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Abstract

We extend the non-parametric framework of reaction coordinate optimization to

non-equilibrium ensembles of (short) trajectories. For example, we show how, start-

ing from such an ensemble, one can obtain an equilibrium free energy profile along

the committor, which can be used to determine important properties of the dynamics

exactly. New adaptive sampling approach, the transition state ensemble enrichment,

is suggested, which samples the configuration space by ”growing” committor segments

towards each other starting from the boundary states. This framework is suggested

as a general tool, alternative to the Markov state models, for a rigorous and accurate

analysis of simulations of large biomolecular systems, as it has the following attractive

properties. It is immune to the curse of dimensionality, it does not require system

specific information, it can approximate arbitrary reaction coordinates with high accu-

racy and it has sensitive and rigorous criteria to test optimality and convergence. The

approaches are illustrated on a 50-dimensional model system and a realistic protein

folding trajectory.
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1 Introduction

One general strategy in overcoming the sampling problem in biomolecular simulations con-

sists of simulating a very large ensemble of short trajectories rather than a singe long tra-

jectory. This strategy allows seamless parallelization and is a promising approach towards

simulations employing exascale or cloud computing.1,2 Adaptive sampling approaches can

be considered as an extension of this strategy, where one, for example, improves sampling in

less sampled parts of configuration space, or parts that produce largest error or controls the

exploration/exploitation balance.3–10 The swarms of trajectories11,12 is another successful

variation of this idea.

To analyze such ensembles of short trajectories one commonly employs the Markov state

model (MSM) framework.7,13–15 Assuming that the sampling is sufficiently extensive, and

using a fine-grained clustering of the configuration space of the system, one can estimate the

transition probability matrix. Knowing the matrix, one can compute many important prop-

erties of the equilibrium dynamics, for example, the equilibrium probabilities/populations,

fluxes and rates. For large systems, as configuration space size grows exponentially with

system size, dimensionality reduction is required before clustering. During dimensionality

reduction some information is inevitably lost. Hence, the low dimensional coordinates should

be selected in an optimal way as to preserve the dynamics of interest, which is a difficult task.

A sub-optimal choice of coordinates limits the accuracy of resulting MSMs. The minimal

lag time when a MSM becomes approximately Markovian, which can be estimated by the

convergence of implied timescales or by Chapman-Kolmogorov criterion, is a good indicator

of the accuracy of the constructed model. The shorter is the lag time the more accurate is the

model, and the shorter are the trajectories, required to construct the MSM, and the larger is

the possible speedup over a direct, brute-force simulation. State of the art approaches have

lag times in the range of tens of nanoseconds.16–19

Recently, we have suggested non-parametric approaches,20–22 which can determine the

committor and a few slowest eigenvectors, that pass stringent validation tests at much shorter
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lag time of trajectory sampling interval of 0.2 ns. The non-parametric approaches are blind22

as they use no system specific information and thus do not require an extensive expertise

with the system. In particular, they do not require a functional form with many parameters

to closely approximate a reaction coordinate (RC), e.g., a linear combinations of molecular

descriptors or a deep neural network, and can approximate any RC with high accuracy.

The approaches however were restricted to long equilibrium trajectories. Here we report the

extension of the framework to non-equilibrium ensembles of short trajectories and suggest

it as a general framework, alternative to the MSM, for a rigorous and accurate analysis of

dynamics of large biomolecular systems.

We describe approaches which can be used to analyze such non-equilibrium ensembles of

trajectories, to determine the following important descriptors/properties of the dynamics:

the committor function, the mean-first-passage time, the re-weighting factors (related to the

equilibrium probabilities), the eigenvectors of the equilibrium and non-equilibrium transfer

operators and that of the transition probability. In particular, we show how one can deter-

mine the equilibrium free energy profile as a function of the committor, which can be used

to determine exactly such important properties of the dynamics as the equilibrium flux, the

mean first passage times, and the mean transition path times between any two points on the

committor.21,23

One way to analyze non-equilibrium simulations consists of computing the re-weighting

factors first, and then use them to re-weight the sampling, thus essentially reducing the

problem to the equilibrium case.14 Such a straightforward approach, however, has the fol-

lowing shortcoming. The accuracy of the analysis depends on the accuracy of the obtained

re-weighting factors. Thus, it requires an approach capable of determining the re-weighting

factors for every trajectory point robustly and accurately, which is a very difficult task. Here,

we present approaches that do not assume the existence of the re-weighting factors, and thus

free of the shortcoming.

The paper is as follows. We start by reviewing the non-parametric framework for equilib-
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rium simulations. Next, equations to determine the committor function from non-equilibrium

simulations are derived. They are followed by derivation of equations to determine re-

weighting factors. The power of the developed approaches is illustrated on two examples:

a 50-dimensional model system and a realistic protein folding trajectory. Next, we discuss

a number of realistic practical scenarios of how the developed approaches can be combined

with existing enhanced/adaptive sampling techniques. We then describe a generic adaptive

sampling approach, the transition state ensemble enrichment, TSEE, which is based on the

developed non-parametric approaches. The performance of the TSEE is illustrated on the

50-dimensional model system. We end with a concluding discussion.

2 Method

A rigorous way to analyze dynamics produced by biomolecular simulations is to describe it

as a diffusion on a free energy landscape, free energy as a function of RCs. The simulation

trajectory is projected onto a RC by computing the RC time-series r(t) as a function of

time, which is used to determine the corresponding free energy landscape and diffusion

coefficient. For such a description to be quantitatively accurate, the RCs should be chosen in

an optimal way.21,24–26 The committor function is an example of such a RC, that can be used

to compute some important properties of the dynamics exactly.21,27 The eigenvectors (EVs)

of the transfer operator are another example.28,29 Recently we have developed non-parametric

approaches to accurately determine such coordinates from a long equilibrium trajectory.20–22

Here we describe how to extend this framework to non-equilibrium simulations, making

possible to use these approaches for enhanced/adaptive sampling.

2.1 Iterative non-parametric optimization of reaction coordinates

The overall idea of iterative non-parametric RC optimization is as follows.20–22 We start with

a seed RC time-series r(t). During each iteration we consider a variation of RC as r(t)+δr(t),
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where δr(t) can be (a time-series of) any function of configuration space, collective variables

and the RC itself. For example, one can take δr(t) = f(r(t), y(t)), where y(t) is time-series

of a randomly chosen coordinate of configuration space Xi(t) or a randomly chosen collective

variable and f(r, y) =
∑

lm αlmr
lym is a low degree polynomial. The coefficients/parameters

of the variation are chosen such that r(t)+δr(t) provides the best approximation to the target

optimal RC (e.g., committor). Specifically, they deliver optimum to a specific target func-

tional α⋆ = argminα I(r+ δr), here I is the target optimization functional, whose minimum

is provided by the target optimal RC, and argminα denotes such values of α which provide

minimum to the functional for the current variation r + δr. The RC time-series is updated

r(t) ← r(t) + δr⋆(t), where δr⋆(t) is the optimal variation, i.e., δr⋆(t) =
∑

lm α⋆
lmr

l(t)ym(t).

Iterating the process one repeatedly improves the putative RC time-series by incorporat-

ing information contained in different coordinates or collective variables. Alternatively, by

repeating the iterations, the target functional is optimized by considering variations along

different coordinates. For the target functionals considered here, the optimal coefficients α⋆

are found as solutions of linear systems of equations.

While each iteration may depend on the exact choice of the family of collective variables

y or the parametrization of the variation δr(t), the final RC does not, since it provides the

optimum to a (non-parametric) target functional, when the optimization converges. In this

sense such an approach is non-parametric.

If the system obeys some symmetry (e.g., the rotational and translational symmetries

for biomolecules), then the optimal RC should obey the same symmetry. A simple way to

ensure this is to use as y, variables that respect the symmetry, for example, the distances

between randomly chosen pairs of atoms y(t) = dij(t).

The equations for non-parametric RC optimization are derived in the following sequence

of steps. We first find an optimization functional when the system dynamics is described by

a finite Markov chain (a MSM). Next, the optimization functional is reformulated in terms

of RC time-series. If this is possible, it means, that there is no need to construct/consider a
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finite Markov chain and one can operate using just RC time-series. By varying the functional

we obtain the final equations for the optimal values of the parameters α⋆.

We employ the framework of finite Markov chains to describe Markov dynamics in the

configuration space. While the configuration space in molecular simulations is continuous

and rigorous treatment requires the usage of integral operators, we prefer finite Markov

chains due to their convenience, simplicity and manifest invariance to the choice of coor-

dinate systems. Moreover, a finite Markov chain can provide an excellent approximation

to continuous configuration space. Since, we consider such a Markov chain as a theoretical

concept, e.g., to derive the equations, and there is no need for an actual construction of such

a chain in practice, the number of states can be arbitrarily large as long as it stays finite. For

example, a molecular system of interest can be embedded into a large box with boundaries at

±L along each coordinate. Each coordinate can be discretized with a very fine step of, say,

d ∼ 0.01 Å. Since the molecular dynamics simulations are usually performed by numerically

integrating the Newtons equations of motion, the dynamics, at the timescales close to the

simulation time step, is Markovian in the phase space not the configuration space. At longer

timescales the dynamics loses memory about the momenta and can be considered approxi-

mately Markovian in the configuration space. We assume that given simulation trajectories

are recorded with such or longer sampling interval, since we are mainly interested in the de-

termination of optimal RCs as functions of the configuration space. However, it is possible,

in principle, to apply the developed approaches to determine optimal RCs as functions of

phase space at a shorter sampling interval.

2.2 NPq. Non-parametric determination of the committor from

an equilibrium trajectory

We first review the approach for equilibrium trajectories.20,21,27 We use the following nota-

tions. We consider a long equilibrium multidimensional trajectory X(t), the xyz coordinates

of all atoms as a function of time. In practice, the trajectory is recorded at regular time inter-
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vals ti = i∆t0, where ∆t0 is the trajectory saving or sampling interval. Thus the trajectory is

represented as a sequence X(i∆t0). r(i∆t0) denotes an arbitrary RC as a function of trajec-

tory snapshot or time along the trajectory or, shortly, a function of trajectory, and q(i∆t0)

is reserved for the committor; y(i∆t0) denotes time-series of a collective variable/coordinate

used to improve the RC during current iteration. When we consider a Markov state model

of dynamics, x(i) denotes an arbitrary RC as a function of MSM state i, again q(i) is re-

served for the committor. Here we describe how, given X(i∆t0), one can determine putative

time-series r(i∆t0), which closely approximates the committor q(i∆t0).

Assume that, by using a fine-grained clustering, we are able to construct an accurate

Markov state model, with transition probability matrix defined as P (i|k,∆t0) = n(i|k,∆t0)/n(k,∆t0),

where P (i|k,∆t0) is the transition probability from state k to state i after time-interval ∆t0,

n(i|k,∆t0) is the number of transition from state k to state i after time interval ∆t0 and

n(k,∆t0) =
∑

i n(i|k,∆t0) is the total number of transitions out of state k, which is propor-

tional to the equilibrium probability.

The committor function satisfies the following equation

∑

i

[q(i)− q(k)]P (i|k,∆t0) = 0, for k 6= A,B (1a)

q(A) = 0; q(B) = 1. (1b)

Consider the following optimization problem:

min
x

∑

ij

[x(i)− x(j)]2n(i|j,∆t0) (2a)

x(A) = 0; x(B) = 1, (2b)

here, x(i) is an arbitrary RC as a function of state i. By differentiation with respect to x(k),

and using the detailed balance condition n(i|j,∆t0) = n(j|i,∆t0) one obtains Eq. 1, i.e., the

committor function provides the minimum to the functional 2.
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Before reformulating Eq. 2 optimization problem in terms of RC time-series lets introduce

a convenient abbreviation for the sums like
∑T/∆t

i=0 f(i∆t)g(i∆t + ∆t), where T = N∆t0 is

trajectory length and ∆t denotes the lag time, i.e., the time interval used for the analysis,

which equals ∆t0 or its multiple. If ∆t = k∆t0, it means that only 1/k-th fraction of points

in the trajectory are used. To use all the points in the trajectory one can average over

the starting point as 1/k
∑k−1

j=0

∑T/∆t
i=0 f((ik + j)∆t0)g((ik + j)∆t0 + k∆t0), which equals

1/k
∑T−∆t

i=0 f(i∆t0)g(i∆t0 +∆t). We denote such a sum as
∑

t f(t)g(t +∆t). Even though

we will mainly use ∆t = ∆t0, the notation allows the consideration of arbitrary lag times.

The optimization problem Eqs. 2 is translated to RC time-series r(i∆t0) (for lag time

∆t) as

min
r

∑

t

[r(t+∆t)− r(t)]2 (3a)

r(t) = 0, X(t) ∈ A; r(t) = 1, X(t) ∈ B, (3b)

here r(i∆t0) is an arbitrary RC as a function of trajectory. The total squared displacement

functional in Eq. 3a, which is optimized, is referred later as ∆r2 for brevity. Here and

below we assume ∆t = ∆t0 unless stated otherwise. The theoretical minimum value of

the functional, attained for r = q, equals ∆q2 = 2NAB,
27 where NAB is the total number

of transitions from state A to B, or from B to A. Thus, if during RC optimization ∆r2/2

reaches NAB, it follows that the putative RC closely approximates the committor.

To satisfy the constraint Eq. 3b during optimization, we, first, construct a seed RC

time-series that satisfies the constraint, and second, during optimization, we keep positions

of these points fixed by setting δr(t) = 0 for them. Lets introduce boundary indicator

function Ib(t), which equals 1 when point X(t) belongs to a boundary and is thus fixed

during optimization, and zero otherwise. Ĩb(t) = 1 − Ib(t) is its negative. The variation

of the putative time series, which keeps the positions of points/frames in boundary states

fixed can be taken as r(t) + δr(t) = r(t) + Ĩb(t)
∑

j αjfj(t), where fj(t) are basis functions,
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that are discussed below. Optimal coefficients α⋆, which give the best approximation to

the committor for the considered variation, can be found by equating the derivative of the

functional with respect to αk to zero:

∑

t

[r(t+∆t)− r(t) + δr(t+∆t)− δr(t)][fk(t+∆t)Ĩb(t+∆t)− fk(t)Ĩb(t)] = 0, (4)

or more compact
∑

t

[∆r(t) + ∆δr(t)]∆[fk(t)Ĩb(t)] = 0, (5)

where operator ∆ denotes the forward time difference ∆f(t) = f(t + ∆t) − f(t). It equals

the following system of linear equations

∑

j

Akjα
⋆
j = bk (6a)

Akj =
∑

t

∆[fk(t)Ĩb(t)]∆[fj(t)Ĩb(t)] (6b)

bk = −
∑

t

∆r(t)∆[fk(t)Ĩb(t)] (6c)

As basis functions fj(t) one can take the terms of a low-degree polynomial, i.e., rl(t)ym(t) for

l+m ≤ n and y(t) is a randomly chosen coordinate of the configuration space, y(t) = Xi(t),

or a collective variable. To focus optimization on a particular region of RC, one can modulate

the polynomial terms by a common envelop. For example, to focus optimization on points

around r0 on the RC, one can use e−|r(t)−r0|/d × rl(t)ym(t), where d is some small number

that defines the scale. This option is useful to optimize regions corresponding to free energy

minima along the committor, which get exponentially shrunk.21

Generally, the higher is the degree of the polynomial, the faster is the optimization,

though more computationally demanding. However a very high degree may lead to numerical

instabilities and strong overfitting. The following strategy was found useful: use a polynomial

f(r, y) with a relatively small degree (3-6) for updates involving r(t) and y(t) followed by a
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polynomial f(r) of a high degree (e.g., 16) for updates involving only r(t).

The basic algorithm (which we call NPq) is as follows. Initialization: a seed RC is

constructed, which satisfies the boundary constrains, for example, r(t) = 0 if X(t) ∈ A,

r(t) = 1 if X(t) ∈ B and r(t) = 0.5 otherwise. Iterations: one selects times-series y(t)

(a randomly chosen coordinate of configuration space X or a collective variable), computes

basis functions, solves Eqs. 6 and updates r(t). Stopping: iterations stop when ∆r2/2 is

close to the target value of NAB.

If the system has been extensively sampled, and overfitting is not possible, then, as

putative ∆r2/2 reaches NAB, the RC should closely approximate the committor. To confirm

that, one can use the ZC,1 validation/optimality criterion for the committor.27 ZC,1 can

be straightforwardly computed from time-series r(i∆t0): each transition of trajectory from

x1 = r(i∆t) to x2 = r(i∆t + ∆t) adds 1/2|x1 − x2| to ZC,1(x,∆t) for all points x between

x1 and x2.
21,27 Validation: If a putative RC closely approximates the committor, then

ZC,1(x,∆t) ≈ NAB for all x and ∆t, where ZC,1(x,∆t) are computed using transition path

segment summation scheme.27 Optimality: for a suboptimal RC, ZC,1(x,∆t) values are,

generally, larger than NAB and decrease to the limiting value of NAB, as ∆t increases. The

larger the difference between ZC,1(x,∆t1) and ZC,1(x,∆t2) the less optimal the RC around x.

Jupyter notebooks illustrating usage of ZC,α profiles for RC analyses and, in particular, as the

committor and eigenvector criteria are available at https://github.com/krivovsv/CFEPs.30

For realistic systems with limited sampling, this simple algorithm may start to overfit

the RC in some regions and underfit in other. One way to overcome this problem is to

make optimization adaptive, by focusing optimization on less optimized spatio-temporal

regions.21 Here we consider another strategy - to use adaptive sampling in order to improve

sampling in regions that are overfit or undersampled. Since adaptive sampling is no-longer

equilibrium, and the described approach assumes the detailed balance, we describe a new

approach applicable to non-equilibrium sampling.
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2.3 NPNEq. Non-parametric determination of the committor

from non-equilibrium sampling

We assume that we are given a non-equilibrium ensemble of (short) trajectories. While

each trajectory was simulated by following the unperturbed or natural dynamics of interest,

the starting configurations are chosen arbitrarily, for example, according to an enhanced or

adaptive sampling scheme.

We employ the following representation of a non-equilibrium ensemble of trajectories.

All the short trajectories are concatenated into a single long trajectory X(i∆t0) combined

with itraj(i∆t0) index function which maps frames to the trajectory numbers they belong

to. Our aim is to determine putative time-series r(i∆t0), which closely approximates the

committor q(i∆t0).

Analysis of such non-equilibrium ensembles of trajectories by the MSM formalism is

carried out without modification. One determines the transition numbers n(i|k,∆t0) and

transition probability matrix P (i|k,∆t0), which can be used, e.g., to determine the committor

using Eq. 1 or the equilibrium probabilities, which are no longer proportional to n(k,∆t0).

The non-parametric approach, however, needs modifications, as the detailed balance is not

satisfied in such non-equilibrium ensembles, i.e., n(i|j,∆t0) 6= n(j|i,∆t0) and the minimum

of Eq. 2 is no longer provided by the committor function. We need to find a new functional

for non-equilibrium case that satisfies the following conditions: i) its minimum is provided

by the committor function, ii) it does not assume the detailed balance and iii) it can be

expressed in terms of RC time-series. To find such a functional we used the following trick.

Consider the following optimization problem,

min
x

∣

∣

∣

x′=x

∑

ij

[x′(i)− x(j)]2n(i|j,∆t0) (7a)

x(A) = 0, x(B) = 1, (7b)
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where min
x

∣

∣

∣

x′=x
sign means that we optimize by varying x, while variables x′ are fixed dur-

ing optimization and are updated as x′ = x straight after, then the optimization cycle is

repeated until converged. In other words, variables x′ just follow x, they do not determine

the direction/trajectory of optimization and they do not contribute to the gradient. For

example, assume that we minimize the functional by the steepest-descent algorithm (SD),

i.e., by iteratively making steps against the gradient: x(k) = x(k)− γ∇k, while x′ are kept

fixed, where ∇k is gradient and γ is the step size. The SD will stop when the gradient is

zero

∇k = −2
∑

i[x
′(i)− x(k)]n(i|k,∆t0) = 0, for k 6= A,B (8)

Now, introduce the update of x′ variables, after every SD step, as x′ = x. Since, we iteratively

decrease a positive functional, the process should converge, hence we let x′ = x in Eq. 8,

and obtain that x is the committor (Eq. 1).

Before translating Eq. 7 functional to RC time-series terms, we update our nota-

tion to take into account summation over trajectories in the ensemble. Consider sum
∑Ntr

k=1

∑Tk−∆t
i=0 fk(i∆t0)gk(i∆t0 + ∆t), where the first sum with index k, is the sum over

Ntr trajectories in the ensemble and the second sum with index i, is the sum along k-th

trajectory with length Tk. We denote such a sum as
∑

t f(t)g(t + ∆t)It(t), where the sum

over t, is the sum over the long trajectory obtained by concatenating all the trajectories in

the ensemble, and It(t) is indicator function, which equals 1 when f(t) and g(t+∆t) belong

to the same short trajectory, i.e., itraj(t) = itraj(t + ∆t), and zero otherwise. It(t) kills all

the cross-trajectories terms, ensuring that only terms, where f(t) and g(t + ∆t) are from

the same trajectory, contribute to the sum. This short, intuitive notation, makes equations

below less cluttered.
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The optimization problem of Eq. 7 is translated to RC time-series terms as follows

min
r

∣

∣

∣

r′=r

∑

t

[r′(t+∆t)− r(t)]2It(t) (9a)

r(A) = 0, r(B) = 1 (9b)

Taking RC variation as r(t) + δr(t) = r(t) + Ĩb(t)
∑

j αjfj(t) one obtains for the gradient

∂/∂αk = −2
∑

t

[r′(t+∆t)− r(t)− δr(t)]fk(t)Ĩb(t)It(t) (10)

Instead of optimizing with the SD, which converges rather slow, one can find analytically

α⋆, the optimal values of α, where ∂/∂αk = 0:

∑

j

Akjα
⋆
j = bk (11a)

Akj =
∑

t

fk(t)fj(t)Ĩb(t)It(t) (11b)

bk =
∑

t

[r′(t+∆t)− r(t)]fk(t)Ĩb(t)It(t) (11c)

Solution of Eq. 11 describe the optimal variation for fixed r′. Next, one updates r′ and r as

r′ = r ← r + δr and repeats the optimization, i.e., solves Eq. 11 again, and so on until the

convergence. One may try to find the converged solution by letting r′ = r + δr in Eq. 10.

Which leads to the following system of linear equations

∑

j

Akjα
⋆
j = bk (12a)

Akj =
∑

t

[fj(t)Ĩb(t)− fj(t+∆t)Ĩb(t+∆t)]fk(t)Ĩb(t)It(t) (12b)

bk =
∑

t

[r(t+∆t)− r(t)]fk(t)Ĩb(t)It(t) (12c)

In the non-equilibrium case, in contrast to the equilibrium one, the lower bound of the ∆r2
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functional is not known, because it depends on the sampling. To monitor the convergence of

the optimization process here, we suggest to adopt one of the metrics in iterative equation

solving - the increment size |xnew− xold|. Since the optimization is stochastic (y are selected

randomly), we suggest to monitor the increment size during the last n iterations ||r−r−n|| =
√
∑

t[r(t)− r−n(t)]2, to have a representative estimate; here subscript −n means n iterations

back.

The basic NPNEq algorithm is similar to the equilibrium case and is as follows. Ini-

tialization: a seed RC is constructed, which satisfies the boundary constrains, for example,

r(t) = 0 if X(t) ∈ A, r(t) = 1 if X(t) ∈ B and r(t) = 0.5 otherwise. Iterations: one se-

lects times-series y(t) (a randomly chosen coordinate of configuration space X or a collective

variable), computes basis functions, solves Eqs. 12 and updates r(t). Stopping: iterations

stop when the change of RC time-series during the last n iterations ||r− r−n|| is sufficiently

small.

We show in Appendix that Eq. 12 can be obtained in other ways. Using the Galerkin

condition, where one minimizes the error terms (the residuals or the deviations from 0) in

Eq. 1, by making them orthogonal to the basis functions. Or, by minimizing the weighted

sum of the error terms squared - a standard approach of solving system of linear equations

iteratively.

The mean-first-passage time (mfpt) from a current structure to a given boundary state

(e.g., the native state in protein folding) can be considered as a RC.5,31 It is defined by an

equation, very similar to Eq. 1 for the committor. Correspondingly, equations for iterative

optimization of the mfpt are very similar to Eq. 12 and are given in the Appendix.
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2.4 Validation criterion for the committor in the non-equilibrium

case

Here we suggest a generalization of the ZC,1 criterion for the committor to the non-equilibrium

case. Consider function Zq(x,∆t), whose derivative equals

∂Zq(x,∆t)

∂x
=

∑

ij

δ(x− x(j))[x(i)− x(j)]n(i|j,∆t) (13)

It can be computed from RC time-series r(i∆t0) as

∂Zq(x,∆t)

∂x
=

∑

t

δ(x− r(t))[r(t+∆t)− r(t)]It(t) (14)

If x(i) is the committor, i.e., satisfies Eq. 1, then by summing Eq. 13 over i, one obtains

that the derivative is zero for all j but the boundary nodes. Which leads to the validation

criterion: Zq(x,∆t) is constant for the committor function for all x (but boundary nodes,

see below) and ∆t. Note that, in contrast to the equilibrium case, the constant value here

is not informative, as it is defined by the transitions from the state A and depends on the

sampling. In Appendix we show that Zq is an outgoing part of the ZC,1 profile and Zq = ZC,1

for an equilibrium trajectory with the detailed balance.

Note that, analogous to ZC,1, Zq deviates from the constant value around the boundaries

for ∆t > ∆t0. The deviations can be eliminated by employing the transition path segment

summation scheme.27 However, since one expects the trajectories to be relatively short, the

deviations are expected to be small, and we do not see a significant advantage in introducing

this scheme here.

If a putative RC deviates from the committor, then Zq derivative should deviate from

zero. However, it is not clear if the difference between the derivatives for two different ∆t

can serve as a measure of RC sub-optimality. Here, the equilibrium ZC,1 criterion is used

for that purpose, which can be obtained by re-weighting the non-equilibrium sampling, as
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demonstrated later.

2.5 NPNEw. Non-parametric determination of re-weighting fac-

tors from non-equilibrium sampling

Another quantity of interest in non-equilibrium sampling are the equilibrium probabilities or

re-weighting factors. Having determined the transition matrix for an MSM one can compute

the equilibrium probabilities, π(i), as the solution of

π(i) =
∑

j

P (i|j,∆t)π(j). (15)

Introducing re-weighting factors w(i), which correct the non-equilibrium distribution π(i) =

n(i,∆t)w(i), the equation can be written also as

w(i)n(i,∆t) =
∑

j

n(i|j,∆t)w(j), (16)

here n(i,∆t) =
∑

j n(j|i,∆t). For a single long equilibrium trajectory, where the number

of ingoing and outgoing transitions for every node is equal,
∑

j n(j|i,∆t) =
∑

j n(i|j,∆t),

w(i) = 1 is the solution - no re-weighting is necessary.

The re-weighting factors do not represent a RC, as it makes little sense to project the

dynamics on them. However, they can be determined by the developed formalism, and the

terminology of the formalism will be used for consistency. In particular, we will refer to

arbitrary re-weighting factors as a RC and the correct re-weighting factor as the optimal RC

denoted by w (analogous to q for the committor). The aim here is to determine putative

time-series r(i∆t0), which closely approximates the re-weighting factors w(i∆t0).

The corresponding optimization functional for Eq. 16 is

min
x

∣

∣

∣

x′=x

∑

i

n(i,∆t)x2(i)/2−
∑

ij

x(i)n(i|j,∆t)x′(j) (17)
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which is translated to RC time-series

min
r

∣

∣

∣

r′=r

∑

t

It(t)r
2(t)/2− r(t+∆t)r′(t)It(t). (18)

Considering RC variation as r(t) +
∑

j αjfj(t) one obtains the following equations for the

optimal parameters

∑

j

Akjα
⋆
j = bk (19a)

Akj =
∑

t

[fk(t)− fk(t+∆t)]fj(t)It(t) (19b)

bk = −
∑

t

[fk(t)− fk(t+∆t)]r(t)It(t) (19c)

A1j =
∑

t

fj(t)It(t) (19d)

b1 =
∑

t

1− r(t)It(t) (19e)

The re-weighting factors are defined up to an overall factor, which we fix by requiring the

total weight to be equal that of an equilibrium trajectory, i.e.,
∑

t w(t)It(t) =
∑

t 1. This

leads to Eqs. 19d-e. They should replace equations Eqs. 19b-c for k = 1, for constant basis

function f1(t) = 1, for which Eqs. 19b-c give zeros.

The re-weighting factors can also be considered as the first right eigenvector (with eigen-

value λ=1) of a non-equilibrium version of the transfer operator n(i|j,∆t)/n(i,∆t). Ap-

pendix discusses the corresponding equations for the eigenvectors of the transfer operator

P (i|j,∆t)π(j)/π(i) and the transition probability P (i|j,∆t).

The optimization of eigenvectors, and, correspondingly, of the re-weighting factors, has

an inherent instability.22 For example, if time-series y(t), which is used to improve putative

re-weighting factors, enters a region in configuration space, but does not come back, it will

try to increase the weight of this region infinitely. Short trajectories are likely to make this

situation more probable. To make the optimization of the re-weighting factors robust, one
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may need to employ some ideas discussed in22 and this is a work in progress. Here we suggest

to use a selected set of proper collective variables that sample all the regions extensively,

i.e., they contain transitions to and from all the sampled regions.

In the simplest case one can take as y(t) only a single committor coordinate time-series.

In this case one will determine w(q), re-weighting factors as a function of the committor.

This is sufficient, for example, for the first passage ensemble which consists of trajectories

starting in A and stopping as soon as they reach B, since the biasing factor in this ensemble is

a function of the committor. It should also be sufficient for an ensemble of short trajectories

for a system with a single dominant pathway. In this case, the committor function, increasing

along the pathway, can be used to parameterize the pathway and the re-weighting factors.

If there are two (or a few more) parallel pathways one can incorporate a proper collective

variable that distinguishes between them into optimization as y(t).

The basic NPNEw algorithm is as follows. Initialization: a seed RC is initialized to

r(t) = 1. Iterations: one randomly selects times-series y(t) from a set of proper collective

variables, computes basis functions, solves Eqs. 19 and updates the putative RC time-series.

Stopping: iterations stop when the change of RC time-series during the last n iterations

||r − r−n|| is sufficiently small.

Once computed, the re-weighting factors are used to determine the equilibrium properties.

For example, for the equilibrium free energy profile F (r): each trajectory point r(i∆t0)

contributes with corresponding weight of w(i∆t0); for equilibrium ZC,α cut-profiles: each

transition from r(i∆t0) to r(i∆t0 +∆t) contributes with corresponding weight of w(i∆t0).

3 Illustrative Examples

3.1 50 dimensional model system

As the first model system we consider a high-dimensional system for which the committor

function can be computed analytically. It qualitatively resembles a protein folding landscape
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with radially symmetric potential energy U(X) = U(R(X)), decreasing towards the begin-

ning of the coordinates, where R(X) =
√

∑n
i=1 X

2
i . The decrease in enthalpy is compensated

by the decrease in entropy so that the resulting free energy profile as a function of R has two

minima, separated by a barrier (Fig. 1). More specifically, U(R) = U0(R) − (n − 1) ln(R)

and

U0(R) =































R < 2 5(R− 2)2

2 ≤ R ≤ 12 4e−(R−6)2 + 4e−(R−8)2

12 < R 5(R− 12)2

(20)

Due to high dimensionality of the configuration space, n = 50 here, the system can not

be analyzed directly by an MSM approach, one would need to preform a dimensionality

reduction first. For example, a trajectory of 106 frames will not even visit every possible

region of configuration space with different combinations of coordinate signs. Approaches

assuming pathways can not be applied also, as the system does not have a well defined

pathway.

Non-equilibrium ensemble of short trajectories was obtained by randomly selecting a

point in the 50 dimensional configuration space with uniform distribution in 1 < R < 13 and

simulating a diffusion trajectory for 10 ∆t0 saving intervals with D(X) = 1, simulation step

∆tsim = 0.001 and saving interval of ∆t0 = 0.1. The total size of the ensemble is 106 points.

The free energy profile as a function of the radius FH(R), computed from the trajectories,

is different from U0(R) (Fig. 1), confirming the non-equilibrium character of sampling.

The NPNEq algorithm is used to find the putative committor time-series. Specifically,

Initialization: a seed RC is constructed as r(t) = 0 if R(t) < 2 (state A, see Fig. 1), r(t) = 1

if R(t) > 12 (state B) and r(t) = 0.5 otherwise. Iterations: Every iteration consists of four

RC updates. NPNEq equations (Eqs. 12) with basis functions being the terms of polynomial

f(r, y) of degree 6, where y(t) = Xi(t) and i is randomly chosen from 1, 2, ..., 50, i.e., y(t)

is a randomly chosen coordinate time-series. It is followed by NPNEq equations with basis

functions being the terms of polynomial f(r) of degree 16 with envelop exp(−|1− r|/0.005),
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Figure 1: Non-equilibrium free energy profile FH(R) (blue) and U0(R) (red).

that with envelop exp(−|r|/0.005), and that without envelop. Stopping: iterations are

terminated when ||r− r−100|| < 0.3. A Jupyter notebook with the analysis is provided in the

Supporting Information and is also available at https://github.com/krivovsv/NPNE.32

The results are robust with respect to the polynomial degrees, frequency of updates with

envelops, size of the envelops, etc. Higher degrees generally lead to faster convergence, a bit

smaller value of the ∆r2 functional, and less fluctuating Zq, though very high degrees may

result in instability and occasional failure to converge.

Fig. 2 demonstrates the convergence of the iterations of the optimization process. The

size of increments ||r − r−100|| are steadily getting smaller with the iteration number. The

change in the functional ∆r2 value as a function of iteration number is getting smaller,

indicates that we are approaching the minimum. The change of the RC time-series during the

last 100 iterations, for selected frames, is bounded by 0.002, indicating that the convergence

is uniform.

Fig. 3 inspects how closely the determined time-series approximates the committor. The

validation criterion is relatively constant. The root mean squared deviations of Zq are about

5, 6 and 10 for ∆t = 1, 2 and 4, respectively. Larger fluctuations for ∆t = 4 could be due

to general statistical fluctuations because of limited sampling. Unlike the equilibrium ZC,1

profiles, the mean values of the Zq profiles are not very meaningful, as they depend on the

transitions from state A, which depend on the sampling. The committor as a function of R
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Figure 2: Convergence of the NPNEq optimization. a) ∆r2 (black) and ||r−r−100|| (blue) as
functions of iteration number. b) Change of the RC time-series during the last 100 iterations
for selected frames.

can be computed analytically as

q(R) =

∫ R

R(A)

D−1(x)eU0(x)dx/

∫ R(B)

R(A)

D−1(x)eU0(x)dx,

where D(x) = 1. Fig. 3b shows that the latter is in a good agreement with the putative RC,

which is referred as committor henceforth.

The re-weighting factors are computed using the NPNEw algorithm. Specifically, Initial-

ization: a seed RC is initialized as r(t) = 1. Iterations: NPNEw equations (Eqs. 19) with

basis functions being the terms of polynomial f(r, y) of degree 5, where y(t) is the putative

committor time-series q(t). Stopping: iterations are terminated when ||r − r−1|| < 0.0001.

The re-weighting factors are used to compute the equilibrium properties. Fig. 4a shows

the equilibrium ZC,1 as the function of the putative committor q, the committor validation

criterion. The profile is constant with fluctuations bounded by 10%, confirming that q
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Figure 3: Validation of the putative RC time-series. a) Non-equilibrium committor validation
criterion Zq(x,∆t) along putative time-series q for ∆t = 1, 2, 4 are relatively constant. b)
Comparison of the analytically computed committor as a function of R (black line) with
that for selected frames from RC time-series (yellow dots).
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approximates the committor rather well.

The equilibrium ZC,1 profile can be used to compute the equilibrium flux JAB = NAB/T ,

where T = N∆t0, is the total length of trajectory and NAB is the number of transitions

from A to B. NAB can be computed as N−1
AB =

∫ q(B)

q(A)
Z−1

C,1(q)dq and N =
∑

t w(t)It(t).

The obtained value of the equilibrium flux JAB = 0.001179 is in a good agreement with

that computed analytically as JAB = NAB/Z = 0.001186, where N−1
AB =

∫ R(B)

R(A)
Z−1

C,1(x)dx =
∫ R(B)

R(A)
D−1(x)eU0(x)dx and Z =

∫

e−U(x)dx, where D(x) = 1.
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Figure 4: Equilibrium properties. a) Equilibrium validation/optimality criterion along the
putative time-series is relatively constant (apart from the expected deviations at the bound-
aries). The deviations from the constant value are in the range of 10%. b) FH(q̃) (green),
equilibrium free energy profile as a function of q̃, is in agreement with U0(R) (red); FH(q̃)
was shifted horizontally and U0(R) vertically for maximum overlap.

The re-weighting factors can be used to compute the equilibrium free energy profile FH(q)

and the diffusion coefficient D(q) as functions of the committor and thus provide the diffusive

model of the equilibrium dynamics along the committor, which can be used to compute the
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following important properties of the dynamics exactly: the equilibrium flux, the mean

first passage times, and the mean transition path times between any two points on the

committor.21,23 However, using FH(q) for the analysis and description of the dynamics is not

very convenient as the diffusion coefficient varies significantly along the coordinate. It is more

convenient to use a “natural” coordinate,21,24 q̃, where the diffusion coefficient is constant

D(q̃) = 1. It is related to q by the following monotonous transformation dq̃/dq = D(q)−1/2.

Fig. 4b shows that FH(q̃) is in a very good agreement with U0(R).

In summary, this example illustrates that the NPNEq and NPNEw algorithms can be

used to determine the committor and re-weighting factors from non-equilibrium ensembles

of short trajectories and to construct a diffusive model of equilibrium dynamics, which can

be used to compute important properties of the equilibrium dynamics exactly.

Functions implementing NPq (Eq. 6), NPNEq (Eq. 12) and NPNEw (Eq. 19) iterations,

computing Zq and ZH profiles and performing transformation to natural coordinate are

available as Python library npnelib.py at https://github.com/krivovsv/NPNE.32

3.2 A realistic protein folding trajectory

We have demonstrated that the NPNEq algorithm can accurately determine the committor

RC from a non-equilibrium sampling of the model system. The model system has a relatively

simple configuration space and a relatively simple committor function, which is a function

of R only. It is of interest to see how accurately the NPNEq algorithm can approximate the

committor for a realistic system. To this end, the NPNEq algorithm is applied to a long

equilibrium protein folding trajectory of HP35 Nle/Nle double mutant consisting of 1509392

snapshots at 380 K,33 in particular, to compare with its equilibrium version.21 The analysis

details can be found in a Jupyter notebook, provided in the Supporting Information and at

https://github.com/krivovsv/NPNE.32

The optimization continued for 40000 iterations. The final ∆r2/2 ∼ 1.9NAB, i.e., almost

two times higher than the target value of NAB = 74.5. Fig. 5a inspects the convergence of the
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algorithms. As one can see the increment size ||r−r−1000|| converges to some non-zero value,

while the ∆r2/2 functional continues to decrease, indicating that the optimization process

will overfit eventually, if continued, by going below the lower bound of ∆r2/2 = NAB.

Fig. 5b shows that the free energy profile as the function of the putative committor, F (q),

is very similar to that obtained with equilibrium adaptive non-parametric optimization,21

indicating that the non-equilibrium approach has similar approximation power.
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Figure 5: Application of the NPNEq to a realistic protein folding trajectory. a) Convergence
of the NPNEq optimization: ||r − r−1000|| (blue) and ∆r2 (black) as functions of iteration
number. b) Free energy as a function of committor, FH(q). c) Zq(x,∆t) along putative
committor time-series for ∆t = 1 (blue), 2 (orange), ..., 215.

Zq criterion (Fig. 5c), which, for equilibrium dynamics, is equivalent to ZC,1 shows that
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Zq(q,∆t0) is almost 2 times larger then NAB = 74.5. It means that the diffusive model of

dynamics is accurate, within a factor of 2, at the time scale of ∆t0 = 0.2 ns. For example,

the folding free energy barrier can be estimated with a error about kT ln(2) ∼ 0.4 kcal/mol.

The model can be improved further by continuing the optimization. However, since

the sampling is limited and not extensive, it will lead to overfitting. Fig. 5c shows that

optimization is not uniform with Zq(q,∆t0) − Zq(q, 2∆t0) is smallest for 0.4 < q < 0.6. If

continued further, Zq(q,∆t0) will get lower than Zq(q, 2∆t0) in that region, indicating that

the putative RC is overfitted around the transition state. One way to avoid overfitting, is

to make optimization more uniform by focusing it on underfitted/suboptimal regions.21 An

alternative approach consists in performing additional extensive sampling of the overfitted

region (the transition state) by starting many short trajectories from the frames in the

overfitted region and analyze the combined simulations using the developed non-equilibrium

approach.

4 Adaptive sampling

Given a representative and extensive, possibly non-equilibrium sampling of the configuration

space the proposed approaches can be used to determine the equilibrium free energy profile

as a function of the committor. The later, in particular, can be used to determine important

properties of the equilibrium dynamics exactly. By a representative sampling we mean such

a sampling which contains all the important regions of the configuration space, e.g., all

the important transition pathways, or a representative sample of them, if their number is

infinite. By an extensive sampling we mean a sampling of such a size that overfitting by

the non-parametric approaches is not possible or negligible. In this section we will discuss

possible strategies of generating such a representative and extensive sampling.

Consider first the case where a trajectory or an ensemble of trajectories provide a rep-

resentative, though not extensive sampling, for example, the state-of-the-art protein folding
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trajectories,34,35 considered in Sect. 3.2. Applying the non-parametric approaches (either

equilibrium or non-equilibrium) one finds that the optimization soon starts to overfit the

committor RC in the TS region, because the sampling of this region is relatively poor,

compare to the rest of the configuration space.21,22 The regions where the putative RC is

overfitted can be detected by using the optimality criteria. In order to avoid the overfitting,

many additional short simulations are performed, starting from the configurations that be-

long to the overfitted regions, e.g., the TS region. Then, the total simulation data is analyzed

by the non-parametric non-equilibrium approach.

A more difficult case is when an initial representative sampling is absent. For systems

with a relatively simple, small configuration space, selection of initial configurations to start

many short simulations as well as the seed RC can be done analytically, as it was done for

the model system considered here. Such systems may include practically important cases

such as, e.g., studies of dynamics of a ligand binding/unbinding to/from a protein,9,10,36 or

diffusion of a small molecule/ion through an ion channel pore.

If one of the boundary states has a much shorter lifetime compared to the other state,

then many trajectories should be started from the former state, which shall generate a non-

equilibrium (first passage) representative sampling.

If both boundary states have long residence times, while the transition path times are

rather short, one can use the transition path sampling approach37 to generate a representative

sampling. Inclusion of the rejected paths will increase the size of the sampling and remove

conditioning on the boundary states.

Another possibility is to use biased, non-equilibrium sampling, though, in this case, rep-

resentative sampling of transition paths is not guaranteed. For example, one may use sam-

pling at a higher temperature or sampling with a bias potential, e.g., umbrella sampling,38,39

steered-MD,40 replica-exchange,41,42 meta-dynamics,43 or forward flux sampling.44,45 If an

enhanced sampling method perturbs the dynamics of interest, e.g., a higher temperature or

a biasing potential, then many short simulations with unperturbed dynamics, need to be
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performed, starting from the obtained configurations.

If an enhanced sampling method produces unbiased, equilibrium sampling consisting of

many short trajectories, rather than a single long trajectory, e.g., the trajectories of the base

replica of the recently suggested REHT method,46 they can be analyzed with the equilibrium

non-parametric approaches. To take the multiple trajectories into account, it is sufficient to

include the trajectory indicator function It(t) as a factor in Eq. 6.

String method using swarms of trajectories11,12,47 can be straightforwardly combined with

the NPNEq approach. Since the latter does not assume the existence of a dominant pathway,

it may improve performance of the former in systems, where this assumption does not hold.

Consider now the forward flux sampling (FFS),44,45 where one uses an order parame-

ter (OP), which can be different from the optimal RC - the committor, to propagate the

trajectories from state A to state B. While the accuracy of FFS does not depend on the

OP, the efficiency does. Thus it would be desirable to propagate FFS trajectories using the

optimal RC or committor. Since the committor RC is not known in advance, one possibility

is to compute the committor during sampling, applying the developed approach to the data

sampled so far. Having the idea in mind we propose the following approach.

We first describe an idealized scenario. Assume that relatively long unbiased simulations

were performed in both boundary states A and B. The simulations are not long enough,

however, for the system to sample the transitions between the states, and thus can not be

used to construct the entire committor RC. Assume now that these simulations, however,

can be used to construct the committor in the sampled regions, i.e., the starting and ending

segments of the committor for example [0, α] and [β, 1]. Then many short trajectories are

started at the points with committor close to α and β. Analyzing the combined new and old

simulations, one extends the RC segments to a larger value of α and a smaller value of β,

since some of the stochastic trajectories will travel to these regions. One continues in such

an iterative manner to grow the two segments towards each other, until they meet, when

α = β, thus providing the initial representative sampling of transition paths.
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Unfortunately, it is not possible to construct accurately just the two segments of the

RC, because as soon as the RC is divided into two non-overlapping segments, [0, α] and

[β, 1], continued optimization will collapse the segments into 0 and 1 by sending α → 0

and β → 1. However, even an approximate RC, obtained just before the RC is divided

into two segments can be useful. It is possible, when such a partial optimization of the RC

increases the fraction of points with correct values of RC. In this case, a new ensemble of

many short trajectories is prepared, by starting them from points selected uniformly along

the RC. The new ensemble, will have a higher fraction of points with higher values of α and

smaller values of β. By iterating this process, one can converge to the ensemble with points

uniformly sampled along the RC. This process is somewhat analogous to the way uranium

is enriched in centrifuges: each cycle leads only to a marginal increase in the concentration

of the desired isotope. However, by repeating the cycle many times, the concentration gets

exponentially increased. We call this approach the transition state ensemble enrichment,

TSEE.

A division of a putative committor RC into two segments can be considered as a severe

case of overfitting. It can be detected with optimality criteria, however the simplest approach

is to detect the division when happened and then take the putative trajectory a few iterations

back.

We illustrate the TSEE approach on the model 50 dimensional system (Fig. 6). First

Iteration. We start by sampling the boundary states. 10000 short trajectories of length of

10 saving steps (∆t0 = 0.1) are simulated by starting from points with R = 2 and R = 12.

This is done by assigning the 50 coordinates to random numbers uniformly distributed in

the range [-0.5,0.5], and re-scaling them so that R equals to 2 or 12. F (R) on Fig. 6a shows

that the points are distributed mainly around R = 2 and R = 12, with almost no points in

the TS region. The NPNEq algorithm is applied to optimize the putative RC. The degree

of polynomial initially is set at 2 to limit the flexibility of RC to avoid its quick division into

two segments. The degree is gradually increased during optimization. NPNEq optimization
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is continued either until a segment 0.45 < q < 0.55 had fewer than 100 points, i.e., the RC

is close to be divided into two segments (stopping condition one), or until the increment

size ||r − r−100|| < 0.3 (stopping condition 2). The NPNEq optimization exited after 566

iterations with stopping condition one. The distribution of points on the q-R plane on Fig.

6a shows that optimization has stratified points according to the putative committor or that

the initial and final parts of the committor are determined relatively accurate. By selecting

points from the different regions along q, different regions of the configurations space can be

sampled more uniformly.

Second Iteration. 10000 points are drawn uniformly along q̃ - the putative committor

transformed to the natural coordinate. These points are used to start 10000 short trajectories

of length 10 ∆t0. F (R) on Fig. 6b shows that some of these trajectories visited the TSE.

The same NPNEq algorithm is applied to optimize the putative RC. The NPNEq algorithm

terminated after 7100 iterations with stopping condition two, i.e., the optimization is robust

with no division of the RC. The distribution of points on the q-R plane on Fig. 6b shows

that they cover all of the committor. Comparison with the exact, analytically computed

q(R) (black line) on 6b, shows that while the putative RC values are close to the exact

committor, they show large statistical fluctuations around it compare to Fig. 3b, which is

explained by ∼ 10 times shorter sampling. The equilibrium flux, computed with such a

putative committor is JAB = 0.0016, which is 37% greater than the exact value.

Third Iteration. ∼ 10 times large sampling is used. 100000 points, drawn uniformly

along q̃, are used to start 100000 short trajectories of length 10 ∆t0. The NPNEq algo-

rithm terminated after 10700 iterations with stopping condition two. The putative RC

approximates the exact committor much closer (Fig. 6c cf. Fig. 3b). The equilibrium

validation/optimality criterion along the putative time-series is relatively constant (Fig. 6d

cf. Fig. 4a). The equilibrium flux is about J ∼ 0.00118. Thus, the TSEE algorithm has

converged at the third iteration, however a relatively accurate description of the kinetics can

be obtain already at the second iteration.
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Figure 6: Convergence of the TSEE approach in application to the model system. Initial
distribution of points along an OP F (R) (blue line); two-dimensional distributions of points
on the q-R plane (yellow dots); exact q(R) (black line). Panels a, b and c show first, sec-
ond and third iterations, respectively. Panel d shows the equilibrium validation/optimality
criterion along the putative time-series. For details see text.
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The 50 dimensional model system has a radially-symmetrical, funnel-like free energy

landscape to mimic realistic protein folding landscapes. It is of interest to see how the TSEE

algorithm performs on systems with a complex pattern of a few competing free energy

pathways, which is a work in progress.

5 Concluding Discussion

We have described non-parametric non-equilibrium approaches to accurately determine the

committor function and re-weighting factors from non-equilibrium simulations. Given a

representative and extensive sampling of the configuration space, e.g., a large ensemble

of short trajectories, the proposed approaches can be used to determine the equilibrium

free energy profile as a function of the committor. The profile, together with the position

dependent diffusion coefficient, specify a diffusive model of the equilibrium dynamics. The

model can be used to compute the following important properties of the dynamics exactly :

the equilibrium flux, the mean first passage times, and the mean transition path times

between any two points on the committor.21,23 The power of the approach was illustrated

on a model 50-dimensional system and a realistic protein folding trajectory.

In application to the eigenvectors optimization problem, the obtained equations are sim-

ilar to those obtained in the EDMD approach.14,48 Here, however, these equations describe a

single iteration of the iterative optimization process, which leads to the following advantages.

A major weakness of the parametric approaches, e.g., those using a linear combinations of

molecular descriptors/features or a deep neural network, is the choice-of-basis (choice of func-

tional form) problem. While it was argued that ”the expressive power of neural networks

provides a natural solution to the choice-of-basis problem”,18 finding an optimal architec-

ture of a neural network and input variables are difficult tasks. While intuition can help

to solve the problem for low-dimensional model systems, the difficulty in the case of com-

plex realistic systems becomes apparent, when one realizes that such a function should be
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able to accurately project a few million snapshots of a very high-dimensional trajectory. In

particular, it implies an extensive knowledge of the system, and that an acceptable solution

is likely to be system specific. The developed non-parametric approaches can approximate

any reaction coordinate with high accuracy. While each iteration may depend on the exact

choice of the family of collective variables/molecular descriptors/features, the final reaction

coordinate does not, since it provides optimum to a (non-parametric) target functional, when

the optimization converges. We assume, of course, that the employed input variables pro-

vide all the important information. For the analysis of biomolecular simulations one can

suggest the inter-atom distances, or the sines and cosines of internal angles as the standard

sets of input variables. The developed non-parametric approaches are able to accurately

approximate the committors and eigenvectors of realistic systems at the shortest timescales

of trajectory sampling interval of 0.2 ns.21,22 This suggests that the iterative optimization of

reaction coordinates, using simple standard input variables, e.g., the inter-atom distances, is

more efficient than using complex functions with a very large number of parameters. Also,

one of the reasons of re-weighting data in eigenvector approximation14 is to avoid complex

eigenvalues/eigenvectors since they lack interpretability. This strategy assumes that the re-

weighting factors can be accurately determined for every trajectory point, which is a difficult

task. The problem of complex values, however, has a simple solution in the iterative op-

timization. First, since the number of basis functions used during each iteration is rather

small, the statistical noise is small and the occurrence of complex eigenvalues/eigenvectors

is an infrequent event. Thus one can either skip such an iteration or accept it, truncating

complex variables to real parts.

Note, that while we call the approaches non-parametric, emphasizing that we focus on

RC as a function of trajectory (trajectory time or trajectory snapshot), r(i∆t0), rather than

as a function of configuration space, r(X), it is possible to record all the RC transformations

during iterative optimization (training) and apply them later to new (test) data, e.g., for

cross-validation. Alternatively, one can perform cross-validation on the fly, by computing

33



parameters of RC transformations on the train part of the data, while applying these trans-

formations to the train and test parts of the data. It can be trivially implemented by setting

It(t) = 0 for the test data.

It is instructive to compare different descriptions of molecular dynamics, e.g., using com-

mittors vs using eigenvectors as reaction coordinates for free energy landscapes or using

eigenvectors to approximate the evolution (forward, backward or Koopman) operators of the

dynamics. They all have strong and week points. For example, if it is sufficient to know just

such important quantities of dynamics as the equilibrium flux, the mean first passage times

or the mean transition path times between two states of interest, e.g., folded and unfolded

states or bound and unbound states, then the diffusive model along the committor allows

one to determine these properties exactly (between any two points along the committor).

This result is valid for any system, irrespective of complexity of its free energy landscape,

and does not assume the separation of timescales.21,27 The diffusive model can be used to

determine, rigorously and in a direct manner, the free energy barrier and the pre-exponential

factor - the major determinants of molecular kinetics.21 Distribution of transition-path times

is an example of quantity that can not be accurately determined from the diffusive mod-

els, in general.49 If one assumes the separation of timescales, then the projected dynamics

becomes Markovian, and the diffusive model provides it complete description. A set of slow-

est eigenvectors/eigenfunctions (basis) can provide a close approximation to the evolution

operators and thus can be used to compute accurately many properties of the dynamics.

One, however, may require a relatively large basis set to accurately estimate the quantities,

that can be computed exactly by the diffusive model along the committor, that requires

the determination of just one optimal coordinate. Also, it is not straightforward to visu-

alize an approximated evolution operator, while a free energy landscape as a function of

one or two optimal reaction coordinates, provides a clear, intuitive and quantitative picture

of the dynamics. Another difference is that iterative optimization of committors is robust,

while that of eigenvectors has an inherent instability.22 In the committor case, one seeks
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an optimal coordinate between two given states (a variant of supervised learning or rather

reinforcement learning). The eigenvector optimization can be considered as a variant of

unsupervised learning: one seeks eigenvectors with smallest eigenvalues, which describe the

slowest dynamics. However, some of such eigenvectors are not of interest. For example, in

protein folding, such an eigenvector could describe a much slower torsion angle isomerization

process.20,29 Another, more likely possibility, is due to a limited sampling, especially in the

case of many short trajectories. There are many parts of the configuration space that were

visited only once, and eigenvectors describing those transitions have small eigenvalues. Thus,

starting with an eigenvector of interest, the iterative approach may eventually converge to

an eigenvector, with smaller eigenvalue, but of no interest. To determine the committor,

one needs to specify two boundary states. Proper definition of such states is a difficult

problem. For example, a natural approach of using the rmsd from a structure may lead to

inaccuracies and hide complexity of the free energy landscapes.22 The problem is likely to

be more severe for systems with complex free energy landscape, e.g., intrinsically disordered

proteins.2 One general strategy of blind, unbiased analysis of dynamics, that uses strong

points of both eigenvectors and committors is as follows. First, eigenvectors, even not com-

pletely optimized/converged, are used for an exploratory analysis of free energy landscapes,

e.g., to locate and define the boundary states.22 This is followed by the determination of the

committors between these states and the corresponding equilibrium free energy profiles.

The described non-parametric approaches have only two assumptions - representative

sampling and that the underlying dynamics is Markovian in the configuration space. For

example, for atomistic MD simulations, where the dynamics is Newtonian at the integra-

tion time-step, the sampling/saving interval ∆t0 needs to be sufficiently large, so that the

dynamics have no memory about the momenta. In principle, shorter sampling intervals can

be employed if dynamics in the phase space is considered, i.e., the committor is a function

of positions and momenta, however it is not yet clear, if it can bring significant advantages.

Since representative sampling does not need to cover exhaustively the entire configuration
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space, the approaches do not suffer from the curse of dimensionality. It suggests that these

approaches can be used to investigate dynamics of large biomolecular systems in a rigorous

and accurate way. The approaches allows straightforward parallelization and can be adapted

for exascale computing.

While we do not have a rigorous mathematical proof that the described non-parametric

approaches do not suffer from the course of dimensionality, we provide the following heuristic

argument. Consider a standard MSM approach, where one constructs a fine-grained MSM

model by clustering the entire configuration space. Having determined the transition matrix

n(i|j,∆t0), one can determine the desired committor function or eigenvectors by minimizing

the corresponding quadratic functionals (e.g., Eqs. 7). However, since the configuration

space size grows exponentially, such an approach would require an exponentially long trajec-

tory to have good statistics for all the states of the MSM. Consider now an iterative variant

of the approach, where, at each iteration one considers only a two-dimensional configura-

tion space, that of the current putative RC r and a randomly chosen collective variable y.

Having determined the corresponding transition matrix, one can find a new putative RC,

which provides a lower value to the optimization functional, i.e., is a more optimal RC. In

such a manner, by considering information contained in different collective variables y, the

putative RC is iteratively improved, until it converges to the corresponding optimal RC,

e.g., the committor. In an unlikely event of the iterative optimization being stuck in a lo-

cal minimum, i.e., iterations over all the collective variables y do not improve the putative

RC, one can consider a three dimensional configuration space - that of the current RC and

two collective variables y1 and y2, and so on. Since, at each iteration, one considers only

a low dimensional configuration space, whose size does not grow exponentially with the di-

mensionality of the system, the approach is immune to the curse of dimensionality. The

proposed non-parametric approached different from the described scheme in using a set of

basis functions instead of an MSM during every iteration to improve the putative RC.

By a representative sampling we mean such a sampling which provides a representa-
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tive, but not exhaustive/complete sampling of all the important regions of the configuration

space. By an extensive sampling we mean a sampling of such a size that overfitting by

the non-parametric approaches is not possible or negligible. In case, when the sampling is

not extensive, i.e., some regions do get overfitted, it can be straightforwardly rectified by

performing many short simulations starting from the configurations in the overfitted regions.

We have suggested how one can generate such a representative and extensive sampling

in a number of realistic practical scenarios, e.g., in tandem with many developed enhanced

sampling techniques. We have also described a generic approach, the transition state en-

semble enrichment, TSEE, which generates such a representative and extensive sampling in

an iterative, self-consistent manner, by ”growing” committor segments towards each other

starting from the boundary states. Among the alternative approaches, the free energy guided

sampling (FEGS)5 is most similar to the TSEE. The FEGS extends sampling by restarting

trajectories from mesostates most distant from the starting state (e.g., the native state),

which are defined as mesostates with the largest mean-first-passage time (mfpt) to the start-

ing state. The mfpt is computed by using the MSM formalism. An essential difference

between the two approaches is that in the TSEE the goal is shifted from obtaining the

complete sampling of the configuration space per se, to determine the accurate committor

coordinate between two boundary states. The sampling is guided by and is extended as much

as necessary to avoid overfitting during the iterative committor optimization. The division

of the committor on two segments is considered as a severe case of overfitting. Another,

more technical difference, is that the TSEE uses the committor instead of the mfpt as a

reaction coordinate, which is computed by the non-parametric approach instead of the MSM

formalism.

The developed non-parametric approaches determine values of a specific optimal reaction

coordinate (e.g., the committor) for an ensemble of configurations, without using any system

specific information. They can be considered analogous to linear algebra routines (e.g. the

LAPACK library50), where given, for example, a matrix, one can obtain numerical values of
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eigenvector components. Here, however, the task is complicated by the fact that the transi-

tion probability matrix is not given explicitly; only an ensemble of trajectories is provided.

In particular, one can not compute the matrix-vector product, Av, the basic operation in

iterative linear algebra methods. Also, the configuration space is continuous, meaning that

we are dealing with an infinite-dimensional problem, which is somewhat simplified by con-

sidering a large representative sample of points instead. In addition, the non-parametric

approaches to determine the eigenvectors, require additional efforts to suppress the ’inherent

instability’.22 However, the developed approaches show that these problems are solvable, and

further development of the framework should deliver rigorous, robust and efficient tools to

solve the sampling problem.

6 Appendix

6.1 Alternative derivations of Eq. 12

Another way to derive Eq. 12 is by using the Galerkin condition. Consider a variation

of the RC, approximating the committor function, that satisfies the boundary conditions:

x(i) + δx(i) = x(i) + Ĩb(i)
∑

j αjfj(i), where x(i) satisfies the boundary condition x(A) = 0

and x(B) = 1, while Ĩb(A) = 0, Ĩb(B) = 0 and Ĩb(i) = 1 otherwise, and fj are the basis

functions. The error vector ǫ(j), or the vector of residuals, is defined as

∑

i

[x(i)− x(j)]n(i|j,∆t0) = ǫ(j), for j 6= A,B (21)

For the committor function ǫ = 0. The optimal variation is defined by the Galerkin condition:

the error vector is orthogonal to all the basis functions of the variation ǫ ⊥ fk

∑

j

[
∑

i

[x(i) + δx(i)− x(j)− δx(j)]n(i|j,∆t0)]Ĩb(j)fk(j) = 0, (22)
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where we used Ĩb to extend the summation to all j. This system of equations is translated

to the RC time-series as follows

∑

t

[r(t+∆t) + δr(t+∆t)− r(t)− δr(t)]fk(t)It(t)Ib(t) = 0, (23)

which leads to Eq. 12.

Yet another way to derive Eq. 12 is to consider the following optimization functional

min
x

∑

j 6=A,B

n(j,∆t0)[x(j)−
∑

i

P (i|j,∆t0)x(i)]
2 (24a)

x(A) = 0, x(B) = 1 (24b)

The functional equals
∑

j ǫ
2(j)/n(j,∆t0) and attains its minimum when ǫ(j) = 0, which

gives the committor equation (Eq. 1). The functional does not assume the detailed balance.

Minimization of such a functional is a standard approach of solving a linear system of equa-

tions (for committor) iteratively. This functional, however, can not be expressed in terms of

RC time-series r(i∆t0), and thus can not be used for non-parametric optimization. Consider

now the modified optimization problem

min
x

∣

∣

∣

x′=x

∑

j 6=A,B

n(j,∆t0)[x(j)−
∑

i

P (i|j,∆t0)x
′(i)]2 (25a)

x(A) = 0, x(B) = 1 (25b)

While the entire functional can not be expressed in terms of RC time-series, the part that

depends on x can be expressed. The other part is not important, as it depends solely on

x′ and is fixed during optimization. When expressed in terms of RC time-series, it equals
∑

t r
2(t)It(t)− 2r′(t +∆t)r(t)It(t), i.e., it is equal to Eq. 9 up to the term r′(t +∆t)2It(t),

which is also held constant and disappears after differentiation. It means that Eq 12 (the

NPNEq algorithm) can be also interpreted as iterative solving of the (more conventional)
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optimization problem of Eqs 24.

6.2 Non-parametric determination of the mean-first-passage time

from non-equilibrium sampling

The mean-first-passage time (mfpt) from state i to given state A, τ(i), can be found from

the following equation

∑

i

[τ(i)− τ(k) + ∆t0]P (i|k,∆t0) = 0, for k 6= A (26a)

τ(A) = 0. (26b)

The equation is very similar to Eq. 1 for the committor. The only differences are the

presence of ∆t0 in the sum and a single boundary state A. Consider RC variations as

r(t) + δr(t) = r(t) + Ĩb(t)
∑

j αjfj(t), where Ĩb(t) = 0, when X(t) is in A, and Ĩb(t) = 1

otherwise. Then, the equation for the optimal parameters α⋆ is very similar to Eq. 12; only

equation for bk is correspondingly modified by inserting ∆t

∑

j

Akjα
⋆
j = bk (27a)

Akj =
∑

t

[fj(t)Ĩb(t)− fj(t+∆t)Ĩb(t+∆t)]fk(t)Ĩb(t)It(t) (27b)

bk =
∑

t

[r(t+∆t)− r(t) + ∆t]fk(t)Ĩb(t)It(t). (27c)

6.3 Zq criterion

Consider a function ”conjugated” or time-reversed to Zq

∂ZT
q (x,∆t)

∂x
=

∑

ij

δ(x− x(i))(x(j)− x(i))n(i|j,∆t) (28)
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For the half-sum of the two functions one obtains

∂

∂x

Zq(x,∆t) + ZT
q (x,∆t)

2
=

∑

ij

[δ(x− x(j))− δ(x− x(i))][x(i)− x(j)]n(i|j,∆t)/2 (29)

In order to understand the meaning of the half-sum, consider n(i|j,∆t) transitions from

j to i. Then, if x(i) > x(j), one obtains a rectangular pulse from x(j) to x(i) of height

n(i|j,∆t)/2× |x(i)− x(j)|. If x(i) < x(j), one obtains a rectangular pulse from x(i) to x(j)

of height n(i|j,∆t)/2× |x(i)− x(j)|. But this is exactly the definition of ZC,1.
27 Thus,

Zq(x,∆t) + ZT
q (x,∆t)

2
= ZC,1(x,∆t).

For equilibrium dynamics, where n(i|j,∆t) = n(j|i,∆t), one finds Zq = ZT
q = ZC,1.

6.4 Non-parametric determination of eigenvectors from non-equilibrium

sampling

The re-weighting factors can also be considered as the components of the first right eigen-

vector (with λ=1) of a non-equilibrium version of the transfer operator n(i|j,∆t)/n(i,∆t):

∑

j

n(i|j,∆t)u(j) = λn(i,∆t)u(i) (30)

They are related to the right eigenvectors of the equilibrium transfer operator T (i|j,∆t) =

P (i|j,∆t)π(j)/π(i) = n(i|j,∆t)w(j)/[n(i,∆t)w(i)] as

∑

j

T (i|j,∆t)[u(j)/w(j)] = λ[u(i)/w(i)], (31)

i.e., eigenvectors of the transfer operator can be obtained as eigenvectors of Eq. 30 divided

by the re-weighting factors w(i) (the first eigenvector of Eq. 30). The eigenvectors of Eq.
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30 can be found as the solution of optimization problem

max
x

∣

∣

∣

x′=x

∑

ij

x(i)n(i|j,∆t)x′(j) (32a)

∑

i

n(i,∆t)x2(i) = 1 (32b)

which is translated to RC time-series

max
r

∣

∣

∣

r′=r

∑

t

r(t+∆t)r′(t)It(t) (33a)

∑

t

r2(t)It(t) = 1 (33b)

Taking RC variations as r(t) =
∑

j αjfj(t) and following steps analogous those used to

derive the NPNEq equations one obtains the following equations (the generalized eigenvalue

problem) for the optimal parameters

∑

j

Akjα
⋆
j = λ

∑

j

Bkjα
⋆
j (34a)

Akj =
∑

t

fk(t+∆t)fj(t)It(t) (34b)

Bkj =
∑

t

fk(t)fj(t)It(t) (34c)

The left eigenvectors of the transition probability matrix

∑

j

v(j)P (j|i,∆t) = λv(i) (35)
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can be found as the solution to optimization problem

max
x

∣

∣

∣

x′=x

∑

ij

x′(j)n(j|i,∆t)x(i) (36a)

∑

i

n(i,∆t)x2(i) = 1 (36b)

which is translated to RC time-series

max
r

∣

∣

∣

r′=r

∑

t

r′(t+∆t)r(t)It(t) (37a)

∑

t

r2(t)It(t) = 1 (37b)

with the following equations on optimal parameters

∑

j

[AT ]kjα
⋆
j = λ

∑

j

Bkjα
⋆
j , (38)

where matrices A and B are defined in Eq. 34 and superscript T denotes the transpose. If

the dynamics is inherently reversible or equilibrium (though the sampling may be not), i.e.,

P (i|j,∆t)π(j) = P (j|i,∆t)π(i), then T (i|j,∆t) = P (j|i,∆t) and v(j) in Eq. 35 are the right

eigenvectors of the transfer operator. Thus, Eq. 38 can be used to determine the eigenvectors

of the transfer operator without using the re-weighting factors, for the dynamics which is

inherently reversible or equilibrium, which is usually assumed for molecular simulations. Eqs.

34 and 38 are similar to equations for obtaining linear combinations of feature variables best

approximating eigenvectors of the Koopman operator.14,48

Further discussion on how to select basis functions or how to suppress possible instability

during iterative optimization of eigenvectors can be found in Ref. 22.
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Supporting Information.

Jupyter notebooks containing the analyses are provided in a single zip archive. This infor-

mation is available free of charge via the Internet at http://pubs.acs.org.
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