
This is a repository copy of Ackermann and Goodstein go functorial.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/178744/

Version: Accepted Version

Article:

Aguilera, JP, Freund, A, Rathjen, M orcid.org/0000-0003-1699-4778 et al. (1 more author) 
(2021) Ackermann and Goodstein go functorial. Pacific Journal of Mathematics, 313 (2). 
pp. 251-291. ISSN 0030-8730 

https://doi.org/10.2140/pjm.2021.313.251

This item is protected by copyright, all rights reserved. This is an author produced version 
of an article published in Pacific Journal of Mathematics. Uploaded in accordance with the 
publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ACKERMANN AND GOODSTEIN GO FUNCTORIAL

JUAN P. AGUILERA, ANTON FREUND, MICHAEL RATHJEN
AND ANDREAS WEIERMANN

Abstract. We present variants of Goodstein’s theorem that are
equivalent to arithmetical comprehension and to arithmetical trans-
finite recursion, respectively, over a weak base theory. These vari-
ants differ from the usual Goodstein theorem in that they (neces-
sarily) entail the existence of complex infinite objects. As part of
our proof, we show that the Veblen hierarchy of normal functions
on the ordinals is closely related to an extension of the Ackermann
function by direct limits.

1. Introduction

Gödel’s incompleteness theorem tells us that no reasonable frame-
work for the foundation of mathematics can allow us to prove all true
statements about the natural numbers. It is an important insight of
mathematical logic that incompleteness is more than a theoretical pos-
sibility: Several mathematical theorems have been shown to be unprov-
able in Peano arithmetic and in stronger theories [20, 22, 30, 13]. The
first example is Goodstein’s theorem, which we discuss in the following.
The Goodstein sequenceGb,m(0), Gb,m(1), . . . relative to a given start-

ing value m ∈ N and to a non-decreasing function b : N → N with
b(0) ≥ 2 is generated by the following process: Put Gb,m(0) = m. Now
assume that Gb,m(i) is already defined. If we have Gb,m(i) = 0, then
we set Gb,m(i + 1) = 0 and say that the Goodstein sequence termin-
ates. Otherwise, we consider the hereditary base b(i) representation of
Gb,m(i) (which is computed recursively, by writing the exponents of the
usual base b(i) representation in hereditary base b(i) as well). In order
to obtain Gb,m(i+1), we increase the base to b(i+1) and subtract one
from the resulting number. For example, Gb,m(i) = 2 196, b(i) = 3 and
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b(i+ 1) = 5 lead to

Gb,m(i) = 33
3
0
·2+30 + 33

0·2,

Gb,m(i+ 1) = 55
5
0
·2+50 + 55

0·2 − 1 = 48 828 149.

While the values grow fast for small exponents, Goodstein’s theorem [18]
states that they must eventually reach zero, for any starting value and
any function b as above. In fact, Goodstein did more than establish
the truth of this result: He showed that his theorem is equivalent to
the well foundedness of a certain ordinal ε0 (provably in a weak base
theory, which does not prove the equivalent statements itself).

Even before Goodstein’s work, Gentzen [14, 15] had shown that
Peano arithmetic cannot prove transfinite induction up to ε0. This
suggests an independence result, which was apparently stated in the
submitted version of Goodstein’s paper (see [24] for all historical in-
formation in this paragraph). However, there is one issue with this
independence result, which P. Bernays pointed out in his role as ref-
eree: The above formulation of Goodstein’s theorem quantifies over all
functions b : N → N. This means that it cannot be expressed in Peano
arithmetic (though an extension by set parameters would suffice). As
a consequence of this criticism, Goodstein’s published paper states the
connection with ε0 but not the independence result.

The issue with Goodstein’s independence result disappears if we fix
some definable function b : N → N. By a celebrated result of L. Kirby
and J. Paris [20], Goodstein’s theorem for b(i) = 2 + i remains un-
provable in Peano arithmetic (see [24] for a proof based on Goodstein’s
methods). Let us emphasize that the independent statement of Kirby
and Paris is very concrete: It asserts that a certain algorithm (which
computes the sequence Gb,m(0), Gb,m(1), . . . ) terminates on any input
(the starting value m). While one may expect that parts of abstract
mathematics lie beyond the scope of Peano arithmetic, it is remarkable
that the latter fails to prove a concrete statement about the termination
of a specific natural algorithm.

We have seen that Kirby and Paris’s version of Goodstein’s theorem
(the one with b(i) = 2 + i) is more concrete than the original formu-
lation (which quantifies over all b : N → N). In the present paper we
will push Goodstein’s theorem into the opposite direction: Our version
(presented below) is more abstract, since it involves existential as well
as universal quantification over infinite objects. While concrete inde-
pendence remains relevant, our abstract and more general results have
important advantages: They yield a very uniform picture, in which
variants of Goodstein’s theorem are equivalent to well-established set
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existence principles. Specifically, our approach turns Goodstein’s the-
orem into a topic for reverse mathematics (see [31] for a comprehensive
introduction). In this research programme one proves equivalences and
(non-)implications between various theorems about finite objects (rep-
resented by natural numbers) and countably infinite collections of such
objects (subsets of N).

Our variant of Goodstein’s theorem is based on a very natural idea:
When we compute Gb,m(i + 1) from Gb,m(i), we will also increase the
coefficients in our representation, not just the base. Since the base
bounds the coefficients, the latter will be increased according to a fam-
ily c = 〈ci〉i∈N of strictly increasing functions

ci : {0, . . . , b(i)− 1} → {0, . . . , b(i+ 1)− 1}.

We cannot, however, increase the coefficients arbitrarily if we want our
Goodstein sequences to terminate. As a simple but important example,
we consider the binary representation of numbers below 2b, where we
view b as the base and the exponents as coefficients. More explicitly,
the Goodstein sequence G2

b,c,m(0), G
2
b,c,m(1), . . . relative to an increasing

function b : N → N, a family c = 〈ci〉i∈N as above and a starting value
m < 2b(0) is given by G2

b,c,m(0) = m and

G2
b,c,m(i+1) =





0 if G2
b,c,m(i) = 0,

2ci(n0) + . . .+ 2ci(nk) − 1 if G2
b,c,m(i) = 2n0 + . . .+ 2nk

with b(i) > n0 > . . . > nk.

Since we will study different representations of numbers, we have in-
cluded a superscript 2 that indicates binary representation. To call
b(i) the base is somewhat awkward in the present example, but we will
nevertheless keep this terminology. For b(i) = 2 + i, ci(n) = n+ 1 and
m = 3 the definition yields

G2
b,c,m(0) = 21 + 20, G2

b,c,m(1) = 22 + 21 − 1 = 22 + 20, . . . ,

. . . G2
b,c,m(i) = 2i+1 + 20, . . . .

Why does this sequence not reach zero? A glance at Figure 1 is il-
luminating. In both subfigures, the first columns represent the sets
{0, . . . , b(i) − 1} with b(i) = 2 + i. The solid arrows represent the
functions ci that we employ to change coefficients. The last column of
each subfigure represents the order that we obtain by glueing along the
arrows, or in categorical terms: the direct limit. In the left subfigure
we have ci(n) = n, as in the usual Goodstein theorem. The direct
limit is isomorphic to the well order N. In the right subfigure we have
ci(n) = n + 1, as in our example of a Goodstein sequence that does
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not terminate. We will see that such an example can only exist if there
is an infinitely descending sequence in the direct limit. In the present
case, the latter is isomorphic to {p ∈ Z | p ≤ 0}.

0
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1

2

0

1

2

3

...

0
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0

1

2

0

1

2

3

...

Figure 1. Two ways to increase coefficients for repres-
entations with base b(i) = 2 + i. In the left figure, no
coefficients are increased, which yields the limit N. In the
right figure, all coefficients are increased by one, which
yields the limit {p ∈ Z |p ≤ 0}.

In Figure 1 we see two ways to increase coefficients. Of course there
are many more. In the direct limit, one can obtain any countable linear
order (which just means that any such order is an increasing union of
finite suborders). In particular, this includes all countable ordinals,
which indicates the strength of our approach. Our next objective is a
condition on the functions ci which ensures that there is no descending
sequence in the direct limit. Let us agree to abbreviate

cij := cj−1 ◦ . . . ◦ ci : {0, . . . , b(i)− 1} → {0, . . . , b(j)− 1}

for i < j, where we assume that ck has (co-)domain as in the following.

Definition 1.1. A Goodstein system is a pair (b, c) of a non-decreasing
function b : N → N with b(0) > 0 and a family c = 〈ci〉i∈N of strictly
increasing functions

ci : {0, . . . , b(i)− 1} → {0, . . . , b(i+ 1)− 1}

with the following property: For any function d : N → N with d(i) <
b(i) for all i ∈ N and any infinite Y ⊆ N, there are i, j ∈ Y with i < j
and cij(d(i)) ≤ d(j).
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For b(i) = 2 + i and ci(n) = n+ 1 as in the example above, the con-
stant function with values d(i) = 0 witnesses that (b, c) is no Goodstein
system, as i < j entails

cij(d(i)) = cij(0) = j − i > 0 = d(j).

This corresponds to the following observation about the right half of
Figure 1: The points labelled zero in consecutive columns are mapped
to a descending sequence in the direct limit. It is no coincidence that
our counterexample is eliminated: We will see that all Goodstein se-
quences that are defined with respect to a Goodstein system do ter-
minate. This fact will be called the extended Goodstein theorem.
The following result determines the precise strength of the extended

Goodstein theorem for the binary representation (i. e. for sequences
G2

b,c,m(0), G
2
b,c,m(1), . . . as defined above). We recall that RCA0 (re-

cursive comprehension axiom) is a weak base theory that is commonly
used in reverse mathematics (see [31]). Arithmetical comprehension is
a fundamental set existence principle, which is equivalent (over RCA0)
to Ascoli’s lemma and to Kőnig’s lemma for finitely branching trees.
The extension of RCA0 by arithmetical comprehension proves the
same statements about natural numbers (i. e. the same statements of
first order arithmetic) as Peano arithmetic. Since RCA0 and arith-
metical comprehension are valid, the result does, in particular, prove
the extended Goodstein theorem for the binary representation. We
point out that the theorem will be restated and proved in the following
section, which explains the numbering.

Theorem 2.9. The following are equivalent over RCA0:

(i) arithmetical comprehension,
(ii) the extended Goodstein theorem for the binary representation:

for any Goodstein system (b, c) and any m < 2b(0) there is an
i ∈ N with G2

b,c,m(i) = 0.

Let us observe that the definition of Goodstein systems involves uni-
versal quantification over infinite objects (“for all d : N → N and
Y ⊆ N”). In the extended Goodstein theorem the quantification be-
comes existential, since the notion of Goodstein system appears in an
assumption. Hence the extended Goodstein theorem does entail the
existence of infinite objects, as claimed above. This is unavoidable if
we want an equivalence with arithmetical comprehension, which does
itself assert the existence of uncomputable sets.

A detailed proof of Theorem 2.9 will be given in the following section.
Very briefly, the idea is to extend the operation n 7→ 2n from natural
numbers to (countable) linear orders: Its value on an order (X,<X) is
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defined as the set

2X = {〈x0, . . . , xk−1〉 | x0, . . . , xk−1 ∈ X with xk−1 <X . . . <X x0}

of finite descending sequences in X, ordered lexicographically. It is
known that arithmetical comprehension is equivalent to the statement
that X 7→ 2X preserves well orders (see [17, 19]). To prove that (i)
implies (ii), one verifies that the direct limit X over a given Good-
stein system (b, c) is well founded (cf. Figure 1). One then shows that
a Goodstein sequence G2

b,c,m(0), G
2
b,c,m(1), . . . can be mapped to a se-

quence in 2X , which descends until the Goodstein sequence reaches
zero. Since arithmetical comprehension ensures that 2X is well foun-
ded, this must happen eventually. To prove the converse, one observes
that any countable well order arises as the direct limit over some Good-
stein system (b, c). One then shows that any descending sequence in 2X

is majorized by the image of some Goodstein sequence (possibly after
modifying b). Using (ii), one can conclude that 2X contains no infin-
itely descending sequences. By the aforementioned result this suffices
to establish (i).

The argument from the previous paragraph remains valid if we re-
place the binary representation by other representations with suit-
able uniqueness and monotonicity properties. A general framework
is provided by J.-Y. Girard’s notion of dilator [16] (cf. the related ap-
proaches by P. Aczel [4] and S. Feferman [8], as well as the discus-
sion in [25]): Consider the category LO of linear orders with the or-
der embeddings (strictly increasing functions) as morphisms. The cat-
egory Nat of natural numbers is the full subcategory with objects b :=
{0, . . . , b − 1} for b ∈ N (ordered as usual). Let us now introduce one
of our central objects of study:

Definition 1.2. A Goodstein dilator is a functor D : Nat → LO such
that

(i) the orders D(b) for b ∈ N are equal (not just isomorphic) to
initial segments of N (with the usual order between natural
numbers),

(ii) the functor D preserves pullbacks,
(iii) we have 0 ∈ D(0) and D(empb)(0) = 0 ∈ D(b) for all num-

bers b ∈ N, where we write empb : 0 = ∅ → {0, . . . , b − 1} = b
for the empty function.

In view of condition (i), we consider elements of D(b) as numbers
(not terms) that have a base b representation. Note in particular that
σ − 1 ∈ D(b) is defined for 0 6= σ ∈ D(b). To change coefficients ac-
cording to a strictly increasing function c : b → b′, one simply applies
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the morphism D(c) : D(b) → D(b′). Condition (ii) ensures that these
morphisms determine representations in a more familiar sense (cf. the
expression D(ena)(σ) in the proof of Proposition 2.5 below, where a can
be seen as a list of coefficients). Also, condition (ii) will allow us to
define a well behaved extension D : LO → LO of D into a transform-
ation of linear orders (see [16] and the following section). We remark
that conditions (i) and (ii) are similar to the definition of weakly finite
dilators, except that the latter must have finite values D(b) for b ∈ N.
We allow D(b) = N, in order to account for the possibility that every
number has a base b representation. Let us point out that our defini-
tion does not require D to preserve well orders. This means that the
extension of a Goodstein dilator may be a pre-dilator rather than a
dilator in the strict sense. Condition (iii) can be seen as a very weak
form of well foundedness: It ensures that the elements 0 ∈ D(b) do not
map to a descending sequence in the direct limit D(N). We will use
this condition in the proof of Theorem 2.8 below. It can probably be
weakened, but the present version of condition (iii) is satisfied in our
applications and appears quite natural: Intuitively speaking, it asserts
that the number zero has a representation without coefficients that is
independent of the base. We will study the following general notion of
Goodstein sequence:

Definition 1.3. For a Goodstein dilator D, a Goodstein system (b, c)
and a natural number m ∈ D(b(0)), we define the Goodstein sequence
GD

b,c,m(0), G
D
b,c,m(1), . . . by GD

b,c,m(0) = m and

GD
b,c,m(i+ 1) =

{
0 if GD

b,c,m(i) = 0,

D(ci)(G
D
b,c,m(i))− 1 otherwise.

When only given a non-decreasing b : N → N with b(0) > 0 and an m ∈
D(b(0)), we set GD

b,m(i) := GD
b,c,m(i) for the functions cj : b(j) → b(j+1)

with cj(n) = n.

Note that we can indeed subtract one in the second case of the
case distinction, since 0 < GD

b,c,m(i) in D(b(i)) entails 0 ≤ D(ci)(0) <

D(ci)(G
D
b,c,m(i)) in D(b(i+ 1)). By generalizing the argument for The-

orem 2.9 that we have sketched above, one can prove (a suitable form-
alization of) the next theorem. Conversely, the official proof that we
give in the next section will deduce Theorem 2.9 from the following.

Theorem 2.8. The theory RCA0 proves that the following are equi-
valent for any Goodstein dilator D:
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(i) the extended Goodstein theorem for D: for any Goodstein sys-
tem (b, c) and anym ∈ D(b(0)) there is an i ∈ N with GD

b,c,m(i) =
0,

(ii) the extension D : LO → LO of D : Nat → LO preserves well
foundedness, i. e. the order D(X) is well founded for any well
order X.

The equivalence in the theorem remains valid when one fixes X = N
in (ii) and, at the same time, disallows coefficient changes in (i), by
demanding ci(n) = n for all n < b(i). For the Goodstein dilator D that
is induced by the hereditary exponential notation, this equivalence (but
not the one with coefficient changes) was proved in Goodstein’s original
paper [18]. A more detailed formulation of the general result without
coefficient changes is provided by Theorem 2.10 below.

The idea to investigate Goodstein sequences in terms of dilators is
due to M. Abrusci, J.-Y. Girard and J. van de Wiele [1, 2]. The lat-
ter have focused on concrete versions of Goodstein’s theorem, such as
the one of Kirby and Paris (“finite combinatorics”). They have not
considered more abstract (“infinitary”) results in reverse mathemat-
ics, such as our Theorems 2.9 and 2.8. In their papers, Goodstein
sequences are defined with respect to a given dilator, but coefficients
are not allowed to increase.

The binary representation of natural numbers can be conceived as
a Goodstein dilator with extension X 7→ 2X , as we shall see in the
following section. In view of this fact, Theorem 2.8 reduces Theorem 2.9
to the known equivalence between arithmetical comprehension and the
statement that X 7→ 2X preserves well foundedness. The latter is an
example of a well ordering principle. Many equivalences between well
ordering principles and important set existence principles can be found
in the literature (see [21, 5, 28, 23, 27, 26]). Do they all give rise
to instances of the extended Goodstein theorem? Let us explore this
question in a specific case:

The Veblen hierarchy of normal functions on the ordinals (see [29,
21]) can be cast as a transformationX 7→ ϕ1+X0 of linear orders (where
1+X represents the extension of X by a new minimum element). By a
result of H. Friedman (see [28, 21] for published proofs), the following
are equivalent over RCA0:

• arithmetical transfinite recursion,
• the transformation X 7→ ϕ1+X0 preserves well foundedness.

We recall that arithmetical transfinite recursion is a much stronger set
existence principle than arithmetical comprehension. It is equivalent
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(over RCA0) to Ulm’s theorem on Abelian groups and to the clopen
Ramsey theorem (see [31]).

The transformationX 7→ ϕ1+X0 can be turned into a dilator (cf. [32]),
but the latter does not arise as the extension of a Goodstein dilator:
Not even the value ϕ10 ∼= ε0 for the finite argument X = 0 = ∅ is
isomorphic to an initial segment of N. For this reason, Theorem 2.8
does not apply immediately. One can try, however, to “slow down” the
transformation X 7→ ϕ1+X0, so that it preserves finite arguments but
“catches up” on infinite ones. It is known that this is possible in the
case of ordinal exponentiation: The operation α 7→ ωα does not arise
as the extension of a Goodstein dilator, since ω2 is no initial segment
of N. However, the equation ωα = 2ω·α ensures that many important
properties are inherited by the slower transformation α 7→ 2α. We have
seen that the latter does arise from a Goodstein dilator, which allows
us to apply Theorem 2.8 to deduce Theorem 2.9.

As one of our main results, we will show that the Veblen hierarchy is
closely connected to a Goodstein dilator that is based on a variant of
the Ackermann function (cf. [3]). Consider the fast-growing hiearchy of
functions Fb : N → N for b ∈ N, as determined by the recursive clauses

F0(n) = n+ 1 and Fb+1(n) = F 1+n
b (n) = Fb ◦ . . . ◦ Fb︸ ︷︷ ︸

1+n iterations

(n).

Our variant of the Ackermann function is given by b 7→ Fb(1). In
Section 3 we will define a Goodstein dilator A : Nat → LO with values

A(b) = {0, . . . , Fb(1)− 1}

on objects b ∈ N (note that it remains to specify the action on morph-
isms). It is well-known that RCA0 cannot prove the totality of the
Ackermann function, since the latter grows faster than any primitive
recursive function. For the following considerations, we thus extend our
base theory by the principle IΣ0

2 of Σ0
2-induction (see the beginning of

Section 3 for more details).
Once we have defined the action of A : Nat → LO on morphisms

(see Section 3), we obtain an extension into a functor A : LO → LO.
The following result relates this extension to the Veblen hierarchy. For
ordersX and Y , we writeX � Y to indicate that there is an embedding
of X into Y . The sum X + Y is defined as the disjoint union with
x <X+Y x′ <X+Y y <X+Y y′ for elements x <X x′ of X and elements
y <Y y′ of Y . In the product X × Y , an inequality (x, y) <X×Y (x′, y′)
holds if we have x <X x′, or x = x′ and y <Y y′. By 2+X = 1+(1+X)
we denote the extension of X by two bottom elements.
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Theorem 3.20 (RCA0 + IΣ0
2). We have

A(X) � ϕ1+X0 � A((2 +X)× N)

for any linear order X.

We point out that X ∼= α entails (2+X)×N ∼= ω ·(2+α) in the sense
of ordinal arithmetic. When α is a non-zero multiple of ωω (e. g. an
ε-number), then we have ω · (2 + α) = α = 1+ α, so that the orders in
the previous theorem are isomorphic.

Definition 1.3 yields Goodstein sequences GA
b,c,m(0), G

A
b,c,m(1), . . . for

the Goodstein dilator A : Nat → LO (which also depend on the ac-
tion of A on morphisms). By Theorems 2.8 and 3.20, the associated
version of Goodstein’s theorem is equivalent to the statement that
X 7→ ϕ1+X0 preserves well foundedness. Together with Friedman’s
result from above, we obtain the following:

Theorem 3.21. The following are equivalent over RCA0 + IΣ0
2:

(i) arithmetical transfinite recursion,
(ii) when X is a well order, so is A(X) (where A : LO → LO extends

the Goodstein dilator A : Nat → LO based on the Ackermann
function),

(iii) the extended Goodstein theorem for the Goodstein dilator A: for
any Goodstein system (b, c) and any m ∈ A(b(0)) there is an
i ∈ N with GA

b,c,m(i) = 0.

It is interesting to compare this theorem with a result of T. Arai,
D. Fernández-Duque, S. Wainer and A. Weiermann [7], which shows
that a different Ackermannian Goodstein theorem is independent of
RCA0 plus arithmetical transfinite recursion.

2. Goodstein sequences and well ordering principles

In this section we explain how a Goodstein dilator D : Nat → LO can
be extended into a transformation D : LO → LO of linear orders. The
construction is due to Girard [16] and has also been presented in [10].
Since the setting in both cited sources is somewhat different from ours,
we recall the most relevant arguments. Once the construction of D
is complete, we prove Theorem 2.8 from the introduction: Goodstein
sequences with respect to D terminate if, and only if, D preserves well
foundedness. The binary representation of natural numbers will be
used as a running example. The information from this example allows
us to derive Theorem 2.9 at the end of the section.

The notion of Goodstein dilator has been explained in Definition 1.2.
Working in second order arithmetic, we assume that Goodstein dilators
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are represented by subsets of N: Both objects n := {0, . . . , n− 1} and
morphisms f : m → n of the category Nat can be coded by natural
numbers. A functor D : Nat → LO can thus be given as a set of
tuples (n, σ) with σ ∈ D(n), (n, σ, τ) with σ <D(n) τ , and (f, σ, τ) with
D(f)(σ) = τ .

To decide whether a given functor D : Nat → LO is a Goodstein
dilator, we need to check if it preserves pullbacks. Our next objective
is a criterion that facilitates this task. As preparation, we introduce
the finite powerset functor [·]<ω on the category of sets, with

[X]<ω = “the set of finite subsets of X”,

[f ]<ω(a) = {f(x) | x ∈ a} (with f : X → Y and a ∈ [X]<ω).

ForX = n = {0, . . . , n−1}, the set [n]<ω is, of course, the full power set.
We will also write [X]<ω whenX is a linear order, omitting the forgetful
functor to its underlying set. Conversely, subsets of the latter will
often be considered as suborders. We can now formulate the promised
criterion. Note that rng(f) denotes the range (in the sense of image)
of a function f .

Proposition 2.1 (RCA0). The following are equivalent for any func-
tor D : Nat → LO:

(i) D preserves pullbacks,
(ii) there is a natural transformation supp : D ⇒ [·]<ω such that

suppn(σ) ⊆ rng(f) ⇒ σ ∈ rng(D(f))

holds for any morphism f : m → n and any σ ∈ D(n).

If a natural transformation as in (ii) exists, then it is unique.

The proposition is essentially implicit in [16, Theorem 2.3.12]. For
an explicit proof in our setting, we refer to the appendix of the arXiv
version of the present paper, which is available as arXiv:2011.03439.
Using Proposition 2.1, it is straightforward to verify that the binary
representation of numbers gives rise to a Goodstein dilator, as promised
in the introduction:

Example 2.2. Any natural number below 2n can be uniquely written
in the form 2n0 + · · · + 2nk−1 with n > n0 > . . . > nk−1 (take k = 0
to represent zero). In the present example we always assume that
numbers are written in this form, i. e. with descending exponents. The
lexicographic order between the lists of exponents coincides with the
usual order between the represented numbers. We can thus define a



12 AGUILERA, FREUND, RATHJEN, WEIERMANN

functor 2 : Nat → LO by setting

2(n) := {0, . . . , 2n − 1},

2(f)(2n0 + · · ·+ 2nk−1) := 2f(n0) + · · ·+ 2f(nk−1).

In order to show that we have a Goodstein dilator, we must prove
that our functor preserves pullbacks. To apply the criterion from Pro-
position 2.1, we define a family of functions suppn : 2(n) → [n]<ω by
setting

suppn(2
n0 + · · ·+ 2nk−1) := {n0, . . . , nk−1}.

Naturality is readily verified. Now assume we have suppn(2
n0 + · · · +

2nk−1) ⊆ rng(f) for a morphism f : m → n. For i < k we can define mi

by stipulating f(mi) = ni. Since the morphism f is order preserving,
we have m > m0 > . . . > mk−1. This means that 2m0 + · · · + 2mk−1 ∈
2(m) is represented in the required form. By construction, we get

2n0 + · · ·+ 2nk−1 = 2(f)(2m0 + · · ·+ 2mk−1) ∈ rng(2(f)),

as required for Proposition 2.1. Let us also observe that we have
0 ∈ {0} = 2(0) and 2(f)(0) = 0 for any morphism f , so that con-
dition (iii) from Definition 1.2 is satisfied. In the introduction we have,
on the one hand, given an ad hoc definition of Goodstein sequences
G2

b,c,m(0), G
2
b,c,m(1), . . . for the binary representation. On the other

hand, Definition 1.3 yields Goodstein sequences GD
b,c,m(0), G

D
b,c,m(1), . . .

relative to an arbitrary Goodstein dilator D. One readly checks that
the two definitions coincide when D is the Goodstein dilator 2 that we
have just defined.

Our next objective is the extension of a Goodstein dilator D : Nat →
LO into a functor D : LO → LO. The crucial idea (due to [16]) is to
view a given linear order X as the direct limit of its finite suborders a ∈
[X]<ω. Let us write |a| ∈ N for the cardinality of such an order.
Intuitively speaking, the unique isomorphism a ∼= |a| = {0, . . . , |a|−1}
(where the right side is ordered as usual) should induce an isomorphism
D(a) ∼= D(|a|). Note that D(a) is not officially explained yet, while
D(|a|) is defined when D is a Goodstein dilator. Since D is to be a
functor, the inclusion a →֒ X should give rise to a morphism D(|a|) ∼=
D(a) → D(X). Now the idea is to define D(X) as the direct limit
over these morphisms. Concretely, we will define the underlying set of
D(X) as a collection of pairs (a, σ) with a ∈ [X]<ω and σ ∈ D(|a|).
Intuitively speaking, such a pair represents the image of σ under the
indicated morphism.

The set D(X) should not, however, contain all pairs of the indicated
form. To explain why, we introduce some notation that will also be



ACKERMANN AND GOODSTEIN GO FUNCTORIAL 13

needed below: Given an embedding f : a → b between finite orders,
let us write |f | : |a| → |b| for the unique morphism that makes the
following diagram commute:

a b

|a| = {0, . . . , |a| − 1} |b| = {0, . . . , |b| − 1}

∼=

f

∼=

|f |

We also agree to write ιba : a →֒ b for the inclusion between subor-
ders a ⊆ b ∈ [X]<ω. Intuively speaking, the following diagram should
commute:

D(|a|) ∼= D(a)

D(X)

D(|b|) ∼= D(b)

D(|ιba|)

In terms of our representations, this means that the pairs (a, σ) and
(b,D(|ιba|)(σ)) should correspond to the same element of D(X). In
search for a criterion that excludes the “superfluous” representation
(b,D(|ιba|)(σ)), we observe the following: Let supp : D ⇒ [·]<ω be the
natural transformation provided by Proposition 2.1. If we have a ( b,
then |ιba| is not surjective, so that we get

supp|b|(D(|ιba|)(σ)) = [|ιba|]
<ω ◦ supp|a|(σ) ⊆ rng(|ιba|) ( |b|.

On an intuitive level, the fact that we have a proper inclusion means
that b is bigger than required. We will see that the opposed condition
supp|a|(σ) = |a| in the following definition suffices to guarantee unique
representations. The following coincides with [10, Definition 2.2].

Definition 2.3 (RCA0). Consider a Goodstein dilator D. For each
linear order X, we define a set D(X) by

D(X) := {(a, σ) | a ∈ [X]<ω and σ ∈ D(|a|) with supp|a|(σ) = |a|},

where supp : D ⇒ [·]<ω is the natural transformation from Propos-
ition 2.1. To define a binary relation <D(X) on the set D(X), we
stipulate

(a, σ) <D(X) (b, τ) :⇔ D(|ιa∪ba |)(σ) <D(|a∪b|) D(|ιa∪bb |)(τ).

Given an order embedding f : X → Y , we define a map D(f) :
D(X) → D(Y ) by

D(f)((a, σ)) := ([f ]<ω(a), σ),
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which is permitted in view of |[f ]<ω(a)| = |a|.

The following result does, in particular, assert that (D(X), <D(X))

is a linear order whenever the same holds for X = (X,<X).

Proposition 2.4 (RCA0). If D is a Goodstein dilator, then the con-
structions from Definition 2.3 yield a functor D : LO → LO.

Proof. In [10, Lemma 2.2], the same result has been shown in a stronger
base theory. It is straightforward to check that the argument goes
through in RCA0 as well. We only recall one particularly instructive
part of the argument: The claim that <D(X) is trichotomous is readily
reduced to the implication

D(|ιa∪ba |)(σ) = D(|ιa∪bb |)(τ) ⇒ (a, σ) = (b, τ).

Assuming that the antecendent holds, we can use the uniqueness con-
dition supp|a|(σ) = |a| from Definition 2.3 and naturality to deduce

rng(|ιa∪ba |) = [|ιa∪ba |]<ω ◦ supp|a|(σ) = supp|a∪b| ◦D(|ιa∪ba |)(σ) =

= supp|a∪b| ◦D(|ιa∪bb |)(τ) = [|ιa∪bb |]<ω ◦ supp|b|(τ) = rng(|ιa∪bb |).

By the definition of | · |, the diagram

a a ∪ b b

|a| |a ∪ b| |b|

∼=

ιa∪b
a

∼= ∼=

ιa∪b
b

|ιa∪b
a | |ιa∪b

b
|

commutes. One readily infers |a∪b| = rng(|ιa∪ba |)∪rng(|ιa∪bb |). Together
with the above we get rng(|ιa∪ba |) = |a ∪ b| = rng(|ιa∪bb |), which entails
|a| = |a ∪ b| = |b| and hence a = b. It follows that |ιa∪ba | = |ιa∪bb | and
hence D(|ιa∪ba |) = D(|ιa∪bb |) are the identity (on |a ∪ b| and D(|a ∪ b|),
respectively). Thus the antecedent of the above implication also yields
σ = τ , as required. �

Extending the constructions from Definition 2.3, one can define a
natural transformation supp : D → [·]<ω by setting suppX((a, σ)) := a.
It is straightforward to verify an implication as in part (ii) of Propos-
ition 2.1. One can conclude that the functor D : LO → LO preserves
direct limits as well as pullbacks. If it also preserves well foundedness,
then it is a dilator in the usual sense (cf. [16]). These additional obser-
vations are not strictly needed in the present paper. For details we refer
to [10, Lemma 2.2]. Let us now show that D is indeed an extension
of D.
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Proposition 2.5 (RCA0). For each Goodstein dilator D : Nat → LO

there is a natural isomorphism ηD : D ↾ Nat ⇒ D, where D ↾ Nat

denotes the restriction of the functor D : LO → LO to the category of
natural numbers.

Proof. This has been shown in [12, Lemma 2.6]. We reproduce the
most informative part of the argument: Let us recall that elements of
D(n) have the form (a, σ) with a ⊆ n = {0, . . . , n− 1} and σ ∈ D(|a|).
Writing ena : |a| → n for the strictly increasing function with range a,
the component ηDn : D(n) → D(n) can be given by

ηDn ((a, σ)) := D(ena)(σ).

In order to show that ηDn is surjective, we consider an arbitrary ele-
ment τ ∈ D(n). Let us set a := suppn(τ), where supp : D ⇒ [·]<ω

is the natural transformation from Proposition 2.1. According to the
latter, we get τ = D(ena)(σ) for some σ ∈ D(|a|). Due to naturality, we
see

[ena ]
<ω(supp|a|(σ)) = suppn(D(ena)(σ)) = suppn(τ) = a,

which forces supp|a|(σ) = a. In view of Definition 2.3, this yields

(a, σ) ∈ D(n). By construction we have

τ = D(ena)(σ) = ηDn ((a, σ)) ∈ rng(ηDn ),

as desired. To see that (a, σ) <D(n) (b, τ) implies ηDn (σ) <D(n) η
D
n (τ),

one applies Definition 2.3 and observes that the following diagram com-
mutes (which is the case since all arrows are of the form |ι| for an
inclusion ι):

|a| |a ∪ b| |b|

n = |n|

|ιa∪b
a |

ena
en
a∪b

|ιa∪b
a |

en
b

Naturality with respect to a morphism f : m → n is readily deduced
from the fact that we have f ◦ ea = e[f ]<ω(a) for a ⊆ m (note that both
functions enumerate the set [f ]<ω(a) ⊆ n in increasing order). �

It will also be convenient to know that the previous proposition de-
termines D in the following sense:

Proposition 2.6 (RCA0). Let D : Nat → LO be a Goodstein dilator

and D̂ : LO → LO a functor. Assume that

(i) there is a natural isomorphism between D and the restriction of

D̂ to the category of natural numbers, and
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(ii) there is a natural transformation ŝupp : D̂ ⇒ [·]<ω such that

ŝuppY (σ) ⊆ rng(f) ⇒ σ ∈ rng(D̂(f))

holds for any order embedding f : X → Y and any element
σ ∈ D(Y ).

Then there is a natural isomorphism between D̂ and the extension D
of D.

To be precise, we should point out that the functor D̂ : LO → LO

cannot be given as a subset of N (not even if we restrict to countable

orders). We assume that D̂ is given via ∆0
1-definitions of the relations

σ ∈ D̂(X), σ <D̂(X) τ and D̂(f)(σ) = τ . The following argument

transforms these into a ∆0
1-definition of ηX(σ) = τ , where we write

ηX : D(X) → D̂(X) for the components of the desired isomorphism.

Proof. Assumption (ii) ensures that D̂ is a prae-dilator in the sense
of [10, Section 2] (and a dilator if it preserves well foundedness). The
result can now be obtained by combining Proposition 2.1 and Lemma 2.3

of [10]. To describe the desired isomorphism η : D ⇒ D̂ more expli-

citly, we write η0 : D → D̂ ↾Nat for the natural isomorphism provided
by assumption (i). For a linear order X, we define eXa : |a| → X as the
embedding with range a ∈ [X]<ω. We can now set

ηX((a, σ)) := D̂(eXa ) ◦ η
0
|a|(σ).

To verify the required properties, one argues as in the proof of Pro-
position 2.5. Where the latter refers to Proposition 2.1, one now uses
assumption (ii) of the present proposition. �

Our next goal is to describe the extension 2 : LO → LO of the
Goodstein dilator 2 : Nat → LO from Example 2.2. The condi-
tion supp|a|(σ) = |a| from Definition 2.3 amounts to

{n0, . . . , nk−1} = suppn(2
n0 + · · ·+ 2nk−1) = n = {0, . . . , n− 1},

which requires n = k and ni = k − 1 − i (note n0 > · · · > nk−1).
This means that elements of 2(X) are of the form (a, 2k−1+ · · ·+20) =
(a, 2k−1), where a ∈ [X]<ω has k elements. For a = {x0, . . . , xk−1} with
xk−1 <X · · · <X x0 ∈ X, the pair (a, 2k−1) does intuitively correspond
to the element 〈x0, . . . , xk−1〉 of the order 2X from the introduction.
To justify this claim in detail, we would need to analyse the order
relation <2(X) that is determined by Definition 2.3. This is tedious,
even in the relatively simple case at hand. Fortunately, Proposition 2.6
suggests an alternative approach:
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Example 2.7. Given a linear order X = (X,<X), we consider the set

2̂(X) := {〈x0, . . . , xk−1〉 | x0, . . . , xk−1 ∈ X with xk−1 <X . . . <X x0}

with the lexicographic order, which is given by

〈x0, . . . , xk−1〉 <2̂(X) 〈x
′
0, . . . , x

′
m−1〉 ⇔





either xi = x′
i for all i < k < m,

or there is a j < min{k,m}
with xj <X x′

j and xi = x′
i

for all i < j.

In the introduction we have denoted the same order by 2X , which is
the most common notation in the literature. By changing the notation
to 2̂(X), we aim to distinguish the present construction from the one
in Example 2.2. Given an order embedding f : X → Y , we can define
an embedding 2̂(f) : 2̂(X) → 2̂(Y ) by setting

2̂(f)(〈x0, . . . , xk−1〉) := 〈f(x0), . . . , f(xk−1)〉.

It is straightforward to see that this turns 2̂ : LO → LO into a functor.
The restriction of this functor to the category of natural numbers is
isomorphic to the functor 2 : Nat → LO from Example 2.2, as witnessed
by the maps

2(n) ∋ 2n0 + · · ·+ 2nk−1 7→ 〈n0, . . . , nk−1〉 ∈ 2̂(n).

Let us point out that the argument 2n0+ · · ·+2nk−1 is a natural number
(rather than a term), which is represented according to the convention
n0 > · · · > nk−1 that we have fixed in Example 2.2. Now define a
family of functions ŝuppX : 2̂(X) → [X]<ω by setting

ŝuppX(〈x0, . . . , xk−1〉) := {x0, . . . , xk−1}.

It is straightforward to see that the condition from Proposition 2.6 is
satisfied. We can thus conclude that there is a natural isomorphism
between the functor 2̂ : LO → LO and the extension 2 : LO → LO of
the Goodstein dilator 2 : Nat → LO from Example 2.2. In particular,
the map X 7→ 2̂(X) preserves well foundedness (i. e. is a dilator) if, and
only if, the map X 7→ 2(X) does, provably in RCA0.

Let us now come to the main result of this section, which was already
stated in the introduction. We refer to Definitions 1.1 and 1.3 for
the notion of Goodstein system and the general Goodstein sequences
GD

b,c,m(0), G
D
b,c,m(1), . . . , respectively.

Theorem 2.8. The theory RCA0 proves that the following are equi-
valent for any Goodstein dilator D:
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(i) the extended Goodstein theorem for D: for any Goodstein sys-
tem (b, c) and anym ∈ D(b(0)) there is an i ∈ N with GD

b,c,m(i) =
0,

(ii) the extension D : LO → LO of D : Nat → LO preserves well
foundedness, i. e. the order D(X) is well founded for any well
order X.

Proof. Let us first assume (i) and deduce (ii). Aiming at the latter,
we consider a well order X. We may assume that X is non-empty,
say ⋆ ∈ X: Otherwise, replace X by X ′ := X ∪ {⋆}; the obvious
embedding ι : X → X ′ induces an embedding D(ι) : D(X) → D(X ′),
so that D(X) is well founded if the same holds for D(X ′). Let us
now consider an infinite sequence (a0, σ0), (a1, σ1), . . . in D(X) (recall
ai ∈ [X]<ω from Definition 2.3). For i ∈ N we set

b(i) := |{⋆} ∪ a0 ∪ · · · ∪ ai|.

Then b : N → N is non-decreasing, and the presence of ⋆ ensures b(0) >
0, as required by Definition 1.1. For i ≤ j we define cij : b(i) → b(j) as
the unique function that makes the following diagram commute:

b(i) = {0, . . . , b(i)− 1} {⋆} ∪ a0 ∪ · · · ∪ ai

X

b(j) = {0, . . . , b(j)− 1} {⋆} ∪ a0 ∪ · · · ∪ aj

cij

∼=

∼=

Here the horizontal arrows are order isomorphisms with respect to the
usual order on the sets b(k) ⊆ N. This entails that cij is strictly
increasing. We set ci := ci,i+1 to get cij = cj−1 ◦ · · · ◦ ci, as in the
paragraph before Definition 1.1. To see that b and c := 〈ci〉i∈N form a
Goodstein system in the sense of that definition, we consider a function
d : N → N with d(i) < b(i), as well as an infinite set Y ⊆ N. Let us
enumerate the latter as Y = {y(0), y(1), . . . } with y(0) < y(1) < . . . in
increasing order. We now define d′(k) ∈ X as the image of d(y(k)) ∈
b(y(k)) under the following function (cf. the previous diagram):

b(y(k)) {⋆} ∪ a0 ∪ · · · ∪ ay(k) X

d(y(k)) d′(k)

∼=

∈ ∈

Due to the assumption that X is a well order, we must have d′(k) ≤X

d′(k + 1) for some k ∈ N. Set i := y(k) and j := y(k + 1), and observe
i < j ∈ Y . Combining the definition of d′(k) with the diagram that
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defines cij, we see that cij(d(i)) ∈ b(j) is mapped to d′(k) ∈ X, while
d(j) ∈ b(j) is mapped to d′(k + 1) ∈ X. Since the relevant function
from b(j) to X is an embedding, we can invoke d′(k) ≤X d′(k + 1)
to infer cij(d(i)) ≤ d(j). This completes the proof that (b, c) is a
Goodstein system in the sense of Definition 1.1. Now consider the
inclusions ιi : ai → {⋆}∪a0∪· · ·∪ai for i ∈ N. According to a previous
definition, the function |ιi| : |ai| → b(i) is the unique morphism that
makes the following diagram commute:

ai {⋆} ∪ a0 ∪ · · · ∪ ai

|ai| = {0, . . . , |ai| − 1} b(i) = {0, . . . , b(i)− 1}

∼=

ιi

∼=

|ιi|

Let us now recall that the sets ai are the first components of pairs
(ai, σi) ∈ D(X). In view of Definition 2.3 we have σi ∈ D(|ai|), so that
we can set

m := D(|ι0|)(σ0) ∈ D(b(0)).

Definition 1.3 provides a Goodstein sequence GD
b,c,m(0), G

D
b,c,m(1), . . . for

the given Goodstein dilator D and b, c,m as just defined. The following
will be crucial:

Claim. If we have (a0, σ0) >D(X) · · · >D(X) (ai, σi) and GD
b,c,m(j) 6= 0

for all j < i, then we have D(|ιi|)(σi) ≤D(b(i)) G
D
b,c,m(i).

As preparation, we observe that

(aj, σj) <D(X) (ak, σk) ⇔ D(cjl ◦ |ιj|)(σj) <D(b(l)) D(ckl ◦ |ιk|)(σk)

holds for j, k ≤ l. This equivalence is readily reduced to Definition 2.3,
using the fact that the following diagram commutes, where each arrow
between objects |a| and |a′| represents the morphism |ι| that is induced
by the inclusion ι : a →֒ a′.

|aj| |aj ∪ ak| |ak|

b(j) b(l) = |{⋆} ∪ a0 ∪ · · · ∪ al| b(k)

|ιj | |ιj |

cjl ckl

To prove our claim, first note thatD(|ι0|)(σ0) = m = GD
b,c,m(0) holds by

construction. Arguing by induction, we now assume D(|ιi|)(σi) ≤D(b(i))

GD
b,c,m(i) 6= 0 and (ai, σi) >D(X) (ai+1, σi+1). Using the equivalence that
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we have established as preparation (with k = i and j = i + 1 = l, so
that cjl is the identity), we obtain

D(|ιi+1|)(σi+1) ≤D(b(i+1)) D(ci ◦ |ιi|)(σi)− 1 ≤D(b(i+1))

≤D(b(i+1)) D(ci)(G
D
b,c,m(i))− 1 = GD

b,c,m(i+ 1),

which completes the proof of the induction step and hence of the claim.
Statement (i) from the present theorem provides an i ∈ N with

GD
b,c,m(i) = 0. We may assume that i is minimal with this property.

Using the claim above, we now deduce that (aj, σj) ≤D(X) (aj+1, σj+1)

holds for some j ≤ i, as required to show that D(X) is well founded.
If the desired inequality does not hold for any j < i, then the claim
yields D(|ιi|)(σi) = 0. Due to condition (iii) of Definition 1.2 we also
have D(empb(i))(0) = 0, where empb(i) : 0 → b(i) is the empty function.
In view of ci ◦ empb(i) = empb(i+1) (both are the empty function) we get

D(ci ◦ |ιi|)(σi) = D(ci ◦ empb(i))(0) =

= D(empb(i+1))(0) = 0 ≤D(b(i+1)) D(|ιi+1|)(σi+1).

The equivalence that we have shown in the proof of the claim remains
valid when we replace both strict inequalities by non-strict ones, due
to trichotomy. Thus the inequality that we have just established en-
tails (ai, σi) ≤D(X) (ai+1, σi+1), as needed. This completes the proof

that (i) implies (ii).
We now assume (ii) and deduce (i). Aiming at the latter, we consider

a Goodstein system (b, c). Recall that we have c = 〈ci〉i∈N with func-
tions ci : b(i) → b(i+1). As before, we write cij := cj−1◦· · ·◦ci : b(i) →
b(j) for i ≤ j. We consider the morphisms cij as a directed system in
the category of linear orders. The direct limit over this system consists
of embeddings ei : b(i) → X into a linear order X with underlying set

X =
⋃

i∈N

rng(ei),

such that the following diagram commutes for any i < j:

b(i) = {0, . . . , b(i)− 1}

X

b(j) = {0, . . . , b(j)− 1}

ei

cij
ej
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Working in RCA0, one can explicitly construct X as an order with
underlying set

{(0, n) |n ∈ b(0)} ∪ {(i+ 1, n) | i ∈ N and n ∈ b(i+ 1)\ rng(ci)}.

The order between (i, n) and (j, n′) is determined by comparing cik(n)
and cjk(n

′) for some number k ≥ i, j (the precise value of which is
irrelevant). A family of functions ej : b(j) → X as above can be
defined by stipulating that ej(n) = (i, n0) holds for cij(n0) = n with
i ≤ j as small as possible. Having constructed the direct limit X,
we now show that it is a well order. Given an arbitrary function f :
N → X, we construct a set Y = {y(0), y(1), . . . } ⊆ N so that we have
y(0) < y(1) < . . . and f(i) ∈ rng(ey(i)) for all i ∈ N (which is possible
since the union X =

⋃
i∈N rng(ei) is increasing). We now consider the

function d : N → N that is given by

d(i) :=

{
n if i = y(k) and ei(n) = f(k),

0 if i /∈ Y .

Let us note that d(i) < b(i) holds in both cases, in the second one by
the condition 0 < b(0) ≤ b(1) ≤ . . . from Definition 1.1. The latter
does now provide i, j ∈ Y with i < j and cij(d(i)) ≤ d(j). Writing
i = y(k) and j = y(l) we get k < l and

f(k) = ei(d(i)) = ej ◦ cij(d(i)) ≤X ej(d(j)) = f(l),

as required to show that X is well founded. Aiming at (i), we now
consider an element m ∈ D(b(0)) and the resulting Goodstein se-
quence GD

b,c,m(0), G
D
b,c,m(1), . . . determined by Definition 1.3. We write

µ : D ⇒ D ↾Nat for the inverse of the natural transformation ηD from
Proposition 2.5. Let us define g : N → D(X) by

g(i) := D(ei) ◦ µb(i)(G
D
b,c,m(i)).

If we have GD
b,c,m(i) 6= 0, then Definition 1.3 yields

GD
b,c,m(i+ 1) = D(ci)(G

D
b,c,m(i))− 1 <D(b(i+1)) D(ci)(G

D
b,c,m(i)).

Using the naturality of µ and the equation ei+1 ◦ ci = ei from the
commutative diagram above, we can deduce

g(i+ 1) <X D(ei+1) ◦ µb(i+1) ◦D(ci)(G
D
b,c,m(i)) =

= D(ei+1) ◦D(ci) ◦ µb(i)(G
D
b,c,m(i)) = D(ei) ◦ µb(i)(G

D
b,c,m(i)) = g(i),

still under the assumption GD
b,c,m(i) 6= 0. Statement (ii) of the theorem

ensures that D(X) is well founded. Hence we cannot have g(i+1) <X
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g(i) for all i ∈ N. It follows that GD
b,c,m(i) = 0 must hold eventually, as

required for statement (i). �

Putting things together, we can deduce the following result, which
was also stated in the introduction:

Theorem 2.9. The following are equivalent over RCA0:

(i) arithmetical comprehension,
(ii) the extended Goodstein theorem for the binary representation:

for any Goodstein system (b, c) and any m < 2b(0) there is an
i ∈ N with G2

b,c,m(i) = 0.

Concerning the Goodstein sequences G2
b,c,m(0), G

2
b,c,m(1), . . . in state-

ment (ii), we point out that we have given two different but equivalent
definitions: The ad hoc construction from the introduction and the con-
struction that results from the general Definition 1.3 for the Goodstein
dilator 2 : Nat → LO defined in Example 2.2.

Proof. By Theorem 2.8, statement (ii) of the present theorem is equi-
valent to the assertion that 2 : LO → LO preserves well foundedness,
where 2 : Nat → LO is the Goodstein dilator from Example 2.2. As
we have seen in Example 2.7, this assertion is itself equivalent to the
following statement: If X = (X,<X) is a well order, then so is the
lexicographic order on

2X = 2̂(X) = {〈x0, . . . , xk−1〉 | x0, . . . , xk−1 ∈ X with xk−1 <X · · · <X x0}.

This last statement is known to be equivalent to arithmetical compre-
hension, over RCA0 (see [17] and [19, Theorem 2.6]). �

To conclude this section, we present a version of our equivalence
for Goodstein sequences without coefficient changes. In the following
we have GD

b,m(i) = GD
b,c,m(i) for cj : b(j) → b(j + 1) with cj(n) = n

(cf. Definition 1.3).

Theorem 2.10. The theory RCA0 proves that the following are equi-
valent for any Goodstein dilator D:

(i) the extended Goodstein theorem without coefficient changes: for
any non-decreasing function b : N → N with b(0) > 0 and any
number m ∈ D(b(0)), there is an i ∈ N with GD

b,m(i) = 0,

(ii) the linear order D(N) is well founded.

Proof. It suffices to modify the proof of Theorem 2.8 as follows: In the
proof that (i) implies (ii), we first put ⋆ = 0 ∈ N = X. We then replace
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{⋆}∪a0∪· · ·∪ai by the set {0, . . . , b(i)−1}, where b(i) ∈ N is minimal
with

{⋆} ∪ a0 ∪ · · · ∪ ai ⊆ {0, . . . , b(i)− 1} = b(i).

As a consequence, the isomorphism b(i) ∼= {⋆} ∪ a0 ∪ · · · ∪ ai from the
proof of Theorem 2.8 becomes the identity, so that cij : b(i) → b(j)
becomes the inclusion with cij(n) = n for n < b(i). Let us observe
that this makes (b, c) a Goodstein system: For any d : N → N with
d(i) < b(i) and any infinite Y ⊆ N, we can clearly find i < j in
Y with d(j) ≥ d(i) = cij(d(i)). The rest of the argument remains
unchanged, except that ιi : ai →֒ b(i) has modified co-domain. In the
proof that (ii) implies (i), we replaceX by N and consider the inclusions
ei : b(i) →֒ N as well as cij : b(i) →֒ b(j). The order N may be bigger
than the direct limit over the morphisms cij, namely when the range
of b : N → N is finite. Nevertheless, the rest of the argument goes
through unchanged. �

3. From Ackermann function to Veblen hierarchy

In this section we define a Goodstein dilator A : Nat → LO that is
based on the Ackermann function. We then prove Theorem 3.20 from
the introduction, which asserts that the extension A : LO → LO of this
Goodstein dilator is closely related to the Veblen hierarchy. Finally,
we deduce Theorem 3.21, which shows that the extended Goodstein
theorem for A is equivalent to arithmetical transfinite recursion.

Let us recall the fast-growing hierarchy of functions Fb : N → N for
b ∈ N, as considered in the introduction: It is given by the recursive
clauses

F0(n) = n+ 1 and Fb+1(n) = F 1+n
b (n),

where the superscript refers to iteration (which is recursively defined by
F 0(n) = n and Fm+1(n) = F (Fm(n))). We are particularly interested
in the map b 7→ Fb(1), a variant of the well-known Ackermann function.

As mentioned in the introduction, the Ackermann function grows so
fast that RCA0 cannot prove that it is total (i. e. that all evaluations
according to the recursive clauses will terminate). Somewhat inform-
ally, the issue is that Fb(1) depends on the value of Fb−1 on the large
argument Fb−1(1), or more generally: that there is no a priori bound
on the arguments that appear in a recursive evaluation. On the other
hand, it is easy to prove the totality of Fb by induction on b ∈ N.
Here the induction hypothesis secures the infinitely many evaluations
of Fb−1(0), Fb−1(1), . . . , which avoids the need for a bound. In order to
accommodate this induction, we extend our base theory by the prin-
ciple IΣ0

2 of Σ
0
2-induction. The latter is equivalent to Π0

2-induction and
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strictly weaker than the principle of arithmetical comprehension, which
we have encountered above. Let us stress that the additional induction
principle is only needed once (to prove that the functions Fb are total)
and without set parameters. Also, many results could be reproduced
in RCA0 itself if values of the Ackermann function were represented by
terms, rather than computed as numbers. However, this would make
it necessary to reformulate clause (i) of Definition 1.2 (in terms of a
function D(b)\{0} ∋ σ 7→ σ − 1 ∈ D(b) on term representations). We
also think that Goodstein’s theorem is more natural when Goodstein
sequences consist of actual numbers. Having discussed these found-
ational issues, we record some standard facts about the fast growing
hierarchy:

Lemma 3.1. The following is provable in RCA0 + IΣ0
2:

(a) We have n < Fb(n) for all b, n ∈ N.
(b) The function Fb is strictly increasing for any b ∈ N.
(c) The function b 7→ Fb(n) is strictly increasing for any n > 0.

Proof. Parts (a) and (b) are readily verified by induction on b. Part (c)
follows as

Fb+1(n) = F 1+n
b (n) ≥ F 2

b (n) > Fb(n),

where the inequalities rely on the assumption n > 0 and on part (a).
�

As in the case of the binary representation (cf. the introduction and
Example 2.2), it will be crucial to have a suitable notion of normal form.
The following Ackermann normal forms were previously considered by
T. Arai [6, Section 4.3.2.3].

Definition 3.2 (RCA0 + IΣ0
2). By an Ackermann normal form of a

number m ∈ N we mean a representation

m =NF F
1+nk−1

bk−1
◦ · · · ◦ F 1+n0

b0
(1)

with bk−1 < · · · < b0 and ni < F
1+ni−1

bi−1
◦ · · · ◦ F 1+n0

b0
(1) for all i < k

(in particular n0 = 0 in case k 6= 0, since the empty composition is the
identity).

We recycle the notation from Example 2.7 and write <2̂(X) for the
lexicographic order between descending sequences in X. In the follow-
ing, X = N × N carries the usual product order (cf. the paragraph
before Theorem 3.20 in the introduction).
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Proposition 3.3 (RCA0 + IΣ0
2). Every number m > 0 has a unique

Ackermann normal form. Furthermore, we have

F
1+nk−1

bk−1
◦ · · · ◦ F 1+n0

b0
(1) < F

1+n′

l−1

b′
l−1

◦ · · · ◦ F
1+n′

0

b′
0

(1) ⇔

〈(b0, n0), . . . , (bk−1, nk−1)〉 <2̂(N×N) 〈(b
′
0, n

′
0), . . . , (b

′
l−1, n

′
l−1)〉

if the numbers in the left (i. e. upper) inequality are in Ackermann
normal form.

Proof. In order to find an Ackermann normal form of m > 0, we con-
struct a sequence 1 =: m0 < · · · < mk = m by the following recursion:
Assume that we havemi < m and hence F0(mi) = mi+1 ≤ m. We then
set mi+1 := F 1+ni

bi
(mi) ≤ m with (bi, ni) ∈ N × N as large as possible,

which is justified by Lemma 3.1. More explicitly, we first maximize bi
by stipulating Fbi(mi) ≤ m < Fbi+1(mi). Having fixed bi, we maximize
ni analogously. By induction we now show that all numbers in our
sequence are in Ackermann normal form, as expressed by

mi =NF F
1+ni−1

bi−1
◦ · · · ◦ F 1+n0

b0
(1).

For i = k this will yield the desired normal form of m = mk. In view
of the condition bk−1 < · · · < b0, we will also be able to infer that
the recursion terminates after k ≤ b0 + 1 steps (which is not strictly
required but still illuminating). It remains to carry out the induction.
We first observe that m0 =NF 1 is in normal form, since the empty
composition is the identity. For i = 1 it suffices to observe that we
have n0 = 0 < 1, in view of F 2

b0
(1) = Fb0+1(1) and the maximality

of b0. In the induction step from mi to mi+1 with i > 0, we need to
establish bi < bi−1 as well as ni < mi. If the latter was false, then we
would get

Fbi+1(mi) = F 1+mi

bi
(mi) ≤ F 1+ni

bi
(mi) = mi+1 ≤ m,

contradicting the maximality of bi. Similarly, bi ≥ bi−1 would yield

F
1+ni−1+1
bi−1

(mi−1) = Fbi−1
(mi) ≤ F 1+ni

bi
(mi) ≤ m,

which contradicts the maximality of ni−1 in the previous step of the
construction. This completes the induction and hence the proof that
normal forms exist. Since the lexicographic order is trichotomous, the
uniqueness of normal forms and the direction ⇒ of the equivalence in
the proposition reduce to the direction ⇐ of the same equivalence. In
order to prove the latter, we consider an inequality

〈(b0, n0), . . . , (bk−1, nk−1)〉 <2̂(N×N) 〈(b
′
0, n

′
0), . . . , (b

′
l−1, n

′
l−1)〉
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between sequences that correspond to normal forms. The case where
the right sequence extends the left is straightforward by Lemma 3.1.
Now assume that the inequality holds because we have (bj, nj) <N×N

(b′j, n
′
j) and all pairs with smaller index coincide. Writing m0 :=

F
1+nj−1

bj−1
◦ · · · ◦ F 1+n0

b0
(1), it suffices to show

F
1+nk−1

bk−1
◦ · · · ◦ F

1+nj

bj
(m0) < F

1+n′

j

b′j
(m0).

Note that we have nj < m0, since we are concerned with normal forms.
If the inequality (bj, nj) <N×N (b′j, n

′
j) holds because we have bj < b′j,

then we get

F
1+nj+1
bj

(m0) ≤ F 1+m0

bj
(m0) = Fbj+1(m0) ≤ F

1+n′

j

b′j
(m0).

The inequality between the outer terms (i. e. without the intermediate
steps) is also true when (bj, nj) <N×N (b′j, n

′
j) holds because of bj = b′j

and nj < n′
j. By induction from i = j + 1 up to i = k, we shall now

show
Fbi−1

◦ F
1+ni−1

bi−1
◦ · · · ◦ F

1+nj

bj
(m0) ≤ F

1+nj+1
bj

(m0).

For i = k, the left side is strictly bigger than in the desired inequality
above, so that we get a strict inequality in the latter. In the induction
step, the definition of normal forms yields ni < F

1+ni−1

bi−1
◦· · ·◦F

1+nj

bj
(m0)

and hence

Fbi ◦F
1+ni

bi
◦F

1+ni−1

bi−1
◦· · ·◦F

1+nj

bj
(m0) ≤ Fbi+1◦F

1+ni−1

bi−1
◦· · ·◦F

1+nj

bj
(m0).

In view of bi < bi−1 we can conclude by the induction hypothesis. �

Using our notion of normal form, we will now define a Goodstein
dilator based on the Ackermann function. As preparation, we observe
that Proposition 3.3 entails

m =NF F
1+nk−1

bk−1
◦ · · · ◦ F 1+n0

b0
(1) < Fb(1) ⇔ b0 < b or k = 0,

due to Fb(1) =NF F 1+0
b (1). For m as in the equivalence, we also note

that ni < m holds for all i < k, which justifies induction and recursion
over normal forms.

Definition 3.4 (RCA0 + IΣ0
2). For each number b ∈ N we put

A(b) := {0, . . . , Fb(1)− 1}.

Given a strictly increasing f : b = {0, . . . , b − 1} → {0, . . . , b′ − 1} =
b′, we define a function A(f) with domain A(b) by recursion, setting
A(f)(0) = 0 and

A(f)
(
F

1+nk−1

bk−1
◦ · · · ◦ F 1+n0

b0
(1)

)
= F

1+A(f)(nk−1)

f(bk−1)
◦ · · · ◦ F

1+A(f)(n0)
f(b0)

(1),
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where the argument is assumed to be in Ackermann normal form.

Let us establish the promised result:

Proposition 3.5 (RCA0+IΣ0
2). The constructions from Definition 3.4

yield a Goodstein dilator A : Nat → LO.

Proof. As a first major step, we show that A(f) is order preserving for
an arbitrary morphism f : b → b′ in Nat. For this purpose we define
a length function L : N → N by recursion over normal forms, setting
L(0) = 0 and

L(m) = L(nk−1)+· · ·+L(n0)+k for m =NF F
1+nk−1

bk−1
◦· · ·◦F 1+n0

b0
(1).

In order to show that m < m′ < Fb(1) entails A(f)(m) < A(f)(m′), we
now argue by induction over L(m) +L(m′). For m as in the definition
of L, the value

A(f)(m) =NF F
1+A(f)(nk−1)

f(bk−1)
◦ · · · ◦ F

1+A(f)(n0)
f(b0)

(1)

is still in normal form. Indeed, the crucial inequalities ni < F
1+ni−1

bi−1
◦

· · · ◦ F 1+n0

b0
(1) for i < k are preserved by the induction hypothesis,

which applies due to

L(ni) + L(F
1+ni−1

bi−1
◦ · · · ◦ F 1+n0

b0
(1)) = L(ni) + · · ·+ L(n0) + i < L(m).

A given normal form of m′ is preserved in the same way. Combin-
ing this fact with Proposition 3.3 and the induction hypothesis, it is
straightforward to deduce A(f)(m) < A(f)(m′) from m < m′. As part
of our inductive argument, we have shown that A(f) preserves normal
forms, which is central for much of the following. In particular, we
can now observe that A(f) has values in A(b′), still for f : b → b′

(cf. the paragraph before Definition 3.4). We can also deduce that A
is functorial, by a straightforward induction. To conclude that A is
a Goodstein dilator, we must show that it preserves pullbacks. With
Proposition 2.1 in mind, we define functions suppb : A(b) → [b]<ω by
recursion over normal forms, setting suppb(0) = ∅ and

suppb(F
1+nk−1

bk−1
◦· · ·◦F 1+n0

b0
(1)) = {b0, . . . , bk−1}∪suppb(n0)∪· · ·∪suppb(nk−1).

Given that the morphisms A(f) preserve normal forms, a straightfor-
ward induction shows that supp : A → [·]<ω is a natural transforma-
tion. For f : b′ → b, the required implication

suppb(m) ⊆ rng(f) ⇒ m ∈ rng(A(f))

can be shown by induction over the normal form of m =NF F
1+nk−1

bk−1
◦

· · · ◦ F 1+n0

b0
(1). For i < k the induction hypothesis allows us to write
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ni = A(f)(n′
i) with n′

i ∈ A(b′). We also get bi = f(b′i) with b′i < b′. By
induction on i one can show that

m′
i := F

1+n′

i−1

b′i−1

◦ · · · ◦ F
1+n′

0

b′
0

(1) ∈ A(b′)

is in normal form. The induction hypothesis allows us to compute
A(f)(m′

i) as

A(f)(m′
i) = F

1+ni−1

bi−1
◦ · · · ◦ F 1+n0

b0
(1) > ni = A(f)(n′

i),

where the inequality comes from the normal form condition for m. We
can infer n′

i < m′
i, as required for the induction step. For i = k, the

given normal form of m′
k ∈ A(b′) reveals m = A(f)(m′

k) ∈ rng(A(f)),
as desired. By Proposition 2.1, we can now conclude that A preserves
pullbacks and is thus a Goodstein dilator. �

Now that A : Nat → LO is defined as a Goodstein dilator, Defin-
ition 1.3 yields Goodstein sequences GA

b,c,m(0), G
A
b,c,m(1), . . . that are

based on the Ackermann function. By Theorem 2.8, the corresponding
Goodstein theorem is closely related to the extension A : LO → LO. In
the following we investigate the latter. As we have seen in the previous
section, the general construction of extensions (according to Defini-
tion 2.3) can be hard to understand in concrete cases (cf. Example 2.7
and the paragraph that preceeds it). Rather than pondering over the
definition of A, we will thus give an ad hoc definition of a plausible ex-

tension Â : LO → LO. Using Proposition 2.6, we will then confirm that

Â and A are isomorphic. Since the construction of Â will be based on
term representations (rather than numerical values of the Ackermann
function), it can be implemented in RCA0. However, we will need
to switch back to the stronger base theory RCA0 + IΣ0

2 in order to

consider the isomorphism Â ∼= A.

Definition 3.6 (RCA0). For each linear order X, we define a set

Â(X) with a binary relation <Â(X) by simultaneous recursion (cf. the

justification below):

(i) The term 0 is an element of Â(X).
(ii) Given elements xk−1 <X · · · <X x0 ofX and terms s0, . . . , sk−1 ∈

Â(X), we add terms χ
sj−1

xj−1
◦ · · · ◦ χs0

x0
(1) ∈ Â(X) for j ≤ k, as

long as we have si <Â(X) χ
si−1

xi−1
◦ · · · ◦ χs0

x0
(1) for all i < j (in

particular 1 ∈ Â(X)).
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The term 0 is the minimum element of Â(X), and we have

χsk−1

xk−1
◦ · · · ◦ χs0

x0
(1) <Â(X) χ

tl−1

yl−1
◦ · · · ◦ χt0

y0
(1) ⇔

〈(x0, s0), . . . , (xk−1, sk−1)〉 <2̂(X×Â(X)) 〈(y0, t0), . . . , (yl−1, tl−1)〉,

where <2̂(X×Â(X)) is the lexicographic order with respect to the usual

product order on the set X × Â(X) (cf. the paragraph before The-
orem 3.20 in the introduction). Given an order embedding f : X → Y ,

we define a function Â(f) : Â(X) → Â(Y ) (cf. the discussion below)

by recursion over terms, setting Â(f)(0) = 0 and

Â(f)
(
χsk−1

xk−1
◦ · · · ◦ χs0

x0
(1)

)
= χ

Â(f)(sk−1)

f(xk−1)
◦ · · · ◦ χ

Â(f)(s0)
f(x0)

(1).

To justify the given recursion in detail, we first construct sets Â0(X) ⊇

Â(X) by ignoring the condition si <Â(X) χ
si−1

xi−1
◦ · · · ◦χs0

x0
(1) in (ii). We

then define a length function L : Â(X)0 → N by setting L(0) = 0 and

L
(
χsk−1

xk−1
◦ · · · ◦ χs0

x0
(1)

)
= L(sk−1) + · · ·+ L(s0) + k.

Let us point out the analogy with the proof of Proposition 3.5 (which

justifies the use of the same letter L). For terms s, t0, t1 ∈ Â0(X) we

can now decide s ∈ Â(X) and t0 <Â(X) t1 by simultaneous recursion on

L(s) and L(t0)+L(t1), respectively. For f : X → Y , the values of Â(f)

will certainly lie in Â0(Y ), but it is not immediately clear whether they

lie in Â(Y ). As part of the following proof, we show that they do.

Proposition 3.7 (RCA0). Definition 3.6 yields a functor Â : LO →
LO.

Proof. To show that <Â(X) is linear for each linear order X, one checks

s 6<Â(X) s by induction on L(s), then s <Â(X) t ∨ s = t ∨ t <Â(X) s by

induction on L(s)+L(t), and finally r <Â(X) s ∧ s <Â(X) t → r <Â(X) t

by induction on L(r) + L(s) + L(t). Essentially, this amounts to the
usual proof that the lexicographic order with respect to a linear order Z
is linear itself, except that the assumption on Z is replaced by the
induction hypothesis. Now consider a morphism f : X → Y in LO,
i. e. an order embedding. To establish the implications

s ∈ Â(X) → Â(f)(s) ∈ Â(Y ),

t0 <Â(X) t1 → Â(f)(t0) <Â(Y ) Â(f)(t1),

one argues by simultaneous induction on L(s) and L(t0) + L(t1), re-
spectively. The point is that the inequalities si <Â(X) χ

si−1

xi−1
◦· · ·◦χs0

x0
(1)
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required in clause (ii) of Definition 3.6 are preserved due to the sim-
ultaneous induction hypothesis. Functoriality is readily established by
induction over the build-up of terms. �

The following was promised (and explained) before Definition 3.6.

Proposition 3.8 (RCA0+IΣ0
2). There is a natural isomorphism Â ∼=

A.

Proof. We use the criterion from Proposition 2.6. Condition (i) of the

latter requires an isomorphism µ : Â ↾ Nat ⇒ A. For each object

b = {0, . . . , b− 1} in Nat we define the component µb : Â(b) → A(b) by
recursion over terms: Set µb(0) = 0 and

µb

(
χ
sk−1

bk−1
◦ · · · ◦ χs0

b0
(1)

)
= F

1+µb(sk−1)
bk−1

◦ · · · ◦ F
1+µb(s0)
b0

(1),

where the right side is evaluated as a natural number (which is pos-
sible in our strengthened base theory). To show that s <Â(b) t implies

µb(s) < µb(t), one argues by induction on L(s) + L(t). Crucially, the
induction hypothesis ensures that the recursive clause provides µb(s)
and µb(t) in Ackermann normal form. This fact has several import-
ant consequences: First, the induction step can now be completed by
a straightforward application of Proposition 3.3. Secondly, the latter
also ensures that µb takes values in A(b) = {0, . . . , Fb(1)− 1}, as im-
plicitly claimed above. Finally, we can deduce that µ is natural, by a
straightforward induction over terms. To conclude that µ is a natural
isomorphism, we show that each number

m =NF F
1+nk−1

bk−1
◦ · · · ◦ F 1+n0

b0
(1) ∈ {0, . . . , Fb(1)− 1} = A(b)

lies in the range of the component µb. Arguing by induction over the

numerical value of m, we may write ni = µb(si) with si ∈ Â(b) for
each i < k. By side induction on i we obtain χ

si−1

bi−1
◦ · · · ◦ χs0

b0
(1) ∈

Â(b). Let us point out that the inequality si <Â(b) χ
si−1

bi−1
◦ · · · ◦ χs0

b0
(1),

which is required for the side induction step, reduces to the condition
ni < F

1+ni−1

bi−1
◦ · · · ◦ F 1+n0

b0
(1) from Definition 3.2, since µb is an order

embedding. For i = k we get

m = µb

(
χ
sk−1

bk−1
◦ · · · ◦ χs0

b0
(1)

)
∈ rng(µb),

as desired. In order to satisfy condition (ii) of Proposition 2.6, we

now define functions ŝuppb : Â(b) → [b]<ω by the recursive clauses
ŝuppb(0) = ∅ and

ŝuppb

(
χ
sk−1

bk−1
◦ · · · ◦ χs0

b0
(1)

)
= {b0, . . . , bk−1}∪ŝuppb(s0)∪· · ·∪ŝuppb(sk−1).
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Given a morphism f : b′ → b, the required implication

ŝuppb(s) ⊆ rng(f) ⇒ s ∈ rng(Â(f))

can be established by induction on the build-up of s ∈ Â(b), similarly
to the proof of Proposition 3.5. Now that we have verified all relevant

conditions, Proposition 2.6 provides the desired isomorphism Â ∼= A.
�

As in the previous proof, one can construct functions ŝuppX : Â(X) →
[X]<ω for all linear orders X, such that an implication as in Propos-

ition 2.6 is satisfied. It follows that the functor Â : LO → LO pre-
serves pullbacks and direct limits, essentially by [16, Theorem 2.3.12]
(see also [9, Remark 2.2.2] and Proposition 2.1 above). Over a suffi-
ciently strong base theory, Theorem 3.21 (proved below) ensures that

Â(X) ∼= A(X) is well founded for any well order X. This means that Â
is a dilator in the usual sense.

Our next objective is to relate the functor Â to the Veblen hierarchy
of normal functions. Recall that a function f from ordinals to ordinals
is normal if it is strictly increasing and continuous at limit stages, in
the sense that f(λ) = sup{f(α) |α < λ} holds for any limit ordinal λ.
Equivalently, f is the strictly increasing enumeration of a closed and
unbounded (club) class of ordinals. If f is a normal function, then the
class {γ | f(γ) = γ} of fixed points is itself club. The normal function
that enumerates this class is called the derivative f ′ of f . The Veblen
hierarchy of functions ϕα iterates this construction along the ordinals:
We have ϕ0(γ) = ωγ, as defined in ordinal arithmetic; the function
ϕα+1 is the derivative of ϕα; and if λ is a limit, then ϕλ enumerates
the class {γ |ϕα(γ) = γ for all α < λ}, which is also club. Due to
the construction we have ϕα ◦ ϕβ = ϕβ for α < β. Together with
monotonicity, one can conclude

(⋆) ϕα(γ) < ϕβ(δ) ⇔





either α < β and γ < ϕβ(δ),

or α = β and γ < δ,

or α > β and ϕα(γ) < δ.

This equivalence suggests a recursive definition of inequality on a suit-
able set of terms. In the present paper, we consider term representa-
tions for the Veblen hierarchy along a fixed linear order. Let us recall
that 1 + X represents the extension of the order X by a new min-
imum element, which we denote by 0. The idea is to define a term
system ϕ1+X0 with a binary relation <ϕ1+X0 and an auxiliary function
h : ϕ1+X0 → 1 +X by simultaneous recursion:
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• The term 0 is an element of ϕ1+X0, and we have h(0) = 0.
• Given a term s ∈ ϕ1+X0 and an element x ∈ 1 + X with
h(s) ≤1+X x, we add a term ϕxs ∈ ϕ1+X0 with h(ϕxs) = x.

• Given n > 1 terms ϕxn−1
sn−1 ≤ϕ1+X0 · · · ≤ϕ1+X0 ϕx0

s0 of the
indicated form, we add a term ϕx0

s0 + · · · + ϕxn−1
sn−1 =: s ∈

ϕ1+X0 with h(s) = 0.

The simultaneous definition of <ϕ1+X0 reflects inequality (⋆) and the
idea that terms of the form ϕxs are additively principal, in the sense
that ϕx0

s0 <ϕ1+X0 ϕxs entails ϕx0
s0 + · · ·+ ϕxn−1

sn−1 <ϕ1+X0 ϕxs. For
a complete list of recursive clauses we refer to [28, Section 2] (where
Q = 1+X and 0Q = 0 ∈ 1+X). In the cited reference it is shown that
ϕ1+X0 is a linear order when the same holds for X, provably in RCA0.
To explain the role of h, we point out that ϕxϕy0 and ϕy0 should have
the same interpretation if x <1+X y. In view of h(ϕy0) = y 6≤1+X x,
the “superfluous” term ϕxϕy0 is excluded from ϕ1+X0. Before we relate

the transformation X 7→ ϕ1+X0 to our functor Â : LO → LO, we reflect
on the definition of the latter:

Remark 3.9. In most cases, ordinal notation systems are discussed on
a semantic level first: One considers set-theoretic constructions on the
actual ordinals and proves characteristic properties, such as our equi-
valence (⋆). Only in a second step, these properties are reproduced
on a syntactic level. Our presentation of the notation systems ϕ1+X0
provides an example of this approach. As another example, the Cantor
normal form theorem motivates the most common notation system for
the ordinal ε0 = min{α |ωα = α}. On the other hand, the notation

systems Â(X) from Definition 3.6 were introduced in a different way:
There is still a semantic aspect, since we have started by investigating
the fast growing hierarchy of functions Fb : N → N with b ∈ N. How-
ever, the extension from natural numbers to arbitrary ordinals (in fact
to linear orders) was based on formal syntactic rather than semantic
considerations. To complete the picture, we now sketch a correspond-
ing semantic construction, even though the latter will play no official
role in the following. Given a function χ from ordinals to ordinals, one
can define ordinal iterates by the recursive clauses

χ0(γ) = γ, χα+1(γ) = χ(χα(γ)),

χλ(γ) = sup{χα(γ) |α < λ} for λ limit.

We point out that the limit case is most natural when α 7→ χα(γ) is
weakly (or strictly) increasing, which is the case when we have γ ≤ χ(γ)
(or γ < χ(γ)) for all ordinals γ. We now define a hierarchy of functions
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χα by stipulating

χ0(γ) = γ + 1, χα+1(γ) = χ1+γ
α (γ),

χλ(γ) = sup{χα(γ) |α < λ} for λ limit.

Note that this extends the finite (but not the infinite) stages of the fast-
growing hierarchy, in the sense that we have χb(n) = Fb(n) for b, n ∈ N.
The properties from Lemma 3.1 change slightly (note χω(n) = ω for
every n ∈ N\{0}): We have γ < χα(γ), each function χα is weakly
increasing, and α 7→ χα(γ) is strictly increasing (hence normal) in
case γ > 0. By generalizing Definition 3.2 in the obvious way, we
obtain a notion of normal form

δ =NF χ1+γk−1

αk−1
◦ · · · ◦ χ1+γ0

α0
(1).

The analogue of Proposition 3.3 can be established by essentially the
same proof: For δ′ < δ we can still pick (α, γ) maximal with χ1+γ

α (δ′) ≤
δ, due to continuity in α and γ. Arguing as in the proof of Proposi-

tion 3.8, one can deduce Â(α) ∼= χα(1), where the left side is explained
by Definition 3.6 and ordinals are identified with the ordered sets of
their predecessors. The reader may have noticed that we write ele-

ments of Â(α) as χ
sk−1

αk−1
◦ · · · ◦χs0

α0
(1) rather than χ

1+sk−1

αk−1
◦ · · · ◦χ1+s0

α0
(1),

with a summand 1 missing in the exponents. This is pure notational
convenience (and harmless, since the concrete way in which terms are
displayed is irrelevant).

Let us now compare the functor Â : LO → LO with the notation
systems that represent the Veblen hierarchy. Together with Proposi-
tion 3.8, the following result yields the first inequality of Theorem 3.20
from the introduction.

Proposition 3.10 (RCA0). For any linear order X, there is an order

embedding of Â(X) into ϕ1+X0.

Proof. The desired embedding o : Â(X) → ϕ1+X0 can be defined by
the recursive clauses o(0) = ϕ00 =: 1, o(1) = ϕ01 and

o
(
χsk
xk

◦ · · · ◦ χs0
x0
(1)

)
= ϕxk

(
o
(
χsk−1

xk−1
◦ · · · ◦ χs0

x0
(1)

)
+ o(sk)

)
.

To show that s <Â(X) t implies o(s) <ϕ1+X0 o(t), we use induction on

L(s)+L(t), where L is the length function specified after Definition 3.6.
Simultaneously, we verify that o(s) and o(t) are indeed terms in ϕ1+X0.
For a term as in the third recursive clause, this claim reduces to

o(sk) ≤ϕ1+X0 o
(
χsk−1

xk−1
◦ · · · ◦ χs0

x0
(1)

)
,
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which follows from the condition in Definition 3.6, using the induc-
tion hypothesis. Concerning the inductive proof of monotonicity, we
consider an inequality

s = χsk
xk

◦ · · · ◦ χs0
x0
(1) <Â(X) χ

tl
yl
◦ · · · ◦ χt0

y0
(1) = t.

If (xi, si) = (yi, ti) holds for all i ≤ k < l, one can deduce o(s) <ϕ1+X0

o(t) from the fact that ϕxr ∈ ϕ1+X0 entails r <ϕ1+X0 ϕxr. The latter
is, for example, proved in [11, Lemma 3.1]. Let us point out that
a fixed point such as ϕ10 = ϕ0ϕ10 yields no counterexample, since
h(ϕ10) = 1 6≤ 0 means ϕ0ϕ10 /∈ ϕ1+X0. Now assume that s <Â(X) t

holds because there is a j ≤ min{k, l} with (xj, sj) <X×Â(X) (yj, tj)

and χ
sj−1

xj−1
◦ · · · ◦ χs0

x0
(1) = χ

tj−1

yj−1
◦ · · · ◦ χt0

y0
(1) =: r. By induction on

i = j, . . . , k we show

o
(
χsi
xi
◦ · · · ◦ χs0

x0
(1)

)
<ϕ1+X

ϕyj(o(r) + o(tj)) =

= o
(
χtj
yj
◦ · · · ◦ χt0

y0
(1)

)
≤ϕ1+X

o(t).

Note that the case i = k amounts to the desired inequality o(s) <ϕ1+X0

o(t). Concerning the base i = j, we first assume that (xj, sj) <X×Â(X)

(yj, tj) holds because of xj <X yj. Due to the induction hypothesis,
the condition sj <Â(X) r from Definition 3.6 entails

o(sj) <ϕ1+X0 o(r) ≤ϕ1+X0 o(r) + o(tj) <ϕ1+X0 ϕyj(o(r) + o(tj)).

Since the right side is additively principal (cf. [28, Section 2] and the
discussion above), it also bounds o(r) + o(sj). By equivalence (⋆) we
get

o
(
χsj
xj
◦ · · · ◦ χs0

x0
(1)

)
= ϕxj

(o(r) + o(sj)) <ϕ1+X0 ϕyj(o(r) + o(tj)),

as required. If we have xj = yj and sj <Â(X) tj, then the induction

hypothesis yields o(r) + o(sj) <ϕ1+X0 o(r) + o(tj), and it is straightfor-
ward to conclude by (⋆). The step from i to i+1 is similar to the first
part of the case i = j, since clause (ii) of Definition 3.6 entails that we
have xi+1 <X xj ≤ yj. �

In the rest of this paper we prove the other inequality from The-

orem 3.20, which demands an embedding of ϕ1+X(0) into Â((2+X)×
N). Let us recall that 2 + X is the extension of X by two bottom
elements, which we denote by −1 and 0 (with −1 <2+X 0 <2+X x for
any x ∈ X). Whenever 2 +X and 1 +X appear in the same context,
we identify the latter with (2 +X)\{−1} (so that the bottom element
of 1 +X is denoted by 0, as before). The following definition yields a
natural refinement of the function h : ϕ1+X0 → 1+X that was defined
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simultaneously with the set ϕ1+X0. For s ∈ ϕ1+X0, we also define the
“most significant” subterm T (s) and the remainder R(s). Note that
the tuple (H(s), T (s), R(s)) determines s uniquely.

Definition 3.11 (RCA0). Let H : ϕ1+X0 → 2 + X be given by
H(0) = −1 and

H(ϕxs) = x (which lies in 1 +X = (2 +X)\{−1}),

H(ϕx0
s0 + · · ·+ ϕxn−1

sn−1) = −1 (for n > 1).

We also define functions T,R : ϕ1+X0 → ϕ1+X0, by setting T (0) = 0 =
R(0), T (ϕxs) = s, R(ϕxs) = 0 and

T (ϕx0
s0 + · · ·+ ϕxn−1

sn−1) = max({ϕx0
s0} ∪ {ϕx1

s1 + · · ·+ ϕxn−1
sn−1}),

R(ϕx0
s0 + · · ·+ ϕxn−1

sn−1) = min({ϕx0
s0} ∪ {ϕx1

s1 + · · ·+ ϕxn−1
sn−1}),

where maximum and minimum are taken in the order ϕ1+X0.

Let us recall that the lower indices of a term χsk
xk
◦· · ·◦χs0

x0
(1) ∈ Â(X)

must be strictly increasing. Given s ∈ ϕ1+X0, this suggests to look for
the first subterm t with H(s) <2+X H(t). To make this precise, we
consider the iterates T n(s) that are recursively defined by T 0(s) = s
and T n+1(s) = T (T n(s)). Note that we must reach T n(s) = 0 for
sufficiently large n, since T (t) is a proper subterm of t when the latter
is different from 0. If the reader thinks that our notion of subterm is
too imprecise, they may alternative use the length function from the
proof of Proposition 3.19 below. In any case, the fact that our iterates
reach T n(s) = 0 justifies the following construction:

Definition 3.12 (RCA0). The function T∗ : ϕ1+X0 → ϕ1+X0 is given
by

T∗(s) = T n(s)(s)

with n(s) = min{n ∈ N |H(s) <2+X H(T n(s)) or T n(s) = 0}.

To define H∗ : ϕ1+X0 → N, we declare that

H∗(s) = |{n < n(s) |H(T n(s)) = H(s)}|

is the number of iterates T n(s) with n < n(s) for which H(T n(s)) is as
big as possible. Let us also set

N(s) = min{N ∈ N |TN
∗ (s) = 0},

where TN
∗ = (T∗)

N denotes the N -th iterate of T∗. Finally, we abbre-
viate

s[i] = TN(s)−i
∗ (s)

for any i ≤ N(s).
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To justify the definition of N(s), we point out that t 6= 0 entails
n(t) > 0, so that T∗(t) is a proper subterm of t. The following result will
play a fundamental role. It provides first evidence that our construction

relates to the lexicographic order from the definition of Â.

Lemma 3.13 (RCA0). For s ∈ ϕ1+X0 we have N(s) ≤ N(T (s)) + 1
and

s[i] = T (s)[i] for all i < N(s).

Proof. In case T∗(s) = 0 we have N(s) ≤ 1 and the claim holds since

t[0] = T
N(t)
∗ (t) is always equal to 0. For the rest of the proof we assume

T∗(s) 6= 0, which entails s 6= 0 and hence n(s) > 0. By induction on
k < n(s) we show that there is an n ≤ k with T n

∗ (T
n(s)−k(s)) = T∗(s).

For k = 0 we recall T 0
∗ (T

n(s)(s)) = T n(s)(s) = T∗(s). For k > 0, the
minimality of n(s) yields T n(s)−k(s) 6= 0 and

H(T n(s)−k(s)) ≤2+X H(s) <2+X H(T n(s)(s)) = H(T k(T n(s)−k(s))),

where the second inequality relies on T∗(s) 6= 0. For l := n(T n(s)−k(s)),
it follows that we have 0 < l ≤ k. By induction hypothesis we get a
number m ≤ k − l with Tm

∗ (T n(s)−k+l(s)) = T∗(s). For n := m+ 1 ≤ k
we obtain

T n
∗ (T

n(s)−k(s)) = Tm
∗ (T∗(T

n(s)−k(s))) = Tm
∗ (T l(T n(s)−k(s))) =

= Tm
∗ (T n(s)−k+l(s)) = T∗(s),

as needed to complete the induction step. For k = n(s)− 1, the result
of the induction yields T n

∗ (T (s)) = T∗(s) for some n. In view of the
assumption T∗(s) 6= 0 we can conclude N(T (s)) = n − 1 + N(s). For
i < N(s) we also get

T (s)[i] = TN(T (s))−i
∗ (T (s)) = TN(s)−i−1+n

∗ (T (s)) =

= TN(s)−i−1
∗ (T n

∗ (T (s))) = TN(s)−i−1
∗ (T∗(s)) = TN(s)−i

∗ (s) = s[i],

as desired. �

Let us also observe that we have found a monotone sequence of
indices:

Lemma 3.14 (RCA0). For any s ∈ ϕ1+X0 we have

H(s[1]) >2+X · · · >2+X H(s[N(s)]) = H(s).

Proof. The equality in the lemma holds since we have s[N(s)] = T 0
∗ (s) =

s. For 0 < i < N(s) we have s[i] 6= 0, so that the definition of
T∗(s[i + 1]) = s[i] yields the inequality H(s[i + 1]) <2+X H(T∗(s[i +
1])) = H(s[i]). �
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We now split each index H(s) into three:

Definition 3.15 (RCA0). For i ≤ 2 we define Hi : ϕ1+X0 → (2 +
X)× N by

H0(s) = (H(s), 0), H1(s) = (H(s), 1), H2(s) = (H(s), 1 +H∗(s)).

Let us point out that H1(s) <(2+X)×N H2(s) holds for s 6= 0. Indeed,
the latter entails that we have n(s) > 0, so that H(T 0(s)) = H(s)
witnesses H∗(s) > 0. We have included H∗(s) in order to obtain the
following result, which complements Lemma 3.13 (note that the cor-
responding statement for i = 0, 1 can fail).

Lemma 3.16 (RCA0). For any s ∈ ϕ1+X0 with N(T (s)) ≥ N(s) > 0
we have

H2(T (s)[N(s)]) <(2+X)×N H2(s[N(s)]) = H2(s).

Proof. As in the proof of Lemma 3.13, we have

T n
∗ (T (s)) = T∗(s) for n = N(T (s))−N(s) + 1.

Note that this does even hold for T∗(s) = 0 (which was excluded in the
cited proof), since the latter entails N(s) ≤ 1. In view of N(T (s)) ≥
N(s), we get

T (s)[N(s)] = TN(T (s))−N(s)
∗ (T (s)) = T n−1

∗ (T (s)) =: t.

Since T∗ is constructed by iterating T , we can write t = T k(s) with k >
0. We get

T k+n(t)(s) = T n(t)(t) = T∗(t) = T n
∗ (T (s)) = T∗(s).

The assumption N(s) > 0 ensures n − 1 < N(T (s)) and hence t 6= 0.
The latter implies n(t) > 0. For i < k+n(t) we can also conclude that
T i+1(s) is a proper subterm of T i(s) 6= 0. It follows that n = k + n(t)
is minimal with T n(s) = T∗(s), which entails k+n(t) = n(s). Now the
minimality of n(s) yields the inequality

H(T (s)[N(s)]) = H(T k(s)) ≤2×X H(s)

between the first components of the values of H2. If this inequality is
strict, we are done. Now assume that H(s) is equal toH(T (s)[N(s)]) =
H(t) = H(T k(s)). Then any i < n(t) with H(T i(t)) = H(t) corres-
ponds to a number k + i < n(s) with H(T k+i(s)) = H(T i(t)) = H(s).
The number 0 < k provides an additional exponent with H(T 0(s)) =
H(s). We thus get H∗(s) > H∗(t) = H∗(T (s)[N(s)]), which is the
required inequality in the second components of H2. �

The following monotonicity property will also be required:
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Lemma 3.17 (RCA0). Consider terms s, t ∈ ϕ1+X0. If we have
T∗(s) = T∗(t), H(s) = H(t) and s ≤ϕ1+X0 t, then we have H∗(s) ≤
H∗(t).

Proof. We distinguish cases according to the value of H(s) = H(t).
First assume that the latter is equal to the minimal element−1 ∈ 2+X.
In case s = 0 we have H∗(s) = 0, and the conclusion of the lemma is
trivial. Now consider an inequality

s = ϕx0
s0 + · · ·+ ϕxm−1

sm−1 <ϕ1+X0 ϕy0t0 + · · ·+ ϕyn−1
tn−1 = t.

Let i < m and k < n be maximal with ϕxi
si = ϕx0

s0 and ϕyktk = ϕy0t0,
respectively. By induction on j ≤ i we obtain T j(s) = ϕxj

sj + · · · +
ϕxm−1

sm−1. If we have i < m − 1, then T i(s) is a sum and we have
T i+1(s) = ϕxi

si, so that

−1 = H(T 0(s)) = · · · = H(T i(s)) <2+X H(T i+1(s)) = xi ∈ 1 +X.

In case i = m− 1 we have T i(s) = ϕxi
si while all previous iterates are

sums. These considerations (and analogous ones for t) show that we
have T∗(s) = ϕxi

si = ϕx0
s0 and T∗(t) = ϕy0t0, as well as

H∗(s) =

{
i+ 1 if i < m− 1,

i if i = m− 1,
and H∗(t) =

{
k + 1 if k < n− 1,

k if k = n− 1.

Hence the assumption T∗(s) = T∗(t) amounts to ϕx0
s0 = ϕy0t0. Recall

that summands are always in weakly decreasing order, and that sums
are compared lexicographically. From s <ϕ1+X0 t we can thus infer
i ≤ k and i < n−1. This readily implies H∗(s) ≤ H∗(t), as desired. Let
us now consider the case where H(s) = H(t) =: x is different from −1.
Assuming T∗(s) = T∗(t) and H∗(t) < H∗(s), we will show t <ϕ1+X0 s.
For i ≤ n(s), define

H∗(s, i) = |{n | i ≤ n < n(s) and H(T n(s)) = x = H(s)}| .

Let H∗(t, j) for j ≤ n(t) be defined in the same way. By induction
from j = n(t) down to j = 0 we will show the following: For all
i ≤ n(s) with H∗(t, j) < H∗(s, i) we have T j(t) <ϕ1+X0 T i(s). In
view of H∗(t, 0) = H∗(t) < H∗(s) = H∗(s, 0), the case j = 0 = i will
yield t = T 0(t) <ϕ1+X0 T 0(s) = s, as desired. As preparation for the
inductive argument, we note that T (r) <ϕ1+X0 r holds for any r 6= 0
(the crucial case r = ϕyr

′ is treated in [11, Lemma 3.1]). Iteratively,
we get T n(r) <ϕ1+X0 Tm(r) for m < n ≤ n(r). Concerning the base
j = n(t) of our induction, we observe that the assumption H∗(t, n(t)) <
H∗(s, i) entails i < n(s), as H∗(s, n(s)) = 0. We get

T n(t)(t) = T∗(t) = T∗(s) = T n(s)(s) <ϕ1+X0 T
i(s).
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In the induction step, we consider j < n(t) and i ≤ n(s) withH∗(t, j) <
H∗(s, i). Let k ≥ i be minimal with H(T k(s)) = x. We then have
H∗(s, k) = H∗(s, i). In view of T k(s) ≤ϕ1+X0 T i(s) it suffices to es-
tablish T j(t) <ϕ1+X0 T k(s). The point is that H(T k(s)) = x yields
T k(s) = ϕxT

k+1(s). We distinguish several cases: First assume that
T j(t) is of the form

T j(t) = ϕy0t0 + · · ·+ ϕym−1
tm−1.

Using the induction hypothesis, we get

ϕy0t0 ≤ϕ1+X0 T
j+1(t) <ϕ1+X0 T

k(s) = ϕxT
k+1(s).

Since the term on the right behaves like an additively principal ordinal
(cf. [28, Section 2]), we obtain T j(t) <ϕ1+X0 T k(s), as needed. Now
consider a term

T j(t) = ϕyT
j+1(t) with y = H(T j(t)) ≤2+X H(t) = x.

For y <ϕ1+X0 x we observe T j+1(t) <ϕ1+X0 ϕxT
k+1(s) as above. In the

text before Remark 3.9 we have explained that the order on ϕ1+X0
is determined by a certain equivalence (⋆). The latter yields T j(t) =
ϕyT

j+1(t) <ϕ1+X0 ϕxT
k+1(s) = T k(s), as needed. Finally, assume y =

x. We then have H(T j(t)) = x and hence

H∗(t, j + 1) < H∗(t, j) ≤ H∗(s, k)− 1 = H∗(s, k + 1).

By induction hypothesis we get T j+1(t) <ϕ1+X0 T
k+1(s). In view of y =

x, equivalence (⋆) yields T j(t) = ϕyT
j+1(t) <ϕ1+X0 ϕxT

k+1(s) = T k(s)
once again. �

In order to describe the desired embedding of ϕ1+X0 into Â((2 +
X)×N), we introduce some final notation: Given an order Y , elements

y0, . . . , yk−1 ∈ Y , terms s0, . . . , sk−1 ∈ Â(Y ), and a further term t =

χtn−1

zn−1
◦ · · · ◦ χt0

z0
(1) ∈ Â(Y ) of the indicated form (i. e. with t 6= 0), we

write

χsk−1

yk−1
◦ · · · ◦ χs0

y0
(t) := χsk−1

yk−1
◦ · · · ◦ χs0

y0
◦ χtn−1

zn−1
◦ · · · ◦ χt0

z0
(1).

To ensure that this expression is a term in Â(Y ), one needs to check
that we have yk−1 <Y · · · <Y y0 <Y zn−1 (where the last inequality
is dropped in case n = 0) and si <Â(Y ) χ

si−1

yi−1
◦ · · · ◦ χs0

y0
(t) for all

i < k (cf. Definition 3.6). If s 6= 0, then R(s), T (s) and T∗(s) are
proper subterms of s, as observed before. Hence the following definition
amounts to a recursion over terms. As part of Proposition 3.19 below,

we will verify that the recursion indeed yields values in Â((2+X)×N).
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Definition 3.18 (RCA0). The function o : ϕ1+X0 → Â((2 +X)×N)
is given by the recursive clauses o(0) = 1 and

o(s) = χ
o(R(s))
H0(s)

◦ χ
o(T (s))
H1(s)

◦ χ0
H2(s)

(o(T∗(s))) for s 6= 0.

In the following we will often abbreviate χ
o(R(s))
H0(s)

◦ χ
o(T (s))
H1(s)

◦ χ0
H2(s)

by

χs, so that the recursive clause for s 6= 0 can be written as o(s) =
χs(o(T∗(s))). Let us observe that s 6= 0 entails N(s) > 0 and T∗(s)[i] =
s[i] for i ≤ N(T∗(s)) = N(s) − 1. Together with s = s[N(s)], we
recursively get

o(s) = χs[N(s)] ◦ · · · ◦ χs[1](1).

In particular, this does cover o(0) = 1, since we have N(0) = 0.

Proposition 3.19 (RCA0). The recursion from Definition 3.18 yields

an embedding of ϕ1+X0 into Â((2 +X)× N), for any linear order X.

Proof. As in previous arguments, we will need a suitable length func-
tion: Let us define L : ϕ1+X0 → N by stipulating L(0) = 0, L(ϕxs) =
L(s) + 1 and

L(ϕx0
s0 + · · ·+ ϕxn−1

sn−1) = L(s0) + · · ·+ L(sn−1) + 2n

for n ≥ 2. Note that this length function respects our notion of sub-
term: For s 6= 0 we can observe that L(R(s)), L(T (s)) and L(T∗(s))
are all strictly smaller than L(s). In view of s[i] = T∗(s[i + 1]) we get
L(s[0]) < · · · < L(s[N(s)]) = L(s). We will simultaneously prove

r ∈ ϕ1+X0 ⇒ o(r) ∈ Â((2 +X)× N),

s <ϕ1+X0 t ⇒ o(s) <Â((2+X)×N) o(t)

by induction on L(r) and L(s)+L(t), respectively. To simplify notation,
we will often omit subscripts of inequality signs. Concerning the first
implication for r 6= 0, we consider

o(r) = χ
o(R(r))
H0(r)

◦ χ
o(T (r))
H1(r)

◦ χ0
H2(r)

(o(T∗(r))) = χr[N(r)] ◦ · · · ◦ χr[1](1).

The lower indices are strictly increasing by Lemma 3.14 and the para-
graph after Definition 3.15. Using Lemma 3.13, we get

o(T (r)) = χT (r)[N(T (r))] ◦ · · · ◦ χT (r)[N(r)] ◦ χr[N(r)−1] ◦ · · · ◦ χr[1](1),

where the first (resp. second) part of the composition is omitted in case
that we have N(T (r)) = N(r)− 1 (resp. N(r) = 1). We can deduce

o(T (r)) < χ0
H2(r)

(o(T∗(r))) = χ0
H2(r)

◦ χr[N(r)−1] ◦ · · · ◦ χr[1](1)

as follows: If we have N(T (r)) = N(r)− 1, the expression on the right
is a proper extension of the expression for o(T (r)) above. This yields
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the desired inequality, since terms in Â((2 + X) × N) are compared
lexicographically (cf. Definition 3.6). If we have N(T (r)) ≥ N(r), our
inequality follows from H2(T (r)[N(r)]) <(2+X)×N H2(r), which holds
by Lemma 3.16 (note that r 6= 0 entails N(r) > 0). For future use
we record that we have, in particular, established

o(T (r)) < χ
o(R(r))
H0(r)

◦ χ
o(T (r))
H1(r)

◦ χ0
H2(r)

◦ χr[N(r)−1] ◦ · · · ◦ χr[1](1) = o(r)

for r 6= 0. To conclude that we have o(r) ∈ Â((2+X)×N), it remains
to show

o(R(r)) <Â((2+X)×N) χ
o(T (r))
H1(r)

◦ χ0
H2(r)

(o(T∗(r))).

We have already shown that o(T (r)) is strictly smaller than the right
side, so that the open inequality reduces to o(R(r)) ≤ o(T (r)). The
latter follows from the simultaneous induction hypothesis, as R(r) ≤
T (r) and L(R(r)) +L(T (r)) < L(r) are readily verified (note that this
depends on the factor 2 in the definition of L). To prove the second part
of the induction step, we assume s < t and deduce o(s) < o(t). The
latter is immediate if we have s = 0 6= t. Now consider an inequality

s = ϕxs
′ <ϕ1+X0 ϕyt

′ = t.

Note that we have T (s) = s′ and T (t) = t′. As above, Lemma 3.13
yields

o(s′) = χs′[N(s′)] ◦ · · · ◦ χs′[N(s)] ◦ χs[N(s)−1] ◦ · · · ◦ χs[1](1),

o(t′) = χt′[N(t′)] ◦ · · · ◦ χt′[N(t)] ◦ χt[N(t)−1] ◦ · · · ◦ χt[1](1),

where N(s′) = N(s)− 1 and N(s) = 1 are possible (analogously for t).
Let us distinguish cases according to equivalence (⋆), which can be
found in the text before Remark 3.9 above. First assume that we have
x >1+X y and s < t′. The latter entails o(s) < o(t′) by induction
hypothesis. In the first part of the induction step we have already
established o(t′) = o(T (t)) < o(t). We thus get o(s) < o(t) by transit-
ivity. Now assume x <1+X y and s′ <ϕ1+X0 t. By induction hypothesis
we get o(s′) < o(t), hence in particular

χs[N(s)−1] ◦ · · · ◦ χs[1](1) <Â((2+X)×N o(t) = χt[N(t)] ◦ · · · ◦ χt[1](1).

We immediately obtain o(s) = χs[N(s)] ◦ · · · ◦ χs[1](1) < o(t), unless
the right side of the previous inequality is an end extension of the left
side. More precisely, it remains to consider the case where we have
N(s)− 1 < N(t) and

(†) χs[N(s)−1] ◦ · · · ◦ χs[1](1) = χt[N(s)−1] ◦ · · · ◦ χt[1](1).
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In this case we observe

H(s) = x <2+X y = H(t) ≤2+X H(t[N(s)]),

where the last inequality relies on Lemma 3.14. As desired, we can
conclude

o(s) = χ
o(R(s))
H0(s)

◦ χ
o(T (s))
H1(s)

◦ χ0
(H(s),H∗(s)) ◦ χ

s[N(s)−1] ◦ · · · ◦ χs[1](1) <

χ0
(H(t[N(s)]),H∗(t[N(s)])) ◦ χ

t[N(s)−1] ◦ · · · ◦ χt[1](1) < o(t).

Finally, assume that we have x = y and s′ < t′. We first infer o(s′) <
o(t′) < o(t). As above, we get o(s) < o(t) unless we have N(s) − 1 <
N(t) and equation (†) holds. If we have N(s) < N(t), then we obtain

H(s) = x = y = H(t) <2+X H(t[N(s)]),

where the inequality from Lemma 3.14 is now strict. We then get
o(s) < o(t) as above. It remains to consider the case where we have
N(s) = N(t). As preparation for this case, we recall that any term

r ∈ Â((2 + X) × N) is determined by the tuple (H(r), T (r), R(r)),
as noted before Definition 3.11 above. Recursively, this allows us to
recover r from o(r). From equation (†) and N(s) = N(t) we thus get

T∗(s) = s[N(s)− 1] = t[N(s)− 1] = t[N(t)− 1] = T∗(t).

By Lemma 3.17 we obtain H∗(s) ≤ H∗(t). Together with the inequality
o(s′) < o(t′) from the induction hypothesis, we can finally infer

o(s) = χ1
(H(s),0) ◦ χ

o(s′)
(H(s),1) ◦ χ

0
(H(s),1+H∗(s))(o(T∗(s))) <

χ1
(H(t),0) ◦ χ

o(t′)
(H(t),1) ◦ χ

0
(H(t),1+H∗(t))(o(T∗(t))) = o(t).

In the case of an inequality

s = ϕx0
s0 + · · ·+ ϕxm−1

sm−1 <ϕ1+X0 ϕyt
′ = t

we have H(s) = −1 <2+X y = H(t). Due to this fact, the argument is
similar to the one for s = ϕxs

′ < ϕyt
′ = t with x <1+X y. Now consider

an inequality

s = ϕxs
′ <ϕ1+X0 ϕy0t0 + · · ·+ ϕyn−1

tn−1 = t.

We then have s ≤ ϕx0
y0 ≤ T (t) (cf. [28, Section 2]). By induction

hypothesis and the above, we get o(s) ≤ o(T (t)) < o(t). Finally, we
look at

s = ϕx0
s0 + · · ·+ ϕxm−1

sm−1 <ϕ1+X0 ϕy0t0 + · · ·+ ϕyn−1
tn−1 = t.

One readily verifies T (s) ≤ T (t). As in the argument for s = ϕxs
′ <

ϕxt
′ = t (where T (s) = s′ and T (t) = t′), we can now reduce to the case

of T∗(s) = T∗(t). In view of H(s) = −1 = H(t), we get H∗(s) ≤ H∗(t)
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by Lemma 3.17. It is straightforward to show that T (s) = T (t) entails
R(s) < R(t). The induction hypothesis yields o(T (s)) ≤ o(T (t)), and
in case of equality we get o(R(s)) < o(R(t)). Similarly to the above, a

lexicographic comparison in Â((2 +X)× N) does now yield

o(s) = χ
o(R(s))
(H(s),0) ◦ χ

o(T (s))
(H(s),1) ◦ χ

0
(H(s),H∗(s))(o(T∗(s))) <Â((2+X)×N)

χ
o(R(t))
(H(t),0) ◦ χ

o(T (t))
(H(t),1) ◦ χ

0
(H(t),H∗(t))(o(T∗(t))) = o(t),

which completes the step of our simultaneous induction. �

The following result was already stated in the introduction. Let us
point out that the strengthened base theoryRCA0+IΣ0

2 is only needed
to handle the functor A, which is based on the Ackermann function.

The corresponding result with Â at the place of A holds over RCA0,
as the proof will reveal.

Theorem 3.20 (RCA0 + IΣ0
2). For any linear order X, there is an

order embedding of A(X) into ϕ1+X0 and an order embedding of ϕ1+X0
into A((2 +X)× N).

Proof. Due to Proposition 3.8, we may replace A(Y ) by the isomorphic

order Â(Y ), for any order Y . Proposition 3.10 provides an embedding

of Â(X) into ϕ1+X0. The latter can be embedded into Â((2+X)×N),
by Proposition 3.19. �

Putting things together, we deduce the remaining claim from the
introduction:

Theorem 3.21. The following are equivalent over RCA0 + IΣ0
2:

(i) arithmetical transfinite recursion,
(ii) when X is a well order, so is A(X) (where A : LO → LO extends

the Goodstein dilator A : Nat → LO based on the Ackermann
function),

(iii) the extended Goodstein theorem for the Goodstein dilator A: for
any Goodstein system (b, c) and any m ∈ A(b(0)) there is an
i ∈ N with GA

b,c,m(i) = 0.

Proof. We first justify an implicit claim: Proposition 3.5 tells us that
A is indeed a Goodstein dilator. The equivalence between (ii) and (iii)
holds by Theorem 2.8. Let us also consider the following statement:

(iv) when X is a well order, then so is ϕ1+X0.

Harvey Friedman has shown that (i) and (iv) are equivalent (see [28,
21] for published proofs). So it remains to establish an equivalence
between (ii) and (iv). To avoid confusion, we recall that the two obvious
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definitions of well order (in terms of descending sequences and minimal
elements) are equivalent over RCA0 (see e. g. [9, Lemma 2.3.12] for a
detailed proof). Let us now assume (ii) and deduce (iv). Aiming at
the latter, we consider an arbitrary well order X. It is straightforward
to show that (2+X)×N is also a well order. By (ii) we can infer that
A((2 + X) × N) has the same property. Due to the embedding from
Theorem 3.20, any descending sequence in ϕ1+X0 could be transformed
into one in A((2 + X) × N). Hence ϕ1+X0 must be well founded, as
needed for (iv). To show that (iv) implies (ii) one argues similarly, using
the fact that A(X) embeds into ϕ1+X0, also by Theorem 3.20. �
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