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Abstract

This paper proposes a general methodology to estimate and discriminate (select) be-

tween two possibly misspeci�ed semiparametric models with weakly dependent observa-

tions. The proposed estimator and test statistics are based on exponential tilting and can

be considered as useful semiparametric extensions of Vuong�s (1989) and Shi�s (2015) ap-

proaches to model selection. Monte Carlo evidence and an empirical application to Fama

& French�s (1993) three factor model suggest that the proposed methodology has compet-

itive �nite sample properties and is useful in practice.

Keywords: Mixing, Stochastic discount factor, Stochastic equicontinuity, Uniform size con-

trol.

�I am grateful to two referees for useful comments and suggestions that improved considerably the original

paper. The usual disclaimer applies.

Address correspondence to: Department of Economics, University of York, York YO10 5DD, UK. E-mail:

francesco.bravo@york.ac.uk. Web Page: https://sites.google.com/a/york.ac.uk/francescobravo/

1



1 Introduction

In this paper we propose to extend the model selection approach of Vuong (1989) and Kitamura

(2000) to misspeci�ed semiparametric moment conditions (estimating equations) models. Semi-

parametric moment conditions models are very useful and �exible extensions to the generalized

instrumental variables models often used in the economic and �nancial literature - see for ex-

ample Hansen & Singleton (1982) - and to the generalized estimating equations and quadratic

inference functions models that are very popular in the statistical literature - see for example

Liang & Zeger (1986) and Qu, Lindsay & Li (2000). Misspeci�cation often arises in economics

and �nance: for example, many asset pricing models are likely to be misspeci�ed, see for ex-

ample Hansen & Jagannathan (1997) and more recently Gospodinov, Kan & Robotti (2013).

Some examples of misspeci�ed moment conditions models in the context of generalized method

of moments (GMM) estimation are given by Hall & Inoue (2003). Misspeci�cation is also of

interest in time series modelling, see for example Kunitomo & Yamamoto (1985), Dahlhaus &

Wefelmeyer (1996) and McElroy (2016), and can a¤ect semiparametric moment conditions mod-

els, as shown for example by Ai & Chen (2007) and Chen, Liao & Sun (2014). Misspeci�cation

is theoretically interesting, see for example Dahlhaus & Wefelmeyer (1996) and Hall & Inoue

(2003), and empirically relevant because, as shown for example by Gospodinov, Kan & Robotti

(2014), using standard statistical methods in misspeci�ed models can result in very mislead-

ing inferences. It seems therefore useful to develop model selection procedures for misspeci�ed

semiparametric moment conditions models.

The model selection procedure we consider is based on a two-step semiparametric estimator

that has an information theoretic interpretation, which is important because it provides a nat-

ural extension to semiparametric moment conditions models of the classical estimation theory

of misspeci�ed parametric likelihood models developed by Akaike (1973) and White (1982). To

be speci�c, the estimator we consider is a two-step semiparametric extension of the exponential

tilting (ET) estimator suggested by Kitamura (2000) (see also Kitamura & Stutzer (1997)).

The estimator is in the same spirit as that considered by Chen & Liao (2015), in the sense

that we assume that there is a preliminary consistent (in a suitable norm) estimator of the

in�nite dimensional parameter. This preliminary estimator can be obtained using an available

auxiliary model, or could be the result of pro�le estimation (such as in the partial linear model

discussed in Section 5 below) or the result of the �rst-step of an iterative estimation procedure,

often called back�tting, where in the �rst-step all the unknown parameters are estimated non-

parametrically - see Carroll & van Keilegom (2007) for a discussion on the di¤erences between

pro�ling and back�tting estimation in semiparametric models. As in Kitamura (2000), the re-

sulting two-step estimator is robust against misspeci�cation (hence it can be used for inference)

and has an information theoretic interpretation in terms of minimizing the Kullback-Leibler

(KL) divergence between the distribution of a possibly misspeci�ed semiparametric model and
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the true (unknown) one. This interpretation allows us to extend Vuong�s (1989) model selection

theory, which was developed for i.i.d. misspeci�ed parametric likelihood models, to misspeci�ed

semiparametric models.

Apart from Kitamura (2000), other extensions of Vuong�s (1989) model selection theory

to misspeci�ed models based on objective functions other than the likelihood function have

been proposed in the literature: Christo¤ersen, Hahn & Inoue (2001) considered a quantile

type objective function that is used to compute value at risk (VaR) measures that are widely

used in the so-called Riskmetrics (Morgan 1996), while Rivers & Vuong (2002) considered an

objective function that can be used for both M and GMM estimation (for the latter, see also

Hall & Pelletier (2011)1). Chen, Hong & Shum (2007) considered an objective function that

can be used to discriminate between a likelihood and a moment condition model2, while Li

(2009) considered a mean squared prediction objective function suitable for simulations type

estimators.

The key feature of Vuong�s (1989) model selection theory is that it depends on whether

the two competing models are non nested, overlapping or nested (see Section 4.1 for a de�ni-

tion), because depending on which case it is, the asymptotic distribution of the selection test

statistic is di¤erent (respectively a standard normal, a mixture of chi-squared and a standard

chi-squared). Because of this di¤erent asymptotic behavior, Vuong�s (1989) model selection

theory is typically based on pretesting to select which distribution to use in the computation of

the critical values, and the resulting two-step testing procedure might result in size distortions

and/or power loss, especially when the models are non nested but "close" to each others. In a

seminal paper, Shi (2015) addressed this problem by proposing a modi�ed Vuong statistic for

(parametric) likelihood and moment conditions models that uniformly controls the size; other

important modi�cations of the Vuong statistic include Hsu & Shi (2017), which considered

a certain randomization procedure in the context of conditional moment inequalities models,

Schennach & Wilhelm (2017), which considered sample splitting and Liao & Shi (2020), which

extended Shi�s (2015) modi�ed Vuong statistic to semi/nonparametric models.

With the exception of Rivers & Vuong (2002) and Hall & Pelletier (2011), all the results of

the above papers are based on the assumption that the data are independent and identically

distributed; one important feature of the model selection procedure of this paper is that it allows

for weakly dependent observations, which is particularly useful in macroeconomics and �nance,

1It is important to note that Hall & Pelletier (2011) identi�ed two potential problems with the GMM based

model selection procedure, namely that test statistics based on the GMM objective function might provide

di¤erent conclusions for di¤erent choices of the weighting matrix, and that the model comparison itself might

not be at all meaningful if di¤erent weighting matrices were used.
2Interestingly, the model selection procedure proposed by Chen et al. (2007) relies on the empirical likelihood

estimator, which as shown by Schennach (2007) might not be robut to misspeci�cation (see also Bravo (2020)),

whereas using the ET estimator of this paper would not have this problem.
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since macroeconomic and �nancial data typically exhibit some form of serial dependence. It is

important to note that, as opposed to Kitamura & Stutzer (1997), who proposed to use kernel

smoothed moment conditions to estimate correctly speci�ed semiparametric moment conditions

models to obtain asymptotically e¢cient estimators, smoothing is not required for the compu-

tation of the proposed semiparametric estimator. With misspeci�cation, the notion of e¢ciency

in moment conditions models loses its statistical signi�cance, as the resulting estimators depend

crucially on the chosen weight matrix - see for example Hall & Inoue (2003) for this important

point. On the other hand, smoothing is still required to obtain consistent estimators of cer-

tain long run variances that can be used for inference and/or in the proposed model selection

procedures.

In this paper we make the following contributions: �rst, from a methodological point of

view, we propose a general estimation and model selection theory that can be applied to pos-

sibly misspeci�ed semiparametric models with weakly dependent observations. To obtain these

general results, we assume a number of high level regularity conditions and specify the dependent

structure of the observations in terms of either strictly stationary and mixing or nonstationarity

and �-mixing. The key assumption is that of stochastic equicontinuity (or uniform asymp-

totic equicontinuity) with respect to the in�nite dimensional parameter. Although very high

level, this assumption can be typically veri�ed as long as the parameter space of the in�nite

dimensional parameter is not "too large" and speci�c mixing conditions are assumed, see the

discussion in Section 3 about possible mixing assumptions and classes of functions whose size is

not "too large". Because of the connection between ET and KL divergence, the model selection

procedures we propose are in the same spirit as those proposed by Vuong (1989) for parametric

likelihood models and, as opposed to those proposed by Hall & Pelletier (2011), do not depend

on the choice of the weighting matrix. To be speci�c, we �rst consider what can be de�ned as

a naive (but not trivial) extension of Vuong�s (1989) two-step model selection procedure, which

is a useful generalization of those proposed by Kitamura (2000), Rivers & Vuong (2002) and

Hall & Pelletier (2011) for parametric models. We then consider an extension to Shi�s (2015)

procedure, which, as mentioned before, does not require pretesting and achieves uniform size

control. The extension is based on the same local asymptotic theory used by Shi (2015), which

is widely used in the study of local power, near unit root and other nonstandard asymptotic

problems. As in Shi�s (2015), the proposed local asymptotic theory results in a Vuong statistic

with a nonstandard asymptotic distribution, which, however, is allowed to smoothly transition

to a standard normal (see Section 4.2 for more details). While uniform size control is a very

desirable statistical property, there are two main reasons as to why the naive semiparametric

extension to Vuong�s two-step procedure presented in Section 4.1 below might still be very use-

ful in practice. First, the proposed semiparametric extension of Shi�s (2015) procedure requires

simulation to obtain the critical values. Second, as pointed out by Shi (2015), the (second order)
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bias characterizing the Vuong statistic tends to favor more complex models, as a result of which

it might show poor �nite sample properties when the two competing models are very di¤erent in

terms of their dimension (parameters to be estimated). On the other hand, when the dimension

of the competing models is comparable, the e¤ect of the bias might negligible.

Second, we establish the asymptotic normality of a general two-step semiparametric ET es-

timator under an asymptotically orthogonality condition (see Assumption A3(ii) below), which

is satis�ed by many commonly used semiparametric models such as partial linear, (non)linear

regression with unknown heteroskedasticity and single index. This result extends and/or com-

plements results obtained by Bravo (2020), who considered a general class of estimators for

misspeci�ed semiparametric moment conditions models with identically and independently dis-

tributed observations, and by Bravo, Chu & Jacho-Chavez (2017), who considered generalized

empirical likelihood estimators for correctly speci�ed semiparametric moment conditions models

with weakly dependent observations. As a �nal methodological contribution, we illustrate the

general applicability of the proposed estimator and model selection procedures with an example

in which we provide a set of more primitive assumptions that can be used to verify the high level

assumptions used to prove the previous results. We also report Monte Carlo evidence about the

�nite sample properties of the proposed model selection statistics; the results are encouraging as

they suggest that both the naive and the uniform extension to Vuong�s (1989) model selection

approach are useful for semiparametric models.

Finally, from an applied point of view, we apply the proposed model selection procedure

to the widely used Fama & French�s (1993) three factor version of the stochastic discount

factor (SDF) model, which is the basis for many assets pricing theories. The use of ET and

KL divergence in the context of SDF models is not new: Stutzer (1995), Stutzer (1996) and

Kitamura & Stutzer (2002) used KL to construct bounds for the SDF as an alternative to the

so-called HJ distance (Hansen & Jagannathan 1997) that provides minimum variance bounds for

the SDF. More recently Ghosh, Julliard & Taylor (2017) used ET explicitly to obtain bounds

for the SDF that are tighter than those given by the HJ distance. The semiparametric ET

estimator of this paper could also be used to construct similar bounds, but we do not pursue

this here. Rather, we focus on model selection and consider two di¤erent speci�cations of the

three factor model, one based on a fully parametric speci�cation and the other one based on a

novel semiparametric one. As a standard ET based misspeci�cation test indicate that indeed

both models are misspeci�ed, we use the proposed tests to check whether either of the two

models should be preferred (i.e. discrimination is possible) and �nd that the semiparametric

speci�cation should be chosen.

The rest of the paper is structured as follows: next section introduces the two-step semi-

parametric ET estimator of this paper and illustrates its connection between ET and the KL

divergence. Section 3 develops the asymptotic theory for the estimators, whereas Section 4
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presents the tests for model comparison. Sections 5 and 6, respectively, illustrate the results of

Sections 3 and 4 with an example and a simulation study, and present the empirical applica-

tion. Section 7 contains some concluding remarks. All the proofs are contained in an online

supplemental Appendix.

The following notation is used throughout the paper: � 0 � indicates transpose, "
" denotes

the Kronecker product, k�k" and "k�kF" denote, respectively, the standard Euclidean (Frobenius)

norm for random vectors (matrices) and a functional norm such as the sup norm for a pseudo-

metric space of functions F , "tr" and "vec" are the trace and vec operators; �nally, for any

vector v, v
2 = vv0.

2 Misspeci�ed models and exponential tilting

Let fZt; t = 0;�1;�2; :::g denote a sequence of strictly stationary random vectors taking values

in Z �RdZ with unknown marginal distribution P0. The semiparametric moment conditions

model we consider is de�ned through a set of moment functions (estimating equations) g :

Z���H ! Rl, where � � Rk and H = H1 � ::::�Hm is a pseudo-metric space of functions,

such that

P�;h = fP jEP (g (Zt; �; h)) = 0g ; (2.1)

where � 2 � and h 2 H3. Let Pg = [�2�;h2HP�;h, that is, the semiparametric (moment

conditions) model Pg consists of a set of distributions indexed by the unknown parameters �

and h that are compatible with the moment restriction (2:1) :

De�nition 1 A semiparametric model is said to be correctly speci�ed if P0 2 Pg, for some

�0 2 � and h0 2 H.

De�nition 2 A semiparametric model is said to be misspeci�ed if P0 =2 Pg, for all � 2 � and

h 2 H.

The same arguments used by Kitamura & Stutzer (1997) (for parametric moment conditions

models) can be used here to show that ET estimation asymptotically identi�es the element in

the set Pg that is closest in the sense of the KL divergence to P0, that is the exponential tilting

estimator solves the problem

inf
P2Pg

DKL (P; P0) ; (2.2)

where DKL (�) represents the KL divergence. As in Kitamura & Stutzer (1997), the solution

to (2:2) can be characterized as a saddlepoint problem, in which in the �rst step one solves

3Note that, as in Andrews (1994), h is allowed to depend on �, in which case the assumptions in the next

section involving h should be interpreted as uniform in � 2 �.
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the unconstrained convex problem minP DKL (P; P0) for a �xed � and h. Let P (�; h) de-

note the solution of (2:2), which can be expressed as min�M (�; h; �), where M (�; h; �) =

EP (exp (�
0g (Zt; �; h))) is the exponential tilting of g (Zt; �; h) and � = � (�; h). Then for

M (�; h; � (�; h)) = exp (�DKL (P (�; h) ; P0)) (2.3)

�� and h� are the maximizers of (2:3), which, following White�s (1982) terminology, we call

pseudo true values. Similarly, �� = � (��; h�), the solution to min�M (�; h; �), is the pseudo

true value for �.

3 Two-step semiparametric exponential tilting estima-

tion

In this section we investigate the asymptotic properties of a two-step version of the ET estimator

when P0 =2 Pg, that is when the semiparametric model (2:1) is misspeci�ed. In what follows, we

drop the dependence on P of the expectation operator E.

To introduce the estimator, we assume that there exists an estimator bh (consistent in a
suitable norm) for h�. Then, the two-step semiparametric ET estimator b� is de�ned as

h
b�0;b�

0
i0
= argmax

�2�
arg min

�2�(�)
MT

�
�;bh; �

�
; (3.1)

where � (�) � Rl,MT

�
�;bh; �

�
=
PT

t=1 exp
�
�0gt

�
�;bh
��

=T , � = � (�) and gt (�; h) = g (Zt; �; h).

Note that the solution of (3:1) corresponds to

MT

�
b�;bh; b�

�
= exp

 
� min
P2Pg

bh

DKL (P; PT )

!
;

that is the two-step semiparametric ET estimator is the element in the set Pgbh = [�2�P�;bh that

is the closest in the KL divergence sense to PT , the empirical distribution of the observations.

To obtain results that are rather general, we make the following assumptions, some of which

are rather high level. Let � = [�0; �0]
0
, and assume that:

A1 (i) the sequence of random vectors fZt; t = 0;�1;�2; :::g is strictly stationary and mixing,

(ii) DKL (P (�; h�) ; P0) is uniquely minimized at ��, (iii) the parameter spaces � and

� (�) are compact subsets of Rk and Rl, respectively, (iv) gt (�; h) is twice continuously

di¤erentiable with respect to � a:s: in a neighborhood �� of ��, (v) �� 2 int (�), �� 2

int (� (�)),

A2 (i)
bh� h�


H
= op (1) and

b�� ��

 = op (1), (ii)

sup
�2��(��);�2��;h2H�


1

T

TX

t=1

@2 exp (�0gt (�; h))

(@�)
2
�Hg (�; h)

 = op (1) ;
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where �� (��) and �� are neighborhoods of �� and �� and H� = fhj kh� h�kH � �g for

some � > 0, andHg (�; h) = E
�
@2 exp (�0gt (�; h)) = (@�)


2�, (iii)Hg (��; h�) is nonsingular,

A3 (i) the empirical process vT (h) satis�es the stochastic equicontinuity condition

sup
h2H�

kvT (h)� vT (h�)k = op
�
T�1=2

�
;

where vT (h) =
PT

t=1 [@ exp (�
0
�gt (��; h)) =@�� E [@ exp (�0�gt (��; h)) =@�]] =T ,

(ii) E
h
@ exp

�
�0�gt

�
��;bh

��
=@�

i
= op

�
T�1=2

�
,

A4 T 1=2vT (h�)
d
! N (0;
g (��; h�)), where


g (��; h�) = lim
T!1

V ar

"
1

T 1=2

TX

t=1

@ exp (�0�gt (��; h�))

@�

#
;

assumed to be positive de�nite.

Assumption A1(i) excludes deterministic and stochastic trends, and speci�es the dependence

structure of the sequence fZtg in terms of mixing; for semiparametric models the mixing condi-

tion is typically speci�ed as �-mixing (Volkonskii & Rozanov 1959). Many time series models

satisfy the �-mixing condition, including nonlinear autoregressive models with possibly addi-

tional variables, nonlinear ARCH models and some di¤usion models, see for example Carrasco

& Chen (2002). Alternatively, the weaker notion of �-mixing can be assumed - see Bradley

(2005) for a comparison between the notions of � and �-mixing; see also Doukhan (1994) for

a review and examples of �-mixing processes. Assumptions A1(ii)-(iv) are standard in the lit-

erature on misspeci�ed nonlinear models, see for example Kitamura (2000) and Hall & Inoue

(2003). Assumption A2(i) assumes the consistency of the estimators of the unknown parame-

ters. The consistency of bh in A2(i) holds for example in the case of the sup norm for kernel

and nonparametric series estimators under standard regularity conditions on h, see for example

Masry (1996) and Newey (1997). Given the consistency of bh, the consistency of b� =
h
b�0; b�0

i0

follows, for example, by the identi�cation condition A1(ii) combined with a suitable uniform

law of large numbers and mild smoothness conditions with respect to �, see Proposition 4 in

the online Appendix for an example of such conditions. Assumption A2(ii) requires a uniform

law of large numbers for the Hessian matrix of the objective function; with semiparametric

models, uniform laws of large numbers are typically speci�ed in terms of bracketing numbers

and/or entropy conditions (see Van der Vaart & Wellner (1996) for a de�nition) to control

for the complexity of the pseudo metric space H�, an envelope condition on Hg (�; �; h) and a

speci�c rate for the mixing parameter, see for example Yu (1994) for �-mixing processes and

Bravo et al. (2017) for �-mixing processes. Given the compactness assumption A1(iii), the

bracketing numbers and entropy conditions are typically satis�ed when H (hence H�) is a space

of su¢ciently smooth functions, such as a Holder or a Sobolev space, or a space of bounded
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variations functions with compact support (see for example Van der Vaart (1998) and the proof

of Proposition 2). Assumption A3(i) assumes the stochastic equicontinuity of the empirical

process vT (h), a key property to obtain the asymptotic distributions of the estimator and test

statistics of this paper under Assumption A3(ii), which can be interpreted as an asymptotic

orthogonality condition implying that estimation of h� does not a¤ect the covariance matrix of

the asymptotic distribution of the estimator of ��. A su¢cient condition for A3(ii) to hold is

that E [@ (@ exp (�0�gt (��; h�)) =@�) =@hj] = 0 (j = 1; :::;m). As in Assumption A2(ii), stochastic

equicontinuity typically involves a bracketing number or bracketing entropy condition (see for

example Van der Vaart &Wellner (1996) for a de�nition) to control the complexity of the in�nite

dimensional parameter space H, see for example Arcones & Yu (1994) and Doukhan, Massart

& Rio (1995) for �-mixing processes, and Andrews & Pollard (1994), Bravo et al. (2017) and

Mohr (2020) for �-mixing processes among others. Finally A4 requires a central limit theorem,

which typically holds under a suitable summability condition on the � or � mixing coe¢cients,

see for example assumptions E1(i) and/or E5(i) in Section 5 for the � mixing case.

Theorem 1 Under Assumptions A1-A4

T 1=2
��
b� � ��

�0
;
�
b�� ��

�0�0 d
! N

�
0; Hg (��; h�)

�1
g (��; h�)Hg (��; h�)
�1� ; (3.2)

where

Hg (�; h) =

"
Hg�� (�; �; h) Hg�� (�; �; h)

Hg�� (�; �; h)
0 Hg�� (�; �; h)

#
;

Hg�� (�; h) = E

"
exp (�0gt (�; h))

 
�0 
 Ik

@vec (@gt (�; h) =@�
0)

@�0
+

��
@gt (�; h)

@�0

�0
�

�
2
+

�
@gt (�; h)

@�0

�0
@�

@�0

�
;

Hg�� (�; h) = E

�
exp (�0gt (�; h))

�
@gt (�; h)

@�0
�
Il + �gt (�; h)

0�+
�
@�

@�0

�0
gt (�; h)


2

��
;

Hg�� (�; �; h) = Hg�� (�; �; h)
0 ; Hg�� (�; h) = E

�
exp (�0gt (�; h)) gt (�; h)


2� ;

with

@�

@�0
=

@� (�)

@�0
= �

1

2
E
�
exp (�0gt (�; h)) gt (�; h)


2��1 �

E

�
exp (�0gt (�; h))

�
Il + �gt (�; h)

0� @gt (�; h)
@�0

�
;

9



and


g (�; h) =

"

g�� (�; h) 
g�� (�; h)


g�� (�; h) 
g�� (�; h)

#
;


g�� (�; h) = lim
T!1

V ar

 
1

T 1=2

TX

t=1

@ exp (�0gt (�; h))

@�

!
;


g�� (�; h) = lim
T!1

Cov

"
1

T 1=2

TX

t=1

@ exp (�0gt (�; h))

@�
;
1

T 1=2

TX

t=1

@ exp (�0gt (�; h))

@�

#
;


g�� (�; h) = 
g�� (�; �; h)
0 ;


g�� (�; h) = lim
T!1

V ar

"
1

T 1=2

TX

t=1

@ exp (�0gt (�; h))

@�

#
:

Asymptotically valid (i.e. misspeci�cation robust) inferences on �� can be based on the

sample analog bHg��

�
b�; ;bh

��1
of Hg�� (��; h�)

�1 and an estimator b
g��
�
b�; ;bh

�
of 
g�� (��; h�)

that can be based on a suitable adaptation (to the semiparametric models considered in this

paper) of any of the well known kernel based long run variance estimators typically used in

the time series econometric literature, see for example Andrews (1991) or Kitamura & Stutzer

(1997).

The following proposition provides an example of how the consistency of bHg

�
b�;bh
��1 b
g

�
b�;bh
�
�

bHg

�
b�; ;bh

��1
(and hence of bHg��

�
b�; ;bh

��1 b
g��
�
b�;bh
�
bHg��

�
b�; ;bh

��1
) can be shown under �

mixing (and hence � mixing), using the same blocking technique as that of Kitamura & Stutzer

(1997) (see Smith (2011) for a more general but asymptotically equivalent form of smoothing)

to construct the estimator b
g
�
b�;bh
�
. Let

bi (�; h) =
1

M1=2

MX

j=1

@ exp
�
�0g(i�1)+j (�; h)

�

@�
; b (�; h) =

1

Q

QX

i=1

bi (�; h) ; (3.3)

b
g
�
b�;bh
�
=

1

Q

QX

i=1

�
bi

�
b�;bh
�
�M1=2b

�
b�;bh
��
2

;

where bi (�; h) is the i�th block of the semiparametric �rst order conditions, M =:M (T )!1

as T !1 is the "smoothing" parameter andQ = dT �Me+1 with d�e the integer part function.

For a generic class of functions, say C, let N[] ("; C; Lr (P )) denote its bracketing number, and

assume that:

V1 (i) the sequence of random vectors fZt; t = 0;�1;�2; :::; T � 1g is strictly stationary and

� mixing with mixing coe¢cient � (k) satisfying
P1

k=1 (k + 1)
p�1 � (k)

�
2p+� < 1, (ii)

E k@ exp (�0�gt (��; h�)) =@�k
2p+�

<1 for some p > 2 and 0 < � � 2, (iii) M = o (T ) ;

10



V2 (i) the classes of functions G@g= fZt ! @ exp (�0gt (�; h)) =@�; � 2 �; � 2 � (�) ; h 2 H�g and

G@2g=
�
Zt ! @2 exp (�0gt (�; h)) = (@�)


2 ; � 2 �; � 2 � (�) ; h 2 H�

	
haveN[] (";G�; L1 (P )) <

1, where � is either @g or @2g, (ii) E sup�2�;�2�(�);h2H�
k@ exp (�0gt (�; h)) =@�k <1,

E sup�2�;�2�(�);h2H�

@2 exp (�0gt (�; h)) = (@�)
2
 <1;

V3 (i) Hg (��; h�) is nonsingular, (ii) 
g (��; h�) is positive de�nite.

Note that the summability condition of the mixing coe¢cient � (k) in V1 is satis�ed, for

example, if fZtg is m-dependent or it has an exponential decay, or if � (k) = O
�
k��
�
for

� > p (2p+ �) =�:

Proposition 1 Under V1-V3
 bHg

�
b�;bh
��1 b
g

�
b�;bh
�
bHg

�
b�;bh
��1

�Hg (��; h�)
�1
g (��; h�)Hg (��; h�)

�1

 = op (1) :

Standard arguments can then be used to show that the t and Wald statistics based on

bHg

�
b�;bh
��1 b
g

�
b�;bh
�
bHg

�
b�;bh
��1

have an asymptotic standard normal and chi-squared cali-

bration, respectively.

4 Misspeci�ed semiparametric models selection theory

In this section we consider two types of model selection tests for comparing two possibly mis-

speci�ed semiparametric moment conditions models. The �rst type is an extension to the same

two-step testing selection procedure (where the �rst step is based on a pre-test - see Theorem

3 and Remark 1 below) as that proposed by Vuong (1989); we call this extension the naive

extension. The second type is an extension to the model selection test statistic proposed by Shi

(2015), which we call the uniform extension. As mentioned in the Introduction, both extensions

have their own merits, hence we describe them in the following two subsections.

4.1 Naive extension to Vuong�s model selection

We assume that the competing semiparametric model is de�ned through an alternative set of

moment functions f : Z � B � L ! Rs, where B � Rb (s � b) and L = L1 � :::: � Ll is a

pseudo-metric space of functions4, such that P�;l = fP jEP (f (Zt; �; l)) = 0g : As in Section 2,

we assume that the competing semiparametric model is misspeci�ed, that is P0 =2 Pf for all

� 2 B and l 2 L, where Pf = [�2B;l2LP�;l. Then, the two-step semiparametric ET estimator b�
is de�ned as h

b�0;b0
i
= argmax

�2B
arg min

2�(B)
NT

�
�;bl; 

�
;

4Note that L could coincide with H, that is the two semiparametric models feature the same in�nite dimen-

sional parameter.
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where NT

�
�;bl; 

�
=
PT

t=1 exp
�
0ft

�
�;bl
��

=T .

The comparison criterion we use is the minimum KL divergence, which, given its connection

with ET (see (2:3)), amounts to compare DKL (P (��; h�) ; P0) versus DKL (P (��; l�) ; P0). To

be speci�c, following Vuong�s (1989) terminology, we say that the semiparametric model Pg is

better (worse) than model Pf if its KL divergence DKL (P (��; h�) ; P0) is smaller (larger) than

DKL (P (��; l�) ; P0). Let D =M (��; h�; ��)�N (��; l�; �); the null hypothesis is that the two

semiparametric models have the same KL divergence (which implies that we cannot discriminate

between them), that is

H0 : D = 0: (4.1)

To test (4:1) we can use the sample analogs MT

�
b�;bh; b�

�
and NT

�
b�;bl; b

�
, that is the test

statistic

DT =
1

T 1=2

TX

t=1

�
exp

�
b�0gt

�
b�;bh
��
� exp

�
b0ft

�
b�;bl
���

; (4.2)

which is a two-step semiparametric extension of the test statistic of Vuong (1989).

Let  = [�0; 0]
0
and

�2� = lim
T!1

V ar

"
1

T 1=2

TX

t=1

(exp (�0�gt (��; h�))� exp (
0
�ft (��; l�)))

#
;

and assume that:

A5 (i) A1(i) holds, (ii) A1(ii)-(v) hold for the competing model Pf , the parameter spaces B

and � (B), the moment indicator ft (�; l) and �� and �;

A6 A2 holds for b�, b, bl,
PT

t=1 @
2 exp (0ft (�; l)) = (@ )


2 =T and its probability limitHf ( �; l�),

A7 (i) A3 holds for vT (h) and its analog vT (l) for ft (�; l); (ii) the empirical processes

vgT (h) =
1

T

TX

t=1

[exp (�0�gt (��; h))� E (exp (�0�gt (��; h)))] ;

vfT (l) =
1

T

TX

t=1

[exp (0�ft (��; l))� E (exp (0�ft (��; l)))] ;

satisfy the same stochastic equicontinuity assumption A3(i), andE
h
exp

�
�0�gt

�
��;bh

��i
=

op
�
T�1=2

�
and E

h
exp

�
0�ft

�
��;
bl
��i

= op
�
T�1=2

�
,

A8
1

T 1=2

TX

t=1

(exp (�0�gt (��; h�))� exp (
0
�ft (��; l�)))

d
! N

�
0; �2�

�
:

Theorem 2 Assume that �2� > 0. Then under Assumptions A5-A8 and the null hypothesis

H0 : D = 0

DT
d
! N

�
0; �2�

�
:

12



Thus the test statistic rejects the null hypothesis if
���DT=b�

�
b�;bh; b ;bl

���� > z1��=2, where

b�
�
b�;bh; b ;bl

�
is a consistent estimator of �� - see (4:3) below for an example, z1��=2 is the

1� �=2 quantile of the standard normal distribution and � is the nominal size:

The validity of Theorem 2 depends crucially on the assumption that �2� > 0, which implies

that the two competing semiparametric models are strictly non-nested (or nonoverlapping).

De�nition 3 (i) The two semiparametric models Pg and Pf are strictly non nested if Pg\Pf =

?. (ii) The two semiparametric models Pg and Pf are overlapping if Pg \Pf 6= ? with Pg  Pf

and Pf ! Pg. (iii) The two semiparametric models Pg and Pf are nested if either Pg � Pf (Pg

is nested in Pf) or Pf � Pg (Pf is nested in Pg).

De�nition 3 extends Vuong�s (1989) to semiparametric models. It is important to note that

in some cases the non nested or overlapping condition is relatively easy to check: a leading

example would be two completely di¤erent semiparametric speci�cations, say a single index

versus a partial linear one with di¤erent explanatory variables. In general, however, the non

nested or overlapping condition can be hard to check in semiparametric moment conditions

models, because each model (i.e. each set of probability distributions compatible with the

assumed semiparametric speci�cation in terms of the KL divergence) can be rather large (see

also Kitamura (2000) for a similar point). For this reason, we propose an additional test statistic

for checking the hypothesis5 that �2� = 0 using a variance statistic similar to the b!2n one proposed
by Vuong (1989). To be speci�c, we use the same blocking technique as that described in (3:3)

and de�ne

b�2
�
b�;bh; b ;bl

�
=
1

Q

QX

i=1

�
bi

�
b�;bh; b ;bl

�
�M1=2b

�
b�;bh; b ;bl

��2
;

where

bi

�
b�;bh; b ;bl

�
=

1

M1=2

MX

j=1

exp
�
b�0g(i�1)+j

�
b�;bh
��
� exp

�
b0f(i�1)+j

�
b�;bl
��

: (4.3)

Let


f ( ; l) = lim
T!1

V ar

 
1

T 1=2

TX

t=1

@ exp (0ft (�; l))

@ 

!
;


gf (�; h;  ; l) = lim
T!1

Cov

"
1

T 1=2

TX

t=1

@ exp (�0gt (�; h))

@�
;
1

T 1=2

TX

t=1

@ exp (0ft (�; l))

@ 
;

#
;

5It should be noted that there is another situation in which �2
�
could be possibly 0, namely if the spectral

density at the zero frequency of the time series
��
exp

�
�0
�
gt (��; h�)

�
� exp (0

�
ft (��; l�))

�	T
t=1

is itself 0. This

might happen for example if it behaves like a moving average unit root time series, see for example Breitung

(2008) for more details on how to test the moving average unit root hypothesis. The result of Theorem 3

implicitly excludes this situation.
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� (�; h;  ; l) =

"
�
g (�; h)Hg (�; h)

�1 �
fg (�; h;  ; l)Hf ( ; l)
�1


gf (�; h;  ; l)Hg (�; h)
�1 
f (�; �; h)Hf ( ; l)

�1

#
;

and assume that:

A9

sup
h2H�;l2L�


1

T

TX

t=1

(exp (�0�gt (��; h))� exp (
0
�ft (��; l)))�

@ (exp (�0�gt (��; h))� exp (
0
�ft (��; l)))

@ (�0;  0)
0 � L (��; h;  �; l)

 = op (1)

with L (�; h;  ; l) being the corresponding �nite probability limit,

A10

sup
�2��(��);�2��;h2H�

2�(B�);�2B�;l2L�


1

T

TX

t=1

@�

 
@2 (exp (�0gt (�; h))� exp (

0ft (�; l)))�
@ (�0;  0)

0�
2

!
� P� (�; h;  ; l)



2

= op (1) ;

where "�" is either for h or l and both derivatives should be interpreted as functional deriv-

atives with respect to h and l with P� (�; h;  ; l) being the corresponding �nite probability

limit.

Theorem 3 Under A5-A10, M = o
�
T 1=2

�
and the null hypothesis H0 : �

2
� = 0

Tb�2
�
b�;bh; b ;bl

�
d
!

qX

j=1

�2j�
2
j (1) ; (4.4)

where, for j = 1; ::::; q, q = l + k + s + b, �j are the eigenvalues of � (��; h�;  �; l�) and �
2
j (1)

are independent chi-squared variables with one degree of freedom.

The test rejects the null hypothesis if Tb�2
�
b�;bh; b ;bl

�
> c�� where c

�
� is the upper critical val-

ues of the nonstandard distribution (4:4), which can however be easily simulated using consistent

estimators b�2j of �2j (j = 1; :::; q). Alternatively we can use the scaled adjusted statistic

b�2s
�
b�;bh; b ;bl

�
=

q

tr

�
b�
�
b�;bh; b ;bl

�2�b�
2
�
b�;bh; b ;bl

�
; (4.5)

which, using the same heuristic argument of Rao & Scott (1981) can be shown to converge to a

standard chi-squared distribution, that is Tb�2s
d
! �2 (q) :

Remark 1 In practice the naive extension to Vuong�s (1989) model selection approach is based

on the same two-step procedure suggested by Vuong (1989), as it consists of using the statistic

b�2 of Theorem 3 (or its modi�ed version b�2s given in (4:5)) as a pre test to determine whether
the variance of Theorem 2 is zero or not. Depending on whether the null hypothesis of the pre

test is rejected (or not), model selection is (not) possible with the DT , and it is the discontinuous

change between the asymptotic distributions of b�2 and DT that might result in poor �nite sample

properties of the two-step procedure.
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4.2 Uniform extension to Vuong�s model selection

We begin this section by providing some intuition behind Shi�s (2015) modi�cation of Vuong�s

statistic (4:2). The proof of Theorem 2 shows that

DT =
1

T 1=2

TX

t=1

(exp (�0�gt (��; h�))� exp (
0
�ft (��; l�)))� (4.6)

1

2T 1=2

��
b�� ��

�0
;
�
b �  �

�0� TX

t=1

@2
�
exp

�
�
0
gt

�
�;bh
��
� exp

�
0ft

�
�;bl
���

�
@ (�0;  0)

0�
2 �

��
b�� ��

�0
;
�
b �  �

�0�0
+ op (1) ;

where � is on the line segment between �� and
b�, and similarly for  , and a combination of the

central limit theorem, the uniform law of large numbers and the continuous mapping theorem

shows that

DT
d
! Z�2

�
�

1

2T 1=2
Z 0�; H (��; h�;  �; l�)

�1 Z�; ; (4.7)

where "
Z�2

�

Z�; 

#
� N

 "
0

0

#
;

"
�2� � (��; h�;  �; l�)

0

� (��; h�;  �; l�) 
 (��; h�;  �; l�)

#!
;

� (��; h�;  �; l�) = lim
T!1

Cov

 
TX

t=1

(exp (�0�gt (��; h�))� exp (
0
�ft (��; l�))) ;

1

T 1=2

TX

t=1

@ (exp (�0�gt (��; h�))� exp (
0
�ft (��; l�)))

@ [�0;  0]
0

!
:

If �2� > 0, as T ! 1, the distribution of DT is well approximated by Z�2
�
as the second term

in (4:7) becomes negligible, however if �2� = 0 the second term in (4:7) becomes the dominant

one, hence the distribution of DT is better approximated by Z
0
�; H (��; h�;  �; l�)

�1 Z�; =2T
1=2.

Finally, if �2� > 0 but T is not large enough yet, the two terms in (4:7) might be of similar order

of magnitude, and thus the asymptotic distribution of DT might not be well approximated by

either of them.

In a similar way, the proof of Theorem 3 shows that if �2� = 0

Tb�2
�
b�;bh; b ;bl

�
d
! Z 0�; H (��; h�;  �; l�)

�1 Z�; ;

whereas, as we show in the proof of Theorem 4 below, if �2� 2 (0;1)

b�2
�
b�;bh; b ;bl

�

�2T (��; h�;  �; l�)

d
! 1�

2

��
�0��

1=2 (��; h�;  �; l�)H (��; h�;  �; l�)
�1 Z�; + (4.8)

1

�2�
Z 0�; H (��; h�;  �; l�)

�1
 (��; h�;  �; l�)H (��; h�;  �; l�)
�1 Z�; ;
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where �2T (��; h�;  �; l�) := limT!1 V ar
�PT

t=1 (exp (�
0
�gt (��; h�))� exp (

0
�ft (��; l�)))

�
, and ��

and �(��; h�;  �; l�) are de�ned in (4:9) and (4:10) below, which shows that an appropriately

standardized version of b�2
�
b�;bh; b ;bl

�
converges to a nonstandard distribution, that, as shown

by Shi (2015)[Section 3.3] is always nonnegative but can take values close to zero with signi�cant

probability. Thus (4:7) and (4:8) imply that the standardized Vuong statistic DT=b�
�
b�;bh; b ;bl

�

not only is not centered at zero because of the second order bias, but can also be character-

ized by a fat tail distribution, with obvious negative implications for inference. To overcome

these two problems, we follow the same approach of Shi (2015): given a set of distributions

P� = fPg;f jD = 0g that are consistent with the null hypothesis (4:1), we consider sequences

fPT 2 P�; T � 1g, generalize the dependent structure of the sequence fZtg to that of a triangu-

lar array of � mixing dependent variables fZTtg and consider sequences �
2
T (��; h�;  �; l�) such

that under PT limT!1 T �2T (��; h�;  �; l�) ! �2� 2 [0;1], where the rate T is chosen so that

the resulting local asymptotic distribution represents a smooth transition from a nonstandard

one to a standard normal as �2� ranges from 0 to 1.

Let �T (��; h�;  �; l�) denote a sequence of "correlation coe¢cients", such that under PT

limT!1 �T (��; h�;  �; l�)! ��, where

�� = �+�
�
�1=2 (��; h�;  �; l�)

�+
� (��; h�;  �; l�) ; (4.9)

�+� =

(
0 if �� = 0;
1
��
if �� > 0;

�(��; h�;  �; l�) = diag (
 (��; h�;  �; l�)) ; (4.10)

" + " denotes the Moore-Penrose inverse of a matrix,

bTi (�; h;  ; l) =
1

M1=2

MX

j=1

�
exp

�
�0gT (i�1)+j (�; h)

�
� exp

�
0fT (1�i)+j (�; l)

��
;

b�2
�
b�T ;bh; b T ;bl

�
=

1

Q

QX

i=1

�
bTi

�
b�T ;bh; b T ;bl

�
�M1=2bT

�
b�T ;bh; b T ;bl

��
2
; (4.11)

with
h
b�0T;b�

0

T

i0
= argmax

�2�
arg min

�2�(�)

1

T

TX

t=1

exp
�
�0gTt

�
�;bh
��

; (4.12)

and similarly for the estimators
h
b�0T ; b0T

i0
of the competing semiparametric model based on

fTt (�; l).

Assume that:

U1 The triangular array sequence fZTt; t = 0;�1;�2; :::; T � 1g is � mixing with T -th mixing

coe¢cient �T (k) satisfying supT
P1

k=1 (k + 1)
2 �T (k)

�
4+� <1 for some � > 0,
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U2 (i) A1(ii)-(v) and A5(ii) hold for gTt (�; h) and fTt (�; l), (ii)

E jexp (�0�gTt (��; h�))� E (exp (�0�gTt (��; h�)))j
2(2+�)

< 1;

E jexp (0�fTt (��; l�))� E (exp (0�fTt (��; l�)))j
2(2+�)

< 1

for all t and T , (iii) E
@ (exp (�0gTt (�; h))� exp (0fTt (�; l))) =@ [�0;  0]0

2(2+�) < 1 for

all t and T , (iv)

E sup
�2�;h2H�; 2	;l2L�


@2 (exp (�0gTt (�; h))� exp (

0fTt (�; l)))�
@ [�0;  0]

0�
2

 <1

for all t and T ,

U3 (i)
bh� h�


H
= op (1),

bl � l�


L
= op (1), and

b�T � ��

 = op (1),
b T �  �

 = op (1), (ii)

the empirical processes

vdT (h; l) =
TX

t=1

(exp (�0�gTt (��; h))� exp (
0
�fTt (��; l))�

E (exp (�0�gTt (��; h))� exp (
0
�fTt (��; l)))) and

v@T (h; l) =
1

T 1=2

TX

t=1

�
@ exp (�0�gTt (��; h))� exp (

0
�fTt (��; l))

@ [�0;  0]
0 �

E

�
@ exp (�0�gTt (��; h))� exp (

0
�fTt (��; l))

@ [�0;  0]
0

��

satisfy the stochastic equicontinuity conditions

sup
h2H�;l2L�

kveT (h; l)� veT (h�; l�)k = op
�
T 1=2�T (��; h�;  �; l�)

�
and

sup
h2H�;l2L�

v@T (h; l)� v@T (h�; l�)
 = op (1)

for all T , (iii)
���b�2
�
��;bh;  �;bl

�
� b�2 (��; h�;  �; l�)

��� = op (�
2
T (��; h�;  �; l�)) for all T , (iv)

E

"
TX

t=1

exp
�
�0�gTt

�
��;bh

��
� exp

�
0�fTt

�
��;
bl
��#

= op
�
1=
�
T 1=2�T (��; h�;  �; l�)

��
and

E

0
@

TX

t=1

@ exp
�
�0�gTt

�
��;bh

��
� exp

�
0�fTt

�
��;bl

��

@ [�0;  0]
0

1
A = op

�
T�1=2

�
:

Assumption U1(i) imposes a standard mixing assumption for triangular arrays of � mixing

random vectors, Assumptions U2 and U3 are similar to those assumed in the previous sections:

U3(i) can be veri�ed using similar arguments as those used in the proof of Proposition 4 in the

supplemental appendix; U3(ii) is a stochastic equicontinuity condition similar to that assumed in
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A3(i) and A7(ii), which can be veri�ed under di¤erent more primitive conditions, see for example

the discussion before Theorem 1 and assumptions E5(iv) and E6(ii)-(iii). Assumption U3(iv)

can be veri�ed under standard smoothness conditions (in h and l) of the moments indicators

gTt (��; h) and fTt (��; l) and the convergence rate (in an appropriate norm) of the nonparametric

estimators bh and bl, see for example the proof of Proposition 3.
The following theorem establishes the joint local asymptotic distribution of T 1=2DT de�ned

in (4:2) and Tb�2
�
b�;bh; b ;bl

�
; let

V (��; h�;  �; l�) = diag
�
eig
�

1=2 (��; h�;  �; l�)H (��; h�;  �; l�)

�1
1=2 (��; h�;  �; l�)
��
;

denote the diagonal matrix formed by the l + k + s+ b eigenvalues (eig) of


1=2 (��; h�;  �; l�)H (��; h�;  �; l�) 

1=2 (��; h�;  �; l�) :

Theorem 4 Under U1-U3, M = o
�
T 1=2

�
and the null hypothesis H0 : D = 0 (i) if �2� 2 [0;1)

"
T 1=2DT

Tb�2
�
b�;bh; b ;bl

�
#

d
!

"
JD (��; �

�
�; V (��; h�;  �; l�))

J�2
�
(�2�; �

�
�; V (��; h�;  �; l�))

#
;

where
"
JD (��; �

�
�; V (��; h�;  �; l�))

J�2
�
(��; �

�
�; V (��; h�;  �; l�))

#
=

"
��Z �

1
2
Z�0�; V (��; h�;  �; l�)Z

�
�; 

�2� � 2���
�0
� V (��; h�;  �; l�)Z

�
�; � Z�0�; V (��; h�;  �; l�)

2 Z��; 

#
;

"
Z

Z��; 

#
� N

 "
0

0

#
;

"
1 ��0�
��� I

#!
;

and ��� is the solution to the equation 

1=2 (��; h�;  �; l�)Q�

�
� = �

1=2 (��; h�;  �; l�) �� with Q an

orthonormal matrix satisfying

QV (��; h�;  �; l�)Q
0 = 
1=2 (��; h�;  �; l�)H (��; h�;  �; l�) 


1=2 (��; h�;  �; l�) ;

(ii) if �2� =1

DT

�T (��; h�;  �; l�)

d
! Z and

b�
�
b�;bh; b ;bl

�

�T (��; h�;  �; l�)

p
! 1:

Theorem 4 and a straightforward application of the continuous mapping theorem imply that

the local asymptotic distribution of the standardized Vuong statistic DT=b�
�
b�;bh; b ;bl

�
is

DT

b�
�
b�;bh; b ;bl

� d
!

JD (��; �
�
�; V (��; h�;  �; l�))

J
1=2

�2
�

(�2�; �
�
�; V (��; h�;  �; l�))

;
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which can be quite di¤erent from a standard normal, because of the asymptotic bias in the

numerator and the random denominator, as discussed at the beginning of this section. Thus,

as suggested by Shi (2015), we propose a modi�ed standardized Vuong statistic that addresses

both problems. To be speci�c, let

Dm
T (c) =

DT + tr
�
bV
�
b�;bh; b ;bl

��
=2T 1=2

�
b�2
�
b�;bh; b ;bl

�
+ ctr

�
bV 2
�
b�;bh; b ;bl

��
=T
�1=2 ; (4.13)

denote the modi�ed standardized Vuong statistic. Similar arguments as those used in the

proof of Proposition 1 can be used to show that tr
�
bV
�
b�;bh; b ;bl

��
p
! tr (V (��; h�;  �; l�)) and

tr
�
bV 2
�
b�;bh; b ;bl

��
p
! tr (V 2 (��; h�;  �; l�)), thus, again by a straightforward application of the

continuous mapping theorem, the local asymptotic distribution of (4:13) is given by

Dm
T (c)

d
!

JD (��; �
�
�; V (��; h�;  �; l�)) + tr (V (��; h�;  �; l�)) =2�

J�2
�
(��; ���; V (��; h�;  �; l�)) + ctr (V

2 (��; h�;  �; l�))
�1=2 := J (��; �

�
�; V (��; h�;  �; l�) ; c) ;

(4.14)

which is still not a standard normal, implying that its critical values can be obtained by simu-

lation. Let

cv (1� �; V (��; h�;  �; l�) ; c) = sup
��2[0;1];���:k�

�

�
k�1

F�1J(��;���;V (��;h�; �;l�);c) (1� �) (4.15)

denote the critical value of J (��; �
�
�; V (��; h�;  �; l�) ; c), which is worth noting to be weakly

larger than the corresponding 1�� quantile of a standard normal, as J (1; ���; V (��; h�;  �; l�) ; c) �

N (0; 1) for any ���, V (��; h�;  �; l�) and c. In the online supplemental Appendix we provide de-

tails on how to simulate (4:15), including how to choose the crucial parameter c; using essentially

the same approach proposed by Shi (2015). The following theorem extends the uniformity prop-

erty of the model selection test of Shi (2015) to possibly misspeci�ed semiparametric models

with � mixing observations.

Theorem 5 Under the same assumptions of Theorem 4, for any c � 0

lim
T!1

sup
P2P�

Pr
�
jDm

T (c)j � cv
�
1� �; bV

�
b�;bh; b ;bl

�
; c
��
� �:

Remark 2 If the two competing semiparametric models Pg and Pf are known to be nested, say

Pg � Pf , then �
2
� = 0, hence �� and �

�
� are not required for the computation of (4:15); furthermore

a one sided test is more useful than a two sided one because the nested model cannot be closer

than the nesting model (in terms of KL divergence) to the true one. Note also that because in

the nested case nondegeneracy does not occur, one could simply set c = 0, further simplifying

the computation of (4:15) :
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5 An example and Monte Carlo evidence

In this section we consider an example to illustrate both how the high level assumptions of the

previous section can be veri�ed under more primitive conditions and how the proposed model

comparison tests perform in �nite samples.

5.1 Misspeci�ed instrumental variables partial linear model

We consider the following model

rt (�; s) = q (Vt) (Yt �X 0
1t� � s (X2t)) ;

where q (Vt) : V ! Rl is a vector of known functions of the instruments Vt (which might contain

elements of Xjt (j = 1; 2)), X1t 2 R
k (k < l), X2t 2 R, s : X2 ! R is an unknown function, and

let

gt (�; h) = q (Vt)
�
Yt � E (YtjX2t)� (X1t � E (X1tjX2t))

0 �
�

(5.1)

denote the pro�le moment indicator, where h = [h1; h
0
2]
0 =
�
E (YtjX2t) ; E (X1tjX2t)

0�0.
Let bh =

h
bE (YtjX2t) ; bE (X1tjX2t)

i0
, where bE (YtjX2t) =

PT
j 6=t=1 Yj!jb (X2t), !jb (X2t) =

K ((X2j �X2t) =b) =
PT

k=1K ((X2k �X2j) =b) and b := b (T ) is a bandwidth, and similarly for

bE (X1tjX2t), Y t = Yt�E (YtjX2t) and similarly forX1t, andWq;k (f) =
���
Pk

j=0

R
jdjf j

q
���
1=q

denote

the Sobolev space of functions.

Assume that:

E1 (i) the sequence of random vectors fZt : t = 0;�1;�2; :::g, where Zt = [Yt; X
0
t; V

0
t ]
0, is

strictly stationary �-mixing with mixing coe¢cient � (k) satisfying
P1

k=1 (k + 1)
2 � (k)�=(�+4) <

1 for some �nite � > 0, (ii) the marginal density fX2 of X2t is twice continuously di¤eren-

tiable on X2, infX2t2X2 jfX2j > 0, and X2 is a compact set, (iii) rank
�
E
�
q (Vt)X

0

1t

��
= k,

(iv) the parameter spaces � and � (�) are compact subsets of Rk and Rl, respectively, and

H =Wq;k (h) � C for some �nite C > 0 - the Sobolev ball with radius C, (v) �� 2 int (�),

�� 2 int (� (�)) and h� 2 H,

E2 (i) E sup�2�(�);�2�;h2H�

���exp
�
�0q (Vt)

�
Y t �X

0

1t�
����� <1, (ii)

E sup
�2�(�);�2�;h2H�

exp
�
�0q (Vt)

�
Y t �X

0

1t�
��

q (Vt)
�
Y t �X

0

1t�
� < 1;

E sup
�2��(��);�2��;h2H�

exp
�
�0q (Vt)

�
Y t �X

0

1t�
��

�0q (Vt)

"
�1

��

# < 1;

where H� = fh : kh� h�kH � �g for some � > 0, (iii)

E sup�2��(��);�2��;h2H�

@2 exp
�
�0q (Vt)

�
Y t �X

0

1t�
��

= (@�)
2
 < 1 where �� (��) and
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�� are neighborhoods of �� and ��, and


@2 exp (�0gt (�; h))

(@�)
2
�
@2 exp (�0�gt (��; h�))

(@�)
2

 � B�;h (Zt)

�b�� ��

+
bh� h�


H�

�

with E (B�;h (Zt)) <1, (iv) Hg (��; ��; h�) is nonsingular, where

Hg�� (�; h) = E

"
exp

�
�0q (Vt)

�
Y t �X

0

1t�
����

q (Vt)X
0

1t

�0
�

�
2
+ (5.2)

�
q (Vt)X

0

1t

�

2

0 �
E

�
exp

�
�0q (Vt)

�
Y t �X

0

1t�
���

q (Vt)
�
Y t �X

0

1t�
��
2���1

�

E
��
Il + q (Vt)

�
Y t �X

0

1t�
�
�0
�
q (Vt)X

0

1t

�i
;

Hg�� (�; h) = E

�
exp

�
�0q (Vt)

�
Y t �X

0

1t�
����

X1tq (Vt)
0 +
�
q (Vt)X

0

1t

�0
�q (Vt)

0
�
Y t �X

0

1t�
�

�
1

2
E

�
X1tq (Vt)

0
�
Il + q (Vt)

�
Y t �X

0

1t�
�
�0
�0�

�

�
E

�
exp

�
�0q (Vt)

�
Y t �X

0

1t�
���

q (Vt)
�
Y t �X

0

1t�
��
2���1 �

q (Vt)
�
Y t �X

0

1t�
��
2

!#
;

Hg�� (�; h) = Hg�� (�; h)
0 ;

Hg�� (�; h) = E

�
exp

�
�0q (Vt)

�
Y t �X

0

1t�
���

q (Vt)
�
Y t �X

0

1t�
��
2�

;

E3 (i) 
@ exp (�0�gt (��; h))

@�
�
@ exp (�0�gt (��; h�))

@�

 � Bh (Zt)
bh� h�


H�

with E (Bh (Zt)) <1 and, for j = 1; :::; k + 1,

E sup
h2H�


exp

�
�0�q (Vt)

�
Y t �X

0

1t��

��
(�0�q (Vt))

2

"
1

��

#
2
vj


<1

where v1 = 1 and vj = �j�1 for j = 2; :::; k + 1, (ii)

E


exp

�
�0�q (Vt)

�
Y t �X

0

1t��

���
q (Vt)X

0

1t

�0
��

exp
�
�0�q (Vt)

�
Y t �X

0

1t��

�
q (Vt)

�
Y t �X

0

1t��

��



2+�

<1;
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(iii) 
g (��; ��; h�) is positive de�nite with


g�� (�; �; h) = lim
T!1

V ar

 
1

T 1=2

TX

t=1

exp
�
�0q (Vt)

�
Y t �X

0

1t�
���

q (Vt)X
0

1t

�0
�

!
; (5.3)


g�� (�; �; h) = lim
T!1

Cov

 
1

T 1=2

TX

t=1

exp
�
�0q (Vt)

�
Y t �X

0

1t�
���

q (Vt)X
0

1t

�0
�;

1

T 1=2

TX

t=1

exp
�
�0q (Vt)

�
Y t �X

0

1t�
��

q (Vt)
0
�
Y t �X

0

1t�
�!

;


g�� (�; �; h) = 
�� (�; �; h)
0 ;


g�� (�; �; h) = lim
T!1

V ar

 
1

T 1=2

TX

t=1

exp
�
�0q (Vt)

�
Y t �X

0

1t�
�
q (Vt)

�
Y t �X

0

1t�
��!

:

E4 (i) the kernel functionK : X2 ! R, is symmetric with compact support and supX2t2X2 jd
jKj

q
<

1 j = 0; :::; k, (ii) the bandwidth b is such that b! 0, Tb!1 and T 1=2b4 ! 0 as T !1.

Assumption E1(i) speci�es the dependence structure of Zt in terms of �-mixing with a sum-

mability assumption on the mixing coe¢cient � (k) that is fairly standard, see for example

Doukhan (1994). Assumption E1(ii) is standard in the nonparametric estimation literature;

note, however, that the compactness assumption on the support X2 could be relaxed, if a trim-

ming function is used, see for example Andrews (1994) and Bravo et al. (2017). Assumption

E1(iii) is an identi�cation condition that implies A1(ii) (see the proof of Proposition 2 in the

supplemental Appendix for more details). Assumptions E1(iv)-(v) specify that the unknown in-

�nite dimensional parameter h� belongs to a Sobolev ball, which is implied by the more primitive

assumption that h is su¢ciently smooth with derivatives satisfying supX2t2X2
��djh=dXj

2t

��q <1.
Assumption E3(i) is a mild Lipschitz condition, while E3(ii) together with E1(i) ensures that a

central limit theorem for �-mixing processes applies to the random vector

T�1=2

2
4

PT
t=1 exp

�
�0�q (Vt)

�
Y t �X

0

1t��

���
q (Vt)X

0

1t

�0
��

PT
t=1 exp

�
�0�q (Vt)

�
Y t �X

0

1t��

��
q (Vt)

�
Y t �X

0

1t��

�
3
5 ;

see for example Doukhan (1994). Finally E4(i) is a standard smoothness assumption on the

kernel function K, whereas E4(ii) assumes undersmoothing, which again is typical in the semi-

parametric estimation literature.

Proposition 2 Under E1-E4, Theorem 1 holds with Hg (��; h�) given in (5:2) and 
g (��; h�)

given in (5:3).

In order to consider the uniform results of Section 4.2, let fZTtg denote a sequence of trian-

gular arrays � mixing random vectors,

gTt (�; h) = q (V1Tt)
�
YTt � E (YTtjX2Tt)� (X1Tt � E (X1TtjX2Tt))

0 �
�

(5.4)

fTt (�; l) = q (V2Tt)
�
YTt � E (YTtjX4Tt)� (X3Tt � E (X3TtjX4Tt))

0 �
�
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denote the corresponding pro�le moment indicators for the two competing semiparametric mod-

els, and let

h
b�0T ; b�

0

T

i0
= argmax

�2�
arg min

�2�(�)

1

T

TX

t=1

exp
�
�0gTt

�
�;bh
��

;

h
b�0T ; b0T

i0
= argmax

�2B
arg min

2�(B)

1

T

TX

t=1

exp
�
0fTt

�
�;bl
��

where bh =
h
bE (YTtjX2Tt) ; bE (X1TtjX2Tt)

i0
and bl =

h
bE (YTtjX4Tt) ; bE (X3TtjX4Tt)

i0
. We slightly

strengthen E1-E4 to account for the triangular array structure of fZTtg and assume that:

E5 (i) The triangular array sequence fZTt; t = 0;�1;�2; :::; T � 1g with with ZTt = [YTt; X
0
Tt; V

0
Tt]

0,

X 0
Tt = [X 0

1Tt; X2Tt; X
0
3Tt; X4Tt] and VTt = [V 0

1Tt; V
0
2Tt]

0 is � mixing with the T -th mix-

ing coe¢cient �T (k) satisfying supT
P1

k=1 (k + 1)
2 �T (k)

�
4+� < 1 for some � > 0, (ii)

the marginal densities fX2T and fX4T of X2Tt and of X4Tt are twice continuously dif-

ferentiable on X2 and X4, infX2Tt2X2 jfX2T j > 0 and infX4Tt2X4 jfX4T j > 0 for all t and

T , and X2 and X4 are compact sets, (iii) rank
�
limT!1E

�
q (V1Tt)X

0

1Tt

�
=T
�
= k and

rank
�
limT!1E

�
q (V2Tt)X

0

3Tt

�
=T
�
= b, (iv) the parameter spaces �, B, � (�) and

� (B) are compact subsets of Rk, Rl, Rb and Rs respectively, and H =Wq1;k1 (h) � C1,

L =Wq2;k2 (l) � C2 for some �nite C1; C2 > 0, (v) �� 2 int (�), �� 2 int (� (�)), h� 2 H,

and �� 2 int (B), � 2 int (� (B)), l� 2 L,

E6 (i) E2 holds for gTt (�; h) and fTt (�; l) de�ned in (5:4) for all t and T with B�;h (ZTt) and

B ;l (ZTt) satisfying limT!1

PT
t=1E (B�;h (ZTt))

2+� =T <1 and limT!1

PT
t=1E (B ;l (ZTt))

2+� =T <

1, (ii) E jexp (�0�gTt (��; h))j
2(2+�)

<1 and E jexp (0�fTt (��; l))j
2(2+�) <1,

E k@ exp (�0�gTt (��; h)) =@�k
2(2+�)

< 1 and E k@ exp (0�fTt (��; l)) =@ k
2(2+�) < 1 for

all h 2 H"; l 2 L", t and T , (iii) there exists a real valued function b (ZTt) such that

E
�
jb (ZTt)j

2(2+�)
�1=2

<1 for all t and T ,

E7 (i)

E
���exp

�
�0�q (V1Tt)

�
Y Tt �X

0

1Tt��

��
� exp

�
0�q (V2Tt)

�
Y Tt �X

0

3Tt��

�����
2+�

< 1;

E



@ exp
�
�0�q (V1Tt)

�
Y Tt �X

0

1Tt��

��

@�
�
@ exp

�
0�q (V2Tt)

�
Y Tt �X

0

3Tt��

��

@ 



2+�

< 1;

for all t and T , (ii)

lim
T!1

V ar

2
4
PT

t=1

�
exp

�
�0�q (V1Tt)

�
Y Tt �X

0

1Tt��

��
� exp

�
0�q (V2Tt)

�
Y Tt �X

0

3Tt��

���

1
T 1=2

PT
t=1

@(exp(�0�q(V1Tt)(Y Tt�X
0

1Tt��))�exp(0�q(V2Tt)(Y Tt�X
0

3Tt��)))
@[�0; 0]0

3
5
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is positive de�nite, (iii)


@2 exp (�0gTt (�; h))

(@�)
2
�
@ exp (�0�gTt (��; h�))

(@�)
2

 � Bg (ZTt)
�
k�� ��k+ kh� h�kH"

�
;


@2 exp (0�fTt (�; l))

(@ )
2
�
@ exp (0�fTt (��; l�))

(@ )
2

 � Bf (ZTt)
�
k �  �k+ kl � l�kL"

�

with limT!1

PT
t=1EBg (ZTt)

2+� =T <1 and limT!1

PT
t=1EBf (ZTt)

2+� =T <1,

(iv) E sup�2��(��);�2��;h2H�

@2 exp
�
�0q (V1Tt)

�
Y Tt �X

0

1Tt�
��

= (@�)
2

2+�

<1 for all t

and T , where �� (��) and�� are neighborhoods of �� and �� andH� = fh : kh� h�kH � �g

for some � > 0, E sup2��(B�);�2B�;l2L�

@2 exp
�
0q (V2Tt)

�
Y Tt �X

0

3Tt�
��

= (@ )
2

2+�

<

1 for all t and T , where �� (B�) and B� are neighborhoods of � and �� and L� =

fl : kl � l�kL � �g for some � > 0, (v)

lim
T!1

E

2
4T�1

TX

t=1

@2 exp
�
�0�q (V1Tt)

�
Y Tt �X

0

1Tt��

��

(@�)
2

3
5 = Hg (��; h�) ;

lim
T!1

E

2
4T�1

TX

t=1

@2 exp
�
0�q (V2Tt)

�
Y Tt �X

0

3Tt��

��

(@ )
2

3
5 = Hf ( �; l�)

are nonsingular, (vi)

lim
T!1

1

T

TX

t=1

E sup
h2H


exp

�
�0�q (V1Tt)

�
Y Tt �X

0

1Tt��

��" 1

��

#
2
vk11j


< 1;

lim
T!1

1

T

TX

t=1

E sup
l2L


exp

�
0�q (V2Tt)

�
Y Tt �X

0

3Tt��

��" 1

��

#
2
vk12j


< 1;

where, for k1 = 0; 1, v
k1
11 = 1, v

k1
1j = ��j�1 for j = 2; :::k+1, and similarly for v

k1
2j with ��j�1

replacing ��j�1,

E8 (i) the kernel functions K1 : X2 ! R and K2 : X4 ! R are symmetric with compact sup-

port, and supX2Tt2X2 jd
j1K1j

q1 < 1 j1 = 0; :::; k1 , supX4Tt2X2 jd
j2K2j

q2 < 1 j2 = 0; :::; k2

for all T , (ii) the bandwidths bj are such that bj ! 0, Tbj !1 and T 1=2b4j ! 0 (j = 1; 2)

as T !1.

Proposition 3 Under E5-E9, the conclusion of Theorem 5 holds for

Dm
T (c) =

1

T 1=2

TX

t=1

�
exp

�
b�0q (V1Tt)

�
bY1Tt � bX 0

1Tt
b�
��
�

�
b�2
�
b�;bh; b ;bl

�
+ ctr

�
bV 2
�
b�;bh; b ;bl

��
=T
�1=2

exp
�
b0q (V2Tt)

�
bY2Tt � bX 0

3Tt
b�
��
+ tr

�
bV
�
b�;bh; b ;bl

��
=2T 1=2

�
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with bY1Tt = YTt � bE (YTtjX2Tt), bY2Tt = YTt � bE (YTtjX4Tt), bX1Tt = X1Tt � bE (X1TtjX2Tt),
bX2Tt = X3Tt � bE (X3TtjX4Tt), b�2

�
b�;bh; b ;bl

�
is the same blocking estimator as given in (4:11)

with

bTi (�; h;  ; l) =
1

M1=2

MX

j=1

�
exp

�
�0q
�
V1T (i�1)+j

� �bY1T (i�1)+j � bX 0
1T (i�1)+j

b�
��
�

exp
�
0q
�
V1T (i�1)+j

� �bY2T (i�1)+j � bX 0
3T (i�1)+j

b�
���

and bV
�
b�;bh; b ;bl

�
is based on the sample analog of (5:2).

5.2 Monte Carlo results

We now investigate the �nite sample properties of the proposed model selection tests by con-

sidering two examples. In the �rst one, we consider

Yt = 1 + �

2X

j=1

X1jt + (1� �)

2X

j=1

X2jt + h0 (X3t; X4t) + "t; � 2 R; (5.5)

where X12t = �1W1t+u1t and X21t = �2W2t+u2t with ujt (j = 1; 2) correlated with "t, and two

competing misspeci�ed semiparametric moment conditions models

M1 : gt (�; h) = V1t (Yt � �1 � �2X12t � h (X3t)) ; (5.6)

M2 : ft (�; h) = V2t (Yt � �1 � �2X21t � h (X4t)) ;

where V1t = [1; X11t;W1t]
0 and V2t = [1; X22t;W2t]

0 are two sets of instruments, which are clearly

misspeci�ed and non nested. We specify (5:5) and (5:6) as follows: the exogenous regressors

Xjjt (j = 1; 2) in (5:5) are N (0; 1), the additional variables Wjt (j = 1; 2) are either N (0; 4)

or Wjt = �3Wjt�1 + u3t, the unknown function h0 is h0 (X3t; X4t) = exp (� (X3t +X4t) =2)

with Xjt � U (0; 2) (j = 3; 4), h (Xjt) = exp (�Xjt=2) (j = 3; 4), the unobservable errors "t, ujt

(j = 1; 2) and u3t are

2
64

"t

u1t

u2t

3
75 � N

0
B@

2
64
0

0

0

3
75 ;

2
64

1 �"u1 �"u2
�"u1 1 0

�"u2 0 1

3
75

1
CA ;

and u3t � N (0; 1) independent of both "t, ujt. In the simulations, we consider two values of � ,

� = 0:5 and � = 1, corresponding, respectively, to the case where we cannot discriminate between

M1 and M2 (that is, the null hypothesis (4:1) is true) and to the case where discrimination

is possible and M1 should be chosen. Estimation of the parameters in (5:6) is carried out

using the pro�le moment indicator gt

�
�;bh
�
= V1t

�
bYt � bX 0

1t�
�
, where bYt = Yt � bE (YtjX2t),
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bX 0
1t = X 0

1t � bE (X1tjX2t) with the kernel function K speci�ed as K (u) = (3=4) (1� u2) for

juj � 1 (that is the univariate Epanechnikov kernel), and similarly for ft

�
�;bl
�
. We consider

three statistics: DT , D
m
T (c) and VT , which corresponds, respectively, to the standardized DT

statistic of Theorem 2, the modi�ed Vuong standardized statistic Dm
T (c) of Theorem 5, and

Vuong�s (1989) two-step procedure based on the scale adjusted statistic b�2s (4:5) used as a pretest
and then the standardized DT statistic, to test whether discrimination is possible between M1

and M2. Tables 1-2 report the rejection probabilities (size) of the three statistics for the null

hypothesis H0 : D = 0 with  = 1=2 , that is the models cannot be discriminated, using

5000 replications and two sample sizes T = 100 and T = 400. The rejection probabilities are

calculated at a 5% nominal level. The simulations are based on two values of the parameters

�j and �"uj (j = 1; 2), �1 = �2 either 0:2 or 0:8, corresponding to low and high persistence,

and �"u1 = �"u2 either 0:3 and 0:7, corresponding to a relatively weak and strong instruments,

whereas �3 = 0:5.

Tables 1 and 2 approx. here

Tables 1 and 2 show that both theDT andD
m
T (c) statistics are slightly oversized, whereas the VT

statistic is slightly undersized. Among the DT and D
m
T (c) statistics, the latter is characterized

by the smallest size distortion, across the di¤erent degrees of persistency and the strength of the

instruments. Tables 3 and 4 report the rejection probabilities (power) of the three statistics for

the null hypothesis H0 : D = 0 with  = 1 , that is the models can be discriminated (and M2

should be preferred), using 5000 replications, two sample sizes T = 100 and T = 400 and the

same speci�cations of the parameters �j,�"uj (j = 1; 2) and �3 as those used in Tables 1 and 2.

Tables 3 and 4 approx. here

Tables 3 and 4 con�rm the results of Tables 1 and 2, in the sense that they show that all

the test statistics perform reasonably well, correctly rejecting the null hypothesis more than

90% (or above) of times across the di¤erent Monte Carlo designs. In this case, the statistic

characterized by the best �nite sample performance is DT , which is not surprising since the

models are nonoverlapping. It is also important to note that both the DT and D
m
T (c) statistics

are slightly oversized, hence their power is bound to be larger than that of VT , since the latter is

undersized. Figure 1 shows the �nite sample (size unadjusted) power curves of the four statistics

for the case �1 = �2 = 0:2, �"u1 = �"u2 = 0:7 and Wjt i.i.d. with the two sample sizes T = 100

and T = 400. As expected, DT shows a (slightly) higher power curve as a function of � , but it

is worth pointing out that VT performs rather well, particularly in view of the fact that it is the

only one undersized.

Figure 1 approx. here

In the second example, we extend the same example used by both Shi (2015) and Schennach
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& Wilhelm (2017); the model is

Yt = 1 + �

 
1

J

JX

j=1

X1jt + h10 (X2t)

!
+ � (X1J+1t + h20 (X3t)) + "t; � 2 R;

where Xjt � N (0; 1) (j = 1; :::; J + 3), h10 (X2t) = E (X1J+2tjX2t) = sin (2�X2t), h20 (X4t) =

E (X1J+3tjX3t) = cos (�X3t) and "t = �4"t�1+ut with ut � N (0; 1). The competing misspeci�ed

semiparametric models are

M3 : gt (�; h) = [1; X
0
1t]
0

 
Yt � �1 �

JX

j=1

�2jX1jt � h2 (X3t)

!
; (5.7)

M4 : ft (�; h) =
�
1; X 0

1J+1t

�0
(Yt � �1 � �2X1J+1t � h1 (X2t)) ;

X 0
1t = [X11t; :::X1Jt], which, for any value � 6= 0, have the same distance to the true model,

but are both misspeci�ed. We estimate both h1 (X2t) and h2 (X3t) with the same Epanechnikov

kernel used in the previous example, and, as in the previous example, we consider the same three

statistics DT , D
m
T (c) and VT . Figure 2 below shows the rejection probabilities (size) calculated

at the 5% nominal level for J = 2 (top �gure) and J = 9 (bottom �gure) using 5000 replications

for di¤erent values of � with two sample sizes T = 100 and T = 400.

Figure 2 approx. here

Figure 2 shows that, as mentioned in the Introduction, the di¤erence in the dimension of the

two competing models has some bearings on the �nite sample performances of all of the three

statistics considered, however, among them, VT is clearly the most a¤ected in the sense of being

rather undersized when the di¤erence between the two competing models is substantial (J = 9),

and this has some obvious implication for its power, as documented in Shi (2015) and Schennach

& Wilhelm (2017). Note also that the modi�ed Vuong statistic DT (c) seems to be the most

robust in terms of size control, which con�rms the theoretical results of Section 4.2.

6 Empirical application

As an application of the estimation and model selection procedures of this paper, we consider

two alternative speci�cations of the SDF, which is a positive random variable representing time

discount and risk adjustment in the pricing of future risky assets. In Fama & French�s (1993)

three factor model, the SDF is linearly related to three observed risk factors: the market excess

returns, the performance of small �rms compared to big �rms and the performance of high to

book value companies compared to low to book ones. Let Rt = [R1t; :::; RNt]
0 denote a vector of
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N gross returns between t and t + 1 and let mt denote the (admissible) SDF that satis�es the

conditional no arbitrage condition

E (mt+1Rt+1 � 1N jUt) = 0N ; (6.1)

where 1N and 0N are N dimensional vectors of ones and zeroes and Ut is a possibly dU dimen-

sional random state vector representing the information available at time t. We consider two

speci�cation of mt: a fully parametric one, that is mt = mt (�) = �1 + �2F1t + �3F2t + �4F3t,

where Fjt (j = 1; 2; 3) are the three observed risk factors, and a semiparametric one mt =

mt (�; h) = �1 + �2F1t + �3F2t + h (Ut), where the third factor is replaced by an unknown

function of a speci�c state variable described below6. Under correct speci�cation of mt, (6:1)

holds for a unique �0 = [�10; �20; �30; �40]
0 or a unique �0 = [�10; �20; �30]

0 and h0. Let gt (�) :=

[1; U 0t ]
0 
 (Rt+1 (�1 + �2F1t+1 + �3F2t+1 + �4F3t+1)� 1N) and ft (�; h) = Rt+1�

0F t+1 � 1N where

Rt+1 = Rt+1�E (Rt+1jUt), F t+1 = Ft+1�E (Ft+1jUt) and Ft = [F1t; F2t]
0. The data used in the

estimation are the monthly returns on 10 size-sorted portfolios for US equities from Kenneth

French�s data library7 as risky assets Rt; the excess returns are computed over the one-month

Treasury bill yield obtained from the Center for Research in Securities Prices (CRSP). The

state variable Ut is chosen to be the BAA corporate bond yield relative to the constant maturity

ten-year Treasury yield. The latter serves as a proxy for the default risk, and it was used in the

consumption-based CAPM model of Jagannathan & Wang (1996). The corporate bond spread

is obtained from the Federal Reserve Economic Data. The sample period is 1964 : 01�2018 : 12

minus the 2008 : 01� 2009 : 04 �nancial crisis, for a total of T = 641 observations.

To estimate the two di¤erent speci�cations of the SDF, we �rst use blockwise ET, as described

in Section 4, and test for the correct speci�cation of both models using the ET based test

statistics 2T log
�PQ

i=1 bi

�
b�;b�
�
=Q
�
for gt (�) and 2T log

�PQ
i=1 bi

�
b; b�;bh

�
=Q
�
for ft (�; h),

where bh =
h
bE (Rt+1jUt) ; bE (Ft+1jUt)

i0
are the same kernel estimators de�ned in the previous

section. Under the null hypothesis of correct speci�cation, both statistics converge to a chi-

squared random variable with degrees of freedom depending on the degree of overidenti�cation,

see for example Kitamura & Stutzer (1997). Both test statistics reject the null hypothesis of

correct speci�cation at the 5% signi�cance level, with p-values of 0:003 and 0:012, respectively,

indicating therefore that both models are misspeci�ed. We re-estimated the models using the

method of this paper and then tested whether discrimination is possible. Table 5 reports,

respectively, the estimated parameters with relative standard errors and the values of the two

6It should be noted that the three factor model has no real theoretical foundation as such; rather it was based

as a response to the well documented empirical shortcomings of the traditional CAPM model, see for example

Fama & French (2004).
7Available at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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statistics Dm
T (c) and VT with associated p-values.

Table 5 approx. here

Table 5 indicates that model comparison is possible, albeit for the VT not at the standard

0.05 signi�cance level. The sample value of the VT statistic is 1:646 with a p-value based

on a two sided alternative of 0:099. Using a one-sided alternative, that is that the empirical

value of the KL divergence for gt (�) is statistically signi�cantly larger than that of the ft (�; l)

speci�cation (that is the latter speci�cation is better) the p-value of the VT is 0:049, which

seems to indicate that the semiparametric speci�cation should be preferred. The sample value

of the Dm
T (c) statistic is 2:212 with p-values 0:033 (two-sided alternative) and 0:016 (one-sided

alternative), which strengthens the �nding of the VT statistic that model selection is possible

and the semiparametric speci�cation should be chosen.

7 Conclusion

In this paper, we propose a general approach that can be used to estimate and, more impor-

tantly, discriminate between possibly misspeci�ed semiparametric moment conditions models

with weakly dependent observations. The proposed tests are extensions of those proposed by

Vuong (1989) and Shi (2015) in the context of parametric likelihood models, and have a similar

information theoretic interpretation through the connection between ET and KL divergence.

The results are rather general as they are obtained under a set of high level conditions that can

be veri�ed under typically mild primitive assumptions on the in�nite dimensional parameter

and mixing conditions, as illustrated in the example of Section 5. A simulation study shows

that the proposed test statistics have competitive �nite sample properties, and that both the

naive and the uniform extensions to Vuong�s (1989) model selection theory can be used in the

context of possibly misspeci�ed semiparametric models. To further illustrate the applicability

of the proposed estimator and test statistics, we show that model selection is possible between

two di¤erent speci�cations of Fama & French�s (1993) three factor model.

References

Ai, C. & Chen, X. (2007), �Estimation of possibly misspeci�ed semiparametric conditional mo-

ment restrictions models with di¤erent conditioning variables�, Journal of Econometrics

141, 5�43.

Akaike, H. (1973), Information theory and an extension of the likelihood principle, in B. Petrov &

F. Csaki, eds, �Proceedings of the Second International Symposium of Information Theory�.

29



Andrews, D. (1991), �Heteroskedasticy and autocorrelation consistent covariance matrix estima-

tion�, Econometrica 59, 817�858.

Andrews, D. (1994), �Asymptotics for semiparametric econometric models via stochastic

equicontinuity�, Econometrica 62, 43�72.

Andrews, D. & Pollard, D. (1994), �An introduction to functional central limit theorems for

dependent stochastic processes�, International Statistical Review 62, 119�132.

Arcones, M. & Yu, B. (1994), �Central limit theorems for empirical and U processes of stationary

mixing sequences�, Journal of Theoretical Probability 7, 47�71.

Bradley, R. (2005), �Basic properties of strong mixing conditions. A survey and some open

questions�, Probability Surveys 2, 107�144.

Bravo, F. (2020), �Two-step combined nonparametric likelihood estimation of misspeci�ed semi-

parametric models�, Journal of Nonparametric Statistics 32, 769�792.

Bravo, F., Chu, B. & Jacho-Chavez, D. (2017), �Semiparametric estimation of moment conditions

models with weakly dependent data�, Journal of Nonparametric Statistics 29, 108�136.

Breitung, J. (2008), �Simple tests of the moving average hypothesis�, Journal of Time Series

Analysis 15, 357�370.

Carrasco, M. & Chen, X. (2002), �Mixing and moment properties of various GARCH and sto-

chastic volatility models�, Econometric Theory 18, 17�39.

Carroll, R. & van Keilegom, I. (2007), �Back�tting versus pro�ling in general criterion functions�,

Statistica Sinica 17, 797�816.

Chen, X., Hong, H. & Shum, M. (2007), �Nonparametric likelihood ratio model selection tests

between parametric likelihood and moment condition models�, Journal of Econometrics

141, 109�140.

Chen, X. & Liao, Z. (2015), �Sieve semiparametric two-step GMM under weak dependence�,

Journal of Econometrics 189, 163�186.

Chen, X., Liao, Z. & Sun, Y. (2014), �Sieve inference on possibly misspeci�ed semi-nonparametric

time series models�, Journal of Econometrics 178, 639�658.

Christo¤ersen, P., Hahn, J. & Inoue, A. (2001), �Testing and comparing value-at-risk measures�,

Journal of Empirical Finance 8, 325�342.

30



Dahlhaus, R. &Wefelmeyer, W. (1996), �Asymptotically optimal estimation in misspeci�ed time

series models�, Annals of Statistics 24, 952�972.

Doukhan, P. (1994), Mixing: Properties and Examples, Vol. 85, New York: Springer and Verlag.

Lecture Notes in Statistics.

Doukhan, P., Massart, P. & Rio, E. (1995), �Invariance principles for absolutely regular empirical

processes�, Annales de l�Institute Henri Poincare Probababilites et Statististiques 31, 393�

427.

Fama, E. & French, K. (1993), �Common risks factors in the returns on stock and bonds�, Journal

of Financial Economics 33, 3�56.

Fama, E. & French, K. (2004), �The capital asset pricing model: theory and evidence�, Journal

of Economic Perspectives 18, 25�46.

Ghosh, A., Julliard, M. & Taylor, A. (2017), �What is the consumption-CAPM missing? An

information-theoretic framework for the analysis of asset pricing models�, The Review of

Financial Studies 30, 442�504.

Gospodinov, N., Kan, R. & Robotti, C. (2013), �Chi-squared tests for evaluation and comparison

of asset pricing models�, Journal of Econometrics 173, 108�125.

Gospodinov, N., Kan, R. & Robotti, C. (2014), �Misspeci�cation-robust inference in linear asset-

pricing models with irrelevant risk factors�, Review of Financial Studies 27, 2139�2170.

Hall, A. & Inoue, A. (2003), �The large sample behaviour of the generalized method of moments

estimator in misspeci�ed models�, Journal of Econometrics 114, 361�394.

Hall, A. & Pelletier, D. (2011), �On non-nested testing in models estimated by generalized

methods of moments�, Econometric Theory 27, 443�456.

Hansen, L. & Jagannathan, R. (1997), �Assessing speci�cation errors in stochastic discount

factors models�, Journal of Finance 52, 557�590.

Hansen, L. & Singleton, K. (1982), �Generalized instrumental variables estimation of nonlinear

rational expectations models�, Econometrica 50, 1269�1286.

Hsu, Y. & Shi, X. (2017), �Model selection test for conditional moment inequalities models�,

Econometrics Journal 20, 52�85.

Jagannathan, R. & Wang, Z. (1996), �The conditional CAPM and cross-section of expected

returns�, Journal of Finance 51, 3�53.

31



Kitamura, Y. (2000), Comparing misspeci�ed dynamic econometric models using nonparametric

likelihood, Technical report, University of Pennsylvania.

Kitamura, Y. & Stutzer, M. (1997), �An information theoretic alternative to generalized method

of moments estimation�, Econometrica 65, 861�874.

Kitamura, Y. & Stutzer, M. (2002), �Connections between entropic and linear projections in

asset pricing estimation�, Journal of Econometrics 107, 159�174.

Kunitomo, N. & Yamamoto, T. (1985), �Properties of predictors in missspeci�ed time series

models�, Journal of the American Statistical Association 80, 941�950.

Li, T. (2009), �Simulation based selection of competing structural econometric models�, Journal

of Econometrics 148, 114�123.

Liang, K. & Zeger, S. (1986), �Longitudinal data analysis using generalised linear models�,

Biometrika 73, 12�22.

Liao, Z. & Shi, X. (2020), �A uniform vuong test for semi/nonparametric models�, Quantitative

Economics 11, 983�1017.

Masry, E. (1996), �Multivariate local polynomial regression for time series: Uniform strong

consistency and rates�, Journal of Time Series Analysis 17, 571�599.

McElroy, T. (2016), �Nonnested model comparisons for time series models�, Biometrika 103, 905�

914.

Mohr, M. (2020), �A weak convergence result for sequential empirical processes under weak

dependence�, Stochastics 92, 140�164.

Morgan, J. P. (1996), Riskmetrics, Technical report, New York NY.

Newey, W. (1997), �Convergence rates and asymptotic normality for series estimators�, Journal

of Econometrics 79, 147�168.

Qu, A., Lindsay, B. G. & Li, B. (2000), �Improving generalised estimating equations using

quadratic inference functions�, Biometrika 87(4), 823�836.

Rao, J. & Scott, A. (1981), �The analysis of categorical data from complex sampling surveys:

Chi-squared tests for goodness of �t and independence in two-way tables�, Journal of the

American Statistical Association 76, 221�230.

Rivers, D. & Vuong, Q. (2002), �Model selection tests for nonlinear dynamic models�, Econo-

metrics Journal 5, 1�39.

32



Schennach, S. (2007), �Point estimation with exponentially tilted empirical likelihood�, Annals

of Statistics 35, 634�672.

Schennach, S. & Wilhelm, D. (2017), �A simple parametric model selection test�, Journal of the

American Statistical Association 112, 1663�1674.

Shi, X. (2015), �A non-degenerate vuong test�, Quantitative Economics 6, 85�121.

Smith, R. (2011), �GEL criteria for moment conditions models�, Econometric Theory 27, 1192�

1235.

Stutzer, M. (1995), �A Bayesian approach to diagnosis of asset pricing models�, Journal of

Econometrics 68, 367�397.

Stutzer, M. (1996), �A simple nonparametric approach to derivative security valuation�, Journal

of Finance 51, 1633�1652.

Van der Vaart, A. (1998), Asymptotic statistics, Cambridge University Press.

Van der Vaart, A. & Wellner, J. (1996), Weak Convergence and Empirical Processes, Springer,

New York.

Volkonskii, V. & Rozanov, Y. (1959), �Some limit theorems for random functions I�, Theory of

Probability and its Applications 4, 1978�197.

Vuong, Q. (1989), �Likelihood ratio tests for model selection and non nested hypothesis�, Econo-

metrica 57, 307�333.

White, H. (1982), �Maximum likelihoodestimation of misspeci�ed models�, Econometrica 50, 1�

25.

Yu, B. (1994), �Rates of convergence for empirical processes of stationary mixing sequences�,

Annals of Probability 22, 94�116.

33



8 Tables and �gures

Table 1. Finite sample rejection percentages for (5:6)

under � = 1=2 and i.i.d. Wjt

DT Dm
T (c) VT

T �a �b"u = 0:3

0:2 0.061 0.055 0.047

100 0:8 0.067 0.057 0.045

�a �b"u = 0:7

0:2 0.062 0.055 0.044

100 0:8 0.068 0.061 0.042

T �a �b"u = 0:3

0:2 0.056 0.052 0.046

400 0:8 0.063 0.054 0.047

�a �b"u = 0:7

0:2 0.058 0.053 0.046

400 0:8 0.063 0.055 0.044

a �1=�2, b �"u1=�"u2

Table 2. Finite sample rejection percentages for (5:6)

under � = 1=2 and dependent Wjt

DT Dm
T (c) VT

T �a �b"u = 0:3

0:2 0.062 0.054 0.044

100 0:8 0.069 0.055 0.044

�a �b"u = 0:7

0:2 0.063 0.054 0.047

100 0:8 0.068 0.057 0.046

T �a �b"u = 0:3

0:2 0.058 0.054 0.043

400 0:8 0.060 0.055 0.042

�a �b"u = 0:7

0:2 0.057 0.052 0.045

400 0:8 0.061 0.054 0.043

a �1=�2, b �"u1=�"u2
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Table 3. Finite sample rejection percentages for (5:6)

under � = 1 and i.i.d. Wjt

DT Dm
T (c) VT

T �a �b"u = 0:3

0:2 0.942 0.938 0.908

100 0:8 0.938 0.933 0.907

�a �b"u = 0:7

0:2 0.944 0.940 0.906

100 0:8 0.941 0.938 0.909

T �a �b"u = 0:3

0:2 0.941 0.945 0.921

400 0:8 0.945 0.942 0.919

�a �b"u = 0:7

0:2 0.946 0.944 0.919

400 0:8 0.944 0.940 0.917

a �1=�2, b �"u1=�"u2

Table 4. Finite sample rejection percentages for (5:6)

under � = 1 and dependent Wjt

DT Dm
T (c) VT

T �a �b"u = 0:3

0:2 0.940 0.937 0.911

100 0:8 0.938 0.936 0.909

�a �b"u = 0:7

0:2 0.930 0.948 0.918

100 0:8 0.934 0.947 0.920

T �a �b"u = 0:3

0:2 0.951 0.953 0.926

400 0:8 0.948 0.949 0.924

�a �b"u = 0:7

0:2 0.947 0.947 0.928

400 0:8 0.946 0.945 0.920

a �1=�2, b �"u1=�"u2
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Figure 1: Finite sample power of the three statistics DT (solid line), D
m
T (c) (dashed line) and

VT (dot-dashed line). The horizontal line represents the 0.05 nominal level.

Table 5. Estimated coe¢cients, standard errors of the

two competing models with the Dm
T (c) and VT statistics.

b�1
b�2
b�3
b�4

0:003 (0:015)a

0:032 (0:011)a

0:024 (0:014)a

0:066 (0:038)a

b�1
b�2
b�3
�

0:007 (0:006)a

0:037 (0:011)a

0:031 (0:012)a

�

Dm
T (c) 2:121 (0:033; 0:016)b

VT 1:646 (0:099; 0:049)b

a standard errors, b p-values (2-sided and 1-sided alternatives)
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Figure 2: Finite sample size of the three statistics DT (solid line), D
m
T (c) (dashed line) and VT

(dot-dashed line). The horizontal line represents the 0.05 nominal level.
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