sect. 4.

As the presence of cosmogenic 129I was introduced

by DAMA/LIBRA with the estimated concentration of
129I/nat I = (1.7 ± 0.1) × 10−13 [21], we included it in our

background fitting model, by treating it as a free parameter.

The beta decay of 129I to 129Xe∗ is followed by 129Xe∗ tran-

sitioning to the stable 129Xe isotope via the emission of a

39.6 keV γ -ray and the resulted spectral feature has a distri-

bution starting around ∼ 45 keV; this energy region is dom-

inated by bulk 210Pb that was found to be a main contributor

in ROI in the previous analysis with the 59.5 days data. It is

thus necessary to distinguish these background contributions,

quantitatively. Figure 3 shows the fitted simulation spectra (a)

not including 129I and (b) including 129I (green solid line).

The inclusion of the contribution from 129I in Crystal 6, as

shown in Fig. 3b, improves the adherence of our background

model to the data around 30–70 keV. The details of the mod-
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Fig. 4 Low-energy spectra due to the beta decays of 210Pb that are

distributed within the surface thickness of 1 µm in the crystal. Further

details are given in Sect. 3.3

eling, including 129I, for each NaI(Tl) crystal are discussed

in Sect. 4.

3.3 Surface 210Pb

The Q value of the beta decay of 210Pb is 63.5 keV; it

decays to the stable 210Bi with a branching ratio of 16%

and decays to the excited state of 210Bi at 46.5 keV with

a branching ratio of 84%. Because the de-excitation of the
210Bi excited state associates with low-energy emissions of

electrons and γ /X-rays, it leaves the full energy deposition

with the peak at ∼ 50 keV if it is positioned deep enough in

the crystal, while the spectral features of these events depend

on the depth distribution of 210Pb within the crystal surface.

It has also been suggested that the surface 210Pb are attributed

to the 222Rn contamination that occurred anytime during the

powder- and/or crystal-processing stages. To understand the

energy spectra from the beta decays of 210Pb in the crystal

surface, we simulated them by generating 210Pb at random

locations within the surface thickness of 1 µm in the crystal.

The simulated spectra are depicted in Fig. 4. As expected,

there are spectral features in the energy below 40 keV, which
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Fig. 5 Simulated energy spectra for the beta decays of 210Pb within

the surface of Crystal 7; we simulated the energy spectra for beta decays

of 210Pb that are exponentially distributed in the surface of Crystal 7

by following two exponential functions with mean depths of 1.39 µm

(black solid line) and 0.107 µm (red dashed line)

are presumably contributed by conversion electrons depend-

ing on the depth position of 210Pb. Therefore, the depth pro-

file of the surface 210Pb contamination should be taken into

account for the detector background in the low-energy region

of (1–6) keV.

We have studied the surface 210Pb contamination with a

test setup at Y2L using a NaI(Tl) crystal from the same ingot

as C6 and C7 [11]. We measured its depth profile by using the

measured spectra from both beta decay of 210Pb and alpha

decay of 210Po of the decay sequence of the surface 210Pb

contamination that is obtained using a 222Rn-contaminated

crystal, as reported in Ref. [11]. Using this study, it was found

that the low-energy spectrum of the surface 210Pb contami-

nation is primarily attributed to depth profiles of 210Pb expo-

nentially distributed within a shallow surface with a mean

depth of (0.107 ± 0.003) µm, as well as a deep surface with

a mean depth of (1.39 ± 0.02) µm. We thus simulated beta

decays of 210Pb according to these two depth profiles and

included the shapes in the fit to the data. The rates of the two

components are left free and independent in the fit as their

relative weight might depend on the 222Rn exposure. Fig-

ure 5 shows the simulated energy spectra of the two surface

components for Crystal 7.

3.4 Energy scale

We have improved the background modeling in the low

energy region by precisely studying the low energy contribu-

tions from the background sources such as the surface 210Pb

contamination and long-lived cosmogenic isotopes. How-

ever, there is still a little mis-matching between data and MC

spectra at low energies. It is presumably because the energy

scales are set separately for the anode readout and the dyn-

ode readout, based on linear fits of calibration data points.

They have errors propagated from the statistical uncertainty,

as well as the nonlinear detector response, as described in

Sect. 2. We, thus, consider an adjustment coefficient in the

MC spectrum for the energy scale errors.

The energy E in the MC spectrum corresponding to the

scaled energy of the dynode readout is adjusted as

E → E(1 + ǫ), (2)

where ǫ is a coefficient that represents a change in energy. The

i th bin content of the MC spectrum, Bi , can be approximated

as

Bi → Bi + ǫ ·
∂ Bi

∂ǫ

∣

∣

∣

∣

ǫ=0

, (3)

where we use a numerical approach to obtain the derivative

as

∂ Bi

∂ǫ

∣

∣

∣

∣

ǫ=0

≈
B(Ei (1 + δǫ)) − B(Ei (1 − δǫ))

2δǫ
, (4)

where δǫ represents a very small change in ǫ and Ei denotes

the central value of the i th energy bin. A linear interpolation

of the MC spectrum is used for the small variation of δǫ.

The coefficient ǫ in Eq. 3 is determined by fitting the MC

spectrum to the data.

Since there is the nonlinear detector response modeled by

the empirical function obtained in Sect. 2, at low energies,

adjusting the energy in the MC spectrum corresponding to

the scaled energy of the anode readout follows a different

procedure from that of the dynode readout, and is expressed

by

E → E [1 + ǫ · { f (E) − C}] , (5)

Bi → Bi + ǫ · { f (E) − C} ·
∂ Bi

∂ǫ

∣

∣

∣

∣

ǫ=0

, (6)

where f (E) is the empirical function defined in Eq. 1 and C

is a coefficient for the linear component determined by fit-

ting the MC spectrum to the data. Figure 6 shows the results

considering the adjustment coefficient (blue line) and with-

out considering the adjustment coefficient (red line) in the

background modeling fit. It is shown that the background

modeling has been improved with the adjustment coefficient.

4 Background modeling and results

In order to model the measured energy spectrum ranged from

1 keV quantitatively, we have performed Geant4 MC simu-

lations for the background spectra, as described in Sect. 3,

which are fitted to the measured data to quantify their back-

ground rates.
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Fig. 6 Top panel shows Crystal 6 energy spectra of single-hit events in

the low energy region. Black dots are data and the red (blue) line shows

the total MC without (with) application of the adjustment coefficient in

the background modeling fit. In the bottom panel, the red (blue) dots

are the ratio of data to MC without (with) application of the adjustment

coefficient

We use a binned likelihood method with the following

formula [22],

−2 ln λ(α) = 2

Nbins
∑

i=1

⎡

⎣

Ncomponents
∑

j=1

α j Bi j − Di

+ Di ln
Di

∑Ncomponents

j=1 α j Bi j

⎤

⎦

+

Ncomponents
∑

j=1

(

α j − m j

σ j

)2

, (7)

where λ(α) is the likelihood ratio in terms of the rates of

the MC components α = (α1, α2, . . . , αNcomponents), Di is the

number of events in the i th energy bin of the data histogram

and Bi j is the number of events in the i th bin of the j th

simulation component. The last term denotes a penalty for

the rate α j of the j th component and is only active if there is

an independent measurement of this component; m j and σ j

are the measured value and the error, respectively.

As mentioned in Sect. 3.4, low- and high-energy data are

taken through anode and dynode channels, respectively, and

they have different energy resolutions. Thus, we perform a

four-channel simultaneous fit: single-hit low-energy, single-

hit high-energy, multiple-hit low-energy, and multiple-hit

high-energy spectra. The fitting ranges of low-energy spec-

tra are [6, 70] and [1, 70] keV for single- and multiple-

hit events, respectively, while that of high-energy spectra is

[70, 3000] keV for both single- and multiple-hit events. The

lower bound of the energy for multiple-hit events is extended

to 1 keV based on the study of lowering the energy thresh-

old, reported in Ref. [10]. The lower bound for the single-hit

events is set to 6 keV in order not to bias the WIMP signal

in the ROI.

Figure 7 shows the measured and simulated background

spectra of Crystal 7 in both low and high energy regions. The

spectra for single-hits and multiple-hits are shown in the top

and the bottom, respectively. One can see that the 1.7-year

data is well reproduced overall except for the energy region

higher than ∼ 2.7 MeV for single-hit events, while it is well

reproduced in multiple-hit events. This issue is presumed to

be due to the absence of one or more components that could

better account for the energy range above 2.7 MeV, and the

analysis will continue to figure out the issue. The agreement

between the measured and fitted background spectra for both

single- and multiple-hit events of Crystal-2, 3, 4, and 6 in both

low and high energy regions is as good as shown for Crystal

7.

In the modeling fit, to distinguish between surface and bulk
210Pb components, we used the depth profiles of the surface
210Pb, obtained in Ref. [11]; there are two depth profiles for

shallow and deep depth distributions of 210Pb in the crystal

surface and their fitted results are listed in Table 2.

In Fig. 8a, b, we compared the fitted activities of internal
40K and 210Pb to their measured levels that are determined

by the 1.7 years of data for the five crystals with an agree-

ment at the ∼ 20% level. The fitted activities of long-lived

cosmogenic isotopes: 3H, 22Na, and 109Cd for the five crys-

tals are compared with the measured ones, reported in Ref.

[17], as shown in Fig. 8c–e; these values are in reasonable

agreement. Figure 8f also shows the fitted activities of 113Sn

compared with the measured ones for five crystals.

Based on the background model, we found the back-

ground levels for the five NaI(Tl) detectors in unit of

counts/day/keV/kg in (1–6) keV as listed in Table 2; an

averaged background level for the five crystals is estimated

to be 2.85 ± 0.15 counts/day/keV/kg in the energy region

of (1–6) keV. The dominant background contributions are

from 210Pb and 3H. Figure 9 shows the low-energy spectra

of single-hit events averaged for the five crystals in the (1–

20) keV energy region. The range of 1–6 keV in the MC

spectrum is extrapolated from the modeling. The measured

energy spectrum after corrections for event selection effi-

ciency [23] is compared with the total of the simulations and

is shown to be in a good agreement.

5 Conclusion

COSINE-100 has been taking data at Y2L from October 21,

2016. We present the background model for the WIMP search

during the first 1.7 years of COSINE-100 data with a total

exposure of 97.7 kg·years. Our previous analysis with 59.5-

day data showed that 210Pb and 3H produce the dominant
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Fig. 7 The energy spectra of single-hit (top) and multiple-hit (bottom) events in Crystal 7. The MC was carried out to fit the measured data. The

shaded area in the energy spectra of single-hit events is excluded from the data fitting

Table 2 Background contributions in the energy range of 1–6 keV.

There are only statistical uncertainties for the data row, and uncertain-

ties for other rows are from the modeling. In the rows for surface 210Pb,

D and S denote deep and shallow depth, respectively. Corrections for

event selection efficiency are applied to the measured data [23]

[Unit: Counts/keV/kg/day] Crystal 2 Crystal 3 Crystal 4 Crystal 6 Crystal 7

Data 2.834 ± 0.225 3.051 ± 0.482 3.023 ± 0.671 2.458 ± 0.574 2.636 ± 0.421

Total simulation 2.873 ± 0.193 3.107 ± 0.385 3.077 ± 0.345 2.484 ± 0.347 2.653 ± 0.223

Internal 210Pb 1.249 ± 0.007 0.434 ± 0.011 0.420 ± 0.012 1.076 ± 0.018 1.053 ± 0.008

40K 0.202 ± 0.004 0.083 ± 0.002 0.107 ± 0.001 0.038 ± 0.004 0.047 ± 0.004

Others 0.0104 ± 0.0001 0.0102 ± 0.0001 0.0043 ± 0.0002 0.0074 ± 0.0001 0.0048 ± 0.0001

Surface Crystal (D) 0.182 ± 0.057 0.215 ± 0.147 0.133 ± 0.136 0.195 ± 0.198 0.039 ± 0.088

210Pb Crystal (S) < 0.086 < 0.143 0.114 ± 0.164 0.091 ± 0.250 0.519 ± 0.110

Teflon 0.029 ± 0.005 0.083 ± 0.009 0.035 ± 0.008 0.045 ± 0.004 0.054 ± 0.004

Cosmogenic 3H 1.091 ± 0.163 2.134 ± 0.326 2.060 ± 0.270 0.929 ± 0.134 0.839 ± 0.172

113Sn 0.023 ± 0.003 0.013 ± 0.002 0.040 ± 0.004 0.025 ± 0.002 0.021 ± 0.002

109Cd 0.009 ± 0.003 0.065 ± 0.004 0.113 ± 0.004 0.027 ± 0.004 0.023 ± 0.002

Others 0.023 ± 0.003 0.033 ± 0.001 0.023 ± 0.001 0.016 ± 0.003 0.018 ± 0.006

External (×10−2) 5.376 ± 0.104 3.669 ± 0.040 2.801 ± 0.039 3.476 ± 0.091 3.509 ± 0.065
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Fig. 8 Comparison of the measured [1,15,17] and the fitted activity levels of 40K (a), 210Pb (b), 3H (c), 22Na (d), 109Cd (e), and 113Sn (f) in five

NaI(Tl) crystals. Double and Triple in d refer to the double/triple coincidence methods used in Ref. [17]
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Fig. 9 The low-energy spectra of single-hit events averaged for the five

crystals. The measured energy spectrum after efficiency corrections [23]

is compared with the total of the simulations. The range of 1–6 keV in

the MC spectrum is extrapolated from the modeling

contributions in the energy region of (2–6) keV. As we low-

ered the threshold to 1 keV, the background modeling was

carried out accordingly. The model includes background con-

tributions from both internal and external sources, including

cosmogenic radionuclides and surface 210Pb contamination.

To build the background model with the energy threshold as

low as 1 keV, we used a depth profile of the surface 210Pb con-

tamination that is provided by the measurement with a test

setup at Y2L. We also considered the effect of the energy

scale errors propagated from the statistical uncertainty and

the nonlinear detector response for the simulated spectrum at

low energy. This improved background model well matches

the measured data not only for single-hit events but also for

multiple-hit events. Extrapolating our background model into

the Dark matter ROI, we estimate an average background

level of 2.85 ± 0.15 counts/day/keV/kg in the energy region

of (1–6) keV for the five crystals dominated by 210Pb and
3H.
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