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Automated Reasoning for Probabilistic
Sequential Programs with Theorem Proving

Kangfeng Ye, Simon Foster, and Jim Woodcock

University of York, York, UK
firstname.lastname@york.ac.uk

Abstract. Semantics for nondeterministic probabilistic sequential pro-
grams has been well studied in the past decades. In a variety of semantic
models, how nondeterministic choice interacts with probabilistic choice
is the most significant difference. In He, Morgan, and McIver’s relational
model, probabilistic choice refines nondeterministic choice. This model is
general because of its predicative-style semantics in Hoare and He’s Uni-
fying Theories of Programming, and suitable for automated reasoning
because of its algebraic feature. Previously, we gave probabilistic seman-
tics to the RoboChart notation based on this model, and also formalised
the proof that the semantic embeddeding is a homomorphism, and re-
vealed interesting details. In this paper, we present our mechanisation of
the proof in Isabelle/UTP enabling automated reasoning for probabilis-
tic sequential programs including a subset of the RoboChart language.
With mechanisation, we even reveal more interesting questions, hidden
in the original model. We demonstrate several examples, including an ex-
ample to illustrate the interaction between nondeterministic choice and
probabilistic choice, and a RoboChart model for randomisation based on
binary probabilistic choice.

1 Introduction

In our previous work [1], we give a probabilistic semantics to RoboChart [2],
a domain-specific language for robotics and distinctive in its support for au-
tomated verification, based on He, Morgan and McIver’s relational model [3].
The semantics of the model is the theory of designs in Hoare and He’s Unify-
ing Theories of Programming (UTP) [4]. The model embeds standard designs in
probabilistic designs through the weakest completion solution [3] which is defined
on the weakest prespecification [5] and a forgetful function [1, 3]. In this paper,
we present our mechanisation of the probabilistic semantics in Isabelle/UTP [6],
an implementation of UTP in the Isabelle/HOL theorem prover [7].

The main contributions of this work include (1) the formalisation of the proof
of the homomorphism for the embedding of sequential composition, which is not
addressed in our previous work [1]; and (2) the theory of probabilistic designs in
Isabelle/UTP for automated reasoning of probabilistic nondeterministic sequen-
tial programs. All definitions and theorems in this paper are mechanised and
accompanying icons ( ) link to corresponding repository artifacts.
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The remainder of this paper is organised as follows. In Section 2, we present
an implementation of a randomisation algorithm in RoboChart, based on a bi-
nary probabilistic choice. Section 3 briefly describes the syntax of pGCL [8]
(that is used in our mechanisation) with a program for the algorithm (with re-
cursion), and the relational semantics in UTP. In Section 4, we describe how to
represent probability distributions, and define weakest prespecification and a for-
getful function in Isabelle/UTP. We show the embedding is a homomorphism on
the structure of standard programs (Section 5), probabilistic choice (Section 6),
nondeterministic choice (Section 7), and sequential composition (Section 8). We
demonstrate the automated reasoning with three examples in Section 9, review
related work in Section 10, and conclude in Section 11.

2 RoboChart

We consider a randomisation algorithm that aims to choose an integer number
from a set of integers with equal probability. Let the set be [0..N ), that is, integers
from 0 to (N − 1). We implement the algorithm in an operation ChooseUniform
in RoboChart, as shown in Figure 1. The core of RoboChart is a subset of UML
state machines that allows modelling of robotic controllers. We use this model
as an example for automated reasoning about probabilistic programs.

Fig. 1. A RoboChart model: uniform distribution algorithm.

The operation has one parameter N , denoting the size of the set, and has
access (write and read) to two variables: c of type boolean and i of type nat,
through the requested interface ChooseUniformInf. The operation is defined by
a finite state machine having several nodes: one initial junction ( ), a state
TestLoop, a probabilistic junction ( ), and a final state ( ). Transitions connect
nodes and are optionally labelled with a guard (a boolean expression e inside
brackets, [e]), a probability value (an expression e inside braces after p, p{e}),
and an action (a statement act after /, /act). This state machine, in general,
implements the algorithm in three stages: (1) initialisation by the action of the



Automated Reasoning of Probabilistic Programs 3

transition from to TestLoop; (2) iteration from TestLoop to , then back
to TestLoop; and (3) termination by the transition from TestLoop to . The
iteration is guarded by the condition if i has not reached (N-1) and c is true.
The termination is guarded by the negation of the condition. In each iteration,
at , the state machine has probability (1/(N-i)) to update c to false (by the
right transition) and so terminate next, and probability (1 - 1/(N-i)) to increase
i (by the left transition) and so another iteration or terminate next depending
on the condition (i<(N-1)). An accompanying tool for RoboChart ensures that
the probabilities on outgoing transitions of a probabilistic junction add up to 1
through validation of well-formedness conditions of RoboChart models. If they
do not add up to 1, then an error is displayed.

3 Probabilistic Programs

Syntax The abstract syntax of a nondeterministic probabilistic sequential pro-
gramming language is given below.

P ::= ⊥ | II | x := e | P ⊳ b ⊲Q | P ⊓Q | P ⊕r Q | P ; Q | µX • P(X )

This probabilistic language introduces in the standard language a probabilistic
choice operator P ⊕r Q which chooses between P and Q with probability r and
(1− r) respectively. The syntax in the standard language includes abort ⊥, skip
II , conditional ⊳ ⊲, and other common constructors.

The uniform distribution algorithm in Figure 1 is implemented as such a
probabilistic program shown in Definition 3.1.

Definition 3.1 (The uniform distribution program).

ChooseUniform(N )

, i := 0 ; c := true ; µX •

((

(c := false)⊕1/(N−i) (i := i + 1)
)

; X
⊳ (i < (N − 1) ∧ c)⊲ II

)

Semantics The semantics of probabilistic programs is given in terms of proba-
bilistic designs [1,3], being lifted from standard designs in UTP [4,9] via weakest
completion semantics [3]. UTP employs Hehner’s predicative style [10] to treat
programs as predicates. It uses the alphabetised relational calculus to encode
programs as relations between initial variable observations (x ) and subsequent
observations (x ′). Relations are alphabetised predicates of which each is accom-
panied by its alphabet (a set of typed variable declarations). The alphabet of
a predicate P is divided into the input alphabet (inαP = {x , y , ...}) and the
output alphabet (outαP = {x ′, y ′, ...}).

UTP designs [4] are a subset of alphabetised predicates and denoted as P ⊢
R: precondition-postcondition pairs. Designs have an additional variable ok in
their alphabets to record the termination of programs. We use S to denote
the state space of a program, containing only user variables and excluding ok .
An alphabet induces a state space. Probabilistic designs are defined as p(s) ⊢
R(s, prob′), where s ∈ S and prob′ ∈ PROB (probabilistic state space). Here,
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we use p instead of P , to denote that the precondition of a probabilistic design
is a condition (outα p = ∅). PROB represents a set of (discrete) probability
distributions over S : PROB , S → [0, 1]. We are using discrete distributions
because the only way to introduce them in the probabilistic programs is through
the binary probabilistic choice operator. For each distribution prob in PROB ,
its probabilities sum to 1:

∑

s∈S prob(s) = 1.
Both standard and probabilistic designs, which are used to give seman-

tics to probabilistic programs, have their preconditions being conditions. In Is-
abelle/UTP, such designs are named normal designs [11] and denoted by p ⊢n R.

Alphabetised predicates are presented in Isabelle/UTP through alphabetised
expressions [V ,S ]uexpr, which are parametric over the value type V and the ob-
servation space S , and defined as total functions S → V . Alphabetised predicates
are boolean expressions: [S ]upred , [bool,S ]uexpr. Relations are predicates over
a product space: [S1,S2]urel , [S1 × S2]upred, where S1 and S2 are the initial
and final observation space. Designs are relations with an additional ok variable:
[S1,S2]rel des , [[S1]des, [S2]des]urel, where des introduces the ok variable into
alphabets. If S1 is the same as S2, we use [S ]hrel des for [S ,S ]rel des.

4 Probabilistic Designs in Isabelle/UTP

We use the weakest completion solution [3] to embed standard designs D into
probabilistic designs through an operator K, where K(D) , D/ρ, the weakest
prespecification of ρ through D . The non-homogeneous design ρ (with alpha-
bet {ok , prob, ok ′, s ′}) is a forgetful function to retract states from probabilistic
states and defined as ρ , (true ⊢ prob(s ′) > 0): the probability of arriving at
state s ′ is prob(s ′); this is replaced by the possibility (prob(s ′) > 0) of arriving at
that state. So this function forgets the probability prob in its initial observation
space and retracts state s ′ in its final observation space. The embedding (K(D))
is the weakest probabilistic design to make K(D); ρ a refinement of D .

We present the representation of probabilistic state spaces in Isabelle/UTP
in Section 4.1. Then we describe our implementation of weakest prespecification
and ρ in Isabelle/UTP in Section 4.2.

4.1 Representation of Probabilistic State Spaces

Isabelle/UTP provides a semantic framework for verification based on UTP,
which is implemented in Isabelle/HOL, a generic proof system.

We use probability mass functions (PMFs) [12] in Isabelle/HOL to represent
discrete probabilistic distributions. The type of PMFs ([α]pmf , parametric over
α) is a set of probability measure spaces. A measure space is a tuple (Ω,A, µ),
where Ω is a set, A is a σ-algebra on Ω, and µ is a measure function from A to
positive real numbers. A probability measure space is a measure space with its
measure being 1 (µ(Ω) = 1 < ∞), and so finite.

We declare an observational variable prob : [α]pmf to represent distribu-
tions in probabilistic designs and use an alphabet command [6] to construct
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a probabilistic state space, namely [α]prss , a record type parametric over α:

alphabet [α]prss = prob :: [α]pmf ( ). In the definition, prob is a program
variable whose type is [α]pmf . Our probabilistic designs, therefore, are (non-
homogeneous) designs: [S1,S2]rel pdes , [S1, [S2]prss]rel des, with initial obser-
vation space (state space S1) to final observation space (probabilistic state space
[S2]prss over state space S2). They are non-homogeneous because the initial
observation and final observation are over different spaces: state space versus
probabilistic state space. For probabilistic programs defined in this paper, S1
and S2 are the same, and so probabilistic designs are actually homogeneous:
[S ]hrel pdes , [S ,S ]rel pdes ( ). Here, “homogeneous” means the final proba-
bilistic observation space is over the same state space as the initial observation
space. We define [S ]hrel hpdes , [[S ]prss, [S ]prss]rel des for homogeneous designs
whose initial and final observation spaces are over probabilistic distributions.

4.2 Weakest Prespecification and Forgetful Function

Weakest prespecification is the generalisation of weakest precondition from a
condition to a relation.

Definition 4.1. The weakest prespecification of K through Y is defined as:

Y /K , ¬ ((¬ Y ); K−) ( ) where − is a relational converse operator.

We note different notations are used for weakest prespecification in literature:
K\Y in [5,13] and Y /K in [3,4]. Our mechanisation of weakest prespecification
is based on [5] and so uses \, but the mechanisation of probabilistic designs is

based on [3]. We, therefore, use an abbreviation ( ) to relate / to \. The weakest
prespecification satisfies two theorems below.

Theorem 4.2. Y ⊑ (P ; K ) ⇔ (Y /K ) ⊑ P

This theorem shows that a program P is a refinement of the weakest prespecifica-
tion of K through Y , if and only if a specification Y is implemented by sequential
composition of P and K . The refinement relation S ⊑ P in UTP is defined as
P implies S universally (for all alphabets of S and P): S ⊑ P , [P ⇒ S ]. For
probabilistic designs, we rename predicates into D ⊑ (P ; ρ) ⇔ (D/ ρ) ⊑ P ,
which is interpreted as: a probabilistic design P implements the embedding of
a standard design D into probabilistic designs through ρ if and only if the re-
traction of P through ρ to a standard design implements D . Another theorem
is related to normal designs which our semantics relies on.

Theorem 4.3. (p ⊢n Q) / (true ⊢n R) = (p ⊢n Q/R)

The weakest prespecification operator of two normal designs, when the precon-
dition of its first design is true, can be moved into their postconditions.

The forgetful function ρ (fp in our mechanisation) is a non-homogeneous
design, which is reflected in our definition below.
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Definition 4.4. The forgetful function fp : [[S ]prss,S ]rel des is a normal de-

sign: fp , (true ⊢n prob(v′) > 0) where v denotes all variables in the input al-

phabet of a program except the ok variable, and v′ are similar but in the output

alphabet. We also say v or v′ represent a state in state space.

From this definition, we know fp is a relation between the initial probabilistic
observation space and the final standard observation space.

5 Embedding Standard Programs

A design D is embedded into probabilistic designs through K defined below.

Definition 5.1 (Embedding). K(D) , D/ fp

Here, embedding is the weakest prespecification of fp through D . So K(D) is the
weakest probabilistic design related to D , and can be undone by retraction:

Theorem 5.2. Let D be a normal design. K(D); fp = D

In other words, embedding a standard design into a probabilistic design, and
then retracting returns the original design. Embedding is also monotonic:

Theorem 5.3. P ⊑ Q ⇒ K(P) ⊑ K(Q)

We show that embedded standard designs are probabilistic designs:

Theorem 5.4. We fix the predicate R : [S1,S2]urel, then

K (p ⊢n R) = (p ⊢n (Σa i ∈ S2 | (R wp (v = i)) • pmf (prob′, i)) = 1)

Hence, embedding a standard normal design (LHS) is simplified to a normal
design (RHS) with this theorem. Here, the form (Σax ∈ X • exp(x )) is a sum-
mation of the expression exp for all elements in set X . The symbol Σa denotes
the summation over a possible infinite set. In the predicate (R wp (v = i)), wp is
the weakest precondition operator [14]. The predicate characterises the weakest
precondition for R to be guaranteed to achieve (v = i). We recall that v denotes
all variables in state space, and so in other words, this predicate is simply a con-
dition characterising when a given state i is a possible final state for R, which
is equal to ∃ s ∈ S1 • R(s, i).

In the expression part of the summation, pmf (prob′, i), the function pmf

returns the probability measure of the single state i in the distribution prob′.
We use coercion in Isabelle/HOL to simplify its syntax further to prob′(i). We
also use prob′(X ) to denote (Σax ∈ X • prob′(i)), the probability measure of a
set of states. We use the simpler syntax in the rest of the paper.

From the theorem, we know that the precondition p is unchanged after em-
bedding. The postcondition is a condition such that the probabilities of all the
final states of R sum to 1 and so prob′ is a distribution.

The embedding of abort, skip, assignment, and conditional is given in the
theorem below.
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Theorem 5.5.

K(⊥D) = ⊥D (⊥D , false ⊢ false) (1)

K(x :=D e) = (true ⊢n prob′(v[e/x ]) = 1) (x :=D e , true ⊢ v′ = v[e/x ]) (2)

K(IID) = (true ⊢n prob′(v) = 1) (IID , true ⊢ v′ = v) (3)

K(P ⊳ b ⊲Q) = K(P)⊳ b ⊲K(Q) (4)

Embedding the design abort (1, defined on the right) is still itself. Embedding
an assignment x :=D e (2, defined on the right) is a probabilistic design with
precondition true and postcondition establishing that the probability of the state
with e substituted for x (the values of other variables are unchanged) is equal
to 1, that is, embedding an assignment results in a point distribution: from each
initial state v, prob′ in the final state has probability 1 for the state v[e/x ].
Based on the fact that prob′ is a distribution, this also implies the probabilities
for other states in prob′ are 0. A design skip is a special form of assignment and
so is its embedding (3). K distributes through conditional, shown in (4).

6 Distributions Combination and Probabilistic Choice

In this section, we introduce an operator to combine probability distributions,
and then use this operator to construct probabilistic choice.

6.1 Distribution Combinations

Definition 6.1 (Distributions combination). We fix P : [S ]pmf , Q : [S ]pmf ,

and r : R, and define a distribution plus operator +r to merge two distributions

P and Q based on the weight r :

P +r Q , join pmf (pmf of list [(P , r) , (Q , 1− r)])

This combination is essentially a join from a distribution of type [[S ]pmf ]pmf

constructed from a list with two elements using pmf of list : the first element
is a pair from P to weight r and the second one is a pair from Q to weight
1− r . This join flattens two distributions based on their measure functions. The
distribution combination satisfies the theorem below.

Theorem 6.2. We fix i : S and assume r ∈ [0..1], then

(P +r Q) i = P(i) ∗ r +Q(i) ∗ (1− r)

The probability of a particular state i in the combined distribution is a weighted
sum of P and Q based on their weights r and 1− r .

This combination operator also satisfies several theorems below.

Theorem 6.3.

P +r Q = Q +(1−r) P (quasi-commutative)

P +r P = P (idempotent)

P +0 Q = Q (zero)

P +1 Q = P (unit)
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Because +r is idempotent, we know that the set of discrete distributions repre-
sented by [S ]pmf is convex-closed [15]: the combination of a distribution with
itself with any weight is still in the set. The operator is also quasi-associative:

Theorem 6.4 (Quasi-associativity). We fix r1, r2,w1,w2 : R, and assume

w1 ∈ [0..1], w2 ∈ [0..1], (1− w1) ∗ (1− w2) = (1− r2), and w1 = r1 ∗ r2. Then

P +w1
(Q +w2

R) = (P +r1 Q)+r2 R

This will be used to prove associativity of probabilistic choice in Theorem 6.8.

6.2 Probabilistic Choice

As shown in [1], we use UTP’s parallel-by-merge scheme [4, Chap.7], P ‖M Q , to
define probabilistic choice. The two parallel programs P and Q share the same
initial observation space v, then establish their own final observation spaces
individually as 0.v′ and 1.v′. A merge predicate M then describes how v, 0.v′

and 1.v′ are merged. A conjunction of three separate programs is sequentially
composed with M . The three programs include the two parallel programs P and
Q , and one program to copy the initial observation space. The final observation
spaces from P , Q , and the copy program, therefore, are referred to as 0.v, 1.v,
and v in M . We start with the definition of a distribution merge operator:

Definition 6.5. PM(r) , (prob′ = 0.prob+r 1.prob)

The merge predicate establishes that the final distribution is the combination
of the distribution (0.prob) from the first program and the distribution (1.prob)
from the second program with weight r . Probabilistic choice is defined below.

Definition 6.6 (Probabilistic choice). We fix P ,Q : [S ]hrel pdes, r : R.

P ⊕r Q ,
(

P ‖D
PM(r) Q

)

⊳ r ∈ (0..1) ⊲ (Q ⊳ r = 0⊲ (P ⊳ r = 1⊲⊤D))

The probabilistic choice is defined as a conditional:

– if r is not in the open interval (0..1), the choice is defined as follows:
• if r is equal to 0, the choice is Q ;
• if r is equal to 1, the choice is P ;
• if r is not 0 and 1, the choice is the design miracle ⊤D : a miraculous or

infeasible specification, defined as (true ⊢ false).
– if r is in the open interval (0..1), the choice is between P and Q by parallel-

by-merge: a design parallel composition (‖D
PM(r) , ‖

DM(PM(r))) using the

merge predicate PM(r) to merge prob and another design merge predicate
DM to merge ok .

We note that the definition of probabilistic choice is not simply a parallel com-
position between P and Q , but a conditional to characterise two special cases:
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r = 0 and r = 1. This is because of the definition of parallel composition. Let
P = (p ⊢n P) and Q = (q ⊢n Q), then

P ‖D
PM(r) Q =

(

(p ∨ (q ∧ ¬ Pre(Q))) ∧
(q ∨ (p ∧ ¬ Pre(P)))

)

⊢n

(

P ‖
PM(r) Q

)

Here Pre(P) is the predicate characterising the domain of a UTP relation P.
We note that r is not in the precondition. The parallel composition, therefore,
cannot be simplified to P or Q for the special cases as its precondition has to take
the other operand Q or P into account. Zero and unit, however, are important
algebraic properties for probabilistic choice, and so we define it as conditional.
The probabilistic choice satisfies the theorems below.

Theorem 6.7 (Quasi-commutative, zero, unit). We assume r ∈ [0..1].

P ⊕r Q = Q ⊕(1−r) P P ⊕0 Q = Q P ⊕1 Q = P

Theorem 6.8 (Quasi-associativity). We fix r1, r2,w1,w2 : R, and assume

w1,w2 ∈ [0..1], (1− w1) ∗ (1− w2) = (1− r2), w1 = r1 ∗ r2, and that P , Q , and

R are probabilistic designs. Then P ⊕w1
(Q ⊕w2

R) = (P ⊕r1 Q)⊕r2 R

Probabilistic choice, therefore, is quasi-associative, with the weights adjusted as
specified. This is basically the extension of quasi-associativity (Theorem 6.4) of
the distribution combination +r .

Probabilistic choice is also left-distributive and right-distributive over non-
deterministic choice and conditional.

Theorem 6.9. We assume r ∈ [0..1], P , Q , and R are normal designs.

P ⊕r (Q ⊓ R) = (P ⊕r Q) ⊓ (P ⊕r R) (distl-nondeterminism)

(Q ⊓ R)⊕r P = (Q ⊕r P) ⊓ (R ⊕r P) (distr-nondeterminism)

P ⊕r (Q ⊳ b ⊲ R) = (P ⊕r Q)⊳ b ⊲ (P ⊕r R) (distl-conditional)

(Q ⊳ b ⊲ R)⊕r P = (Q ⊕r P)⊳ b ⊲ (R ⊕r P) (distr-conditional)

Even though +r is idempotent (Theorem 6.3), ⊕r is not idempotent in general.
This is due to the parallel-by-merge scheme used in its definition. ‖M is not idem-
potent in general. Consider, for example, P⊕r P for r ∈ (0..1). The probabilistic

choice is just P ‖D
PM(r) P , according to its definition. Based on the definitions of

the parallel-by-merge scheme [4, Chap.7] and the merge predicate, P(s, 0.prob′),
P(s, 1.prob′), and prob′ = 0.prob′ +r 1.prob

′ are established. The parallel com-

position P(s, 0.prob′) ‖D
PM(r) P(s, 1.prob′) is equal to P(s, prob′) (and so idem-

potent) only if the probability distributions in the final observation space of P
are convex-closed. If the final observation space of P is a single distribution (so
P is deterministic), then P ⊕r P = P because a singleton set is convex-closed
with respect to +r . If, for example, the final observation space of P contains two
distributions (so P is nondeterministic), then for any 0 < r < 1, P⊕rP 6= P . We
note that the set of distributions in the embedding of nondeterministic choice,
as illustrated in Theorem 7.1, is convex-closed.
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6.3 Merge Witness Distributions

In [1], we define two projections F and G for decomposition of a probabilistic
program into the probabilistic choice of two subprograms. The functions F and
G map a distribution prob over a set of states S into a distribution 0.prob over
a subset A of S and another distribution 1.prob over a subset B of S separately
with A ∪ B = S . They, therefore, are projections.

This decomposition is useful when implementing a probabilistic program with
multiway probabilistic choice, such as in the Reactive Modules formalism [16],
in this pGCL (with only binary probabilistic choice). This has been illustrated
in [1, Sect.7]. This decomposition is also useful to provide witnesses for the merge
predicate, and the witnesses are indeed required later to prove Theorem 7.1, an
important distribution theorem for nondeterministic choice, as demonstrated in
its proof in [1, Sect.8].

We define the projection F below. G shares the same definition (but with
different arguments in its applications).

Definition 6.10. We fix A,B : [S ]set , and p : [S ]pmf .

F (A,B , p) , measure of
(

space(p), sets(p), λC • p (C ∩ (A− B)) ∗ ratio(A,B , p) + p (C ∩ A ∩ B)
)

ratio(A,B , p) , (p (B − A) + p (A− B)) /p (A− B)

The result of F is a measure space constructed by measure of from the space of
the probability measure space p (by space), the σ-algebra of p (by sets), and a
measure function (a curried function). In this function, we use A−B to denote
set difference between A and B . Indeed F defines a probability distribution:

Theorem 6.11. We fix P : [S ]pmf and A,B : [S ]set , and assume P(A ∪ B) =

1, P(A− B) > 0, and P(B − A) > 0, then prob space (F (A,B ,P)).

The constructed measure space by F is a probability space (prob space), that
is, its measure sums to 1.

7 Nondeterministic Choice

In predicative programming, including UTP, nondeterministic choice is defined
simply as P ⊓ Q , P ∨ Q , and, therefore, P ∨ Q ⊑ P . This is reflected in the
semantics of the embedding of nondeterministic choice. We show K distributes
through nondeterministic choice in the theorem below.

Theorem 7.1. We assume P and Q are normal designs.

K (P ⊓ Q) = (
d
r ∈ [0..1] • (K (P)⊕r K (Q)))

This theorem demonstrates that an embedding of the nondeterministic choice
of two standard designs P and Q is just the nondeterministic choice of the
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probabilistic choices of the embeddings of P and Q in all possible ways (all
possible weights from 0 to 1 inclusive). For the two special cases 0 and 1 for r ,
according to Theorem 6.7, they are just K (Q) and K (P) respectively.

In relational semantics for probabilistic programs here, nondeterministic choice
is refined by probabilistic choice with any particular weight in [0..1]:

Theorem 7.2. We assume r ∈ [0..1], P and Q are normal designs.

K (P ⊓ Q) ⊑ K (P)⊕r K (Q)

So probabilistic choice refines nondeterministic choice, which is the most signif-
icant difference of this relational model from others.

8 Sequential Composition

In our previous work [1], we did not complete formalisation of the proof presented
in [3] that K is a homomorphism for sequential composition. In particular, a
Kleisli lifting operator ↑ [3, Def.3.11] is defined to lift a probabilistic design
to a design taking (ok , prob) to (ok ′, prob′). A probabilistic design, therefore,
is able to be sequentially composed with this lifted design because sequential
composition requires the output alphabet of the first operand to be equal to the
input alphabet of the second operand (and so two probabilistic designs are not
allowed to be sequentially composed). The lifting operator ↑ is defined below.

Definition 8.1. ↑ P , kleisli lift2 (⌊preD(P)⌋<, preD(P) ∧ postD(P))

The operator ↑ has one parameter: a probabilistic design P : [S ]hrel pdes,
and is defined using another auxiliary function kleisli lift2. The first argument
(⌊preD(P)⌋<) to that function is the design precondition (preD(P)) of P with
its output alphabet dropped (by ⌊ ⌋<), and so the argument is a condition. The
second argument is the postcondition of P .

The kleisli lift2, defined below, has two parameters: q of type [S ]upred,
and R of type [S ]hrel pdes, and characterises a homogeneous design of type
[S ]hrel hpdes, whose initial and final observation spaces are both over proba-
bilistic distributions.

Definition 8.2.

kleisli lift2 (q ,R)

,











(

prob
(

[[q ]]p

)

= 1
)

⊢

∃Q •





(∀ ss • prob′(ss) = Σa t • prob(t) ∗ (Q(t))(ss))) ∧
(

∀ s •

(

¬ (prob(v′) > 0 ∧ v′ = s) ;
(¬ R ; (∀ t • prob(t) = (Q(s))(t)))

))















Generally, this definition establishes that if the program starts in every possible
state satisfying q , then it terminates with a distribution from that state which
makes R hold for that state and that distribution.
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The precondition of the definition of kleisli lift2 means that the initial ob-
servation space prob is a distribution over all states satisfying the predicate q ,
where [[q ]]p denotes extraction of the characteristic set of q .

The postcondition of the definition is an existential quantification over Q , a
function of type S → [S ]pmf . The predicate part of ∃Q is a conjunction of two
predicates. The first predicate establishes that for any state ss, its probability
in the final observation space prob′ is equal to the summation of the products
of the probability of each state t in the initial observation space prob and the
probability of ss in the distribution Q(t) corresponding to t . This predicate
characterises Q . The second predicate establishes that for any state s, if its
probability in the initial distribution prob is larger than 0, then R must be
satisfied with its initial observation state s (the initial observation of R is v,
which is the same as v′ in the precedent predicate where v′ is just s because
of v′ = s) and its final observation distribution prob′ being a distribution Q(s).
This predicate characterises R based on Q .

We now define sequential composition of probabilistic designs.

Definition 8.3 (Sequential composition). P ;p Q , P ; ↑ Q .

K distributes through sequential composition in the theorem below.

Theorem 8.4. We fix P ,Q : [S ]hrel des and assume P and Q are normal

designs, and S is finite. Then K (P ; Q) = K (P) ;p K (Q).

We note that the assumption, S is finite, is necessary to prove this theorem.
This assumption is hidden in the original proof [3, Theorem 3.12] when giving
the witness function f (u, v), where a cardinality # is used.

The ↑ satisfies the theorems below.

Theorem 8.5. We assume P and Q are probabilistic designs.

↑ (K (IID)) = (true ⊢n prob′ = prob) (skip)

P ;p K (IID) = P = K (IID) ;p P (left/right unit)

P ⊑ Q ⇒↑ P ⊑↑ Q (monotonic)

(↑ P) is a normal design (normal design)

The lifted probabilistic skip is simply a skip, that is, its initial and final obser-
vation spaces are the same. The probabilistic skip is both a left unit and a right
unit (left/right unit). The operator ↑ is also monotonic. We note the definition
of ↑ is not a normal design (see Definition 8.2), and just a general design ⊢.
We use it to ease type constraints in the definition. The operator ↑, however, is
proved to be a normal design ( ).

9 Examples

The first example illustrates the proof of a probabilistic program with sequen-
tial composition, conditional, and probabilistic choice from Hehner’s work [17,
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Sect. 6]. We define P1, P2, and P3 used in Theorem 9.1.

P1 ,
(

K (x :=D 0)⊕1/3 K (x :=D 1)
)

P2 ,
(

K (x :=D x + 2)⊕1/2 K (x :=D x + 3)
)

P3 ,
(

K (x :=D x + 4)⊕1/4 K (x :=D x + 5)
)

In P1, x is assigned 0 or 1 with probability 1/3 or 2/3. P2 has the equal prob-
ability to increase x by 2 or 3. P3 increases x by 4 or 5 with probability 1/4 or
3/4. The semantics of the composition of P1, P2, and P3 is shown below.

Theorem 9.1.

P1 ;p (P2⊳ x = 0⊲ P3) =
(

true ⊢n

(

prob′[2/x ] = 1/6 ∧ prob′[3/x ] = 1/6 ∧
prob′[5/x ] = 1/6 ∧ prob′[6/x ] = 1/2

))

The probabilistic program is equal to a normal design whose precondition is true

and postcondition establishes that in the final observation space, the value of x
is 2, 3, and 5 each with probability 1/6, and 6 with probability 1/2. The result
is the same as that of [17].

The second example originates in [15] to illustrate how probabilistic choice
interacts with nondeterministic choice in the relational semantics. It is also dis-
cussed in [17, Sect. 10] about nondeterminism. We define below P , a nondeter-
ministic choice between x assigned to 0 and 1, and Q , a probabilistic choice
between y assigned to 0 and 1.

P , (K (x :=D 0) ⊓ K (x :=D 1)) Q ,
(

K (y :=D 0)⊕1/2 K (y :=D 1)
)

We now consider sequential composition of P and Q in either order with the
aim of establishing (x = y). If Q is after P , then

Theorem 9.2.

P ;p Q =

(

true ⊢n

(

(prob′[0, 0/x , y ] = 1/2 ∧ prob′[0, 1/x , y ] = 1/2) ∨
(prob′[1, 0/x , y ] = 1/2 ∧ prob′[1, 1/x , y ] = 1/2)

))

The theorem shows that the probability of establishing (x = y) is 1/2: both
alternatives of the disjunction in the postcondition have the same probability
to establish (x = y). Informally, the nondeterministic choice in P cannot take
advantage of the value of x (because P is executed first), and, therefore, the
probability of establishing (x = y) in (P ; Q) is determined by Q , no matter
which value of x is chosen. If P is after Q , then

Theorem 9.3.

Q ;p P =









true ⊢n









(prob′[0, 0/x , y ] = 1/2 ∧ prob′[0, 1/x , y ] = 1/2) ∨
(prob′[1, 0/x , y ] = 1/2 ∧ prob′[0, 1/x , y ] = 1/2) ∨
(prob′[0, 0/x , y ] = 1/2 ∧ prob′[1, 1/x , y ] = 1/2) ∨
(prob′[1, 0/x , y ] = 1/2 ∧ prob′[1, 1/x , y ] = 1/2)
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The theorem demonstrates that the probability of establishing (x = y) can be 0
(the second alternative of the disjunctions in the postcondition), 1/2 (the first
and fourth alternative), and 1 (the third alternative). Informally, the nondeter-
ministic choice in P can now take advantage of the value of x because y has
been probabilistically determined in Q (so the probability of y being 0 or 1 in
each alternative is 1/2). P , therefore, can choose (1) x opposite to the value of
y , and so the probability of establishing (x = y) is 0; (2) x the same as the value
of y , and so the probability of establishing (x = y) is 1; (3) x always 0, and so
the the probability of establishing (x = y) is 1/2; and (4) x always 1, and so the
the probability of establishing (x = y) is 1/2. The choice between the four cases
is nondeterministic and represented as disjunctions in the theorem.

Hehner [17] describes four varieties of nondeterminism: angelic, demonic,
oblivious, and prescient. For Q ;p P , if P is an angelic choice, the result corre-
sponds to the third alternative; if P is a demonic choice, the result corresponds
to the second alternative; if P is a oblivious choice, the results corresponds to
the first and the fourth alternative. Q ;p P in Theorem 9.3, therefore, is more
abstract and can be refined into angelic, demonic, and oblivious choice. P de-
fined above is not prescient, and so it does not know the future value of Q in
(P ;p Q). The program, therefore, has probability 1/2 to achieve x = y , shown
in Theorem 9.2.

The third example is the algorithm in Figure 1 and its probabilistic program
in Definition 3.1. First, we find and define an invariant for the recursion.

Definition 9.4 (Invariant).

ChooseUniform inv(N )

,













true ⊢n





















c ∧ i < (N − 1) ⇒




(

∀ j < (N − i − 1) •
prob′ (v[j + i , false/i , c]) = 1/(N − i)

)

∧

prob′ (v[N − 1, true/i , c] = 1/(N − i)))













∧

(¬ (c ∧ i < (N − 1)) ⇒ prob′(v) = 1)

























The postcondition of the definition is a conjunction: (1) the first conjunct es-
tablishes that if c is true and i is less than (N − 1), the value of i in the final
state space v is a uniform distribution in close interval [i ,N − 1] (each with
probability 1/(N − i)); (2) the second conjunct corresponds to the termination
of the program, the probability of the final state being the same as the initial
state v is 1. ChooseUniform inv(N ) indeed is an invariant for the recursion.

Theorem 9.5 (Invariant). We assume N is larger or equal to 1.

ChooseUniform inv(N ) ⊑ (µX • ChooseUniformBody(N ,X ))

Here ChooseUniformBody is an abbreviation for the body of the recursion in
Definition 3.1. Finally, ChooseUniform(N ) is proved to be a uniform distribution.
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Theorem 9.6. We assume N is larger or equal to 1.

(

true ⊢n

(

(∀ j • j < (N − 1) ⇒ (prob′ (v[j , false/i , c] = 1/N ))) ∧
prob′ (v[(N − 1), true/i , c]) = 1/N

))

⊑ ChooseUniform(N )

The program ChooseUniform(N ) satisfies a contract, the left-hand side of ⊑,
that (1) the probability of finally arriving a state, of which i is less than (N −1)
and c is false, is 1/N ; and (2) the probability of finally arriving a state, of which
i is (N − 1) and c is true, is also 1/N . We, therefore, conclude the program
implements a uniform distribution given N .

10 Related Work

Hurd [18] developed a formal framework in High-Order Logic (HOL) [19], a
predecessor of Isabelle/HOL [7], for modelling and verification of probabilistic
algorithms using theorem proving. The work uses mathematical measure theory
to represent probability space. Hurd et. al [20] also mechanised pGCL in HOL
based on the quantitative logic [21], enabling verification of partial correctness of
probabilistic programs. Our mechanisation is also based on measure and proba-
bility theory in HOL of Isabelle and uses the same notation pGCL. We, however,
mechanise the relational semantics of pGCL in the theory of designs in UTP,
enabling reasoning about total correctness.

Audebaud et. al [22] use the monadic interpretation of randomised programs
for probabilistic distributions (instead of measure theory) and mechanise their
work in the Coq theorem prover [23]. They consider only probabilistic choice
(without nondeterminism) in a functional language with recursion, not in a non-
deterministic probabilistic imperative program setting like us.

Cock [24] presents a shallow embedding of pGCL with Isabelle/HOL for
proof automation. The work is based on McIver and Morgan’s interpretation
of a pGCL program as an expectation transformer from post-expectations to
pre-expectations [25]. Its mechanisation uses real numbers (R) in Isabelle/HOL
as a type for probabilities, which improves automation. By contrast, we use
measure theory and PMFs in Isabelle/HOL to encode probability distributions.
Additionally, we base our formalisation on Isabelle/UTP (instead of the shallow
embedding of Cock’s work) which enables modelling at high-level abstraction
and unification of semantics with other paradigms such as time and reactive
systems (this is important in order to capture the semantics of RoboChart).

11 Conclusions

Previously, we gave the probabilistic semantics to RoboChart based on He, Mor-
gan and McIver’s relational model for pGCL, and formalised its proof. In this
paper, we present a mechanisation of the proof in Isabelle/UTP to enable auto-
mated reasoning for probabilistic programs.
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We use measure theory and probability mass functions in Isabelle/HOL to
represent probability distributions. Our mechanisation shows that (1) PMFs are
convex closed, (2) the probabilistic choice is not idempotent in general, and (3)
embedding distributes through sequential composition for finite state space.

Based on the mechanisation, we use several examples to illustrate the auto-
mated reasoning, including the randomisation algorithm in RoboChart. We note
this notation is general enough to capture other distributions, and not restricted
to uniform distributions illustrated here.

As illustrated by the probabilistic nondeterministic programs in Theorems 9.2
and 9.3, computations of probabilistic programs are related to those of imper-
ative programs. Probability information has become predicates over the prob

variable and nondeterminism becomes disjunctions of these predicates, which,
therefore, enables us to reason about probabilistic programs using general de-
signs or relational facilities in UTP, such as contract-based reasoning [26]. This
is the way in the relational model to tackle reasoning complexity introduced in
probabilistic programs.

Our immediate future work is to lift probabilistic designs into UTP’s reactive
theory to unify the semantics of reactive, time, and probability in RoboChart.
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