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a b s t r a c t

Atherosclerosis is intimately coupled to blood flow by the presence of predilection sites. The cou-

pling is through mechanotransduction of endothelial cells and approximately 2000 gene are associ-

ated with this process. This paper describes a new platform to study and identify new signalling

pathways in endothelial cells covering an atherosclerotic plaque. The identified networks are syn-

thesized in primary cells to study their reaction to flow. This synthetic approach might lead to

new insights and drug targets.

� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V.

1. Introduction

Coronary heart disease (CHD) is the global leading cause of

death. In the UK, acute coronary syndromes (ACS) cause �60% of

CHD deaths and lead to�240,000 hospitalizations each year, incur-

ring direct healthcare costs of �£1.7 billion annually. The majority

of the mortality of CHD is related to the rupture of a thin cap fibro-

atheroma (TCFA). The characteristics of a rupture-prone plaque are

that of a large and soft lipid-rich necrotic core covered by a thin

and inflamed fibrous cap [1,2]. Associated features include big pla-

que size, expansive remodelling preventing luminal obstruction

(mild stenosis by angiography), neo-vascularization, plaque haem-

orrhage, adventitial inflammation, and a ‘‘spotty’’ pattern of calci-

fications [1,2]. While cross sectional composition of plaques is

known and have been described extensively, the longitudinal het-

erogeneity of plaques has recently attracted more attention [3–5].

The rediscovery of longitudinal plaque heterogeneity exposed

an essential role for blood flow determining plaque composition.

Recent studies, including ours, showed that (local) shear stress is

a better predictor of plaque composition than plaque size or (bulk)

cholesterol levels [1,3,6–10]. To further investigate the role of

shear stress in plaque composition, we induced two different pro-

atherogenic shear stress fields (low, non-oscillatory and low, oscil-

latory shear stress patterns) in a straight vessel of hypercholestere-

mic, ApoE �/� mice and demonstrated that specific shear stress

patterns induced specific plaque compositions, when ApoE �/�

mice were exposed to a high cholesterol environment [11–13].

Interestingly, the low, non-oscillatory shear stress pattern induced

TCFAs, while the low and oscillatory shear stress induced stable

plaques [12–15]. Further studies indicated that TCFA formation

was associated with the presence of adhesion factors, chemokines,

and activating factors for macrophages [12–15], indicating that the

reduction of blood velocity enhanced inflammation in the plaques.

These observations have recently been confirmed in pig coronary

arteries, and in human carotid and coronary vessels indicating that

blood flow and its derivative, shear stress (which scales linearly to

velocity) is fundamental to determining plaque composition

[16–18].

All studies above indicate that the flow-directed phenotype of

the endothelial cell determines the processes leading to TCFA

formation. Endothelial cells are known to contain a variety of

mechanosensors and two decades of research have identified that

seven-nine endothelial pathways are modified by mechanical

stimulation. These mechano-sensitive pathways regulate eight

acknowledged transcription factors, which lead to the expression

of �2000 genes [7,19–24]. The sheer number of mechano-sensitive
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pathways, their interactions, and their unknown dynamics in

endothelial cells covering a plaque offers a challenging problem,

to identify individual signalling cascades.

Several methods are emerging from the field of systems biology

to solve these intractable problems, which may roughly be divided

in two ways: bottom-up and top-down approaches. The bottom-up

strategy characterises small signalling networks by applying a

combination of genomics and systems biology, while exposing

cells to an environment of atherogenic risk factors [25–27]. In

the second (top-down) strategy one aims to use high throughput

genomic screens and state-of-the art bioinformatics analysis meth-

ods to identify (small) gene networks of interest [28–31]. While

both methods will lead to small networks amenable to a synthetic

biology approach, the top-down method often needs an extra step

of validation before the synthetic biology networks may be

constructed.

In this article, we describe a new platform which aims to com-

bine state-of-the-art 3-D imaging, computational modelling, cut-

ting-edge genomics, bioinformatics and systems biology to

decipher, old and new signalling pathways in endothelial cells

which will be used to rationally design new synthetic networks

aimed at treating atherosclerosis. In order to do so, we have devel-

oped a novel platform for cardiovascular studies (Fig. 1). The de-

tails of the platform will be discussed in larger detail below, and

the first studies using (parts of) this platform are presented in this

paper. Initiatives to study these networks using synthetic methods

are also presented.

2. Material and methods

2.1. Systems and synthetic platform for vascular studies

In recent years, we have developed a comprehensive, modular

imaging platform to combine state-of-the art imaging, computa-

tional methods with 3-D histological reconstruction techniques

which enables us to couple high resolution geometry of the plaque

to shear/wall stress and protein distribution (see Fig. 2), described

before. Briefly, we combine microCT with microMRI to obtain two

contours from the lumen-vessel wall interface and from the vessel

wall-adventitia interface. These contours are used to warp the

cross sections, shrunken by their histology treatment, back into

their original geometry, allowing individual cross sections to be

reconstructed in 3-D dimensions (Fig. 2). The coupling to 3-D

histological methods – as presented here – preserves the high spa-

tial resolution needed to accurately map the large heterogeneity of

atherosclerotic plaques in small animals. A further advantage of

the current method is the usage of immunohistochemistry for pro-

tein detection, and the possibility to relate our biomechanical

parameters to a wide variety of protein distributions. The high res-

olution 3-D lumen-vessel wall reconstruction is used for computa-

tional fluid dynamics. Features of the resulting stress/strain and/or

protein distributions are used to identify regions of interest on dig-

itally-derived cross sections (Fig. 3). These regions of interest steer

a robot-driven laser-capture machine-microscope system (Zeiss,

Munchen, Germany) which enables to identify and isolate cells of

interest on basis of protein distribution and/or biomechanical pro-

file. A non-contact technique is then used to isolate RNA from the

selected cells (Fig. 3).

In conditions where cellular content is too low and RNA yield

minimal, we use a statistical deconvolution technique for further

analysis. This is a statistical approach of deconvolving gene expres-

sion profiles obtained from heterogeneous tissue samples into

cell-type-specific sub-profiles. This method is based on a frame-

work first proposed by Venet et al. [32], incorporating the assump-

tion that the gene expression in a mixture of cell types is a

weighted sum of those cell types. The weights are proportional

to the relative contribution of these cell types in the mixture and

are hence invariable among genes. Subsequent studies have dem-

onstrated that the linearity assumption is valid under a wide vari-

ety of experimental conditions, especially when the cellular

composition of the heterogeneous tissue was determined in the

same object as where the RNA was obtained from [33,34]. To

deconvolve cell-specific gene expression, we applied a statistical

methodology of csSAM which, given microarray data from two

groups of biological samples and the relative cell-type frequencies

of each sample, estimates the average gene expression for each

cell-type at a group level, and uses these cellular gene expression

levels to identify differentially expressed genes at a cell-type spe-

cific level between experimental conditions.

These gene sets are subsequently analysed by Gaussian Graph-

ical Modelling (GGM) to obtain the topology of biological networks

of interest. GGM uses partial correlation to identify direct from

indirect interactions between genes [35]. On selected networks, a

stringent Gene Enrichment Analysis (GSEA) is used to identify

groups of genes that act as a group within the network. When time

dependent data are present, analysis based upon the time-delay

ARACNE module is performed [36]. Finally, we are currently

expanding these possibilities with ODEs, using (constrained) flux

balance analysis [37–40] (Fig. 4).

2.2. Platform benchmarking

In order to test this platform, we have been studying tissue

obtained from 240 ApoE �/� mice on a high cholesterol diet. Each

animal was instrumented with a shear stress modifier, which has

been shown to induce vulnerable and stable plaques in a single

vascular segment [13,41]. The progression of plaque development

has been fully characterised in previous studies and on basis of

these studies, vascular tissue was isolated at 6 and 9 weeks of pla-

que development to study gene expression profiles from vulnera-

ble and stable plaque regions [13,41]. On the basis of measured

shear stress profiles [42], low shear stress induced vulnerable pla-

que and oscillatory shear stress stable plaque regions were se-

lected on basis of which RNA was purified using the RNeasy

Fig. 1. This figure describes the platform used to identify small networks from

situations where vascular disease can be mimicked realistically. To that end a

modular image–based front has been designed that captures images, segments

images and performs biomechanical calculations to isolate regions of interest. These

regions are then used to isolate cells of interest with either laser capture

techniques, or statistical deconvolution (see text for further details) in order to

obtain cellular RNA from regions of interest. This RNA is then used for high

throughput analysis with microarrays or RNA-seq, pre-processed and normalised.

The resulting set of differentially expressed genes is analysed with state-of-the art

bioinformatics software (time-dependent ARACNE) to obtain the topology of the

networks. This topology matrix is then used to solve a linear system model which

captures the flux dynamics of the network of interest.
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Micro kit with DNase treatment (Qiagen, Germany) according to

manufacturer’s protocol. After amplification and labelling of puri-

fied RNA samples, cDNA samples were hybridized to GeneChip

Mouse Genome 430 2.0 arrays for 18 h (Affymetrix). Post-hybrid-

ization washing, scanning and image analysis were performed

according to Affymetrix protocols. The yield of RNA at 6 and

9 weeks from these regions was of high quality, but too low for a

single microarray experiment and 10 animals were subsequently

pooled for a single microarray at each time point. A total of 6

microarrays for vulnerable and stable plaques were studied at 6

and 9 weeks of cuff placement (total of 24 arrays, obtained from

240 animals: Fig. 5).

Normalisation of the microarrays was based on quartile nor-

malisation and gene-level signal estimates were generated using

the Robust Multichip Average (RMA) algorithm implemented in

Expression Console software provided by Affymetrix, including

Fig. 2. Different imaging input modules are used to obtain an accurate geometry of the (diseased) vessels. A preference for high spatial resolution techniques (microscopy,

micro-CT) is favoured over other techniques, albeit micro-MRI and ultrasound are often used to obtain functional information. State-of-the art segmentation techniques

(‘level-set methods’) are used to identify the vessel wall, which is subsequently used to mesh either the vessel lumen or the vessel wall applying linear mapping techniques. to

use computational techniques to obtain shear stress maps, or wall stress maps. High spatial resolution information from the vessel wall is obtained from an in-house

developed 3-D imaging technique. An example on the right side of the pictures shows the 3-D distribution of lipids in a plaque, coupled to a 3-D young modulus distribution

and a resulting mechanical stress distribution.

Fig. 3. From the 3-D colour distribution, regions in the vessel wall are isolated on features considered important for the process of interest. Colour coding may be related

either to wall or shear stress distributions obtained from computational techniques or to any protein distribution derived by immunohistochemistry. The software then

generates digital cross sections that serve as input for a robot-driven laser-capture machine. This machine automatically dissects the cells from the regions of interest and

processes them to obtain cellular RNA. As sometimes the yield of RNA is too low, we have also developed a technique based upon statistical deconvolution, which allows

obtaining cellular gene expression profiles from entire vessel wall, pooled RNA.
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only core probe sets. RMA background corrects, normalises and

summarises probe level intensities to provide low noise level gene

expression values (Fig. 5). Next, Principal Component Analysis

(PCA) was applied on the entire microarray to identify homoge-

neous sets. The analysis revealed that four of the microarrays

LSS9W.3, OSS9W.4, LSS6W.4, LSS6W.6 deviated from the remain-

der of the set and could be identified as outliers, resulting in 20

microarray for further analysis (Fig. 5). Subsequently, several filters

were developed to improve the signal to noise ratio of the remain-

ing test. First SCAMPA was used to filter genes that were not anno-

tated. Secondly, we filtered the genes whose mean value across all

samples was lower than the 5% percentile, which signifies the

probe sets with lowest expression levels and correspond to

background noise not directly relevant to our experiment. Thirdly,

we filtered those genes whose Coefficient of Variation (CV) ob-

tained over all samples was lower than the 5 percentile; that is,

we deleted genes which showed smallest amount of change across

all samples. After filtering, the final number of probe sets was re-

duced to 35,340 from 45,101 (Fig. 5).

3. Results

3.1. Whole-genome differential gene expression

We compared SAM and RANKPROD at a FDR level of 5% for

whole genome differential gene expression levels. For LSS6W and

Fig. 4. This picture describes the bioinformatics platform developed by us, where we use a combination of GGM and GSEA to identify modules of networks, followed by

ARACNE, when temporal data are present. While this approach offers the topology for a network, it does not necessary describes dynamics. This is acquired by implementing

linear systems theory based flux based analysis, as a last and final step.

Fig. 5. This picture describes the filters used to describe the analysis of the microarrays. After normalising the microarrays with RMA, we performed a principal component

analysis to identify homogeneity of sets of microarrays. Four arrays were found different than the clusters identifying each experimental condition and were deleted. The

remaining 20 arrays were filtered using SCAMPA, for low expression using their mean value and for absence of change during experimental intervention using their variance.

The remaining probe set was analysed in several ways using SAM, RANKPROD and ANOVA.
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OSS6W SAM identified 9758 genes as significant while RankProd

identified 3123genes and the combination of both identified

2815 genes; between groups of LSS9W and OSS9W: RankProd

identified 513 significant genes and SAM did not detect any, so

the overlap is 0; between groups of LSS6W and LSS9W: SAM iden-

tified 580 significant genes, RankProd identified 1152 genes and

the overlap is 225 genes; between groups of OSS6W and OSS9W,

14285 genes were identified by SAM as significant, 3433 genes

by RankProd and the overlap is 3226 genes.

3.2. Cell-specific differential gene expression

The Iterative Boolean procedure was tested against known cell

fractions obtained from a separate series of experiments with a

good result, indicating that the method to generate posterior PDFs

of our cellular plaque compositions produced accurate results.

Implementing the posterior PDF to the deconvolution method re-

vealed new cell-specific genes that were undetected with the clas-

sical SAM method. A first analysis, where time and location were

taken as independent variables, revealed that time was non-signif-

icant. Hence, the time-dependent samples were pooled to increase

power of the tests. As a result, the number of genes differentially

expressed between vulnerable and stable plaques were 16,645,

distributed over VSMC (1300 genes), Endothelial Cells (6300), T-

cells (4900), and Macrophages (5100).

3.3. Pathway selection

Pathway analysis was performed applying gene enrichment

analysis – which identified 49 pathways, of which 4 were activated

both in VSMC and ECs, and 45 pathways were exclusively activated

in endothelial cells. Two pathways were selected for further study:

the MAPK and PPAR pathways. The MAPK pathway is driving two

very important mechanosensitive transcription factors: the NF-

jB and KLF-2 pathways and, and consequently those TFs were fur-

ther studied in larger detail.

3.4. The NF-jB and KLF2 pathways under flow

Based on the results presented above we decided to study the

dynamic behaviour of the MAPK-NF-jB pathway and the MAPK5-

KLF2 pathway in endothelial cells under well defined flow condi-

tions in vitro. A step response in flow applied to an endothelial cell

monolayer induced an oscillation of both pathways, depending on

the level of blood flow. There was, however, a clear difference be-

tween both pathways, as the period of oscillation of the NF-jB

pathway was 20 min, and that of the KLF-2 pathway was 2 h. For

both pathways, there was an increase in frequency of oscillation

when flow was increased. Frequency modulation has been identi-

fied as an emerging mechanism for gene regulation in a variety of

cells under a diversity of experimental conditions [43–47], making

it an important problem. At present its regulation is unknown and

our group is studying this topic applying a combination of mathe-

matical modelling and experimentation measurements.

The first systems model we designed was the MAPK/IKK/NF-jB

pathway. This pathway is known to oscillate due to the presence of

two negative feedback loops: one consisting of Ij-B and NF-jB

interaction and the second one of A20-IKK interaction [44,48].

Our initial model predictions indicated that the flow-dependent

oscillations could not be caused by the accepted feedback loops

(Ij-B and A20), and we therefore gathered experimental evidence

indicating that the regulation of the eNOS-NO pathway which is

known to be controlled by NF-jB and its related nitric oxide re-

lease offers a new level of frequency modulated regulation. By

parameter estimation techniques, taken into account NO transport

and NO-inhibition studies by LNMA, we identified an unknown

influence of NO on IKK activity. Further analysis of the molecular

structure of IKK identified 3 possible sites for nitrosylation. These

sites are currently evaluated by site-directed mutagenesis.

We recently obtained evidence that, besides the oscillation of the

NF-jB pathway, the MAPK5-MEF2c-KLF2 pathway also oscillates

under flow. The reason for these oscillations is currently unknown

and we have performed a microarray analysis to further elucidate

the underlying mechanism. The initial results indicate the presence

of a negative feedback loop at the level of MEF2c-KLF2 whichmight

offer a new, initial explanation for this observation.

4. Discussion

This paper describes a new platform where sophisticated 3-D

imaging and computational methods are used to identify cells of

interest on basis of biomechanical features (shear stress and wall

stress). The isolation of RNA from these cells, subsequent micro-

array analysis and statistical deconvolution methods identified a

variety of signalling pathways unknown to endothelial cells cover-

ing a vulnerable plaque. One of these pathways, the MAPK path-

way was selected for further studies, as it was one of the

strongest activated signalling pathways in endothelial cells cover-

ing the vulnerable plaque and members of this pathway have been

shown to react to blood flow in cultured cells. Two transcription

factors regulated by the MAPK-pathway appeared to react to blood

flow, and surprisingly oscillated with the level of blood flow. Math-

ematical systems models of these pathways identified new levels

of regulation. These new findings were based upon two methods,

which will be discussed in further detail.

Deconvolution of gene expression for heterogeneous samples

can be performed accurately when sufficiently precise estimates

of the proportional representation of component cell types in each

sample is available and when expression profiles of the compo-

nents are sufficiently different. Cell proportions can be measured

through experimental methods such as fluorescence activated cell

sorting analysis and histopathological evaluation. With known

cell-type proportions in the mixture, deconvolution can be solved

as a linear regression problem in which the cell-specific gene

expression represents the regression coefficients [33,34].

When the proportions of the component cell types are unknown,

there are investigations that performed deconvolutionwith expres-

sion of signature genes in pure cell types [49]. Abbas et al. [49] de-

scribed a method to predict the proportions of white blood cell

subtypes in samples from patients with systemic lupus erythema-

tosus. First, they selected the most highly expressed signature

genes from 18 immune cells according to their expression profiles

for each cell population. Then they applied the expression data of

these signature genes to solve a linear equation for the proportions

of the 18 immune cell subtypes in both healthy donors and patients

with lupus. [50] Using deconvolution, they quantified the constitu-

ents of real blood samples and mixtures of immune-derived cell

lines and uncovered the correlations of leucocyte dynamics to clin-

ical variables and measures. Under circumstances where careful

preliminary studies have been conducted to identify expression

profiles of signature genes from pure samples that clearly distin-

guish the cell types, such deconvolution can be successful.

Without the prior measurement of cell-type proportions or the

identification of any signature genes, some studies used a variety

of methods, such as Bayesian framework, non-negative matrix fac-

torization and logarithmic data transformations [33,34,51–54].

Erkkilä et al. formalised a probabilistic model, DSection, and

showed with simulations as well as with real microarray [55] data

that DSection attains increased modelling accuracy in terms of

estimating cell type proportions of heterogeneous tissue samples

and identifying differential expression across cell types under

various experimental conditions. They incorporated the missing
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functionality of cell type proportions into the linear regression

framework through Bayesian probabilities whose shapes reflect

the uncertainties associated with the prior information, such as

cell-type proportions or cell-type-specific expression profiles. For

all model parameters, a Markov chain Monte Carlo (MCMC) sam-

pler is proposed under the assumption that the heterogeneous tis-

sues have been measured under various experimental conditions,

which may have impact on cell-type-specific expression profiles

[55].

We adapted this method to form a pipeline with the cell-type-

specific significance analysis of microarray (csSAM) method devel-

oped by Shen-Orr et al. [56]. While these authors validated their

method on synthetic mixtures of liver, brain and lung cells from

rats and the mixture expression profiles obtained in silico turned

out to be highly correlated with the experimentally measured

expression profiles for the mixtures. The sub profiles of cell-spe-

cific expression deconvolved were in good agreement with expres-

sion measured in pure cell types for a large majority of probes. We

concluded from these measurements that the combination of Mar-

kov-chain Monte Carlo modelling and csSAM seems to be a useful

tool for analysis of gene expression from heterogeneous samples

with unknown cell proportions. Indeed, our results show a good

prediction of cell types, and a consistent gene expression at differ-

ent levels of false discovery rates. Furthermore, the discovered sig-

nalling pathways were known to be shear dependent, which was

confirmed under well-controlled flow conditions.

These small networks can now be tested with synthetic meth-

ods in a newly developed environment enabling to rapidly trans-

fect primary cells with a large variety of small networks, while

placed under complex biomechanical and chemical environments.

In conclusion, this paper describes a new platform that enables

to identify new disease specific networks, applying a combination

of imaging, computational modelling and state-of-the art genom-

ics. The resulting small networks can be studied in cells applying

systemic siRNA approaches, or by placement of synthetic networks

in these cells. The latter option is currently explored and will show

new promises for smart treatment of vascular disease, like athero-

sclerosis. A first benchmark study showed promising results as

new signalling pathways were identified.
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