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Second order expansions of estimators in nonparametric
moment conditions models with weakly dependent data

Francesco Bravo

University of York, York, UK

ABSTRACT

This paper considers estimation of nonparametric moment conditions
models with weakly dependent data. The estimator is based on a local lin-
ear version of the generalized empirical likelihood approach, and is an
alternative to the popular local linear generalized method of moment esti-
mator. The paper derives uniform convergence rates and pointwise asymp-
totic normality of the resulting local linear generalized empirical likelihood
estimator. The paper also develops second order stochastic expansions
(under a standard undersmoothing condition) that explain the better finite
sample performance of the local linear generalized empirical likelihood
estimator compared to that of the efficient local linear generalized method
of moments estimator, and can be used to obtain (second order) bias cor-
rected estimators. Monte Carlo simulations and an empirical application
illustrate the competitive finite sample properties and the usefulness of
the proposed estimators and second order bias corrections.
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1. Introduction

Moment conditions models arise naturally in economics, finance and statistics, often in a condi-

tional form. For example, many dynamic stochastic general equilibrium models used in macroeco-

nomics, many assets pricing models under the no arbitrage condition used in finance and the

generalized estimating equations (GEE) models for longitudinal data used in statistics, all give rise

to a set of (possibly conditional) moment conditions. Estimation of the unknown parameters in

such models is typically carried out using Hansen’s (1982) generalized method of moments (GMM)

approach, see also Qu, Lindsay, and Li (2000) for GEE models, or, alternatively, Newey and Smith’s

(2004) generalized empirical likelihood (GEL) approach. When the unknown parameters are finite

dimensional, the asymptotic properties of the asymptotically equivalent efficient GMM and GEL

estimators are well established. In particular, Newey and Smith (2004) showed that the empirical

likelihood estimator has the smallest second order bias among the GEL and the efficient GMM esti-

mators, a property which is important given that GMM estimators are typically characterized by

poor finite sample properties, see for example, Hansen, Heaton, and Yaron (1996).
In this paper, we consider nonparametric moment conditions models, that is moment conditions

models where the unknown parameters are infinite dimensional. These models are a natural exten-

sion of the parametric ones and can be applied in a variety of situations where a parametric

� 2021 The Author(s). Published with license by Taylor and Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited, and is not altered, transformed, or built upon in any way.

CONTACT Francesco Bravo francesco.bravo@york.ac.uk Department of Economics, University of York, York YO10
5DD, UK.

Supplemental data for this article is available online at https://doi.org/10.1080/07474938.2021.1991140

ECONOMETRIC REVIEWS

https://doi.org/10.1080/07474938.2021.1991140



specification might be reductive and/or questionable. For example, the popular stochastic discount

factor model used in the asset pricing literature (see Cochrane (2001) for a thorough review, and

Example 2 and Section 4 for more details) relies on a parametric specification of a given utility

function. Similarly, the quasi-likelihood approach commonly used in the statistics literature to esti-

mate generalized linear models (see for example McCullagh and Nelder (1989) and Liang and Zeger

(1986) for GEE models) rely on a parametric specification of the link function. The model we con-

sider is quite general, since it allows for the number of unknown parameters to be less than the

number of moment conditions (that is the model is overidentified) and for weakly dependent

observations, which is particularly useful in macroeconomics and finance, since macroeconomic

and financial data typically exhibit some form of serial dependence. For example, the nonparamet-

ric quasi-likelihood model of Severini and Staniswalis (1994), the nonparametric estimating equa-

tions model of Cai (2003), the nonparametric moment conditions model of Lewbel (2007), the

nonparametric dynamic panel data model of Cai and Li (2008) (see also Bravo (2016)) and the non-

parametric stochastic discount factor model of Fang, Ren, and Yuan (2011) and of Cai, Ren, and

Sun (2015) can all be considered as special cases of the model considered here.
This paper contributes to the literature on estimation of nonparametric moment conditions

models by considering GEL estimation of the unknown infinite dimensional parameters. The esti-

mator is based on the local linear method of Fan and Gijbels (1996), which, when compared to

the Nadaraya–Watson kernel (local constant) method, is characterized by good statistical proper-

ties including smaller bias, efficiency in a minimax sense and design adaptivity. We call the

resulting estimator local linear GEL (LLGEL henceforth). We make a number of contributions:
First, we establish uniform convergence rates and the pointwise asymptotic normality of the

LLGEL estimator. As far as we are aware of, this is the first paper that obtains strong uniform

convergence rates for LLGEL estimators of nonparametric moment conditions models. For the

pointwise asymptotic normality, we show that the LLGEL estimator has the same asymptotic bias

as that of the local linear GMM estimator (LLGMM henceforth) of Fang et al. (2011) and Cai,

Ren, and Sun (2015), but with an asymptotic covariance that is smaller than that of the LLGMM

estimator unless one uses a two-step estimation procedure, which results in the so-called efficient

LLGMM estimator, but does require choosing the bandwidth twice – see Remark 1 in Section 4.

We use a simulation study (see the motivating Example 4 in Section 2) to show that one of the

proposed LLGEL estimators (namely the local linear empirical likelihood (LLEL henceforth)

defined in (8)) is characterized by a smaller mean squared error (MSE henceforth) compared to

that of the efficient LLGMM estimator across a range of bandwidths, and, more importantly, that

the MSE seems to be unaffected by the number of instruments used in the estimation, as opposed

to that of the efficient LLGMM estimator, which seems to be growing as the number of instru-

ments grows. To investigate this issue further, we consider the second order asymptotic properties

of both the LLGEL and LLGMM estimators under a standard undersmoothing condition.

Undersmoothing is often used in nonparametric estimation and inference (see for example Chen

(1996), Lewbel (2007), Lewbel (2007), Fang et al. (2011), Chen and Qin (2000) and Otsu, Xu, and

Matsushita (2015) among others); it is practically useful, as it removes the need to estimate the

asymptotic bias resulting from the local estimation, and theoretically interesting as it produces

confidence intervals (regions) with more accurate coverage (see Hall (1992) for a theoretical justi-

fication of the merit of undersmoothing over direct bias estimation).
Second, we develop second order stochastic expansions, that as far as we are aware of, are

new even with i.i.d. data. It should be noted that Gospodinov and Otsu (2012) also considered

second order expansions in the context of moment conditions models with weakly dependent

data. However, their analysis focuses on the conditional aspect of the moment conditions and,

as such, proposes a local version of the GMM estimator that operates directly on the moment

conditions and can be used (among other things) to obtain a second order expansion of the

estimator of the unknown parameter of an autoregressive model. This paper focuses on the
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estimation of unknown infinite dimensional parameters in moment conditions models, rather
than on the possibly conditional aspect of the moment conditions themselves and, as such, is
very different in scope from that of Gospodinov and Otsu (2012). There is however a theoretic-
ally interesting overlap between the two papers, in the sense that the results of this paper could
be used to obtain a second order expansion of (the local linear version of) the same local GMM
estimator considered by Gospodinov and Otsu (2012) but for a functional version of their
autoregressive model, in which the unknown functional parameter depends on the same instru-
ment that is used as the conditioning variable. The stochastic expansions we obtain are useful
both theoretically and practically, as they explain why in the motivating Example 4 the LLEL
estimator is characterized by a better MSE compared to that of the asymptotically equivalent
efficient LLGMM. In particular, they explain why the MSE of the LLEL estimator is unaffected
by the number of instruments used in the estimation. This result can be generalized to the
important case where the moment conditions are based on instrumental variables, such as those
presented in the examples below. In this case, the second order bias – that is the expectation of
the components in the vector obtained in the second order stochastic expansion of the local lin-
ear estimator with undersmoothing, see (17) for a precise definition – of the LLEL estimator is
always bounded and smaller than the corresponding second order bias of the LLGMM estima-
tor (see Corollary 1 for more details). For the general case, the expansions show that the effi-
cient LLGMM estimator has an additional component that is going to be positive if the
correlation between the derivative of the moment indicator and the moment indicator is posi-
tive, which is often the case with moment conditions models. From a practical point of view,
the expansions can be used to construct second order bias corrected LLGEL and LLGMM esti-
mators that have a reduced MSE compared to that of the original ones for a reasonable range
of bandwidths.

Finally, we show the usefulness and applicability of the proposed estimators and second order
bias corrections with a Monte Carlo study and an empirical application. The Monte Carlo evi-
dence we provide is encouraging and suggests that while LLGEL estimators are typically charac-
terized by a smaller MSE than the efficient LLGMM estimator, their second order bias corrected
analogs have smaller MSEs, which confirms the usefulness of the proposed bias correction. In the
empirical application we estimate a nonparametric specification of the stochastic discount factor
version of Fama and French’s (1993) three factors model. The application shows the usefulness of
the nonparametric approach used in the paper, as it clearly identifies (conditional) nonlinearities
in the risk prices associated with the three factors.

The rest of the paper is structured as follows: in the next section we introduce the model, pro-
vide four illustrative examples and describe the estimation methods. Section 3 presents the main
results. Sections 4 and 5 contain, respectively, the results of the Monte Carlo simulations and the
empirical application. Section 6 contains some concluding remarks. An online Supplemental
Appendix contains additional Monte Carlo results and all the proofs.

The following notation is used throughout the paper: “s” indicates transpose, “0”, “00”, etc. indi-
cate, respectively, first, second, etc. derivative of a function with respect to its unique argument,
“�” is the Kronecker product, “k � k1” is the sup-norm, “tr” is the trace operator, 0 and O
denote, respectively a vector and a matrix of zeros, and for any vector v, v�2 ¼ vvs:

2. The model and the estimators

Let Zs
t ,Utf gst2Z denote a strictly stationary sequence of random vectors taking values in Z � R

dZ

and U � R, and let h 2 H ¼ H1 �H2 � � � � � Hk denote a k dimensional vector of unknown
functions, where H is a pseudo-metric space of functions. The model we consider is

E m Zt , h Utð Þð Þ Utj � ¼ 0 a:s: for a unique h ¼ h0,
�

(1)

ECONOMETRIC REVIEWS 3



where m : Z � U �H ! R
l is a vector of known functions with l � k: The specification of ð1Þ is

fairly general and can accommodate many models used in empirical research as the following
three general examples illustrate.

Example 1. (Instrumental variables estimation of a generalized nonparametric regression model)
Let

Yt ¼ f Xt , h0 Utð Þð Þ þ et , (2)

where f : X � U ! R is a known function, Xs
t ¼ Xs

1t ,X
s
2t½ �s is an R

k ðk ¼ k1 þ k2Þ valued vector
of covariates with X1t possibly endogenous, and the unobservable error et is such that
EðetjX2t ,UtÞ ¼ 0 a:s: Then, the law of iterated expectations implies that, for any vector of func-
tions q : X 2 ! R

l,

E q X2tð Þ Yt � f Xt , h Utð Þð Þ
� �

Utj � ¼ 0 a:s: for a unique h ¼ h0,
�

which is of the same form as that of ð1Þ with Zt ¼ Yt ,X
s
t½ �s and

m Zt , h Utð Þð Þ ¼ q X2tð Þ Yt � f Xt , h Utð Þð Þ
� �

:

Example 2. (Nonparametric stochastic discount factor model). Let Rj, t ðj ¼ 1, :::, JÞ denote the
(excess) returns of J risky assets and RM, t denote the (excess) market return. Following Wang
(2002, 2003) (see also footnote 2 in Section 4), let htþ1 ¼ 1� h0ðUtÞRM, tþ1 denote a nonparamet-
ric pricing kernel that satisfies E htþ1 � Rtþ1jXt ,Ut½ � ¼ 0 a:s:, where Rt ¼ R1, t , :::,RJ, t½ �s and Xt

denote a set of additional conditioning variables. The law of iterated expectations implies that, for
any vector of functions q : X ! R

l

E q Xtð Þ htþ1 � Rtþ1ð Þ Utj � ¼ 0 a:s: for a unique h ¼ h0,
�

(3)

which is of the same form as that of ð1Þ with Zt ¼ Rs
t ,X

s
t½ �s and

m Zt , h Utð Þð Þ ¼ q Xtð Þhtþ1 � Rtþ1:

Example 3. (Dynamic panel data model - small N and large T). Let

Yit ¼ Xs
ith0 Uitð Þ þ eit i ¼ 1, :::,N,

where Xit is an R
k valued vector of covariates that may contain lagged values of Yit and the unobserv-

able errors eit are such that EðeitjXis,UitÞ 6¼ 0 for s 	 t, but there exists an R
l valued vector of covari-

atesWit such that EðeitjWis,UitÞ ¼ 0 for s 	 t: Then, the law of iterated expectations implies that

E Wit Yit � Xs
ith Uitð Þ

� �

Uitj � ¼ 0 a:s: for a unique h ¼ h0,
�

(4)

which is of the same form as that of ð1Þ with Zt ¼ Ws
1t , :::,W

s
Nt ,Y1t , :::,YNt ,X

s
1t , :::,½

Xs
Nt�

s, Ut ¼ U1t, :::,UNt½ �s and

m Zt , h Utð Þð Þ ¼ Wit Yit � Xs
ith Uitð Þ

� �

:

Interestingly, the moment indicator WitðYit � Xs
ithðUitÞÞ can be used to obtain a first-step LLGEL

estimator analog to the LLGMM estimator considered by Cai, Chen, and Fang (2015) in their
two-step estimation procedure for dynamic partially linear varying coefficient model, although it
is important to note that their model is based on large N and small T, whereas we consider small
N and large T.

Throughout the rest of the paper, we assume that, at a given point Ut ¼ u, h0 can be linearly
approximated by

h0 Utð Þ ¼ h0ðuÞ þ h00ðuÞ Ut � uð Þ :¼ h1 þ h2 Ut � uð Þ; (5)
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thus, for Ut 
 u, ð1Þ can be written as

E m Zt , h1 þ h2 Ut � uð Þð Þ Ut ¼ uj � 
 0:
�

(6)

It is important to note that unless the dimension dimðmÞ of the moment indicator m ð�Þ is such
that dimðmÞ � dimðh1Þ þ dimðh2Þ, hj ðj ¼ 1, 2Þ cannot be consistently estimated using the kernel
based sample analog of ð6Þ: Therefore we consider the augmented moment indicator

gt h1, h2ð Þ ¼
1

Ut � u

b

" #

�m Zt , h1 þ h2 Ut � uð Þð Þ

and base the estimation on the localized augmented sample moment indicator

1

Tb

X

T

t¼1

gt h1, h2ð ÞK Ut � u

b

� �

,

where K : U ! R is a kernel function and b ¼: bðTÞ is the bandwidth. To define the LLGEL esti-
mator, let

q kðuÞsgt h1, h2ð ÞK Ut � u

b

� �� �

:¼ q vt u, k, h1, h2ð Þð Þ

denote a concave function on its domain, an open set K0 containing 0, where the auxiliary par-
ameter kðuÞ can be thought of as a vector of unknown R

2l valued Lagrange multipliers associated
with the localized constraint

X

T

t¼1

pt u, k, h1, h2ð Þgt h1, h2ð ÞK Ut � u

b

� �

¼ 0,

with

pt u, k, h1, h2ð Þ ¼ @q vt u, k, h1, h2ð Þð Þ=@vt
PT

t¼1@q vt u, k, h1, h2ð Þð Þ=@vt
playing the role of the “implied probabilities” associates with the localized constraint ð6Þ: The
LLGEL estimator is then defined as

ĥ
q

1 , ĥ
q

2 ¼ argminh1 , h22HC

1

Tb

X

T

t¼1

q vt u, k̂, h1, h2
� �� �

, (7)

where HC is defined in Assumption A2(iii),

k̂ ¼ argmaxk2KT h1 , h2ð Þ
1

Tb

X

T

t¼1

q vt u, k, �h1, �h2
� �� �

,

KTðh1, h2Þ ¼ kðuÞ : kðuÞsgtðh1, h2ÞKððUt � uÞ=bÞ 2 K0, t ¼ 1, :::,T
� �

and �hj are fixed values of hj
ðj ¼ 1, 2Þ: Examples of ð7Þ include the local linear version of empirical likelihood (LLEL)

ĥ
el

1 , ĥ
el

2 ¼ argminh1 , h22HC

1

Tb

X

T

t¼1

log 1� vt u, k̂, h1, h2
� �� �

(8)

and the local linear version of exponential tilting (LLET)

ĥ
et

1 , ĥ
et

2 ¼ argminh1 , h22HC
� 1

Tb

X

T

t¼1

exp vt u, k̂, h1, h2
� �� �

: (9)

For completeness, we define the efficient LLGMM estimator as the solution of the minimization problem

ECONOMETRIC REVIEWS 5



ĥ1, ĥ2 ¼ argminh1 , h22HC

1

Tb

X

T

t¼1

gt h1 , h2ð ÞsK Ut � u

b

� �

X̂ðuÞ�1 1

Tb

X

T

t¼1

gt h1, h2ð ÞK Ut � u

b

� �

, (10)

where X̂ðuÞ�1 is a weight matrix based on a preliminary LLGMM estimator, see for
example ð14Þ:

We conclude this section with an additional example that illustrates both theoretically and
numerically the importance of the stochastic expansions developed in Section 3.3.

Example 4. (Motivating example). Let

Yt ¼ Xs
t h0 Utð Þ þ et ,

where Xs
t ¼ 1,X1t½ � and EðetjX2t ,UtÞ ¼ 0 a:s:, which is a simplified version of the model ð2Þ, and

consider both LLEL and efficient LLGMM estimation of h0 based on the localized moment condi-
tions

E q X2tð Þ Yt � Xs
t h1 þ h2 Ut � uð Þð Þ

� �

Ut ¼ uj � 
 0
�

for a known vector of functions q : X 2 ! R
l ðl � 3Þ: Table 1 reports the average MSE of the

LLEL and efficient LLGMM estimators ĥ
�
1,

MSE ĥ
�
1

	 


¼ 1

2T

X

2

j¼1

X

T

t¼1

ĥ
�
1j Utð Þ � hj0 Utð Þ

	 
2

,

where ĥ
�
1j is either ĥ1j, or ĥ

el

1j, using the Epanechnikov kernel function, that is KðuÞ ¼
ð3=4Þð1� u2Þ for juj 	 1, for three different undersmoothed bandwidths chosen using the same
ad hoc bandwidth selection procedure described in Section 4 and h0ðUtÞ ¼
sin ðpUt=2Þ, sin ð6pUÞ½ �s, Ut � Uð0, 1Þ, X1t ¼ 0:8X2t þ gt , X2t ¼ 0:3X2t�1 þ ft with ft � Nð0, 1Þ
independent of

et
gt

� �

� N
0
0

� �

,
1 0:5
0:5 1

� �� �

:

We consider two sets of instruments, either qðX2tÞ ¼ 1,X2t ,X
3
2t

� s
or 1,X2t , :::,X

8
2t

� s
so that the

degrees of overidentification are, respectively, 1 and 7, and two different sample sizes, T¼ 250
and T ¼ 1000:

The results of Table 1 are based on 1000 replications and can be summarized as follows: when
dimðqðX2tÞÞ ¼ 3, the MSEs of the LLEL and efficient LLGMM estimators are broadly compar-
able, however when qðX2tÞ ¼ 9 the MSE of the LLEL estimator is still comparable to that of the
case where dimðqðX2tÞÞ ¼ 3, whereas the MSE of the efficient LLGMM estimator is significantly
higher. The stochastic expansions derived in Section 3.3 clearly explain this difference, because
some calculations show that under the specification of the Monte Carlo design, the second order
bias of the LLGEL estimator is given by RðuÞ�1

11 E ðXtetjUt ¼ uÞf ðuÞ=Tb, where

Table 1. MSE for the LLGMM ĥ1 and LLEL ĥ
el

1 estimators:

ĥ1 ĥ
el

1

dimðqðX2tÞÞ T b̂1 b̂2 b̂3
a b̂1 b̂2 b̂3

a

3 250 0.0039 0.0041 0.0045 0.0030 0.0032 0.0035
1000 0.0012 0.0014 0.0016 0.0007 0.0009 0.0010

9 250 0.0231 0.0245 0.0250 0.0031 0.0033 0.0036
1000 0.0075 0.0078 0.0080 0.0008 0.0011 0.0011

ab̂1¼b̂T�1=4 , b̂2¼b̂T�1=3 , b̂3¼b̂T�2=5
:

6 F. BRAVO



RðuÞ11 ¼ E Xtq X2tð ÞsjUt ¼ u
� �

E q X2tð Þ�2
e2t jUt ¼ u

	 


ð

K2ðvÞdv
� ��1

E q X2tð ÞXs
t jUt ¼ u

� �

 !

f ðuÞ,

with the matrix RðuÞ11 defined as the upper left block of the block diagonal matrix RðuÞ defined
in ð11Þ, whereas that of the efficient LLGMM estimator is given by ðl� k� 1ÞRðuÞ�1

11 E

ðXtetjUt ¼ uÞf ðuÞ=Tb, which explains the results of Table 1, in the sense that it shows that it is

increasing in the degrees of overidentification – see the discussion after Theorem 3 for

more details.

3. Asymptotic results

To simplify the notation, let mðZt , �Þ :¼ mtð�Þ, and define

GðuÞ ¼ f ðuÞdiag 1,

ð

v2KðvÞdv
� �

� E
@mt h0ð Þ
@hs

�

�

�

�

Ut ¼ u

" #

,

XðuÞ ¼ f ðuÞdiag
ð

K2ðvÞdv,
ð

v2K2ðvÞdv
� �

� E mt h0ð Þ�2jUt ¼ u

h i

,

RðuÞ ¼ GðuÞsXðuÞ�1GðuÞ:

(11)

3.1. Uniform convergence rates

Assume that:

A1 The sequence Zs
t ,Utf gst2Z is strictly stationary a mixing, with mixing coefficient satisfying

P1
t¼1 t

baðtÞ
g�2
g < 1 for some g > 2 and b > 1� 2=g,

A2 (i) There exists a unique h0 such that E mtðh0Þ Ut ¼ uj � ¼ 0
�

for all u 2 U , (ii) for any n > 0,

there exists a CðnÞ > 0, such that

inf

k h1 �h0ð Þs , h2�h
0
0ð Þsk1

�nh1, h22HC

�

�

�

�

E gt h1, h2ð ÞK Ut � uð Þ
b

� �� �
�

�

�

�

" #

> CðnÞ (12)

for some u 2 U , (iii) the parameter space HC � R
2l and the support U of u are compact sets,

(iv) h0 is twice continuously differentiable on U ,

A3 (i) @mtðhÞ=@hs exists and is continuous for each h 2 HC a:s:, (ii) there exist functions MjðZtÞ
ðj ¼ 1, 2, 3Þ such that suph1, h22HC

kgtðh1, h2Þk 	 M1ðZtÞ, suph1, h22H0C
kgtðh1 , h2Þ�2k 	 M2ðZtÞ and

suph1, h22H0C
k@gtðh1, h2Þ=@ðhs1 , hs2Þ

sk 	 M3ðZtÞ, where H0C is an open neighborhood of h0 and

h00, such that EðMjðZtÞgjU ¼ utÞf ðuÞ < 1 uniformly in u 2 U , where g is defined in A1,

A4 (i) for t � 2

E sup
h1, h22HC

km1 h1 , h2ð Þk2 þ kmt h1 , h2ð Þk2
� �

jU1 ¼ u,Ut ¼ v
� �

< 1,

uniformly in u, v 2 U , (ii) the matrices GðuÞ and XðuÞ are Lipschitz continuous in u 2 U and

are, respectively, of rank 2k and positive definite uniformly in u 2 U ,

ECONOMETRIC REVIEWS 7



A5 qðvtÞ is twice continuously differentiable in vt in a neighborhood of 0, with qj ¼ �1 ðj ¼ 1, 2Þ
and qj ¼ @jcðvtÞ=@vjtjvt¼0,

A6 (i) the kernel function K : U ! R is symmetric and has a compact support, say �1, 1½ �, (ii)

the marginal density f of Ut is Lipschitz continuous and strictly positive at Ut ¼ u, (iii) the joint

density f1, t of U1 and Ut for t � 2 is Lipschitz continuous at u 2 U:

Assumption A1 excludes deterministic and stochastic trends and specifies the dependence

structure of the sequence Zs
t ,Utf gst2Z as a mixing with size Oðt�2ðg�2Þ=2��Þ for some � > 0 (see

Doukhan (1994) for examples and properties of a mixing processes). Assumption A2(i) is a

standard identification condition that can be often verified by imposing more primitive condi-

tions on m and/or some of the components of the random vector Zt. For example, in the gener-

alized nonparametric regression model ð2Þ, if f ðXt , h0ðUtÞÞ ¼ f ðXs
t h0ðUtÞÞ and f is a monotonic

function, then A2(i) is implied by the more primitive assumption PrðXs
t ðhðUtÞ � h0ðUtÞÞ 6¼

0jUt ¼ uÞ > 0 for all h 6¼ h0 2 HC, which in turn holds if EðX�2
t jUt ¼ uÞ is positive definite

uniformly in u 2 U: Similarly, for the dynamic panel data model ð4Þ A2(i) is implied by the

condition rankðEðWitX
s
itjUit ¼ uÞÞ ¼ k uniformly in u 2 U: Assumption A2(ii) is necessary

because of the local linear nature of the proposed estimation method; it ensures that the aug-

mented moment indicator gtðh1, h2Þ has two separated minima h0 and h00: Note however that

A2(ii) would not be required if the moment indicator is linear in the unknown infinite dimen-

sional parameter, in which case a rank condition of the derivative of the moment indicator is

sufficient. The compactness of the parameter space HC in the first part of Assumption A2(iii) is

as in Lewbel (2007), whereas the compactness of the support U in the second part of

Assumption A2(iii) is often assumed to obtain uniform convergence rates for dependent data,

see for example Liebscher (1996) and Masry (1996), but could be relaxed as in Hansen (2008).

The conditional moments assumptions in A3(ii) are implied by the existence of the correspond-

ing unconditional moments and are the weakest possible to obtain uniform consistency results.

Assumption 4(i) is standard in nonparametric estimation with dependent data, see for example

Cai, Fan, and Yao (2000); Assumption A4(ii) is crucial to obtain the uniform convergence rates

of Theorem 1. Assumptions 5 and 6 are standard, respectively, in the GEL literature, see Newey

and Smith (2004) and in the nonparametric estimation literature, see for example Cai (2003).

Finally, we note that the uniformity in u 2 U in Assumptions A3(ii) and A4 can be weakened

to the requirement that they hold in an open neighborhood of u 2 U if only pointwise results

(such as the asymptotic normality in Section 3.2 and the stochastic expansions in Section 3.3)

are required.

Theorem 1. Under A1–A6, for b ! 0, Tb= log ðTÞ ! 1 as T ! 1 and with the additional

summability condition
P1

T¼1 uðTÞ < 1 for the a mixing coefficient aðtÞ with uðTÞ defined in

Proposition 1 (in the Supplemental Appendix),

�

�

�

�

ĥ
q

1ðuÞ � h0ðuÞ
b ĥ

q

2ðuÞ � h00ðuÞ
	 


�

�

�

�

1
¼ Oa:s:

logT

Tb

� �1=2

þ b2

 !

: (13)

The uniform convergence rates ð13Þ are standard in the nonparametric estimation literature

(see for example Liebscher (1996) and Masry (1996)), but are new in the context of nonparamet-

ric moment conditions models (note also for i.i.d. data) and are sharper than those obtained for

example by Carroll et al. (1997) for the nonparametric component of their generalized partial lin-

ear single index model.
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3.2. Asymptotic normality

Assume further that:

A7 (i) h0, h
0
0 2 intðHCÞ, (ii) the matrix RðuÞ is nonsingular in a open neighborhood of u 2 U:

The following theorem establishes the asymptotic distribution of the LLGEL estimator

Theorem 2. Under A1–A7 as ðTbÞ1=2 ! 1

Tbð Þ1=2 ĥ
q

1ðuÞ � h0ðuÞ � BðuÞ=2
b ĥ

q

2ðuÞ � h00ðuÞ
	 


2

4

3

5!d N 0,R�1ðuÞ
� �

,

where BðuÞ ¼ b2h000ðuÞ
Ð

v2KðvÞdv:
Theorem 2 shows that the order of the asymptotic bias of the LLGEL estimator is Oðb2Þ as in

standard nonparametric estimation under the smoothness Assumptions A2(iv) and A6(ii). The
asymptotic covariance of the LLGEL estimator is the same as that of the efficient LLGMM esti-
mator, which is well known to be the smallest (in the matrix sense) covariance possible for
LLGMM estimators based on any positive semidefinite (possibly random) weight matrix Ŵ :
Thus, RðuÞ�1 is the “optimal” covariance matrix but it is important to say that RðuÞ�1 does not
represent the (semiparametric) efficiency bound. Note however that, as opposed to the LLGEL
estimator, the efficient LLGMM estimator is based on the preliminary weight matrix

X̂ðuÞ�1 ¼ 1

f̂ ðuÞ
diag

ð

K2ðvÞdv,
ð

v2K2ðvÞdv
� �

1

Tb

X

T

t¼1

mt
�h1 , �h2
� ��2

xtðuÞ
" #�1

, (14)

where xtðuÞ ¼ LððUt � uÞ=bLÞ=
PT

j¼1 LððUj � uÞ=bLÞ, f̂ ðuÞ ¼
PT

t¼1 LððUj � uÞ=bLÞ=TbL, the ker-
nel function L : U ! R can be different from the kernel function K used previously with band-
width bL ¼: bLðTÞ, and �hj ðj ¼ 1, 2Þ is a preliminary estimator, which requires choosing another
bandwidth. Note also that Theorem 2 implies that the asymptotic integrated mean squared error
ðAIMSEÞ for ĥ1 is

AIMSE ĥ1
� �

¼ b4

4
kBk2 þ

Ð

K2ðvÞdv
Tb

tr R
�1
m

� �

, (15)

where

Rm ¼
ð

E @mt h0ð Þ=@hs
� �

jUt ¼ u
� s

E mt h0ð Þ�2jUt ¼ u

h i�1

� E @mt h0ð Þ=@hsjUt ¼ u
� 

f ðuÞdu,

which implies that the optimal bandwidth b minimizing ð15Þ is

b ¼ 1

T

� �1
5
ð

K2ðvÞdvtr R
�1
m

� �

kBk�2

� �1
5

,

and the optimal convergence rate is the standard nonparametric one T�4=5: This result is useful
because it implies that data driven methods, such as least squares cross-validation (see for
example Li and Racine (2004) for some optimality properties of such procedure) could be used to
automatically select b: Pointwise ð1� aÞ% confidence intervals for hj0 ðj ¼ 1, :::, kÞ at a given
point u can be constructed as

ĥ
�
j1ðuÞ � B̂jðuÞ=26z1�a=2

R̂ðuÞ�1
11jj

Tb̂ð Þ1=2
,
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where ĥ
�
j1 can be either ĥj1 or ĥ

q

j1, B̂jð�Þ and R̂ð�Þ�1
11jj are consistent estimators1 of the jth compo-

nent of the asymptotic bias Bð�Þ and of the jjth component in the upper left block of the diagonal
matrix RðuÞ�1, b̂ is the bandwidth selected by a data driven method and z1�a=2 is the critical
value of the standard normal. Alternatively, under the additional undersmoothing condition
Tb5 ! 0, confidence intervals can be based on

ĥ
�
j1ðuÞ6z1�a=2

R̂ðuÞ�1
11jj

Tb̂ð Þ1=2
,

which, as mentioned in Section 1, is characterized by better (second order) coverage accuracy
than the bias corrected one, and this is the approach we follow in the rest of the paper.

3.3. Second order stochastic expansions

To obtain second order stochastic expansions of both the efficient LLGMM and LLGEL estima-
tors, let

HðuÞ ¼ R
�1ðuÞGðuÞsXðuÞ�1,

PðuÞ ¼ XðuÞ�1 I � GðuÞHðuÞð Þ,
(16)

(note that both HðuÞ and PðuÞ are block diagonal), and assume that:

A50 qðvtÞ is three times continuously differentiable in vt with Lipschitz third derivative in a
neighborhood of 0,

A8 (i) @2mtðhÞ=@hs@hj ðj ¼ 1, :::, kÞ exists and is continuous for each h 2 HC a:s:, (ii) there exist
functions MjðZtÞ ðj ¼ 4, 5, 6Þ such that in an open neighborhood H0C of h0 and h00
suph1,h22H0C

kgtðh1 ,h2Þ�2gðh1,h2Þk	M4ðZtÞ, suph1,h22H0C
kð@gtðh1,h2Þ=@ðhs1 ,hs2Þ

sÞ� gðZt ,h1,h2Þk	
M5ðZtÞ, suph1,h22H0C

k@2gtðh1,h2Þ=@ðhs1 ,hs2Þ
s@hjk	M6ðZtÞ, where E MjðZtÞ U¼uj �<1

�

ðj¼
4,5,6Þ in an open neighborhood of u2U , (iii) A4(i) holds an open neighborhood of u2U , and
for t� 2

E sup
h1, h22H0C

�

�

�

�

@m1 h1, h2ð Þ
@ hs1 , h

s
2ð Þs

�

�

�

�

þ kmt h1, h2ð Þk
 !

jU1 ¼ u,Ut ¼ v

" #

< 1,

an open neighborhood of u, v 2 U , (iv) the vectors

E
@mt h0ð Þ
@hs

mt h0ð ÞjUt ¼ u

� �

, E
X

k

j¼1

@2mt h0ð Þ
@hs@hj

ejjUt ¼ u

2

4

3

5,

E mt h0ð Þ�2
mt h0ð ÞjUt ¼ u

h i

,

are Lipschitz continuous in u 2 U , (iv) qðvtÞ is three times continuously differentiable in vt with
third order derivative Lipschitz continuous in a neighborhood of 0.

The following theorem characterizes the difference between the efficient LLGMM and the
LLGEL estimators in term of the components appearing in their second order expansions, which
corresponds to their second order biases. To be specific, let

1Consistent estimation of R�1ð�Þ is discussed in Section 3.3. Consistent estimation of Bð�Þ can be carried out using the same
sieve method suggested by Cai, Ren and Sun (2015), which involves fitting a polynomial of a sufficiently high degree, say
PmðTÞ

i¼0 aiu
i , to fðuÞ so that an estimator of f 00ðuÞ can be obtained as f̂ 00 ðuÞ ¼PmðTÞ

i¼2 ði!=ði � 2Þ!Þâ iu
i�2:
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BLLGMMðuÞ ¼ bias ĥ1ðuÞs, ĥ2ðuÞs
h is
� �

¼ E
wðuÞ
Tb

� �

þ o
1

Tb

� �

,

BLLGELðuÞ ¼ bias ĥ
q

1ðuÞ
s
, ĥ

q

2ðuÞ
s

h is
� �

¼ E
wqðuÞ
Tb

� �

þ o
1

Tb

� �

,

(17)

where the random vectors wðuÞ and wqðuÞ are given in Propositions 7 and 8 (in the

Supplemental Appendix), respectively.

Theorem 3. Under the assumptions of Theorem 2, A8 and Tb5 ! 0, the second order biases

BLLGMMðuÞ and BLLGELðuÞ of the efficient LLGMM and LLGEL estimators are

BLLGMMðuÞ ¼
HðuÞ
Tb

B@hHhðuÞ �
BGRðuÞ

2
þ Bh3PðuÞ

� �

� RðuÞ�1B@hPhðuÞ,

BLLGELðuÞ ¼
1

Tb
1þ q3

2

� �

HðuÞBh3PðuÞ þHðuÞ B@hHhðuÞ �
BGRðuÞ

2

� �

" #

,

(18)

where

HðuÞB@hHhðuÞ ¼ f ðuÞ
H11ðuÞE

�

@mtðh0Þ
@hs

H11ðuÞmtðh0ÞjUt ¼ u

�
ð

KðvÞ2dv

H22ðuÞE
�

@mtðh0Þ
@hs

H22ðuÞmtðh0ÞjUt ¼ u

�
ð

v2KðvÞ2dv

2

6

6

4

3

7

7

5

,

HðuÞBGRðuÞ ¼ f ðuÞ H11ðuÞT1ðuÞ
H22ðuÞT2ðuÞ

Ð

v2KðvÞdv

� �

,

HðuÞBh3PðuÞ ¼ f ðuÞ
�

H11ðuÞE
�

mtðh0Þ�2
X

2

j¼1

PjjðuÞmtðh0ÞjUt ¼ u

�
ð

v2ðj�1ÞKðvÞ3dv

0
�

�

,

RðuÞB@hPhðuÞ ¼ f ðuÞ
�

RðuÞ�1
11 E

��

@mtðh0Þ
@hs

�s
X

2

j¼1

PjjðuÞmtðh0ÞjUt ¼ u

�
ð

v2ðj�1ÞKðvÞ2dv

0
�

�

,

where

T1ðuÞ ¼ tr RðuÞ�1
11 E

@2m1t h0ð Þ
@hð Þ�2 jUt ¼ u

h i	 


, :::, tr RðuÞ�1
11 E

@2mlt h0ð Þ
@hð Þ�2 jUt ¼ u

h i	 
h is

,

T2ðuÞ ¼ tr RðuÞ�1
22 E

@2m1t h0ð Þ
@hð Þ�2 jUt ¼ u

h i	 


, :::, tr RðuÞ�1
22 E

@2mlt h0ð Þ
@hð Þ�2 jUt ¼ u

h i	 
h is

,

and HjjðuÞ and PjjðuÞ ðj ¼ 1, 2Þ are the upper left and lower right blocks of the (block diagonal)

matrices ð16Þ and similarly for RðuÞ�1
jj ðj ¼ 1, 2Þ:

Theorem 3 shows a number of interesting features: first, the efficient LLGMM estimator has

an additional bias term compared to the LLGEL estimator, which might explain the better finite

sample performance of the two LLGEL estimators considered in the next section. Secondly, the

LLEL estimator (or any other LLGEL estimator with q3 ¼ �2) has the smallest second order bias,

in terms of its components. Note however that if Eðmtðh0Þ�2mjtðh0Þ Ut ¼ uÞ ¼ 0j ðj ¼ 1, :::, lÞ,
then all LLGEL estimators have the same second order bias, namely BLLGELðuÞ ¼
HðuÞðB@hHhðuÞ � BGRðuÞ=2Þ=Tb: Thirdly, in the important case of moment conditions models

based on instrumental variables, that is when mtðh0Þ ¼ qðXtÞetðh0Þ, where qðXtÞ is a vector of

known instruments and etðh0Þ is a scalar valued “residual function” assumed to be twice continu-

ously differentiable, Corollary 1 shows that the second order bias of the LLEL estimator of h0 is

bounded (in the sense that it does not depend on dimðqðXtÞÞ) as opposed to that of the efficient

LLGMM estimator that depends on the degree of overidentification. Furthermore, the difference
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between the second order biases of the efficient LLGMM and of the LLEL estimators increases
linearly in the degree of overidentification.

Corollary 1. Assume that there exist two functions MjðZtÞ ðj ¼ 7, 8Þ such that
kqðXtÞ@2etðh0Þ=@hs@hlk 	 M7ðZtÞ ðl ¼ 1, :::, kÞ and kð@etðh0Þ=@hÞqðXtÞ0qðXtÞetðh0Þk 	 M8ðZtÞ
with EðMjðZiÞ2jUt ¼ uÞ < 1 in an open neighborhood of u 2 U ; then under the assumptions of
Theorem 3, for two positive constants C1 and C2

kBLLELðuÞk 	 C1

Tb
kRðuÞ�1

11 k,

esj BLLGMMðuÞ � BLLELðuÞð Þ � C2

Tb
l� kð Þ j ¼ 1, :::, l,

where ej is the jth basis vector and

RðuÞ11 ¼
1

f ðuÞE q Xtð Þ @et h0ð Þ
@h

� �s�
�

�

�

Ut ¼ u

 !

E q Xtð Þ�2et h0ð Þ2
	 


jUt ¼ u

ð

K2ðvÞdv
� ��1

� E q Xtð Þ @et h0ð Þ
@h

� �
�

�

�

�

Ut ¼ u

 !

:

Finally, in the general case where one is interested only in the local estimator of h0ðuÞ, the
second order bias expressions for the efficient LLGMM ĥ1ðuÞ and LLGEL ĥ

q

1ðuÞ estimators are

BLLGMMðuÞ ¼
f ðuÞ
Tb

(

H11ðuÞE
@mt h0ð Þ
@hs

H1ðuÞmt h0ð Þ
�

�

�

�

Ut ¼ u

 !

ð

KðvÞ2dv

� H11ðuÞ
2

"

tr RðuÞ�1
11 E

@2m1t h0ð Þ
@hð Þ�2

�

�

�

�

Ut ¼ u

" # !

, :::,

tr RðuÞ�1
11 E

@2mlt h0ð Þ
@hð Þ�2

�

�

�

�

Ut ¼ u

" # !#s

þ H11ðuÞE½mt h0ð Þ�2
X

2

j¼1

PjjðuÞmt h0ð ÞjUt ¼ u�
ð

v2 j�1ð ÞKðvÞ3dv

þ RðuÞ�1
11 E

@mt h0ð Þ
@hs

� �s
X

2

j¼1

PjjðuÞmt h0ð ÞjUt ¼ u

2

4

3

5

ð

v2 j�1ð ÞKðvÞ2dv
)

,

(19)

BLLGELðuÞ ¼
f ðuÞH11ðuÞ

Tb

(

�

1þ q3
2

�

E

�

mtðh0Þ�2
X

2

j¼1

PjjðuÞmtðh0Þ
�

�

�

�

Ut ¼ u

�

�
ð

v2ðj�1ÞKðvÞ3dvþ E

�

@mtðh0Þ
@hs

H11ðuÞmtðh0Þ
�

�

�

�

Ut ¼ uÞ
ð

KðvÞ2dv

� 1

2

�

tr

�

RðuÞ�1
11 E

�

@2m1tðh0Þ
ð@hÞ�2

�

�

�

�

Ut ¼ u

��

, :::,

tr

�

RðuÞ�1
11 E

�

@2mltðh0Þ
ð@hÞ�2

�

�

�

�

Ut ¼ u

��s
)

:

(20)
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Apart from being theoretically interesting, the expressions given in ð18Þ (and therefore in ð19Þ
and ð20Þ) are practically useful because they can be used to obtain second order bias corrected
LLGMM and LLGEL estimators. To describe them, let

ĜðuÞ ¼ f̂ ðuÞdiag 1

Tb̂

X

T

t¼1

@mt ĥ1
� �

@hs
,
1

Tb̂

X

T

t¼1

@mt ĥ1
� �

@hs

ð

v2KðvÞdv
" #

� xtðuÞ,

X̂ðuÞ ¼ f̂ ðuÞdiag
ð

K2ðvÞdv,
ð

v2K2ðvÞdv
� �

1

Tb̂

X

T

t¼1

mt ĥ1
� ��2

xtðuÞ,

with R̂ðuÞ, ĤðuÞ and P̂ðuÞ defined accordingly, and let

ĤðuÞB̂@hHhðuÞ ¼ f̂ ðuÞ
Ĥ11ðuÞ

1

Tb̂

X

T

t¼1

@mtðĥ1Þ
@hs

Ĥ11ðuÞmtðĥ1ÞxtðuÞ
ð

KðvÞ2dv

Ĥ22ðuÞ
1

Tb̂

X

T

t¼1

@mtð, ĥ1Þ
@hs

Ĥ22ðuÞmtðĥ1ÞxtðuÞ
ð

v2KðvÞ2dv

2

6

6

6

6

4

3

7

7

7

7

5

,

ĤðuÞB̂GRðuÞ ¼ f̂ ðuÞ
Ĥ11ðuÞT̂1ðuÞ

Ð

KðvÞ2dv
Ĥ22ðuÞT̂2ðuÞ

Ð

v2KðvÞdv

" #

,

T̂ jðuÞ ¼
�

trðR̂ðuÞ�1
jj

1

Tb̂

X

T

t¼1

@2m1tðĥ1Þ
ð@hÞ�2 xtðuÞÞ, :::,

trðR̂ðuÞ�1
jj

1

Tb̂

X

T

t¼1

@2m1tðĥ1Þ
ð@hÞ�2 xtðuÞÞ

�s

,

ĤðuÞB̂h3PðuÞ ¼ f̂ ðuÞ
� Ĥ11ðuÞ

1

Tb̂

X

T

t¼1

mtðĥ1Þ�2
X

2

j¼1

P̂ jjðuÞmtðĥ1ÞxtðuÞ
ð

v2ðj�1ÞKðvÞ3dv

0
�

�

,

R̂ðuÞB̂@hPhðuÞ ¼ f̂ ðuÞ
�

R̂ðuÞ�1
jj

1

Tb̂

X

T

t¼1

�

@mtðĥ1Þ
@hs

�s
X

2

j¼1

P̂ jjðuÞmtðĥ1ÞxtðuÞ
ð

v2ðj�1ÞKðvÞ2dv

0
�

�

:

Then the estimators of the second order bias terms are

B̂LLGMMðuÞ ¼
1

Tb̂
ĤðuÞ B̂@hHhðuÞ �

B̂GRðuÞ
2

þ B̂h3PðuÞ
� �

� R̂ðuÞB̂@hPhðuÞ
� �

,

B̂LLGELðuÞ ¼
1

Tb̂
1þ q3

2

� �

ĤðuÞB̂h3PðuÞ þ ĤðuÞ B̂@hHhðuÞ �
B̂GRðuÞ

2

� �

" #

,

(21)

and the bias corrected local linear estimators are

ĥ
�
c ðuÞ ¼ ĥ

�ðuÞ � B̂�ðuÞ,

where ĥ
�
c ðuÞ ¼ ĥ

�
1cðuÞ

s ĥ
�
2cðuÞ

s
h is

, ĥ
�ðuÞ is either ĥðuÞ or ĥqðuÞ and B̂�ðuÞ is either B̂LLGMMðuÞ

or B̂LLGELðuÞ: The following corollary to Theorem 3 shows that the bias corrected local linear esti-
mators are second order correct.
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Corollary 2. Under the same assumptions of Theorem 3,

bias Tbð Þ1=2ĥ�c ðuÞ
	 


¼ o
1

Tbð Þ1=2

 !

:

4. Monte Carlo simulations

In this section, we illustrate the finite sample properties of the LLGMM and LLGEL estimators

and their bias corrected versions. The estimators we consider are the efficient LLGMM defined in
ð10Þ, the LLEL defined in ð8Þ and the LLET defined in ð9Þ: We focus on the finite sample prop-

erties of ĥ1 and ĥ
q

1 : The discussion after Theorem 2 shows that the optimal (minimizing the

asymptotic integrated mean squared error) bandwidth b is of order OðT�1=5Þ and standard data
driven methods could be used to select it. On the other hand, the results of Theorem 3 require

undersmoothing, hence least squares cross-validation or other bandwidth selection methods can-
not be used directly to automatically choose the bandwidth. One possibility is to follow the ad

hoc procedure suggested by Otsu et al.’s (2015) and use least squares cross-validation to estimate
the bandwidth and then multiply the resulting bandwidth by a power of the sample size that is

consistent with undersmoothing. In this paper, we consider another method, that is, similar to

the ad hoc cross-validation method of Otsu et al. (2015) but is less computationally intensive.
Specifically, we consider a twofold cross-validation procedure, which consists of computing for a

random subset of the sample, the training set Sv with 0 < v < 1, and a pilot bandwidth bp

ĥp ¼ argminh1 , h22HC

1

Tvbp

X

t2Sv
gt h1 , h2ð ÞsK Ut � u

bp

� �

X̂ðuÞ�1 1

Tvbp

X

t2Sv
gt h1, h2ð ÞK Ut � u

bp

� �

,

ĥ
q

p ¼ argminh1 , h22HC

1

Tvbp

X

t2Sv
q vt u, k̂, h1, h2

� �� �

,

and then using the remaining part of the sample, the validation set S1�v, to select the bandwidth

as

b̂ ¼ argminb2B
1

T1�vb

X

t2S1�v

gt ĥ1p , ĥ2p

	 
s

K
Ut � u

b

� �

X̂ðuÞ�1 1

T1�vb

X

t2S1�v

gt ĥ1p, ĥ2p

	 


K
Ut � u

b

� �

b̂
q ¼ argminb2B

1

T1�vb

X

i2S1�v

q vt u, k̂, ĥ
q

1p, ĥ
q

2p

	 
	 


,

(22)

where B is a grid of possible values of b, and ĥjp and ĥ
q

jp ðj ¼ 1, 2Þ are the estimators based on

the pilot bandwidths bp and ĥ
q

p : Finally, as in Otsu et al. (2015), b̂ and b̂
q
are multiplied by T�c,

where c> 0 is a value consistent with undersmoothing.

Remark 1. It should be noted that the LLGEL estimator has the practical advantage over the effi-
cient LLGMM estimator of needing only one bandwidth, since the efficient LLGMM estimator

requires an additional bandwidth to compute the preliminary consistent estimators ~hj ðj ¼ 1, 2Þ
for X̂ðuÞ�1: In the simulations below, we use the same ad hoc method described above (with
c ¼ 0:25), but it should also be noted that the choice of the additional bandwidth does not seem

to have any important bearings on the performance of the efficient LLGMM estimator in terms
of its finite sample MSE. See the additional simulations results reported in Figure 1(A and B) in

the Supplemental Appendix.
In the simulations below, the kernel function used is the Epanechnikov one, that is, KðuÞ ¼

ð3=4Þð1� u2Þ for juj 	 1, which results in
Ð

v2KðvÞdv ¼ 1=5,
Ð

KðvÞ2dv ¼ 3=5,
Ð

v2KðvÞ2dv ¼
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4=35,
Ð

KðvÞ3dv ¼ 24=35 and
Ð

v2KðvÞ3dv ¼ 8=105: The terms ĜðuÞ, X̂ðuÞ and all the others

appearing in the bias correction terms ð21Þ are computed using again the Epanechnikov kernel

with bandwidth selected by least squares cross-validation.
We consider Examples 1 and 2 (Example 3 can be found in the Supplemental Appendix). For

Example 1, the model is specified as

Yt ¼ exp h10 Utð Þ þ X1th20 Utð Þð Þ þ et ,

X1t ¼ 0:4X2t þ gt ,

where h10ðUtÞ ¼ sin ðpUt=2Þ, h20 ¼ cos ðpUtÞ, X2t ¼ qX2t�1 þ ft with ft � Nð0, 1Þ independent

of

et
gt

� �

� N
0
0

� �

,
1 0:5
0:5 1

� �� �

,

and Ut is either Ut � Uð0, 1Þ or Ut � Uððant þ bnt�1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

Þ, where U is the cumulative

Figure 1. MSE of the three local linear estimators for dimðqtðXtÞÞ ¼ 3 and Ut � Uð0, 1Þ, with the original estimators on the left
and their bias corrected versions on the right.
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standard normal distribution and nt � Nð0, 1Þ: Note that in the latter case Ut is a 1-dependent
process. In the simulations, the vector of instruments qðX2tÞ is specified as either 1,X2t ,X

2
2t

� s
or

1,X2t , :::,X
6
2t

� s
, with q ¼ 0:4 and a¼ 0.9, b¼ 0.1, and seven alternative bandwidths chosen by the

ad hoc cross validated method described above with c ¼ ð0:20, 0:25, :::, 0:50Þ:
Figures 1–4 report the combined MSE’s of ĥ

�
1

MSE ĥ
�
1

	 


¼ 1

2T

X

2

j¼1

X

T

t¼1

ĥ
�
1j Utð Þ � hj0 Utð Þ

	 
2

,

where ĥ
�
1j is either the LLGMM ĥ

s

11 , ĥ
s

12

h is

or the LLEL ĥ
els

11 , ĥ
els

12

h is

or the LLET ĥ
ets

11 , ĥ
ets

12

h is

esti-

mators for hs10 , h
s
20½ �s, or their second order bias corrected versions ĥ1c, ĥ

el

1c and ĥ
et

1c for two sam-

ple sizes, T¼ 250 and T¼ 1000.
Figures 1–4 show a number of interesting features: first, as expected, the MSEs of the three

local linear estimators are minimized at the optimal rate ðc ¼ 0:2Þ, increase with the degree of

Figure 2. MSE of the three local linear estimators for dimðqtðXtÞÞ ¼ 9 and Ut � Uð0, 1Þ, with the original estimators on the left
and their bias corrected versions on the right.
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undersmoothing and decrease as the sample size increases. Furthermore, among the three local

linear estimators, the LLEL has the smallest MSE, which is consistent with the first result of

Corollary 1. Second, the proposed second order bias corrections are effective in reducing the

MSEs of the original local linear estimators for a reasonable set of undersmoothed bandwidths –

note that with the optimal bandwidth the corrections are not useful at all, which, again, is con-

sistent with the theoretical results of the previous section. Third, the dimension of the vector of

instruments qðX2tÞ impacts negatively the MSE of the LLGMM estimator and less so that of the

LLEL and LLET estimators, which is again consistent with the results of Corollary 1.
Next, we consider the same example considered by Cai, Ren, and Sun (2015), which corre-

sponds to Example 2 with qðXtÞ ¼ 1 and J¼ 25. To be specific, let Ut ¼ qUt�1 þ 0:01et and

RM, tþ1 ¼ rðUtÞ þ 0:05gt , where et and gt are independent standard normals, so that under the

Figure 3. MSE of the three local linear estimators for dimðqtðXtÞÞ ¼ 3 and Ut � Uðð0:9nt þ 0:1nt�1Þ=0:9Þ, with the original
estimators on the left and their bias corrected versions on the right.
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mean covariance efficiency assumption2

h0 Utð Þ ¼ 0:01r Utð Þ
0:05ð Þ2 þ 0:01ð Þ2r Utð Þ2

(23)

and Rj, tþ1 ¼ ej, t=ð1� h0ðUtÞRM, tþ1Þ with ej, t ¼ 0:05ej, t�1 þ vj, t , rðUtÞ ¼ 0:01ð1þ U2
t Þ and vj, t a

standard normal.
Table 2 reports the MSE of the same three local linear estimators as those considered in

Figures 1–4 for three different choices of bandwidths consistent with undersmoothing.
The result of Table 2 provide further evidence of the good finite sample properties of the

LLGEL estimators and the effectiveness of the proposed second order bias corrections.

5. Empirical application

We illustrate the applicability of the proposed local estimation method by considering a varying
coefficient specification of Fama and French’s (1993) three factor model. To be specific, the sto-
chastic discount factor as given in Example 2 of Section 2 is

htþ1 ¼ 1� h0 Utð ÞsFtþ1,

where h0ðUtÞ ¼ h10ðUtÞ, h20ðUtÞ, h30ðUtÞ½ �s is a vector of unknown (time varying state dependent)
risk prices associated to the observed risk factors Ft ¼ F1t , F2t , F3t½ �s, where Fjt ðj ¼ 1, 2, 3Þ, repre-
sent, respectively, the market excess, the size premium (small minus big) and the book to market
value. The conditioning variable Ut is chosen to be either the ten year Treasury yield U10

t or the
BAA corporate bond yield relative to the constant maturity 10-year Treasury yield UDEF

t : The lat-
ter serves as a proxy for the default risk, and it was used in the consumption-based CAPM model
of Jagannathan and Wang (1996).

The three local linear estimators (LLGMM, LLEL and LLET) of the stochastic discount factor
are compared with their parametric analogs (efficient GMM, EL and ET) based on the linear
affine state dependent specification htþ1 ¼ 1� ðb0 þ b0uUtÞsFtþ1, where b0 ¼ b10 ,b20 ,b30½ �s and
b0u ¼ b10u, b20u, b30u½ �s are the unknown (time invariant) risk prices. To be specific the parametric
efficient GMM, EL and ET estimators are based on the moment indicator mtþ1ðb,buÞ ¼
ð1� ðbþ buUtÞsFtþ1Þ � Rtþ1, and are defined as

Table 2. MSE for the LLGMM ĥ1, LLEL ĥ
el

1 and LLET ĥ
et

1 estimators and their bias corrected versions ĥ1c , ĥ
el

1c and ĥ
et

1c::

T ĥ1 ĥ1c ĥ
el

1 ĥ
el

1c ĥ
et

1 ĥ
et

1c

250 0.038a 0.011a 0.033a 0.009a 0.035a 0.010a

0.041b 0.012b 0.034b 0.009b 0.032b 0.009b

0.042c 0.014c 0.037c 0.010c 0.034c 0.011c

1000 0.009a,c 0.005a 0.004a 0.003a 0.006a 0.005a

0.008b 0.003b 0.004b 0.002b 0.006b 0.004b

0.010c 0.004c 0.006c 0.003c 0.008c 0.006c

ab̂T
�1=4

:
bb̂T

�1=3
:

cb̂T
�2=5

:

2Let Rp, t denote the excess return of a benchmark portfolio p. If the latter is (conditionally) mean variance efficient, then
EðRj, tþ1jItÞ ¼ EðRp, tþ1jItÞ EðRj, tþ1Rp, tþ1 jItÞ

EðR2
p, tþ1

jItÞ ,
where It is the information set, which can be rewritten as
EðRj, tþ1jItÞ � EðRp, tþ1jItÞ EðRj, tþ1Rp, tþ1 jItÞ

EðR2
p, tþ1

jItÞ ¼ Eðhtþ1Rj, tþ1jItÞ
and htþ1 ¼ 1� h0tðItÞRp, tþ1

h0tðItÞ ¼ EðRp, tþ1jItÞ=EðR2p, tþ1jItÞ;
setting It ¼ Ut gives ð23Þ: See Wang (2003) for more details on the mean variance efficiency assumption.
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b̂GMM ¼ argminb, bu2B
1

T

X

T�1

t¼1

mtþ1 b,buð ÞsX̂ ~b , ~bu

� ��1
mtþ1 b, buð Þ,

b̂EL ¼ argminb, bu2B
1

Q

X

Q

t¼1

log 1� k̂
s
mB

tþ1 b,buð Þ
	 


,

b̂ET ¼ argminb, bu2B
1

Q

X

Q

t¼1

exp k̂
s
mB

tþ1 b, buð Þ
	 


,

(24)

where X̂ð~b, ~buÞ is the Newey and West (1987) estimator of the long run covariance matrix

limT!1 VarðPT
t¼1 mtþ1ðb0, b0uÞ=T1=2Þ with ~b and ~bu preliminary consistent estimators of b0 and

b0u, m
B
tþ1ðb, buÞ ¼

PM
k¼1 mtþkðb,buÞ=M is an overlapping block of observations with block length

M ! 1 as T ! 1 at an appropriate rate and Q ¼ bT �Mc þ 1 with b�c being the integer part

function. More details on the blocking technique and the asymptotics of the resulting estimators

can be found in Kitamura and Stutzer (1997) and Bravo (2009).

Figure 4. MSE of the three local linear estimators for dimðqtðXtÞÞ ¼ 9 and Ut � Uðð0:9nt þ 0:1nt�1Þ=0:9Þ, with the original
estimators on the left and their bias corrected versions on the right.
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We use the monthly returns on the 25 size-sorted portfolios for US equities from Kenneth
French’s data library3 as risky assets Ri, t; the excess returns are computed over the one-month
Treasury bill yield obtained from the Center for Research in Securities Prices (CRSP). The 10-
year Treasury yield data is obtained from the Federal Reserve Statistical Release H.15. The cor-
porate bond spread is obtained from the Federal Reserve Economic Data. The sample period is

Table 3. Average MSE of the pricing errors of local linear and parametric estimators.

LLGMM LLEL LLET GMM EL ET

U10
t 0.0027a 0.0023a 0.0025a 0.0119 0.0092 0.0098

0.0032b 0.0028b 0.0030b

UDEF
t 0.0026a 0.0022a 0.0023a

0.0030b 0.0027b 0.0027b 0.0099 0.0081 0.0083

ab̂
o¼b̂T�1=5

:
bb̂

u¼b̂T�1=4
:

Figure 5. LLGMM (solid black line), LLEL (solid red line), their bias corrected versions (dashed black and dashed red lines) and
parametric GMM and EL (solid and dashed blue lines) estimates of risk prices.

3Available at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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1964 : 01� 2018 : 12 minus the 2008 : 01� 2009 : 04 financial crisis, for a total of T¼ 641
observations.

Table 3 reports the average (over the 25 portfolios) MSEs of the pricing errors of the LLGMM,
LLEL and LLET estimators with the two different conditioning variables U10

t and UDEF
t , and two

bandwidths (the optimal one and an undersmoothed one with c¼ 0.25), and those of their para-
metric analogs. The individual pricing errors can be find in the Supplemental Appendix
(Tables 2A–C).

Table 3 shows that the MSEs of the local linear estimators are typically smaller than those
based on their parametric analogs. This result is consistent with that obtained by Cai, Ren, and
Sun (2015) (for the LLGMM estimator). Table 3 also shows that among the three local linear

Table 4. Parametric estimates of risk prices with 95% confidence intervals.

GMM EL ET

U10
t b̂1 0.034 0.032 0.032

[0.014, 0.054] [0.011, 0.054] [0.013, 0.049]
b̂1u 0.006 0.005 0.004

[–0.010, 0.022] [–0.005, 0.015] [–0.004, 0.016]
b̂2 0.026 0.024 0.023

[0.001, 0.051] [0.004, 0.044] [0.003, 0.039]
b̂2u 0.012 0.010 0.011

[–0.003, 0.027] [0.002, 0.018] [0.003, 0.019]
b̂3 0.058 0.053 0.055

[0.032, 0.082] [0.026, 0.084] [0.037, 0.073]
b̂3u 0.001 0.0015 0.0016

[–0.008, 0.012] [0.006, 0.0024] [0.007, 0.0025]
UDEF
t b̂1 0.001 0.001 0.001

[–0.005, 0.007] [–0.004, 0.006] [–0.004, 0.006]
b̂1u –0.007 –0.007 –0.006

[–0.017, 0.003] [–0.012, �0.002] [–0.013, �0.03]
b̂2 0.000 –0.001 –0.001

[–0.012, 0.012] [–0.010, 0.006] [–0.011, 0.007]
b̂2u –0.001 –0.001 –0.001

[–0.006, �0.004] [–0.005, �0.003] [–0.005, �0.003]
b̂3 0.088 0.089 0.086

[0.065, 0.111] [0.069, 0.109] [0.065, 0.107]
b̂3u 0.003 0.003 0.002

[–0.007, 0.013] [–0.005, 0.008] [–0.006, 0.010]

Table 5. Average local linear estimates of risk prices with 95% confidence intervals.

LGMM LLEL

U10
t ĥ1 ĥ1c ĥ1 ĥ1c

0.029 0.030 0.028 0.031
[–0.004, 0.058] [0.008, 0.051] [0.001, 0.0575] [0.011, 0.056]

ĥ2 ĥ2c ĥ2 ĥ2c
0.023 0.022 0.022 0.021

[–0.016. 0.058] [–0.007, 0.0514] [–0.008, 0.050] [–0.001, 0.043]
ĥ3 ĥ3c ĥ3 ĥ3c

0.066 0.061 0.064 0.060
[0.027, 0.105] [0.029, 0.092] [0.032, 0.095] [0.034, 0.085]

UDEF
t ĥ1 ĥ1c ĥ1 ĥ1c

0.030 0.028 0.029 0.030
[–0.005, 0.075] [0.010, 0.066] [0.001, 0.074] [0.014, 0.072]

ĥ2 ĥ2c ĥ2 ĥ2c
0.019 0.022 0.021 0.023

[–0.020, 0.07] [–0.009, 0.066] [–0.010, 0.06] [–0.001, 0.055]
ĥ3 ĥ3c ĥ3 ĥ3c

0.068 0.063 0.064 0.062
[–0.020, 0.075] [0.037, 0.119] [0.037, 0.123] [0.044, 0.110]
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estimators, the LLEL one has typically the smallest MSE, which confirms the findings of the pre-

vious section.
Figure 5 shows both the nonparametric and the parametric GMM and EL estimates of the risk

prices associated with the three risk factors. The ET estimates are very similar to those based on

EL, hence are not shown in the figure.
Figure 5 shows that the risk prices exhibit some clear nonlinear pattern: the risk price associ-

ated to the market excess factor F1t is concave in the 10-year Treasury yield conditioning variable

and the risk price associated to the size premium factor F2t is concave in the default conditioning

variable. There is further evidence of nonlinearity in the risk prices associated to the book to

market value in the 10-year Treasury yields and (to a lesser degree) in the risk price associated to

the market excess in the default conditioning variable.
Finally, Tables 4 and 5 report, respectively, the point estimates and 95% confidence intervals

of the parametric risk prices b̂j and b̂juðj ¼ 1, 2, 3Þ and the averages ĥ
o

j ¼
PT

t¼1 ĥ
o

j ðUtÞ=T, ĥ
o

jc ¼
PT

t¼1 ĥ
o

jcðUtÞ=T ðj ¼ 1, 2, 3Þ, where ĥ
o

j is either ĥj, or ĥ
el

j and 95% confidence intervals of the

nonparametric risk prices.
Tables 4 and 5 show that the combined parametric and averaged nonparametric estimates are

fairly close numerically (especially those based on the bias corrected nonparametric estimators),

albeit the confidence intervals based on the parametric estimators are narrower, which is to be

expected given their faster convergence rate. Taken together, Tables 3–5 and Figure 5 show the

advantages of using local linear estimators (and their bias corrected versions) over traditional

parametric estimators for stochastic discount factor models, both in terms of MSE of the pricing

errors and in terms of capturing the variability of the risk prices.

6. Conclusions

In this paper, we consider a local linear version of the GEL approach that can be used to estimate

the unknown infinite dimensional parameter in nonparametric moment conditions models. We

derive a new strong uniform convergence rate and the asymptotic normality of the proposed esti-

mator. We also obtain second order stochastic expansions for both the efficient local linear GMM

and local linear GEL, which are both theoretically and practically useful, as they explain why local

linear GEL estimators are typically characterized by better finite sample properties than those

based on the efficient local linear GMM across a range of different undersmoothed bandwidths,

and can be used to obtain analytical expressions of the second order bias of the local linear esti-

mators and correct for it. Monte Carlo simulations show that the local GEL estimators perform

well in finite samples and that the proposed bias corrected version effectively reduce the MSE.

An empirical application, where a varying coefficient version of Fama and French’s (1993) three

factor model is estimated, illustrates the applicability and usefulness of the local estimation

method proposed in this paper.
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