
This is a repository copy of Probabilistic modelling and verification using RoboChart and
PRISM.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/178717/

Version: Published Version

Article:

Ye, Kangfeng, Cavalcanti, Ana orcid.org/0000-0002-0831-1976, Foster, Simon
orcid.org/0000-0002-9889-9514 et al. (2 more authors) (2021) Probabilistic modelling and
verification using RoboChart and PRISM. Software and Systems Modeling. ISSN 1619-
1366

https://doi.org/10.1007/s10270-021-00916-8

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Software and Systems Modeling

https://doi.org/10.1007/s10270-021-00916-8

REGULAR PAPER

Probabilistic modelling and verification using RoboChart and PRISM

Kangfeng Ye1 · Ana Cavalcanti1 · Simon Foster1 · Alvaro Miyazawa1 · Jim Woodcock1

Received: 25 November 2020 / Revised: 15 July 2021 / Accepted: 20 July 2021

© The Author(s) 2021

Abstract

RoboChart is a timed domain-specific language for robotics, distinctive in its support for automated verification by model

checking and theorem proving. Since uncertainty is an essential part of robotic systems, we present here an extension

to RoboChart to model uncertainty using probabilism. The extension enriches RoboChart state machines with probability

through a new construct: probabilistic junctions as the source of transitions with a probability value. RoboChart has an

accompanying tool, called RoboTool, for modelling and verification of functional and real-time behaviour. We present here

also an automatic technique, implemented in RoboTool, to transform a RoboChart model into a PRISM model for verification.

We have extended the property language of RoboTool so that probabilistic properties expressed in temporal logic can be written

using controlled natural language.

Keywords State machines · Formal semantics · Model transformation · PRISM · Probabilistic model checking · Domain-

specific language for robotics

1 Introduction

Autonomous robots must carry out their missions without

human intervention. Uncertainty in real-world environments,

including the physical robotic platform, presents major chal-

lenges for these robots. To address these challenges and deal

with unknown aspects of the environment, robots often use

probabilistic control algorithms. For example, a robot with-

out a detailed map of its environment might resort to using a

random walk to carry out its mission, overcoming the uncer-

tainty about its position. This paper addresses modelling and

Communicated by Jeff Gray.

B Kangfeng Ye

Kangfeng.Ye@york.ac.uk

Ana Cavalcanti

Ana.Cavalcanti@york.ac.uk

Simon Foster

Simon.Foster@york.ac.uk

Alvaro Miyazawa

Alvaro.Miyazawa@york.ac.uk

Jim Woodcock

Jim.Woodcock@york.ac.uk

1 Department of Computer Science, University of York, York

YO10 5GH, UK

formal verification of robotic controllers that use probabilis-

tic algorithms to deal with uncertainty.

Robotic applications are often designed using state mac-

hines that have no formal semantics or even precise syntax.

These machines can involve advanced features, including

probability, real-time, and shared-variable concurrency. To

model and analyse such complex systems, roboticists require

knowledge of formal languages and probability theory. Our

approach is to use a domain-specific notation, RoboChart

[1], and model transformation to support probabilistic rea-

soning using a notation familiar to roboticists. Usability and

automation are key considerations for RoboChart.

Previous work [2] presents the RoboChart, metamodel and

semantics, and an Eclipse-based tool, RoboTool, for mod-

elling, verification, and code generation using RoboChart.

This paper covers its extension to cater for probabilistic mod-

elling and verification: we have (1) extended RoboChart’s

state machines to enrich them with a construct for proba-

bilistic choice (with our extension, RoboChart allows four

forms of choice between behaviour: conditional, external

or guarded by events, nondeterministic, and probabilistic),

and (2) developed an automatic technique for verification by

model checking using PRISM [3]. Our results are illustrated

via several case studies.

The core of RoboChart is a subset of UML state machines

that allows modelling of robotic applications, and has a con-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00916-8&domain=pdf
http://orcid.org/0000-0003-2460-7926

K. Ye et al.

strained semantics for automated reasoning. RoboChart can

be regarded as a profile of UML, enriched with time con-

structs. In a RoboChart model, physical robots are abstracted

into robotic platforms defined by variables, events, and

operations. RoboChart also has a component model with

notions of controller and module to foster reuse. A state

machine is the basic element to model behaviour. A controller

includes one or more parallel state machines. Communi-

cation between state machines in the same controller is

synchronous, while communication between controllers can

also be asynchronous. A module defines the boundaries of the

robotic application and is composed of one robotic platform

and one or more controllers.

RoboChart has a semantics for formal reasoning based on

Hoare and He’s Unifying Theories of Programming (UTP)

[4], with the process algebra CSP [5–7], which has a UTP

semantics [4,7], used as a front-end. RoboTool generates

models written in CSP and tock-CSP [6,8], an encoding

that uses an event tock to mark the passage of time, from

RoboChart models [2] to enable use of the refinement model

checker FDR [9,10] to verify properties, such as deadlock

and livelock freedom. We can also verify specific behavioural

properties, including time budgets and deadlines. We cannot,

however, verify probabilistic properties.

Standard CSP and tock-CSP do not support probabilis-

tic choice. An experimental extension of CSP included a

probabilistic choice construct, and a specific version of FDR

was developed to translate refinement checks in CSP to the

PRISM language [3] through the WatchDog Transforma-

tion [11]. This approach, however, only supports CSP traces

refinement reasoning [6] (so limited to reachability proper-

ties) and is not supported by recent FDR versions.

RoboChart also has support for semiautomated verifica-

tion by theorem proving using Isabelle/UTP [12,13]. Both

FDR and Isabelle/UTP verification target only proof of

reactive and timed behaviours of RoboChart models, not

probabilistic, as we do here.

RoboChart differs from the PRISM language in several

aspects: abstraction level, data types, variable sharing, and

event synchronisation. Our technique to generate PRISM

scripts addresses all these issues. The technique is formalised

by transformation rules that we present here, and automated

in RoboTool.

A property language facilitates the writing of properties

for verification in PRISM using a controlled natural lan-

guage. It can express probabilistic properties that are based on

temporal logic. This also improves performance, by enabling

the running of multiple PRISM instances in parallel when

several properties are stated.

In [2], we have described a CSP semantics for a version

of RoboChart that supports standard features of statecharts

and time constructs, but not probabilistic choice. In [14], we

have studied the imperative, sequential action language for

RoboChart, and explicated the weakest completion approach

[15] to give UTP semantics to a nondeterministic probabilis-

tic programming language. This work shows how informal

proofs can be turned into formal proofs for implementation

in Isabelle/UTP, which enables future application of theorem

proving to verify RoboChart models. Here we cover most

features of RoboChart, not only its imperative and sequen-

tial action language, and pursue support for model checking,

not theorem proving.

A recent work by Conserva Filho et al. [16] interprets

the probabilistic choice in RoboChart using the probabilis-

tic CSP operator p⊞1−p [11]. This preserves semantics for

all other constructors in RoboChart, because RoboChart’s

semantics is given in CSP. Verification uses refinement model

checking: S ⊑T I . Here, S is the property to be verified

and described by a nonprobabilistic CSP process, and I is

a probabilistic CSP process under analysis, generated from

a probabilistic model in RoboChart. An extended version of

FDR supports probabilistic choice in CSP and translation of

the refinement check to a PRISM model. Our work is differ-

ent from that in [16] in several aspects. Verification in [16]

covers only trace refinement and so is limited to reachabil-

ity properties. Our work supports all the temporal logics in

PRISM. CSP processes are used in [16] to specify properties.

Consequently, users need to have knowledge of CSP. In con-

trast, in our work, we use a customised property language,

RoboCert. Finally, their approach is only supported by one

version of FDR and not by the more recent versions being

used with RoboTool.

Our novel contributions here are as follows: (1) the

introduction of a new construct for probabilistic choice

in RoboChart’s state machines for probabilistic modelling;

(2) a metamodel for PRISM; (3) RoboChart’s probabilistic

semantics in PRISM (for a subset of RoboChart constructs),

including not only the new probabilistic construct but state

machines and the component model in a context where proba-

bilities are captured; (4) the implementation of the semantics

in RoboTool for automated generation of PRISM models;

and (5) a property language for verification of qualitative

and quantitative properties.

The remainder of this paper is organised as follows.

We review related work in Sect. 2. Section 3 examines

core features of RoboChart, introduces our new probabilis-

tic choice construct through an internal mail delivery robot

example, and presents extra well-formedness conditions. In

Sect. 4, we describe the PRISM language and its semantics,

and present a PRISM metamodel that we have developed

for transformation. Section 5 formalises our technique to

transform RoboChart into PRISM models, and illustrates

it using the mail delivery robot. Section 6 describes how

RoboTool supports probabilistic modelling and the applica-

tion of the transformations to automatically generate PRISM

models. The property language for probabilistic properties is

123

Probabilistic modelling and verification using RoboChart and PRISM

described in Sect. 7. Finally, we conclude and discuss future

work in Sect. 8.

2 Related work

In this section, we set RoboChart in context by discussing its

relation to fundamental probabilistic frameworks or models

in Sect. 2.1, notations for probabilistic modelling with rich

expressions and high abstraction in Sect. 2.2, and model-

based domain-specific languages for robotics in Sect. 2.3.

2.1 Fundamental probabilistic frameworks

This section describes notations and formalisms that are at

the same level of abstraction as PRISM, but at a different

level of abstraction as RoboChart. Some of their features,

however, have inspired the design of RoboChart as acknowl-

edged below.

Segala and Lynch [17] introduce probabilistic automata

as a specialised form of labelled transition system. A tran-

sition is labelled with probability values, so that they map a

source state to probability distributions over (action, target

state) pairs. Actions can be external, modelling interactions

with the environment through events, or internal, modelling

computation steps through internal events τ . If, in each prob-

ability distribution, the action is always the same for every

target state, the probabilistic automaton is called simple. Two

simple probabilistic automata can be composed in paral-

lel; this is a kind of combination that is also available in

RoboChart, via use of multiple machines and controllers in

a model.

The probabilistic semantics of RoboChart that is embed-

ded in PRISM, as presented later on, can be regarded as

corresponding to a simple probabilistic automaton in that the

actions in a probability distribution for every target state are

the same. Transitions map states and actions to probability

distributions over states. RoboChart also distinguishes non-

deterministic choice and probabilistic choice. RoboChart,

however, has more modelling constructs and is more expres-

sive, when compared to probabilistic automata.

Hansson [18] presents an alternating model that distin-

guishes between nondeterministic and probabilistic choice.

Either a nondeterministic choice or a probabilistic choice

can be made in each state of this model, and the order of

availability of these choices is strictly alternating between

a nondeterministic and a probabilistic choice. For the tar-

get state of a transition originating from a nondeterministic

state (that is the state where only a nondeterministic choice

can be made), only a probabilistic choice can be made.

Conversely, for the target state of a transition originating

from a probabilistic state (that is the state where only a

probabilistic choice can be made), only a nondeterministic

choice can be made. RoboChart adopts the same alternation

between nondeterministic and probabilistic choice, but the

point where a probabilistic choice is made in RoboChart is not

a state. Instead, a probabilistic choice is made within a tran-

sition originating from a nondeterministic state. RoboChart

is similar to a simple probabilistic automaton in this aspect.

The alternating model and the simple probabilistic automata

model with respect to probabilistic bisimulation (strong

bisimulation) [19] are isomorphic [20]: one model can be

translated to another, and vice versa.

Van Glabbeek et al.’s reactive model [21] partially cor-

responds to the simple probabilistic automaton model as it

allows external nondeterministic choice between different

actions (that is, multiple transitions with different external

actions from the same state), but without internal nondeter-

ministic choice involving the same actions. In RoboChart, on

the contrary, we can model internal nondeterministic choice

via transitions that have no trigger, or transitions from the

same state with the same trigger.

A variety of Markov models are used for discrete prob-

ability modelling. Discrete-time Markov chains (DTMCs)

[22,23], in which each state leads to a probabilistic choice

directly, are purely probabilistic without nondeterminism. A

DTMC is equivalent to a fully probabilistic automaton in

discrete time.

Markov decision processes (MDPs) [24,25], which extend

DTMCs, can be regarded as simple probabilistic automata

without internal nondeterministic choices. From each state,

an action is associated with a probability distribution. Transi-

tions from the same state with the same actions are, therefore,

not allowed. Similar to MDPs, RoboChart models exhibit

both probabilistic and nondeterministic choice.

A variety of DTMCs and MDP-based languages have

been designed to facilitate systems modelling and analy-

sis. Additionally, labelling functions for states (called atomic

propositions) and cost or reward functions for states and tran-

sitions are also introduced. The PRISM language, which is

supported by the widely used probabilistic model checker

PRISM and other model checking tools such as Storm [26],

is one such language. It is based on reactive modules [27]

and is a low-level guarded-command language.

MODEST [28,29], a modelling and analysis framework

for stochastic hybrid systems, uses a comparatively higher-

level language that is inspired by process algebras. It is

supported by the MODEST Toolset.1 PRISM, Storm, and

MODEST all support DTMC and MDP models for discrete

probabilities.

These languages often are textual and support only basic

types of variables: boolean, integer numbers, and real num-

bers. To use the tools, knowledge of underlying probability

models, formal methods, and temporal logic is often required.

1 www.modestchecker.net/.

123

www.modestchecker.net/

K. Ye et al.

On the contrary, RoboChart is a diagrammatic notation,

in line with current practice of developing robotic control

software often using diagrammatic state machines [30–

33]. RoboChart offers more facilities for abstraction. This

includes a component model to define services of a platforms,

and an architecture of controllers and parallel threads, and

their connections. In addition, RoboChart offers a richer set

of data types, including many mathematical data types such

as relations and functions, in addition to basic data types,

to facilitate reasoning. The comprehensive expression lan-

guage of RoboChart is that of the Z notation (see the ISO Z

Standard2), albeit with a more roboticist-friendly syntax and

a few syntactic-sugaring constructs.

Table 1 shows a comparison between these probabilis-

tic frameworks and RoboChart according to their support

of nondeterministic choice and probabilistic choice, abstrac-

tion, and expressiveness. Those frameworks provide different

mathematical accounts of probabilistic behaviour, and have

a role similar to that of PRISM, rather than RoboChart, in

our work.

2.2 Improvedmodelling languages

A probabilistic finite state machine (PFSM) [33] extends

state machines with probability and real-time behaviour. It

is used to describe the behaviour of an individual foraging

robot in a swarm. Both simulation [33] and formal verifica-

tion [34] are used to understand and analyse the behaviour of

the controller. A PFSM guides the development of a simula-

tion and a formal model, but only loose connections between

the machine and the simulation or the model are claimed.

RoboChart also extends state machines with probability and

real-time behaviour, but it has a formal semantics that can be

automatically generated for given models.

Probabilistic timed Behaviour Trees (ptBTs) [35] extend

Behaviour Trees [36], a formal and graphical notation

to construct a design out of a set of functional require-

ments in a stepwise and traceable way, with probabilistic

behaviour. The meaning of a ptBT is given using proba-

bilistic timed automata (PTAs) [37]. Verification of a ptBT

model is realised through translation to a DTMC or MDP

model, which is analysed using PRISM. Notations based on

behaviour trees treat an individual functional requirement as

a behaviour tree, and integrate all these trees into an inte-

grated design behaviour tree that allows defect detection and

is traceable to the requirements. Compared to the notations

based on state machines, those based on behaviour trees are

not well developed and studied. One reason is the lack of

sophisticated tool support.

2 http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_IS

O_IEC_13568_2002(E).zip.), albeit with a more roboticist-friendly

syntax and a few syntactic-sugaring constructs.

Among the modelling notations extended to accommodate

probability, UML state machines [38] are the most popular.

DAMRTS (Dependability Analysis Models for Real-Time

Systems) [39,40] is an UML profile that extends UML Stat-

echarts with time and probability. Discrete probabilities are

associated with events and a discrete probability distribution

is defined over (event, state) pairs. We need a construct to

group all transitions that are from the same state and form

a probability distribution, but it is not clear what method, if

any, is used for that in DAMRTS. From an example in [39],

transitions with probabilities do not form a complete cover.

So it can be the case that a transition is labelled with an event

and a probability p, but there are no other transitions with

the same event and the complementary probability 1 − p.

The semantics in this case is not clear. DAMRTS models can

be automatically translated to probabilistic timed automata

and analysed by PRISM. This translation is, however, not

formalised. In contrast, in RoboChart, a probability distri-

bution is associated with a single transition, which defines

the target states like in a probabilistic automaton. Moreover,

the probabilities in such a transition add up to 1. So, there is

no ambiguity. Our translation to PRISM is formalised in this

paper.

Jansen et al. [41] describe a probabilistic conservative

extension of UML’s Statechart notation, called P-statecharts.

Since the extension is conservative, we know that all the

behaviours of the original semantics are behaviours of the

probabilistic semantics. A transition can lead to one of sev-

eral states depending on a specified probability distribution.

Each probability distribution is guarded by a trigger, either

an event or no event, which corresponds to an external action

or an internal action τ in a probabilistic automaton. Dis-

crete probabilities are associated with actions and a discrete

probability distribution is defined over (action, state) pairs.

A P-statechart alternates between nondeterministic choices

and probabilistic choices using the strictly alternating model

[18,42]. Transitions that exit nondeterministic choices enter

only probabilistic choices. A P-statechart deals not only with

nondeterminism and probabilism, but also with priorities

within Statecharts. The semantic models of P-statechart are

based on MDPs. Properties of a P-statechart written in the

probabilistic branching time logic (PCTL) can, therefore, be

automatically checked using PRISM.

Probabilistic modelling and verification using RoboChart

are inspired by Jansen et al.’s P-statecharts. Similar to

P-statecharts, RoboChart also deals with nondeterminism

and probabilistic choices in the same strictly alternating

way: transitions that exit nondeterministic choices enter only

probabilistic choices. In the probabilistic model, even if two

states are connected by a transition directly, therefore with-

out an explicit probabilistic choice, it is treated as having

an implicit probabilistic choice with the probability of the

outgoing transition as 1. So, since every transition is prob-

123

http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip

Probabilistic modelling and verification using RoboChart and PRISM

Table 1 Comparison of related

work (fundamental probabilistic

frameworks or models)

Work Nondeterministic choice Probabilistic choice Types/expressiveness

External Internal

Probabilistic automata Yes Yes Yes N/A

Alternating model Yes Yes Yes N/A

Reactive model Yes No Yes N/A

PRISM Yes No Yes Basic

Storm Yes No Yes Basic

MODEST Yes No Yes Basic

RoboChart Yes Yes Yes Rich

Basic types/expressiveness: no support for structured data types. Rich types/expressiveness: some support for

data types such as sets, sequences, and so on

abilistic, after a nondeterministic choice selects an enabled

transition, there is a probabilistic choice.

A conflict arises when a transition from a composite state

and a transition from a substate are both enabled. A P-

statechart assumes a given priority scheme to resolve the

conflict. RoboChart has a simpler semantics, which leaves

the choice nondeterministically. In this way, we treat them

as another level of nondeterminism in order to avoid dealing

with the complexity of priorities in the semantics. Differently

from P-statecharts, RoboChart does not support AND-states

within a state machine (but supports parallelism between

state machines) to simplify the semantics, and, therefore,

make reasoning more tractable and improve automation of

verification. Regarding triggers, RoboChart supports input

and output triggers in addition to simple triggers just for syn-

chronisation.

Richer action constructs are available in RoboChart,

including assignments, communications, sequential compo-

sition, and conditionals. P-statecharts only support assign-

ments and communications. Functions and operations can be

specified using preconditions and postconditions described

in the rich language of Z predicates.

Table 2 summarises the comparison of RoboChart with

the modelling languages above.

2.3 Domain-specific languages for robotics

Model-driven software development in robotics has been

studied [43] and several domain specific languages are

available [44]. SmartSoft3 [45], V3CMM [46], BRICS Com-

ponent Model (BCM) [47], RobotML [48], SafeRobots [49],

and the work in [50] all employ component models like in

RoboChart. Although some of them, such as BCM, have a

degree of formal modelling, they usually do not have a formal

semantics (and, therefore, cannot support formal reasoning

and verification) or have a formal semantics only for part of

3 smart-robotics.sourceforge.net/.

their constructs. RoboChart, however, has a formal semantics

defined for all its constructs, including its component model.

GenoM3 [51,52] is a model-based engineering framework

for robotics software. It supports verification using model

checking via translation to Petri Nets [53] and deadlock

checking using BIP [54]. It is also an executable language.

RoboChart, nevertheless, provides various levels of abstrac-

tion, and also supports theorem proving in addition to model

checking.

As far as we know, none of these notations support prob-

abilistic modelling and reasoning, as we propose here for

RoboChart. Extending these notations, however, may bene-

fit from the results we present here.

Thrun et al. [55] uses MDPs as the underlying math-

ematical framework to model uncertainty in robot action

selection for probabilistic planning and control, and intro-

duces the value iteration algorithm to find control policies

for these models. They use partially observable Markov deci-

sion processes (POMDPs) to model uncertainty in perception

because the environment is usually only partially observable

through sensors. Probabilistic modelling in RoboChart, as

discussed in this paper, covers uncertainty in robot action

selection. Our probabilistic semantics is also based on MDPs.

RoboChart, however, supports different levels of abstraction

through a component model, abstract data types, and a rich

action languages (see Table 2).

In summary, the probabilistic modelling of RoboChart is

based on existing notations, but provides abstraction and

improved modelling practice for the robotics domain. The

analysis of probabilistic behaviour in RoboChart models is

fully automated, and the transformation from RoboChart to

PRISM is formalised.

Next, we describe and illustrate RoboChart.

123

http://smart-robotics.sourceforge.net/

K. Ye et al.

Table 2 Comparison of related work (improved modelling languages)

Work Abstraction Formal semantics Tool support Note

Component

model

Types Action

constructs

Refinement

PFSM No N/A N/A No No No Informal description of

behaviour

ptBTs No Basic Basic No PTA Model checking Manual translation

DAMRTS No Basic Basic No PTA Model checking Automated translation

(informal)

P-statecharts No Basic Basic No MDP Model checking

RoboChart Yes Rich Rich Yes UTP (CSP) and

MDP

Model checking

Theorem Proving

Automated verification

Basic actions: only primitive actions (assignments, synchronisations, and so on) and no control-flow constructs. Rich actions: some control-flow

constructs (conditionals, sequences, and so on)

Fig. 1 Map of the workplace from [56]

3 RoboChart

This section gives an overview of our approach to proba-

bilistic modelling using an example. Part of the novelty of

our work is related to the component model of RoboChart,

not only the novel state machine constructs. For this reason,

we present an example that illustrates the use of proba-

bilistic choices, challenging constructs of machines, such as

composite states, and the core elements of the RoboChart

component model: controllers, robotic platforms, and mod-

ules. In Sect. 3.1, we present our probabilistic choice operator

and an informal account of its effect on the RoboChart seman-

tics. We refer to the RoboChart reference manual [1] for a

complete account of the notation. Sections 3.2 and 3.3 present

the metamodel and well-formedness conditions for the prob-

abilistic constructors.

3.1 Notation

We describe our facilities for modelling probabilistic con-

trollers using as an example a mail delivery robot from [56].

It delivers mail to eight offices arranged in the configuration

in Fig. 1. An office 0 is the station to charge its battery. A

worker in an office can send mail to another, but not to the

charging station.

Fig. 2 Module and Robotic platform in RoboChart model for delivery

robot

The robot can deal with only one delivery at a time. Upon

receipt of a delivery request, the robot starts to fetch the mail

by moving to the sending office. Upon arrival, it fetches the

mail and then moves to its destination to deliver it. After

delivering the mail to its destination, it is ready for the next

request.

The robot is not equipped with particular cameras or sen-

sors for dynamic route allocation. Instead, it uses a random

algorithm, similar to those of vacuum cleaning robots, to

choose its moves. With equal probability, it either stays where

it is or moves to adjacent offices. For example, if its current

location is at office 1, it remains at office 1, moves to office

2, or moves to office 4. Each choice has probability 1/3.

Module and Robotic Platform. The module of our RoboChart

model for this example is shown in Fig. 2. The module deliv-

123

Probabilistic modelling and verification using RoboChart and PRISM

Fig. 3 Controller in RoboChart

model for delivery robot

erMOD is composed of one robotic platform deliverRP and

a controller deliverCTRL.

The notion of robotic platform is a crucial element in the

definition of a module (and so, of a model). It captures the

services that need to be offered by a robotic platform to enable

the use of the control software. For abstraction, these services

are not specified in a module. This ensures that a module is

platform-independent. The robotic platform, however, is the

link to connect a module to a model for a physical robot, for

example. This is described in detail in [57].

A platform includes variables, events, and operations that

represent sensors and actuators. It may also define constants

that characterise parameters of the model. In our example,

we collect in an interface ctrlVarInf variables and constants of

deliverRP. The current location and battery level of the robot

are recorded as variables p and c. The battery capacity bat-

teryCapacity and the battery charged per update chargeStep

are design parameters and treated as constants .

We use interfaces to group elements for reuse and to

describe dependencies. The interface ctrlVarInf in Fig. 2 is

provided by the robotic platform. The variables and con-

stants defined in ctrlVarInf are used in the controller and all

its state machines, which require the interface (see Figs. 3,

4, 5, and 6).

In addition to variables and constants, the robotic platform

can communicate with controllers via connected events .

The controller deliverCTRL in Fig. 2 gets a mail delivery

request including an office number that locates the mail to

be delivered and a destination office number from the plat-

form via the typed events request and dest. After delivery,

the controller notifies the robotic platform via the delivered

event.

Controllers. The definition of the deliverCTRL controller is

given in Fig. 3. It has three state machines : movingSTM,

batterySTM, and taskSTM, which correspond to three sepa-

rate functionalities: movement control, battery management,

and task management. The machines are defined in Figs. 4,

5, and 6.

A controller in RoboChart encapsulates one or more

(parallel) state machines. Connections between a controller

and its state machines are used to relay information through

the events of the controller. The connections on the events

request and dest of the controller in Fig. 3 pass infor-

mation from the platform to the machine taskSTM. The

machine taskSTM acknowledges delivery via the delivered

event relayed through the event delivered of the controller.

Connections between machines represent synchronisa-

tions and interactions. The machines movingSTM and

taskSTM shown in Fig. 3 synchronise with each other on

a move event used to trigger movement when the current

position of the robot is different from the goal (either the

mail request office or mail destination office), while mov-

ingSTM and batterySTM synchronise on the upstart and

upend events to trigger start and end of an update of the

current battery level after a move.

State machines. Behaviour descriptions are given by state

machines in RoboChart. They may require interfaces and

declare local constants, variables, and events, like controllers.

For example, the taskSTMmachine (Fig. 4) declares two vari-

ables g and fd. The variable g is a natural number: an office

number where mail needs to be fetched or delivered; g is

initialised to 0. We call g the goal of the robot. The variable

fd is an element of the enumeration FD defined in Fig. 4.

It represents three stages of a delivery task: idle, fetching,

and delivering mail. The variable fd is initialised to NoTask.

These variables are local to taskSTM. All declared events

appear on the border of machines.

A state machine comprises states, junctions, and transi-

tions. States may be simple or composite. A composite state

itself contains a state machine. A state may also have entry,

exit, and during actions, executed when the state is entered,

exited, and active.

123

K. Ye et al.

Fig. 4 Task state machine

Transitions connect states and junctions. A self-transition

has the same source and target states. Transitions have a label

with the following optional features:

• A trigger event;

• A guard, specifying the conditions that need to hold for

the transition to be enabled;

• A probability value, defining the probability of occur-

rence of this transition; and

• An action that is executed if the transition is taken.

Actions are statements. The action constructs are skip, an

action that terminates immediately, assignment (=), sequen-

tial composition (;), conditional (if), input events (of the form

evt?v where evt is an event and v is a variable that records

the input value), output events (of the form evt!e where e is

an expression whose value is output), or synchronisations (of

the form evt or evt.e).

A junction is different from a state in that the control

flow of a machine cannot stop at a junction. With a junc-

tion, we can break the flow of a transition by creating points

of decision in between states. Junction is a concept of UML

state machines and other Statechart notations. Junctions rep-

resent decision points that must be made immediately. As

a consequence, a junction must always have at least one

outgoing transition enabled in order to leave the junction.

RoboChart has three types of junctions: initial junctions ,

normal junctions , and probabilistic junctions defined

here. An initial junction indicates the starting point of execu-

tion of a state machine, and cannot have incoming transitions.

Normal junctions have both incoming and outgoing transi-

tions, but these transitions cannot be labelled with probability

values.

Probabilistic junctions, also used in other techniques

[58,59], are a special form of junction introduced to capture

probabilistic choices. Only transitions from a probabilistic

junction can be labelled with probability values, which must

add up to 1. This imposes a proof obligation, since probabil-

ities can be given by expressions involving variables.

The taskSTMmachine in Fig. 4 has just one state taskState

with four self-transitions. The top-right transition is taken

when there is a mail delivery request (trigger request?g) and

the robot is idle (guard fd=FD::NoTask where FD::NoTask

is a constant of the enumeration FD). If that transition is

taken, its action establishes that if the goal g is an office

number from 1 to 8, the robot moves to the fetching mail

stage (FetchMail); otherwise, it ignores the request (skip).

The bottom-right transition is taken if the robot is not idle

and its current position is not the goal. If so, the machine

waits for a synchronisation on the move event, as specified

by the transition actionmove (a synchronisation action). The

top-left transition is enabled if the robot arrives at the office

to fetch mail (g==p) when it is fetching mail. If that tran-

sition is taken, the machine waits for an input dest?g from

the platform giving the delivery destination g. If the destina-

tion office is valid (between 1 and 8), the robot switches to

the delivering stage. Otherwise, it discards the request. The

bottom-left transition is enabled if the robot reaches the des-

tination when it is delivering. If so, it returns to the idle stage

and sends a delivered acknowledgement.

The batterySTM machine in Fig. 5 manages the battery.

It has only the state batteryState. The transition from the

initial junction sets the battery level c to its capacity bat-

teryCapacity to record that initially the battery is full. Two

self-transitions of batteryState can be taken when the event

upstart occurs. One is taken when the robot is at the charg-

123

Probabilistic modelling and verification using RoboChart and PRISM

Fig. 5 Battery state machine

ing station (p==0 , where p is provided by deliverRP shown

in Fig. 2 and required here through an interface ctrlVarInf),

and another when the robot is not there and the battery is

not empty. In the first scenario, the battery is charged and its

level is increased by the constant chargeStep per update till

it is full. In the second scenario, one unit of the battery is

consumed. In both scenarios, the upend event is used to sig-

nal that the battery state has been updated. Both upstart and

upend are synchronisations with events in the movingSTM

machine to allow the battery to be updated when the robot is

moving.

The movingSTM machine in Fig. 6 controls movement of

the robot. The machine has two states: Stuck and Move. The

transition from the initial junction sets the current position p

of the robot to the charging station. The Move state is com-

posite. Its machine has nine states (from s0 to s8). Each such

state corresponds to one office and has an entry action such

as p=2 that sets p to 2 upon entering of the state s2 to record

in p the office in which the robot is located. The transitions

from such states are connected to probabilistic junctions and

are labelled with a triggermove and a guard condition (c>0).

So, these transitions are taken only when movement is trig-

Fig. 6 Movement state machine

123

K. Ye et al.

Fig. 7 Metamodel of a RoboChart module

gered by the taskSTM machine and the battery is not empty.

All transitions leaving one of the probabilistic junctions are

labelled with the same probability value, and so the robot ran-

domly chooses its next position based on the map in Fig. 1.

No matter which outgoing transition is taken, the machine

updates the battery by synchronising with the batterySTM

machine using upstart and upend events.

When the robot is not at the charging station and its bat-

tery is empty, the transition from the Move state with guard

c==0 is taken. A junction in this transition defines a decision

based on the current robot position. If it is at the charg-

ing station, the battery is charged by synchronising with the

batterySTMmachine andmovingSTM reentersMove. Other-

wise, the machinemovingSTM enters the Stuck state because

the robot has no battery and cannot charge. Stuck has no out-

going transitions. So the robot cannot move again.

Next, we describe the RoboChart metamodel, and return

to this example later in Sect. 5.2.

3.2 Metamodel

Here, we describe the RoboChart metamodel [1] and the

changes needed to include probabilistic choice.

A RoboChart model is defined by a module, whose meta-

model is shown in Fig. 7. A Module comprises a collection

of nodes (ConnectionNode) and connections (Connection).

A ConnectionNode can be a RoboticPlatform, a Controller,

or a StateMachine. A RoboticPlatform is either given by a

definition (RoboticPlatformDef) or by a reference to a def-

inition (RoboticPlatformRef). A RoboticPlatformRef refers

to exactly one RoboticPlatformDef. The metamodel for con-

trollers and state machines is similar. A node in a module can

be a definition or a reference to a definition of a robotic plat-

form or a controller, but not a state machine as specified by

well-formedness conditions discussed later.

A StateMachineDef is a StateMachineBody that can

be used as a ConnectionNode (in a ControllerDef). So,

StateMachineDef needs to inherit from both StateMa-

chineBody and ConnectionNode. We, however, have an

intermediate concept of a StateMachine that inherits from

ConnectionNode. StateMachineDef inherits from Connec-

tionNode via StateMachine, which allows different forms

of definition. In particular, a StateMachine may be defined

by reference to a StateMachineDef.

Robotic platform and controller definitions may provide

and require interfaces through extending Context. The class

Context contains variables (VariableList), operations (Oper-

ationSig), and events (Event), and refers to three kinds

of interfaces: provided interfaces (pInterfaces), required

interfaces (rInterfaces), and defined interfaces (interfaces).

123

Probabilistic modelling and verification using RoboChart and PRISM

Fig. 8 Metamodel of RoboChart state machines

Connection links one node to another by their events.

A connection can be asynchronous or synchronous, and

unidirectional or bidirectional. The metamodel permits con-

nections between any two nodes, but not every connection

is valid. For example, a robotic platform cannot connect to a

state machine. We connect them through a controller. Well-

formedness conditions enforce such restrictions.

ControllerDefinitions, are composed of a collection of

state machines and connections. The structure of a state

machine is detailed in Fig. 8. A state machine is a Node-

Container that includes a collection of nodes (Node) and

transitions (Transition). States (State), junctions (Junction),

and probabilistic junctions (ProbabilisticJunction) are pos-

sible nodes. State is also a NodeContainer, so a state can

include nodes and transitions. This supports hierarchical state

machines. State contains entry, exit, and during Actions. Ini-

tial is a junction and Final is a state. Transitions are directional

and connect one source node to a target node. A transition

may have a trigger (Communication), a guard (Expression),

a probability value (Expression), and an action (Statement).

The metamodel of variables, communications, events,

and operations is shown in Fig. 9. A Variable, an Opera-

tionSig, and an Event all have a Name. A Variable also has

a Type and an optional initial value, given by an Expres-

sion. A VariableList contains one or more variables and has

a modifier (VariableModifier) from which the counterpart in

a Variable derives. An operation signature (OperationSig)

contains zero or more parameters (Parameter). A Commu-

nication has a type (CommunicationType), and may have a

parameter (Variable), a value (Expression), and refer to an

Event. An Action contains exactly one Statement. A Com-

municationStmt is a Statement that contains exactly one

communication: that uses an Event.

The changes we have made to the original RoboChart

metamodel presented in [1] to cater for probability are

minor: addition of ProbabilisticJunction, and a probability

value to Transition. Next, we define healthiness conditions

associated with these constructs.

3.3 Well-formedness conditions

Well-formedness conditions define restrictions on models to

make them meaningful. It includes typing and scope rules

for expressions and actions, and imposes various condi-

tions, such as uniqueness of names in all components. The

RoboChart reference manual [1] gives a full account of these

conditions.

We now present the extra well-formedness conditions

imposed on transitions (Sect. 3.3.1) and on the new prob-

abilistic junction (Sect. 3.3.2).

3.3.1 Transitions

PT1 The source of a transition with a probability value must

be a probabilistic junction, that is, states, initial junc-

123

K. Ye et al.

Fig. 9 Metamodel of RoboChart variables, communications, events, and operation signatures

tions, and normal junctions cannot be the sources of

these transitions.

PT2 The probability value of a transition must be between

0 and 1.

We introduce PT1 because RoboChart implements an alter-

nating model between nondeterministic choice and proba-

bilistic choice. (This is in line with other authors to simplify

the semantic model, and in particular the interaction between

nondeterministic choice and probabilistic choice—see ref-

erences [18,41]. This follows, for example, the reactive

modules formalism of PRISM.) Therefore, it would be awk-

ward at best to have arbitrary probabilistic transitions in state

machines. The probabilistic junctions provide a syntactic

mechanism to isolate the probabilistic choices. Probabilistic

choice is only made and resolved at probabilistic junctions.

3.3.2 Probabilistic junctions

Probabilistic junctions are also junctions, but with extra well-

formedness conditions.

PJ1 There must be a probability value on every outgoing

transition from a probabilistic junction.

PJ2 There must not be a guard on an outgoing transition

from a probabilistic junction.

PJ3 The probability values of all outgoing transitions from

a probabilistic junction must sum to 1.

PJ2 enforces construction of simple models by separating

concerns. If a guard is needed, then it can be added with a

preceding transition, so there is no loss of expressiveness.

PJ2 is also helpful in simplifying the process of counting

transitions and choice resolution; these counts are used in

the notion of time in the Markov semantics and probabilistic

temporal property language.

Before defining our model transformation, the next sec-

tion describes the target language, the notation adopted by

PRISM, its semantics, and its metamodel.

4 The PRISM notation

In the previous section, we have described how to use

RoboChart to model discrete-time probabilistic systems.

Another question follows: how do we verify these systems?

123

Probabilistic modelling and verification using RoboChart and PRISM

As mentioned, this work enables model checking using

probabilistic model checkers, specifically PRISM [3], but

potentially also Storm [26] and MRMC [60], which adopt

the same input notation.

Section 4.1 describes the notation that supports. We then

present a metamodel that we have defined for that notation

in Sect. 4.2.

4.1 PRISM

PRISM4 is a model checker for verifying probabilistic

behaviour. It allows us to analyse various probabilistic mod-

els, including DTMCs and MDPs.

The PRISM language is similar to Alur’s Reactive Mod-

ules formalism [27], but with a different variable model.

In a reactive module, variables fall into three groups: pri-

vate, interface, and external. A module M can read every

other modules’ interface and external variables, but not their

private variables. M can write to its own private and inter-

face variables, but not to other modules’ external variables.

PRISM does not have private variables: all local variables

in a module are interface variables. PRISM also has global

variables shared by all modules for reading or writing. Inter-

leaving global-variable updates avoids race conditions.

PRISM employs a closed-world assumption, that is, sys-

tems are not subjected to inputs from the environment. In

order to take specific environmental inputs into account,

another module can be added to the model to encode gener-

ation of desired inputs.

PRISM’s semantics is not compositional: parallel mod-

ules are flattened into a single system module [61]. Module

combinators are similar to CSP process algebraic operators,

including parallel composition, action (event) hiding, and

action renaming. The parallel composition operators are as

follows:

• M1�A�M2, requiring both modules to synchronise on the

actions in the set A.

• M1 ‖ M2, which is equal to M1�A1 ∩ A2�M2, where A1

and A2 are the sets of actions used in the modules M1

and M2, respectively.

• M1 � M2, which is equal to M1�∅�M2.

Communication between modules in PRISM, however, is not

based on actions. These have only names and cannot carry

messages (or data). So actions are used only for synchronisa-

tion. Exchange of messages is through variables: both global

and local variables.

An important feature of PRISM is statistical model check-

ing (SMC) [62,63]. This is a Monte Carlo discrete-event

4 www.prismmodelchecker.org/.

Fig. 10 Structure of a PRISM model

simulation technique based on randomised sampling of sim-

ulations of a PRISM model. It approximates numerical and

symbolic results for property checking that economises on

computation. Although approximate, SMC is effective in

dealing with state-space explosion. (For the robotics domain,

it is also an important technique for design-space explo-

ration.)

To support SMC, however, the PRISM model cannot

have multiple initial states and process algebraic operators

in the construction of the system module. So no parallel

composition can be specified. PRISM implicitly uses ‖ to

define a system M1 ‖ M2 ‖ · · · ‖ Mn from all modules

M1, M2, ..., Mn in the model.

The structure of a PRISM model is illustrated in Fig. 10.

There are six sections in a PRISM model:

S1 is mandatory and gives the model type. In Fig. 10, S1

is given on line #2, which defines DTMC as the type

for this example. Other available model types are MDP,

continuous-time Markov chain (CTMC), and probabilis-

tic timed automata (PTA).

123

www.prismmodelchecker.org/

K. Ye et al.

S2 declares constants used in the model. In Fig. 10, S2 is

given on line #5, which declares one constant pi that is

of type double and set to a real number.

S3 declares global variables. In Fig. 10, S3 is given on lines

#8-#9, which declare an integer variable i and a variable

j with range [0..10]. Both initialised to 0.

S4 defines formulas that give names to expressions. In

Fig. 10, S4 is given on line #12, which defines a for-

mula f1 associated with expression pi*2.

S5 defines the individual modules. Each module has two sub-

sections: S5_1 for local variable declarations and S5_2

for commands described in the sequel. S5 is given on

lines #15-#29, which indicate the definition of modules

M1, M2, and Mn. S5_1 is on line #17, which declares a

local boolean variable l initialised to false, and S5_2 has

a single command given on line #20. The command has

an action e1, a guard condition g1, and a set of updates

separated by +. An update is composed of an optional

probability value, such as p1 in the example, and an

assignment, such as u1.

S6 defines rewards associated with models. In Fig. 10, S6

is given on lines #32-#35, which define two rewards: a

reward on line #33 associated with states, and another

on #34 associated with transitions. Rewards, which are

used in properties (but defined within models) to allow

reasoning about a wide range of quantitative measures,

assign particular values to certain states or transitions. If

a reward has an action, then this applies to all transitions

labelled by that action.

A state is a valuation of all variables (global and local) in

the model. The state space S of the model is all valuations

of variables. A command

[e] g -> p1:u1 + ... + pn:un;

defines a transition augmented with probabilities. The optional

action e is available for synchronisation with other modules.

The guard condition g ranges over the state space S. In other

words, g characterises a subset of the state space, denoted by

Sg , that satisfies the condition. The collection of state updates

pi : ui , where
∑

1≤i≤n pi = 1, comprises a probability pi

and a collection of assignments ui . Each pair defines the

probability pi of the transition going from a source state s

in Sg to a target state s′ specified by the set of assignments

ui . A command cannot update a global variable if it has an

action. This avoids two commands synchronising with dif-

ferent updates for a global variable.

Example 1 We present below the PRISM model for a simple

robot that moves along a corridor following a random walk.

It randomly chooses its moving direction: either to the left

or to the right with probability p or (1 − p) respectively. If,

however, the robot reaches an end of the corridor, it can only

Fig. 11 The PRISM model of a simple robot

move to one direction: turn around and move away from the

end. Initially, the robot is at the center of the corridor.

The PRISM script, as shown in Fig. 11, defines a DTMC

model (line #1). A constant p represents the probability

described above (line #3). A constant N records half of

the length of the corridor (line #4). The only module ran-

dom_walker (lines #6-#14) has one local variable: x for the

current location of the robot, defined over a range from -N to

N, and initialised to 0 for the centre of the corridor (line #7).

The commands on lines #9-#13 define the transition system

of the module. In the commands, we use x’ to represent the

after-transition value of x. Every move event represents one

step of the robot. In the left end, the robot can move only

to the right (line #9), while in the right end, it can move

only to the left (line #10). In locations other than the ends

((x > -N & x < N) on line #11, where & denotes con-

junction), it can move to the left (line #12) or to the right

(line #13) with probability p and (1-p).

The rewards on lines #17-#18 assign a reward of 1

to every state in which the robot reaches the location

N/2 (line #17) or the location -N/2 (line #18). This

enables us to specify reward-based properties [64] (the

properties of DTMCs or MDPs augmented with rewards)

that allow quantitative measures of the model at the two

locations. For example, the quantitative property

R=? [F (x=0 & (X (F x=0)))], whereR=?denotes

reward-based operator [64], and F and X stand for the even-

tually and next operators in PCTL, specifies a property of

the expected cumulated reward that the robot receives when

it passes through the two locations before it returns to the

centre of the corridor.

Next, we describe the PRISM metamodel.

123

Probabilistic modelling and verification using RoboChart and PRISM

Fig. 12 Metamodel of a PRISM model

Fig. 13 Metamodel of a PRISM

module

Fig. 14 Metamodel of PRISM

types

123

K. Ye et al.

Fig. 15 Metamodel of PRISM rewards

4.2 PRISMmetamodel

We show the metamodel we have defined for the structure of a

PRISM model in Fig. 12. AModel contains one or more mod-

ules (Module), and zero or more constants (Constant), global

variables (VarDecl), formulas (Formula), labels (Label), and

rewards (Rewards).

AConstant associates a name (Name) with a type (Type)

and an optional value (Expr). A VarDecl declares a variable

with a name, a type, and an initial value (Expr). Formula

and Label are similar but do not have a type. Both associate a

(formula or label)namewith an expression. A Label requires

a boolean expression (BoolExpr), but a Formula can have any

expression (Expr). The complete metamodel is in [1].

Figure 13 depicts the metamodel for PRISM modules.

There are two ways to specify a module: either with a Mod-

uleDefinition; or by renaming (ModuleRename, omitted

in the diagram for simplicity). ModuleDef defines a mod-

ule by its name, local variables (VarDecl), and commands

(Command).

A command contains an optional action (Action), an

optional guard (BoolExpr), and one or more updates (Update).

An update has an optional probability (Expr) and a collec-

tion of assignments (AbsAssignment). There are two types of

assignments: Assignment associates a variable with a value

(Expr); and Skip is an empty assignment, in which no variable

is updated.

There are four primitive Types, as shown in Fig. 14:

boolean (BoolType), integer (IntType), range (RangeType),

and double (DoubleType).

Figure 15 displays the reward metamodel. An action is

optional. Without an action, the reward item assigns a reward

(Expr) for all states satisfying the guard condition (BoolExpr).

If there is no trigger event for these transitions, we assign the

silent action "tau".

The next section defines our model transformation.

5 Model transformation

RoboChart is different from PRISM in various aspects. To

deal with these differences, we structure the translation in two

steps: normalisation of the RoboChart model and transforma-

tion of normalised RoboChart models to PRISM. Section 5.2

gives an overview of the translation. In Sect. 5.2.1, we define

our normal form, namely restrictions on RoboChart models

that ensure all transitions between two states are probabilis-

tic, and define a strategy for normalisation. We describe a

strategy to transform from a RoboChart model in normal

form to a PRISM model in Sect. 5.2.2. We present formal

rules used to normalise RoboChart models in Sect. 5.3 and

to transform normalised models in Sect. 5.4. Extra rules are

presented in “Appendix A”. The complete set of rules can

be found in [1]. Not all features of RoboChart are currently

supported. Section 5.1 presents our assumptions.

5.1 Translation requirements

We list the conditions that need to be satisfied by a RoboChart

model for our technique to be applicable.

In DTMCs and MDPs, transitions occur in discrete-time

steps. Every transition takes one unit of time. Time primitives

[2] in RoboChart, however, capture budgets and deadlines

using clocks and constructs like wait(n), which defines a

waiting period of n units of time, and read?x<{2}, in which

reading a value x through an event read is given a deadline of

2 units of time. DTMCs and MDPs do not intrinsically sup-

port clocks, time budgets and deadlines. Our first translation

requirement, TR-TP1 below, therefore, rules out translation

of time constructs for now.

TR-TP1 Time primitives are not used.

In addition to DTMCs and MDPs, the PRISM notation also

supports probabilistic timed automata (PTAs) [65,66], which

extend MDPs with the ability to model real-time behaviour

through real-valued clocks [67]. The timed semantics of

RoboChart, however, are based on time units [2], instead

of real-valued time. The default verification method (quan-

titative abstraction refinement [68]) for PTAs in PRISM,

therefore, cannot be used. Instead, we can use the digital

clocks [69] method which uses an integral time model. We

will extend our transformation to support PTAs to deal with

time primitives in RoboChart, which is part of our future

work, as discussed in Sect. 8.

TR-CN1 Connections between controllers are not asyn-

chronous.

TR-OP1 Operations cannot be defined in controllers.

TR-ST1 States cannot have during actions.

To cater for these constructs, the PRISM model needs to

include extra modules to deal with shared variables, buffers

for asynchronous communication, operation calls, and inter-

ruptions of during actions by outgoing transitions. Dealing

with these extra constructs is part of our agenda for future

work.

123

Probabilistic modelling and verification using RoboChart and PRISM

TR-TY1 Only primitive types and enumerations, sequences

of these types, or sequences of sequences of these

types are used.

TR-EX1 Quantification, lambda, and definite description

expressions cannot be used since the PRISM nota-

tion is concrete.

PRISM supports only integer, boolean, and real numbers.

Refinement techniques [70,71] are a possible solution to

deal with abstract data types and constructs in RoboChart.

For example, we can refine a variable of the type P T , where

T is an enumeration, in RoboChart to a variable over an

integer range in PRISM, and use it as a bitmap. Support of

more abstract data types and expressions is part of our plans

for future work.

In the next section, we give an overview of our transla-

tion strategy, which is formalised later in Sects. 5.3 and 5.4.

We deal with a rich set of features: parallel controllers, with

parallel hierarchical machines, nondeterminism, junctions,

probabilistic junctions, synchronous connections, input and

output triggers, and functions.

5.2 Overview

In this section, we first present the normal form that we define

for RoboChart models and the strategy for normalisation in

Sect. 5.2.1, and then we describe the strategy for their trans-

formation to PRISM models in Sect. 5.2.2.

5.2.1 Normalisation

A normalised RoboChart model satisfies the following extra

conditions on transitions and junctions.

NFM-1 A state has at least one outgoing transition.

NFM-2 A transition that is from a state or a normal junction

to a normal junction has an action.

NFM-3 A transition can have a trigger or an action, but not

both together.

NFM-1 is needed due to the fact that DTMCs and MDPs are

stochastic. Any state in a PRISM model has to have at least

one outgoing transition.

If an incoming transition to a normal junction has no

actions, this transition can be combined with outgoing transi-

tions of the junction, which can be removed. The combination

of transitions and the removal of junctions reduce the trans-

lated PRISM models.

For transitions with a trigger and an action, the action

may a) update global variables, and b) have input and output

events, or synchronisations, such as the action in the label

close[g]/collect. Such transition cannot be translated to a

PRISM command directly because a command a) cannot

have an action and an update to global variables together, and

b) cannot have more than one action. So we impose NFM-3.

To illustrate normalisation, we use the taskSTM machine

in Fig. 4 and the movingSTM machine in Fig. 6 as examples.

We present their normal forms, and describe how to get a

normalised machine.

The taskSTM machine is not in normal form because the

transition with a trigger request?g has an action as well,

which does not satisfy the condition NFM-3.

A normalised version of taskSTM is shown in Fig. 16

where the changed parts are highlighted in a dashed box.

The original transition is replaced by a transition to a new

probabilistic junction, and a transition from the probabilistic

junction to the original target. The condition of the original

transition is used in the transition to the new probabilistic

junction, ensuring that a transition is not taken unless the

guard holds. The single transition from the probabilistic junc-

tion has probability 1 and the action of the original transition.

So this new transition is always taken, and the action is exe-

cuted, as in the original model.

ThemovingSTMmachine has an initial junction, a normal

junction, and two states: a simple state Stuck and a compos-

ite state Move. The machine movingSTM is not in normal

form because a) the incoming transition of the junction in

the machine has no action, which does not satisfy the condi-

tion NFM-2, and b) Stuck has no outgoing transitions, which

does not satisfy NFM-1.

A normalised version of movingSTM is shown in Fig. 17

where the changes are highlighted in a dashed box. The junc-

tion and its corresponding incoming and outgoing transitions

in the original machine are replaced by two transitions: one

from Move to Stuck, and another from Move to itself. They

are guarded by the conjunction of the guards of the transitions

to and from the junction. The target states are the same.

In the normalised machine, the Stuck state has a new out-

going transition to a new state loop. In general, we add a

state loop for each state machine or composite state that has

at least one state with no outgoing transition. The new tran-

sition (from Stuck in our example) has no trigger, guard, or

action. So this transition introduces no new visible behaviour.

From loop, a similar transition leads back to loop itself.

Overall, where the original machine deadlocked, the nor-

malised machine livelocks. As already mentioned, this is

what is required for a probabilistic analysis using DTMCs

and MDPs. In the example, there is no loop state in Move

because all its substates have outgoing transitions.

In Sect. 5.3, we present the rule that can be used to nor-

malise the original model if applied exhaustively (to all its

state machines). Before presenting that rule, however, we

give an overview of the normalisation process, explaining

how each of the transitions and junctions of movingSTM are

affected by it.

123

K. Ye et al.

Fig. 16 Normal form of task

state machine (the changed parts

are highlighted in a dashed box)

Fig. 17 Normal form of movement state machine (the changed parts are highlighted in a dashed box)

123

Probabilistic modelling and verification using RoboChart and PRISM

Fig. 18 Structure of translation (V for variables, C for constants, and small boxes for events on either sides of Robotic Platform, Controllers, or

State machines)

Each state machine is normalised by a) adding the loop

state and corresponding transitions, if needed; b) combin-

ing incoming and outgoing transitions of normal junctions

as illustrated for the transition out of Move in movingSTM;

c) splitting each transition that has a trigger and an action

together into two transitions connected via a new probabilis-

tic junction as illustrated for a self transition of taskState in

taskSTM; and d) normalising machines of composite states.

As illustrated above, the combination of transitions to

satisfy NFM-2 may lead to the introduction of multiple

outgoing transitions from the original source junction with

stronger guards. Because there can be only one outgoing tran-

sition from an initial junction, we cannot combine outgoing

transitions of initial junctions in this way. For probabilistic

junctions, PJ2 forbids the presence of guards on outgoing

transitions. We cannot, therefore, consider the optimisation

enabled by NFM-2 for transitions from initial or probabilistic

junctions.

The use of normalisation deals with all the complexity of

a RoboChart model to produce a module in a form that is

convenient for a direct translation to PRISM.

5.2.2 Transformation to PRISM

The structure of our translation is sketched in Fig. 18. The

structure of a RoboChart model is illustrated at the top, and

the structure of its corresponding PRISM model is given at

the bottom on the left.

The RoboChart module, M, contains a robotic platform

RP and multiple controllers (C1, …, Cj, …). Each controller

contains various state machines (STM1, …, STMi or STMk,

…). The robotic platform, controllers, and state machines all

have a declaration part, which includes variables, constants,

and events. We distinguish events in four groups, we use: a)

a blank box for independent events that are not connected; b)

a box with a C inside for the events that are connected from

or to a controller; c) a box with an R inside for the events that

are connected from or to the robotic platform; and d) a box

with an S inside for the events that are connected from or

to a state machine. Additionally, boxes drawn with the same

sort of lines (solid, dashed, and so on) indicate events that

are connected (either directly or indirectly). For example, the

machine STM1 in C1 has a dotted box (C), a dashed box (S),

and a blank box. The dotted box denotes the events of the

machine that are connected to the events of its controller C1

that are represented by a dotted box too. The dotted box ofC1,

however, has an R, so these events are further connected to

those of the robotic platform (represented by the same dotted

box). The dashed box (S) of STM1 represents the events that

are connected to other machines in C1, specifically STMi.

Particularly, STMi of C1 contains events represented by the

bold box (C) that are connected to C1, then to Cj, and finally

to the events of STM1 in Cj represented also by a bold box

(C).

Generally, the resulting PRISM model (see bottom left of

Fig. 18) contains three parts: (a) constants that correspond

to the constants of the robotic platform, denoted M.RP.C in

123

K. Ye et al.

Table 3 Summary of construct

syntax in rules
Form Description

Junction The class name from the metamodel also represents a collection of objects that have

the Junction type. Similarly, State, ProbabilisticJunction, Controller, and so on.

Particularly, ProbJunc is an abbreviation for ProbabilisticJunction for a compact

space.

Classrc Subscripts indicate classes of different metamodels, where rc stands for RoboChart,

and pr for PRISM. For example, Transitionrc and ModuleDefpr denote the

Transition in RoboChart, and the ModuleDef in PRISM.

Classpr

PX Power set of X .

X × Y Cartesian product.

{x : T |P • e(x)} Set comprehension.

{x : T |P} Defined as {x : T |P • x}.

{x : T • e} Defined as {x : T |true • e}.

(µx : T |P) Definite description.
⋃

{x : T • e(x)} Generalised union, where e(x) is a set expression.

p.n Selection of nth element from the tuple p.

obj .v Selection of value of component v from object obj .

� f1�v1, · · ·�C Record where fi is a component name and vi is the value associated to that

component. It represents an object of the class C with its components instantiated.

R (| S |) Relational image of a relation R under a set S.

[[i : T]]X Transformation of i to PRISM in the context X. For example, [[· · ·]]M denotes the

module context.

uname(par , m) This function constructs a fresh unique identifier for a new element from the supplied

construct par (of type NamedElement) and the name m (a string) of the element.

uname(par , m, n) Similar to uname(par , m), but this function has three parameters where both m and

n are of type string.

id(n) This function defines a unique identifier for an existing construct n (of type

NamedElement). If n is null, it gives an empty name. One possible

implementation is to use qualified names.

Fig. 18, where we use qualified names for all components

(see id in Table 3), the controllers (M.C1.C), and the state

machines (M.C1.STM1.C) in the RoboChart model; (b)

global variables that correspond to the variables of the robotic

platform (M.RP.V) and the controllers (M.C1.STM1.V);

and (c) a variety of modules that are in parallel (denoted

as parallel lines): one (M.RP) corresponding to the robotic

platform and others corresponding to state machines. The

local variables of a state machine become local variables of

the corresponding module, such as M.C1.STM1.V in the

M.C.STM1 module.

Renaming plays an important role in the translation of a

RoboChart model to PRISM because the variable model of

RoboChart is different from that of PRISM. Each element in

RoboChart has a given scope. For example, a variable defined

in a controller is visible to its inner state machines, but not to

the state machines in other controllers. Two variables of the

same name in different controllers or state machines are per-

mitted. In contrast, the PRISM language has a flat structure.

If two variables in different modules have the same name,

then this results in a name conflict. To address this problem,

we rename all elements, with the exception of events, used in

a RoboChart model to ensure that they all have unique names

before translation.

In RoboChart, connections can associate events of dif-

ferent names. This means that a component (machine,

controller, or robotic platform) can be used in any context,

irrespective of the names that they use for their events. In

PRISM, however, connections are realised via synchronisa-

tion based on the names of the actions. So, we must make

sure that actions in different PRISM modules that need to

synchronise have the same name. In our translation, we repre-

sent RoboChart events using PRISM actions and connections

using synchronisation. Therefore, we ensure, before transla-

tion, that events are renamed so that all connections associate

events of the same name.

For example, the independent events (represented by the

blank box) in STM1 of C1 become independent actions rep-

resented in the same style in the M.C1.STM1 module. The

actions represented by the dotted box in the module have the

same names as the actions represented by the same type box

in the robotic platform module. So the modulesM.C1.STM1

123

Probabilistic modelling and verification using RoboChart and PRISM

and M.RP synchronise on these actions, which reflects the

connection of their corresponding events in the RoboChart

model. Other actions represented by a dashed box, or a bold

box, or a bold dashed box are handled similarly.

To illustrate the overall structure of the translation, we

use the mail delivery robot model introduced in Sect. 3. We

present the structure of its PRISM script, and describe how

to get it from the RoboChart model.

The PRISM script is sketched in Fig. 19, where elements

not relevant to the structure are omitted, such as the naming,

constant declarations, and command details. The model type

is on line #1; we use the type DTMC so that we can obtain

probabilities of the robot running out of power at different

offices. The model type is a parameter to the translation.

A translated PRISM model can also use another model

type: MDP. The selection of the model type depends on the

properties to be analysed using PRISM. For DTMC, PRISM

randomises nondeterministic choice and regards them as

uniformly probabilistic choices. So PRISM can check quan-

titative properties such as “what is the probability of the

robot running out of power and stay stuck at office 2”. For

MDP models, PRISM does not treat nondeterministic choice

probabilistically, and aims for establishing minimum and

maximum probabilities, not exact probabilities.

Constants and global variables are declared on lines

#3-#7, and four modules are defined on lines #9-#43.

The module deliverRP on lines #9-#20 corresponds to the

robotic platform, and the other three modules on lines #21-

#27, #28-#33, and #34-#43 correspond to three state

machines in the RoboChart model.

Constants and variables provided by the robotic platform

are translated to constants and global variables, as shown

on lines #4-#7. MININT and MAXINT are placeholders for

the smallest and largest integer to be included in the set to

represent the integer numbers. Their values are parameters

for the translation.

The robotic platform module deliverRP in PRISM repre-

sents the environment of the system modelled, and generates

inputs (using a nondeterministic choice over possible input

values) to the software. Two local variables on lines #10-

#11 correspond to the output events request and dest of

the robotic platform (see Fig. 2), that is, the inputs to the

controller. They have the same type as the request and dest

events. MAXNAT is similar to MAXINT but represents the

largest natural number. When a synchronisation on either

action (request or dest) occurs, the corresponding local vari-

able (either EVT__request or EVT__dest) is assigned a value

nondeterministically chosen. The commands on lines #13-

#15 define the choice for EVT__request. The other module

involved in the synchronisation (in this case, taskSTM) copies

the value to a local variable (as illustrated by the command

on line #39) to simulate the acceptance of input values from

the environment.

Fig. 19 Structure of the mail delivery robot PRISM script

The actions move, upstart, upend, request, dest, and

delivered in four modules correspond to the events in the

RoboChart model. Since in this example only events of the

same name are connected, there is no need to rename events.

The actions of the same name such as move on line #23 in

movingSTM and line #38 in taskSTM allow synchronisation

of the two modules, as specified by the connection in Fig. 3.

The events upstart and upend are used for synchroni-

sation between two state machines. They are not events of

the robotic platform; therefore, the visible behaviour of the

RoboChart module does not include occurrences of these

events. In PRISM, it is possible to use a hiding operator

(similar to that of CSP) to make synchronisations on given

actions internal (not visible). The use of such operator, how-

123

K. Ye et al.

ever, makes statistic model checking infeasible. So, we keep

these actions visible.

Two local variables (g and fd) of the taskSTM module on

lines #35-#36 are translated from the corresponding local

variables in taskSTM (see Fig. 4). The type of fd is a range that

relates to the number of literals in the enumeration FD (see

Fig. 4). The initial value of fd is NoTask that is represented

by 0 (line #3).

We illustrate our approach to modelling state machines in

PRISM in Fig. 20, where we present the module for the nor-

malised taskSTM machine in Fig. 16 on lines #25-#54. We

use three (sets of) variables: program counter scpc, lock,

and exit variables, in addition to the local variables of the

state machine. In this simple example, we have local vari-

ables fd and g, and just two variables scpc and lock.

Later in this section, we consider examples with extra vari-

ables including exit variables. The required variables c
and p, and the required constants batteryCapacity and

chargeStep are declared globally, as shown in Fig. 19.

A program counter variable scpc records the current

state of the machine. In our example, we have just the ini-

tial state and the taskState. We name the initial state i0

and declare two constants i0 and taskState to associate

these states with the numbers 1 (line #12) and 2 (line #13).

Extra constants declared on lines #14-#23, associated with

the numbers from 3 to 12, are needed because the notion

of state in RoboChart does not match that of PRISM (see

Sect. 4.1), which is based on valuation of variables. So, we

have constants for each action of RoboChart whose encoding

in PRISM may lead to a change of the value of the variables

in the scope of the machine module taskSTM.

We associate these constants with a sequence of integer

numbers starting from 0 and increasing in increments of

one. For convenience, we refer to these numbers as state

numbers because they are used to index states in machine

modules. In principle, all that is required is that the con-

stants uniquely identify a module state. The definition of the

type of the program counter variable, scpc, which needs to

range over the values of these constants, however, imposes

an extra challenge. In PRISM, the type of a variable must

be finite, which means integer numbers (int) cannot be the

type of scpc. MININT and MAXINT, previously described,

are used to define the set of integer numbers in RoboChart

models. The state numbers, however, might be larger than

MAXINT. We, therefore, number the states sequentially, and

use specifically a contiguous range of integers, starting at 0,

such as [0..12] shown on line #26, to specify all values

that scpc can take. The upper limit 12 of the interval is

the maximum number associated with these state constants

in the module. Any finite set would be appropriate for the

translation, but that set needs to be identified to define the

constants and the type of scpc. Our particular approach is

based on an integer interval starting at 0.

In principle, the execution of the commands for each tran-

sition of the machine can lead to a change of state of the

PRISM module, because a transition can have an action.

So, each transition is given a set of numbers used to record

the states of the PRISM module that are reached when the

encoding of the transition is executed. Figure 21 presents an

annotated version of the normalised taskSTM where the tran-

sitions are associated with the numbers used in the PRISM

module in Fig. 20 to encode the transitions.

For example, the transition labelled t1 in Fig. 21 is asso-

ciated with the state 2, for taskState, and also, with an extra

state 6, due to the actionmove. The transition t2 is associated

with states 9, 10, 11, and 12; similarly, t3 and t4 are associated

with other states. The names of the constants representing

the extra states are based on the name of the source state

of the transition. In the example, we have taskState_3,

taskState_6, and so on. When the source is the proba-

bilistic junction, we use p0_1 and p0_2. What is essential

is a mechanism to give unique names to the extra-states con-

stants.

Since the execution of a RoboChart transition may take

the PRISM module through several states, we need a mecha-

nism to prevent the interference from other transitions when

the machine module is in one of these intermediary states.

For instance, if t4 is taken, and the module is in the state 4,

other transitions should not be taken until t4 is completed

by returning to taskState. For this reason, we introduce a

lock variable (line #27) for the machine module. This vari-

able initially takes the value 0, represented by a constant

LOCK_FREE (declared on line #5). It records that there is

no transition in execution, and, therefore, other transitions

can be taken. In addition to 0, lock can also take other

values in the range 1 to 5 (line #6-#10). Each number rep-

resents a transition. For example, 5 (represented by T4 on

line #10) denotes the transition t4. For convenience, we call

these numbers transition numbers because they are used to

index transitions in machine modules. The need to record in

lock a transition number is not illustrated in this example,

but it is explained later when the example for movingSTM is

presented.

In the initial state of the PRISM module, the values of the

local variables scpc and lock are i0 and LOCK_FREE.

The PRISM transition system simulates the behaviour of the

machine. In the initial state, the single transition t0 is avail-

able and can be taken. So, when the value of scpc is i0, it

can be changed to taskState as shown by the command

on line #31.

Whenscpc records that the current state istaskState,

there are four transitions available, captured by the com-

mands on lines #33, #36, #43, and #47. They all have

guard conditions to ensure scpc is taskState and lock is

free. Other guard conditions in these commands are from

the guards of the corresponding transitions. Particularly, the

123

Probabilistic modelling and verification using RoboChart and PRISM

Fig. 20 The PRISM module of taskSTM

transition t4 has a trigger request?g, which is recorded in

the command on line #47 with an action request and an

update to the local variable g from the value of the variable

EVT__request to simulate a communication between the

machine and the robotic platform. If these transitions are

enabled and taken, the updates of these commands change

the value of lock to the corresponding transition number

and the value of scpc to the first state number correspond-

ing to the transition. For example, the command on line #33

updates lock to T1 and scpc to 6 (taskState_3). After

one of these commands is executed, the value of lock is not

LOCK_FREE any more, therefore, none of these commands

123

K. Ye et al.

Fig. 21 Annotated normal form

of task state machine

are no longer enabled to avoid interrupting the taken transi-

tion.

Each transition corresponds to several commands in the

PRISM module. The transition t1 is encoded by two com-

mands on lines #33 and #34. The first command deals

with scpc and lock as just explained. When the current

state of the machine is taskState_3, only the second

command on line #34 is enabled. The action move of the

command corresponds to the action move of the transition.

After the synchronisation of the move action, the command

changes the values of scpc and lock to taskState and

LOCK_FREE to encode that the transition is completed and

its target state is entered.

The transition t2 is implemented by six commands on

lines #36-#41. After it is taken, scpc and lock are

updated to taskState_6 and T2 on line #36. As shown

in Fig. 21, a sequential composition of actions is encoun-

tered attaskState_6. The first actiondest?g is encoded

by the command on line #37, while the second conditional

action corresponds to the subsequent commands on lines

#38-#41, of which two are for the if branch and two for

the else branch. In each pair, the first command is related to

the branch condition and the second to its action. When the

module is at the state taskState_7 because of the syn-

chronisation on dest, if the value of g is valid (between 1

and 8), the command on line #38 is executed next, which

takes the module to taskState_8. At this state, only one

command on line #39 is enabled. Upon its execution, fd
becomes DeliverMail. If the value of g is not valid, fd

is set back to idle (NoTask) on lines #40 and #41.

The transition t3 is enabled if the destination of the deliv-

ery is reached (g is equal to p) and the robot is delivering as

shown by the command on line #43. After the transition is

taken, the module passes through states taskState_4 and

Fig. 22 A simple state with an exit action

taskState_5. Finally, the task returns to NoTask and a

delivered event is signalled, shown by the commands on

lines #44 and #45.

The transition t4 has an input trigger (request?g) and its

target is a probabilistic junction represented by the constant

p0 on line #14. The command on lines #47 and #48 cor-

responds to t4; it updates scpc to p0. The probabilistic

junction has one outgoing transition to taskState with prob-

ability 1. The action of this transition is a conditional that

involves two states p0_1 and p0_2. From p0, the next state

is p0_1, as shown on line #50. The conditional action is

encoded by the commands on lines #51-#53. The encoding

is similar to that for the transition t2, but since the action

of the else branch is skip, there is no additional state, and,

therefore, only one command encodes that branch.

Since none of the states in the taskSTMmachine has an exit

action, its PRISM module in Fig. 20 has no exit variable.

If a state has an exit action, such as the state s0 in Fig. 22,

an exit variable is used in PRISM, as shown in Fig. 23.

Constants s0_1, s0_2, and s0_3, declared on lines #9-

#11, represent three extra states in PRISM as annotated s0_1,

s0_2, and s0_3 in Fig. 22. Intuitively, we can think of the exit

action as being part of the action of every transition out of

the state. So, we deal with exit actions much in the same way

as we deal with transition actions.

123

Probabilistic modelling and verification using RoboChart and PRISM

Fig. 23 The PRISM snippet of the simple s0 in Fig. 22

The snippet in Fig. 23 encodes the exit of the transitions

t1 and t2 in Fig. 22 from their source state s0. The com-

mands on lines #18 and #20 are specific to t1, and those

on lines #22 and #24 are for t2. Both transitions share an

exit from s0, as encoded on lines #26-#28, using an exit

variable declared on line #14. This variable records the exit

states that arise by the execution of the exit action and takes

three possible values in this simple example. They repre-

sent the states in which the execution of the exit action has

not started (Exit_NONE), has started (Exit_Sub_ACT),

and has completed (Exit_Sub_EXITED). These values are

represented by three constants declared on lines #1-#3.

If t1 is taken, lock is set to T1 and an exit request is

triggered by updating exit to Exit_Sub_ACT, as shown

on line #18. The next command on line #20 for t1 checks

the exit completion indicated when the value of exit is

Exit_Sub_EXITED. The value Exit_Sub_ACT indi-

cates an exit request to the current state of the module.

Since t1 is taken, the current state is s0 (that is, scpc=s0).

So the guard on line #26 is satisfied, and s0 receives the

request and updates the counter to s0_1 to deal with its exit

action in the commands on lines #27-#28. In the end of its

exit action, s0 marks that it has exited by setting exit to

Exit_Sub_EXITED (on line #28). The command on line

#20, therefore, is enabled. So after exiting from its source

state, t1 continues to deal with its transition action and targets,

omitted in Fig. 23. The way we encode t2 is very similar.

We use this simple state s0 with an exit action to demon-

strate how an exit variable is used in our PRISM models

to deal with the exit of states. The extra exit variable, how-

ever, is not needed to deal with state exit. We could use the

counters; in this example, we could set the value of scpc to

the extra state numbers, such as s0_1, in the first command

corresponding to a transition: the command on line #18 or

#22, for example. The last command, such as that on line

#28, then would set the counter to the state just after the exit

from the source state, such as s0_3. The exit variables

are, however, necessary to deal with composite states.

In the next example, in Fig. 24, we consider a transition t0

whose source state S0 is composite. The execution sequence

of the transition starts with a request for S0 to exit. That state

then passes the request into its inner states recursively. Upon

receipt of an exit request, the innermost (simple) substate

executes its exit action (if any). Afterwards, each enclosing

state repeats this process up to the source state.

In Fig. 24, all states have an exit action and at least one

outgoing transition. In exiting S0, the exit actions of its sub-

states are executed sequentially: the exit action of S2, the exit

action of S1, and the exit action of S0, if the current substate

of S1 is S2, or the exit action of S3, the exit action of S1,

123

K. Ye et al.

Fig. 24 An example to illustrate the need of exit variables

and the exit action of S0, if the current substate of S1 is S3.

One possible approach to encode this uses sets of PRISM

commands for each of the exiting paths, with correspond-

ing guards to determine the current substates. This leads to

duplication of extra states introduced by exit actions. In this

example, the exit action of S1 is shared by both paths to

exit. We could encode this by introducing an extra state in

the beginning of the exit action, such as S1_exiting, and

then the end of the encodings of the exit actions of S2 and S3

leads to S1_exiting. To use this approach, however, the

encoding of the transition t0 needs to take into account the

internal structure of S0. This is neither straightforward nor

compositional.

Instead, we use a staged approach, in which the encoding

of a transition (like t0) triggers an exit request to its source

state (S0), and waits for it to exit. It is the encoding of the

source state that reflects its internal structure. For this exam-

ple, the commands for S0 deal with an exit request, relay the

request to its current substate S1, and wait for S1 to exit. The

commands for S1 are similar. The commands for S2 deal with

the exit request from S1, execute its exit action, and exit S2

using the approach in Fig. 23 because S2 is simple. After-

wards, the command for S1 that waits for S2 to exit becomes

enabled. After it is taken, the encodings for its exit action are

executed, and so exit S1. In a similar way, the encoding for

S0 controls its exit.

To control this exit flow in PRISM, we introduce an extra

exit variable for each composite state, and define the exit

of a composite state in six stages:

EX-S1 it is not in an exit flow;

EX-S2 it gets an exit request either from a transition or

from its parent;

EX-S3 it passes the exit request to its substates;

EX-S4 it waits for its substates to exit;

EX-S5 its substates have exited (at this point, its exit action

is executed); and

EX-S6 it is exited (after execution of its exit action).

To illustrate our approach to translating state machines

with composite states, we present in Fig. 25 the module for

the normalised machine movingSTM in Fig. 17, lines #34-

#59. That module has two program counter variables: scpc

andMove_scpc, one lock variablelock, and two exit vari-

ables: exit and Move_exit.

The counter scpc encodes the current state of the

machine, while Move_scpc encodes the current state of

the composite state Move. In the normalised machine mov-

ingSTM, we have one initial junction named i0 and three

states (Move, Stuck, and loop). Four constants are declared

for these states (lines #17-#20). Extra constants declared

on lines #21-#24 are needed for the actions in transitions or

states. Since Move is composite, there are additional nodes

within it: one initial junction named i0 in PRISM, nine states

s0 to s8, and nine probabilistic junctions named p0 to p8 in

PRISM. A set of constants is declared to associate them with

numbers, as illustrated in Fig. 26. We name these constants

with a prefix Move_ (see lines #26-#31). Like in the previ-

ous example, extra constants are also needed for the actions.

Finally, we have a value, Move_INACTIVE, for the counter

of Move, when this state is not active.

The full state of the machine is given by the combination of

both counter values. For example, if the state machine mov-

ingSTM is in the state Stuck, then scpc and Move_scpc

have values Stuck and Move_INACTIVE. If the machine

is in the state s1, then scpc and Move_scpc have values

Move and Move_s1.

In addition to the states, we also number the transitions in

movingSTM, as shown in Fig. 26, with associated constants

on lines#10-#16. We also name the transitions inMovewith

a prefix Move_. Besides LOCK_FREE on line #9, these are

all the possible values that the variable lock can take as

shown on line #37.

In addition, two exit variablesexit andMove_exit are

declared on lines #38 and #39. Both can take the values 0

to 6 of the constants:

• Exit_NONE corresponds to EX-S1 above,

• Exit_ACT_Parent corresponds to EX-S2 for the

request from the parent state, if any,

• Exit_ACT_Trans corresponds to EX-S2 for the request

from a transition,

• Exit_Sub_ACT corresponds to EX-S3,

• Exit_Sub_ACT_Waiting corresponds to EX-S4,

• Exit_Sub_EXITED corresponds to EX-S5,

• Exit_EXITED corresponds to EX-S6.

In the initial state of the module movingSTM, the values

of the local variables scpc and Move_scpc are i0 and

Move_INACTIVE, which indicates the machine starts from

its initial junction and the composite state Move is initially

inactive. The initial value of lock is LOCK_FREE. The val-

123

Probabilistic modelling and verification using RoboChart and PRISM

Fig. 25 The PRISM module of movingSTM

ues of both exit variables are Exit_NONE, so no states are

being exited. In the initial state, the single transition encoded

on line #41 is available. So when the value of scpc is i0,

it is changed to i0_1 and the value of lock is changed to

T0. Since the value of lock is not LOCK_FREE, other tran-

sitions in the module that correspond to the transitions from

a state in the machine are not available because they have a

guard condition lock=LOCK_FREE.

Whenscpc isi0_1, the single transition encoded on line

#42 is taken. The update changes the value of p, the position

of the robot, to 0, which is the effect of the transition action

in RoboChart, and the values of scpc and Move_scpc to

Move and Move_i0.

According to the normalised machine in Fig. 17, if the cur-

rent state is Move and the battery level is 0 when the robot

is not in the charging station, the transition t1 from Move

to Stuck in Fig. 26 is enabled. The encoding of this transi-

tion is shown on line #44. When it is taken, the module is

locked in T1 and the exit stage of Move is set to an exit

request from a transition (Exit_ACT_Trans) to source

stateMove. The command on line#45waits forMove to exit

and is enabled only if the module is locked in T1 and Move

has been exited (Exit_EXITED). When an exit request is

recorded in Move_exit, the next available command is on

lines#52-#53. SinceMove is composite, the update changes

Move_exit to Exit_Sub_ACT to request its substates to

exit first. Depending on the current state of Move, different

commands are available. If the current state of Move is s0

(that is, Move_scpc is Move_s0), the command on line

#56 is enabled. Since s0 has no exit action, the update sim-

ply sets the exit procedure to the next stage: the substate of

Move has been exited (Exit_Sub_EXITED). Similarly, if

the current state of Move is s1, the command on line #57

123

K. Ye et al.

Fig. 26 Annotated normal form of movingSTM

is available. We omit similar commands for other states in

Move.

After the substate is exited, the next available com-

mand is on line #54. Since Move has no exit action, the

update records that the exit procedure of Move finished

(Exit_EXITED), and at the same time, the counter of

Move becomes Move_INACTIVE. Afterwards, the com-

mand on line #45 is available. The update changes the

counter scpc to Stuck_entering, which records the

start state of the entry action of Stuck. The next command

on line #46 encodes the effect of the entry action (p is set to

9), the entering of the target state (the counter is at Stuck),

and the completion of the transition t1 (the lock becomes

LOCK_FREE).

Other transitions are encoded in a similar way, and there-

fore omitted in Fig. 25.

In Figs. 20, 23 and 25, we illustrate the encodings of transi-

tions from initial junctions, states, and probabilistic junctions

that have one single outgoing transition. We illustrate our

approach when there are multiple transitions in Fig. 27, where

we present the encodings of the incoming and outgoing tran-

sitions of the probabilistic junction p1 in Fig. 26.

The junction p1 is a node in the state Move with one

incoming transition t2 from the state s1, and three outgoing

transitions to the states s1, s2, and s4. Each of these outgo-

ing transitions has an action that requires two extra states

(because they are sequences of two basic actions). Along

with the state for p1, there are seven states represented by

the constants on lines #2-#8.

The command on lines #13-#14 encodes the transition

from s1 to p1. The command on lines #17-#18 encodes

the probabilistic choice and has three updates with equal

probability 1/3. Each update changes the counter of Move

(Move_scpc) to a state representing the start of one of the

outgoing transition action. For example, the assignment in the

first update changes Move_scpc to Move_p1_1, which

represents the start of the action of the transition from p1

to s2 and is also annotated in Fig. 26. The commands on

123

Probabilistic modelling and verification using RoboChart and PRISM

Fig. 27 The PRISM encoding of transitions from probabilistic junctions in movingSTM

lines #19-#20, #21-#22, and #23-#24 are the encodings

of the three transition actions in PRISM. In the end of each

transition action, the counter is set to an extra state repre-

senting the start of the entry action of the target state, such

as Move_s1_entering for s1. The entry action of s1 is

encoded by the command on line #26.

Next, we present the normalisation rules.

5.3 Normalisation rules

In terms of model transformations, normalisation is char-

acterised as a rule-based, homogeneous, and declarative

transformation. We present here a set of functions from a

RoboChart model that satisfies our translation requirements

to a RoboChart model in normal form. These functions are

defined via rules.

To normalise a RoboChart model, we apply Rule 1 to each

state machine. This is the rule applied exhaustively to all state

machines in the normalisation process discussed previously.

In the definition of all rules, we use the constructs from Z

[70,72] as a meta-notation. Their syntax is summarised in

Table 3.

Generally, a rule characterises a function on elements of

the RoboChart metamodel. A rule definition is composed of

a declaration, a body, and a where clause. The declaration

gives the function name, its parameters (names and types),

and its return type. In Rule 1, the function is [[–]]STM. It has

one parameter stm of type StateMachineDef, that is, a state

machine, and also returns a state machine: an element of the

same type.

The body of a rule defines an object of the return type.

For example, the body of Rule 1 is an object of the class

StateMachineDef of the metamodel.

The variables used in the body may be parameters or may

be defined in the where clause. The order of these definitions

is not relevant.

The body of Rule 1 defines a state machine whose name,

variable list, operations, events, and interfaces are the same

as those of the parameter stm. The nodes and transitions,

however, are different and are specified using the definitions

from the where clause. The first four definitions are related

to the four steps of the state machine normalisation process

presented above.

◮ (loopstates, looptrans) is a pair characterised by

applying addLoopStateTrans to stm (see Rule 9 in

“Appendix A”). This function is concerned with the

possible need to introduce loop states. The result of

addLoopStateTrans(stm) is a pair, whose first element

loopstates is a set either empty or containing a new loop

state for stm, and whose second element looptrans is a

set of the new transitions to and from loop.

◮ (remjuncs,deltrans,newtrans) is a triple of sets: a

set of junctions, and two sets of transitions defined

123

K. Ye et al.

by an application of the function combTransJunctions.

This function is concerned with the combination of

incoming and outgoing transitions of normal junc-

tions, if needed. The first argument of the applica-

tion is a set of normal junctions, characterised by

a function inTransCombinableJuncs (see Rule 10 in

“Appendix A”). These are the normal junctions that

have incoming and outgoing transitions that need to be

combined. The second argument of the application is

the set of transitions of stm that are to or from junc-

tions in the first argument; this is characterised by a

generalised union of a relational image. The function

application transitionsOf (stm.transitions) identifies the

set of incoming and outgoing transitions of a given node

n that are in the set of transitions stm.transitions. So

the relational image of inTransCombinableJuncs(stm)

under transitionsOf(stm.transitions) is the set of sets of

all incoming and outgoing transitions of the normal junc-

tions. A generalised union
⋃

combines all these sets. The

first and seconds elements remjuncs and deltrans of the

result of the application of combTransJunctions contain

the junctions in the first argument and the transitions in

the second argument removed by normalisation, and the

third element newtrans contains the new transitions aris-

ing from the normalisation.

◮ transpjunc is a set of pairs defined by applying

splitTran (Rule 13 in “Appendix A”) to each transition

in stm (stm.transitions), to the new transitions identi-

fied by combTransJunctions (that is, in newtrans), and

to the transitions from the new loop states (identified by

looptrans), but not to the transitions removed by the nor-

malisation (that is, in deltrans).

◮ compstates is a set of normalised composite states

resulting from the application of a normalisation function

[[–]]S for states to each node n of the machine that is a

state (n ∈ States) and has nodes itself (#(n.nodes) > 0).

These are the composite states. Normalisation of com-

posite states by [[–]]S is similar to that of state machines

except that composite states do not declare variables,

operations, and events. So the formalisation is simpler

and omitted here; it can be found in the RoboChart ref-

erence manual [1].

◮ intactnodes is the set of nodesnof stm that are neither

the normal junctions removed by the normalisation in

combTransJunctions (that is, remjuncs) nor composite

states. They are unaffected by normalisation.

The nodes of the normalised machine, as defined in the

body of Rule 1, include the loop states in loopstates, the

new probabilistic junctions in the second element of each

pair in transpjunc (obtained using generalised union
⋃

), the

normalised composite states, and all other nodes as identified

in intactnodes. The transitions of the normalised machine

are just those in the first element of each pair in transpjunc.

Next, we present the second stage of translation from a

RoboChart model in normal form to PRISM.

5.4 Transformation to PRISM

In this section, we present the translation rules used in our

approach in Sects. 5.4.1 to 5.4.4.

123

Probabilistic modelling and verification using RoboChart and PRISM

5.4.1 Module, robotic platform, and controllers

The main translation function [[–]]M (defined in Rule 2) is for

a RoboChart module. It has a parameter m of type Module,

and characterises a PRISM model of type Model constructed

from constants, global variables globals, andmodules from

the translation of the controllers and the robotic platform of

m.

In this section, we use the following conventions for

function definitions in rules: the types of the arguments are

assumed to be classes of the RoboChart metamodel and the

types of the results are assumed to be classes of the PRISM

metamodel if no subscripts are specified. For example, the

type of m in the definition of the function [[–]]M, Module,

is the class in the RoboChart. Particularly, if a class in the

PRISM metamodel is used as a type for arguments, or a class

in the RoboChart metamodel is used as a type for results, we

use an explicit subscript to indicate it.

The result of the translation of the controllers is recorded in

a set of quadruples ctrlrets, while that of the robotic platform

is in a triple (rpconsts, rpvars, rpmodule). Each quadru-

ple in ctrlrets records information about the translation of

a controller. The first element of each quadruple r in ctrlrets,

r.1, is a set of constants resulting from the translation of

a controller. So the constants for the all controllers of m

are combined using generalised union
(

⋃

{r : ctrlrets • r.1}
)

and contributed to constants. The second and third elements

of r, r.2 and r.3, are sets of global variables and modules.

They are combined using generalised union and contributed

to globals and modules. Accordingly, rpconsts, rpvars, and

rpmodule are a set of constants, a set of variables, and a

module, contributed to constants, globals, and modules.

Additionally, a set of constants exitconsts is used to spec-

ify the control flow of execution of a state machine with

composite states; in particular, the constants are useful to

define the flow when exiting a composite state. This is dis-

cussed later on in Sect. 5.4.2.

The variables ctrlrets, rpconsts, rpvars, rpmodule, and

exitconsts are defined in the where clause of Rule 2.

◮ ctrlrets is a set of quadruples: sets of constants,

variables, and modules, and a relation defined by an appli-

cation of [[–]]C (Rule 4) to a controller in the set m.nodes

of nodes of m. The relation establishes a mapping from

operations provided by the platform and required by the

controller, to PRISM actions corresponding to these oper-

ations.

◮ rpoutevents is used in the translation of the robotic

platform. It is the set of events of the robotic platform

used to communicate data to a controller. These are the

events c.efrom that are the source of a connection c in

the setm.connections of connections ofmwhose source

c.from is a platform and whose type c.efrom.type is not

null. So, data (of type c.efrom.type) is communicated.

◮ (rpconsts, rpvars, rpmodule) is a triple: a set of con-

stants, a set of variables, and a module defined by an

application of [[–]]R (Rule 3) for robotic platforms. This

function is applied to the platform of m, identified by a

unique (µ) node n that is in the set m.nodes of nodes of

m and is a robotic platform. Extra arguments are the set of

events rpoutevents and the relation from the translation

of controllers, formed by generalised union of the relation

r.4 for each controller. As said, the events used to send

data to a controller are represented by a shared variable

in the platform module. (Its value is nondeterministically

chosen and copied in modules for state machines upon

synchronisation.) So, the definition of the module for a

platform requires the identification of these events, which

are in the set rpoutevents. The relation identifies how

the translation of the controllers (or, more specifically, of

their state machines) have mapped their required oper-

ations to PRISM actions. The module for the platform

synchronises on these actions.

◮ exitconsts is a set of constants resulting from the

function exitSeqCtrlConsts, omitted here.

In Fig. 19, the result of the translation of the unique controller

of our example gives rise to the declaration of NoTask in

the constants section and allmodules except deliverRP. The

declarations of two constants and two global variables in the

123

K. Ye et al.

constants and global sections and the module deliverRP

are the result of the translation of the robotic platform. The

constant NoTask is the result of the translation of the enu-

merated type FD in Fig. 4. More constants result from the

translation of the controller, but are omitted in Fig. 19. The

details are presented in Sects. 5.4.2 and 5.4.3.

Figure 19 gives the module fordeliverRP, and correspond-

ing constants and global variables provided by it. As shown

in Fig. 2, deliverRP provides two constants and two vari-

ables. Their counterparts in PRISM are two constants and

two global variables, shown on lines #4-#7, of type int. The

platform has two output events request and dest as identi-

fied from connections in deliverMOD in Fig. 2. Both events

are of type nat, natural numbers. For each output event, we

add an extra local variable of a corresponding type, such as

EVT__request (on line #10 in Fig. 19) for request, and a

set of commands with a corresponding action for the event

name such as the commands indicated on lines #13-#15, to

the module. Together, the commands characterise a nonde-

terministic choice of the value of the variable. Other events

used for output are handled in a similar way.

As mentioned, [[–]]R defines a module like deliverRP; it

has three parameters: a robotic platform rp, a set outevents

of events of rp used for output, and a relation opmaps

that maps operations provided by rp to PRISM actions. In

Rule 3, we note the type of rp is RoboticPlatformDef, not

RoboticPlatform used in Rule 2. The class RoboticPlatform

is inherited by both RoboticPlatformDef and RoboticPlat-

formRef. So the robotic platform identified in Rule 2 is either

a RoboticPlatformDef or a RoboticPlatformRef object. For

a RoboticPlatformRef rp, another rule specifies its result just

as the function application [[rp.ref]]R (the unique identifiers

defined by id(n) - see Table 3 - take references into account).

Rules forControllerRef andStateMachineRef are similar and

omitted here.

The result of [[rp, outevents, opmaps]]R is a triple,

whose first and second elements are a set of constants

(
⋃

{r : constvars • r.1} where r is a pair of sets of constants

and variables) and a set of variables (
⋃

{r : constvars • r.2})

defined by the constants and variables constvars (a set of

pairs) provided by rp, and whose third element is the PRISM

module corresponding to rp. The variables constvars and

module are defined in the where clause of Rule 3 and

described below.

◮ constvars is a set of pairs of sets. The first and sec-

ond elements of each pair are a set of constants and a

set of variables, translated from each variable list vl in

rp by the function [[vl]]VL (omitted here). The lists of

variables provided by rp are identified using the func-

tion getVariableLists whose definition is omitted here. A

variable list consists of a set of constant and variable dec-

larations. The translation of variable declarations maps

the RoboChart types to the PRISM types, and translates

the initial value given, if any, accordingly.

◮ localvars is a set of PRISM declarations of variables

like EVT__request corresponding to the events e from

outevents. In the rules, we use black typewriter font,

like in true, for PRISM terms. They are abbreviations

for instances of the classes of the PRISM metamodel

presented in Sect. 4.2. For clarity, however, we use the

PRISM concrete syntax to represent them. Each declara-

tion in localvars is for a variable, whose name is based on

the name of e in PRISM (id(e)) with a prefix (EVT__),

and whose type [[e.type]]t is obtained by translating the

type e.type of e using [[–]]t.

◮ eventcmds is a set of sets of commands for each event

e of rp, that are identified using the function getEvents

whose definition is omitted here. If e is an output event

(that is, e ∈ outevents), a set of commands is included

in eventcmds to define a nondeterministic choice of the

values for the corresponding variable EVT__id(e). Each

command corresponds to one possible value v in the event

type [[e.type]]t. The action of the command (inside square

brackets) is the name id(e) of the event e, the guard is

true, and the only update (between → and ;) assigns

v to EVT__id(e). The commands on lines #13-#15 in

Fig. 19 are obtained in this way. If e is not an event

123

Probabilistic modelling and verification using RoboChart and PRISM

for output, a set containing one command is included

in eventcmds. It has id(e) for its action and true for

both its guard and its updates, which means the command

is always ready for synchronisation on the action and no

variable is changed upon synchronisation. The command

on line #18 is obtained in this way.

◮ opcmds is a set of PRISM commands. Each com-

mand corresponds to one PRISM action act in the range

ran opmaps of the relation opmaps. As previously men-

tioned, opmaps records a mapping from operations

provided by the robotic platform (and possibly called

in state machines) to PRISM actions corresponding to

these operations. We use this relation to translate calls

to the operations in state machines into communica-

tions with the environment (modelled by the module for

the robotic platform) that provides the operations. Our

PRISM models, as explained in Sect. 4, rely on the name

of actions for synchronisation. This imposes extra chal-

lenges on modelling of operations in PRISM because the

calls to a same operation from different state machines

must not be synchronised. We consider, for instance,

an example in which an operation moveSteps with a

parameter of type int is provided by the robotic platform,

and required and called using an action moveSteps(1)

in a state machine stm1 and moveStep(2) in another

state machine stm2. The operation calls are translated

to communications in PRISM through synchronisation

on actions with assistance of variables. If two calls

were mapped into an action of the same name such as

moveSteps_act, then both state machines and the robotic

platform would synchronise on this action, which is not

the right semantics of operation calls. For this reason, we

allocate a unique action name for an operation in each

state machine, such as stm1_moveSteps_act for stm1

and stm2_moveSteps_act for stm2. So in the platform,

an operation is mapped to several actions: one for each

machine that requires the operation. For this example,

opmaps is given below.

{

(moveSteps, stm1_moveSteps_act) ,

(moveSteps, stm2_moveSteps_act)

}

(1)

Since the mapping is established in the state machines, the

relation is a result of the translation of controllers (which

involves translating their machines) and passed to [[–]]R.

For each action act in the range ofopmaps (for our exam-

ple, {stm1_moveSteps_act, stm2_moveSteps_act}),

one command, whose action is act, is included in

opcmds. This command in the platform module synchro-

nises with the commands in a machine module whose

action is also act, to allow the environment to record the

calls to the operation. The arguments of these calls are

recorded in local variables of the machine modules. The

details of the declaration and use of these variables are

presented in Rule 5. Both the guard and the updates of

the command are true, so the platform module cannot

refuse synchronisation on act and no variable is changed

upon synchronisation. For our example, opcmds con-

tains the commands in Fig. 28. They allow the platform

module to record the call to moveSteps from both stm1

and stm2, though in different actions.

◮ module is a PRISM module with the name id(rp) of

rp, localvars, and commands obtained by the generalised

union of the commands in eventcmds and opcmds.

The modules in Fig. 19 other than deliverRP are defined

by the function [[–]]C for a controller ctrl Rule 4. The result is

a quadruple: a set of constant declarations, a set of variable

declarations, a set of modules, and a relation from the opera-

tions provided by the platform and required by the machines

in the controller to corresponding PRISM actions. For the

moveSteps example, if both stm1 and stm2 are in ctrl, then

the resulting relation is the one shown in (1). Analogous to

Rule 3, we define constvars in the where clause to record

the constants and variables provided by ctrl.

Fig. 28 The commands in opcmds

123

K. Ye et al.

The results of the translation of all state machines of ctrl

are recorded in a set of pairs stmrets, also defined in the

where clause. Each pair corresponds to one state machine

and includes a set of constants and a module. The constants in

these pairs are combined using generalised union and are also

contributed to the result of [[–]]C. Additionally, the relation is

recorded in rops.

Each pair in stmrets is the result of the translation of one

state machine stm in the set of machines ctrl.machines of

ctrl by the function [[–]]STM (Rule 5), as defined in the where

clause. The function application takes two arguments: the

state machine stm and a set stmoutevents of events of stm

used for output. The set stmoutevents includes events of

the state machine used to communicate data to the controller

or to another state machine in the controller. These are the

events c.efrom that are the source of a connection c in the set

ctrl.connections of connections of ctrl whose source c.from

is stm and whose type c.efrom.type is not null. So data

(of type c.efrom.type) is communicated. These events are

used in the definition of [[–]]STM to identify variables that

need to be included in the module for stm to assist commu-

nications. We consider, for instance, a state machine stm1

with one event out used for output. So stmoutevents, in

this case, has one element out. The module for stm1, trans-

lated by [[stm1, {out}]]STM, therefore has a local variable

EVT__out of the same type as out for the purpose of com-

munications.

The relation rops is also defined in the where clause.

It is the result of combining the relations established for

state machines by the function op2ActionMaps (Rule 14

in “Appendix A”), using generalised union. The function

op2ActionMaps takes one argument: a state machine stm

in the set of machines ctrl.machines of ctrl.

Next, we describe how to translate state machines.

5.4.2 State machines and composite states

Here, we present the rule that can be used to translate a

RoboChart state machine to PRISM.

Each machine module in Fig. 19, such as taskSTM and

movingSTM in Figs. 20 and 25, is defined by the function

[[–]]STM in Rule 5. As mentioned previously, this function is

concerned with the translation of a state machine stm, having

a set outevents of events of stm used for output as an extra

parameter. Its result is a pair: a set of constants and a module.

Analogous to Rule 3, we define constvars as a set of pairs

to record the constants and variables required by or defined in

stm. The first element r.1 of each pair r in constvars is a set

of constant declarations and the second element r.2 is a set

of variable declarations. Generalised union
⋃

combines all

these sets. A constant, named id(stm)_LOCK_FREE, such

as LOCK_FREE on line #5 in Fig. 20, is associated with 0

and results from the translation of stm. Rule 5 uses id(stm) as

a prefix for the constant or variable names to ensure unicity.

Other constants, such as those on lines#5-#10, for the values

that lock can take, and on lines #12-#23, for the states in

taskSTM, are recorded in stmconsts.

The machine module is named id(stm) and contains

variable declarations and commands. The variables include

lock, whose type is an interval with upper limit trnumber − 1,

such as that on line #27 in Fig. 20; the local variables of

stm, like fd and g on lines #28-#29, as recorded in the

second element r.2 of pairs r in constvars, and combined

using generalised union; the variables to encode communi-

123

Probabilistic modelling and verification using RoboChart and PRISM

cation through the events in outevents, in outeventvars; the

scpc and exit variables, like those on lines #35-#39 in

Fig. 25, as recorded in stmvars; and the variables to encode

the arguments of calls to the operations required by stm, in

ropsvars. The set of commands is recorded in stmcmds.

The where clause in the rule gives more details.

◮ outeventvars is a set of PRISM declarations of vari-

ables (similar to EVT__request for the robotic platform)

corresponding to the events e from outevents. Each dec-

laration in outeventvars is for a variable whose name is

based on the name of e in PRISM (id(e)) with a pre-

fix (EVT__), and whose type [[e.type]]t is obtained by

translating the type e.type of e using the function [[–]]t.

◮ (trnumber, stmconsts, stmvars, stmcmds) is a quadru-

ple of an integer, and sets of constants, variables,

and commands, resulting from the application of [[–]]S
(Rule 6) to stm to translate its nodes and transitions. This

function is concerned with the translation of a Node-

Container (a state machine or composite state) given

as its first argument, with the machine that owns the

NodeContainer as its second argument. An extra third

argument is a set of boolean expressions that records

the containers for the node and defines the guard for

the commands that encode the node. The guard is the

conjunction of these expressions, which are equalities

involving the counter variables that, together, indicate

that the control flow has reached the node. For example,

to translate Move in movingSTM using this function, the

right argument is {scpc=Move } to indicate the control

flow has reached Move. If Move has another compos-

ite substate S, then the right argument to translate S

is {scpc=Move, Move_scpc=Move_S } to indicate

the control flow has reached both Move and S. The

corresponding guard isscpc=Move & Move_scpc=

Move_S, the conjunction of both expressions. A final

argument for [[–]]S indicates the first integer not yet used

to declare a constant for a lock value. In Rule 5, [[–]]S
is applied to the whole machine stm, which, by con-

vention, is owned by itself. The third argument is just

∅, because the control flow is always in the machine.

Finally, the final argument indicates that declarations of

lock variables can use integers from 1. (We recall that

0 is used for the LOCK_FREE constant.) As a result of

this function application, trnumber is the next available

number that can be used to number a transition. So the

maximum transition number is trnumber − 1, which is

used for the upper limit of the interval type of the lock

variable. For the taskSTM module in Fig. 20, the next

available transition number is 6 because the numbers 1
to 5 are used in the declarations on lines #5-#10. The

second and third elements identify sets of constant and

variable declarations, like those on lines #6-#23 and the

scpc declaration on line #26. These are the constants

and variables used in the encoding of the control flow of

the node. The fourth element is the set of all commands

in the module.

◮ ropsvars is a set of variable declarations for each

parameterp of an operationop required by stm. The vari-

able has a fresh name uname(stm, op.name,p.name)

and is of type [[p.type]]t obtained by translating the type

p.type of p using the function [[–]]t. For the operation

moveStepswith parameter steps of type int, the value of

ropsvars is
{

stm_moveSteps_steps: [[int]]t;
}

.

123

K. Ye et al.

In Rule 6, the parameters for [[–]]S are a NodeContainer

cs, the state machine stm containing cs, a set of PRISM

expressions pcconstrs recording constraints on the program

counters, and the next number trnumber that can be used to

define a constant for a transition.

As illustrated in Fig. 25, the translation of a NodeCon-

tainer cs such as Move introduces a) one program counter

variable and one exit variable; b) the encoding for exiting

cs, such as the commands on lines #52-#54; c) the encod-

ing for exiting the substates of cs, such as the commands on

lines #48-#51, #56, and #57; d) the encoding for entering

the substates of cs that have entry actions, such as the com-

mand on line #46; e) the encoding for the transitions of cs,

such as the commands on lines #42; and f) the encoding for

the composite substates of cs. There may also be constant

declarations, such as those on lines #9-#31.

In the definition of [[–]]S, the declarations of the pro-

gram counter and the exit variable are recorded in scpc and

exit. The encoding for exiting cs, and exiting and entering

the substates of cs are recorded in triples (exitcsstnumber,

exitcsconsts, exitcscmds), (exitsubstnumber, exitsubconsts,

exitsubcmds), and (entersubstnumber, entersubconsts,

entersubcmds). The first element of each of these triples

is the next available number for the states of the result-

ing module, such as the numbers associated with the states

on lines #17-#24 in Fig. 25. The second element is

a set of constants associated with the states introduced.

The third element is a set of commands. The transla-

tion of the transitions in cs is recorded in a quadruple

(tnsstnumber, tnstrnumber, tnsconsts, tnscmds). Finally,

the encodings for the composite substates of cs are,

as defined by recursion, recorded in a quadruple

(sstrnumber, ssconsts, ssvars, sscmds).

The result of [[–]]S is a quadruple, whose first element is

the next available transition number after the translation of

cs and recorded in sstrnumber. The second element of the

quadruple is a set of constant declarations including the con-

stant const0 denoting an inactive state, such as the one on line

#35 in Fig. 25, the constants in exitcsconsts, exitsubconsts,

entersubconsts, nodesconsts, and ssconsts, and the con-

stants in tnsconsts. The third element of the quadruple is a

set of variable declarations including scpc, exit, and the vari-

able declarations in the third element of ssvars. The fourth

element of the quadruple is a set of commands including

the commands in exitcscmds, exitsubcmds, entersubcmds,

tnscmds and sscmds.

The where clause in Rule 6 gives more details about the

variables in these definitions.

◮ const0 declares a PRISM constant associated with

number 0 and representing the inactive status of cs.

◮ scpc declares the program counter variable for cs; its

type is a range from 0 to the maximum state number (that

is, tnsstnumber − 1). If cs is a machine, the counter is set

to a state in PRISM corresponding to the initial junction i0

(that is, a node n of cs that is initial, n ∈ Initial) identified

by id(i0), the name of i0 in PRISM. Otherwise, cs is a

composite state and inactive initially. So the counter is

set to const0.

◮ exit is the declaration of the exit variable for cs.

◮ (exitcsstnumber, exitcsconsts, exitcscmds) is a

triple containing a state number, a set of constants, and a

set of commands to record the exit of cs. The first element

exitcsstnumber is the first state number available. Exam-

ples include the numbers on lines #17-#24 in Fig. 25,

for the state machine, and on lines #27-#31, for Move.

If cs is a state machine (cs ∈ StateMachineDef), there is

no need for it to exit, and, therefore, the state number is

1 to record the use of 0 for const0, making 1 the next

available number for states, and the sets of constants and

commands are empty (∅). Otherwise, the triple is defined

by an application of the functionexitCompState (omitted

here) , which is used to generate the two commands of the

module on lines#52-#54 of Fig. 25. More constants and

commands might result if cs has an exit action. Its third

argument is the name of scpc (that is, id(cs)_scpc). Its

last argument 1 is the next available state number.

◮ (exitsubstnumber, exitsubconsts, exitsubcmds) is

also a triple defined by the application of the func-

tion exitSubstates (whose definition is omitted here).

This function is concerned with the encoding of the

exit of all substates (that is, all the subnodes s of

cs.nodes of cs that are States). The fifth argument

of the application is the next available state num-

ber as recorded in exitcsstnumber. The first element

exitsubstnumber is the new available number. The

second element exitsubconsts and the third element

exitsubcmds are sets of constants and commands encod-

ing the exit of these substates. This function is used to

generate the commands on lines#26-#28 and the related

constants on lines #9-#10 in Fig. 23 for exiting the state

s0 in Fig. 22, and the commands on lines #48-#51 in

Fig. 25 for exiting the state Move in Fig. 17.

◮ (entersubstnumber, entersubconsts, entersubcmds)

is a triple defined by applying enterSubstates (omit-

ted) to a set of states that have an entry action (that

is, whose action getEntryAction(s) is not null). The

fourth argument of the application is the next avail-

able state number, exitsubstnumber. The first ele-

ment entersubstnumber is the new state number, and

entersubconsts and entersubcmds are sets of constants

and commands used to encode the entering of these sub-

states. This function is used for example, to generate the

command on line #46 in Fig. 25 for entering the simple

state Stuck in Fig. 17.

123

Probabilistic modelling and verification using RoboChart and PRISM

◮ (nodesstnumber,nodesconsts) is a pair defined

by the application of constantsOfNamedElems to all

subnodes cs.nodes of cs and to the current available

state number (entersubstnumber). This function char-

acterises a set of constants (in nodesconsts) representing

states in PRISM that correspond to subnodes of cs like

i0, taskState, and p0 in the module in Fig. 20. The

first element nodesstnumber is the new state number.

◮ (tnsstnumber, tnstrnumber, tnsconsts, tnscmds) is

a quadruple of the next available state and transition

numbers, a set of constants, and a set of commands

resulting from the translation of the transitions from the

nodes cs.nodes of cs by the application of [[–]]TNS (see

Sect. 5.4.3). All commands of taskSTM in Fig. 20 are

generated by this function.

◮ (sstrnumber, ssconsts, ssvars, sscmds) is a quadru-

ple resulting from applying the function [[–]]SS (omitted)

to the set of composite states of cs, that is, each node s that

is a State and is composite (isComposite(s)). The fifth

argument representing the available transition number is

from tnstrnumber. The function [[–]]SS applies [[–]]S to

each composite state recursively.

Next, we discuss how to translate transitions from RoboChart

to PRISM and present the rule to do that.

5.4.3 Transitions

As mentioned previously, transitions are translated by [[–]]TNS,

whose definition is omitted here. This simple function takes

a set of nodes and defines the cumulative result of the appli-

cation of a function [[–]]TN, which applies to a node n and

translates the transitions from this node. We present Rule 7,

defining [[–]]TN if n is a probabilistic junction (ProbJunc),

and omit the definition of defining [[–]]TN for other node

types. The result of translating the transitions from p1 in

Fig. 26 using [[–]]TN gives rise to the constant declarations

and commands on lines #3-#8 and #17-#24 in Fig. 27.

The function [[–]]TN has eight parameters: n is the node

that identifies the transitions to be translated, namely, those

with n as a source; cs is the parent of n, either a state machine

or a state, of class NodeContainer; stm is the state machine

containing n; exit is the declaration of the exit variable

for cs; scpcname is the name of the program counter vari-

able for cs; pcconstrs is a set of PRISM boolean expressions

on the counter variables to identify the control of stm at

cs; stnumber is the next available number for a state; and

trnumber is the next available number for a transition.

In Rule 7, the result of translating transitions from n is

defined in the where clause as a quadruple

(tsstnumber, tsconsts, tsupdates, tscmds). The first ele-

ment tsstnumber is the new next available state number;

tsconsts is a set of constants corresponding to the extra states

for the actions of the transitions, such as those on lines #3-

#8 in Fig. 27; tsupdates is a set of updates that capture the

probabilities of the outgoing transitions, such as the three

updates on line #18; and tscmds is a set of commands for

the actions of the outgoing transitions, such as the six com-

mands on lines #19-#24. The first and third elements of

the result of [[–]]TN are just tsstnumber and tsconsts. The

second element is the argument trnumber, relevant for other

forms of nodes, not the probabilistic junctions considered

in Rule 7. The fourth element of the result includes those

in tscmds and a command cmd encoding the probabilistic

choice, such as that on lines #17-#18 in Fig. 27. The defini-

tions of tsstnumber, tsconsts, tsupdates, tscmds and cmd

are in the where clause and explained below.

◮ (tsstnumber, tsconsts, tsupdates, tscmds) results

from applying [[–]]TS to the actual set trans of transitions

of cs that are from n. This function defines the cumulative

result of applying [[–]]T (Rule 8), which translates each

transition in trans. The commands on lines #19-#20

and the constants on lines #3-#4 in Fig. 27 are speci-

fied by [[–]]T when applied to the transition from p1 to s2

in Fig. 26. Similarly, the commands on lines #21-#22

and #23-#24, and the constants on lines #5-#8 are the

result of applying [[–]]T to the transitions from p1 to s4

and s1. The function [[–]]T also gives rise to an update:

for our example, the three updates on line #18 for the

three transitions from p1 to s1, s2, and s4.

123

K. Ye et al.

◮ cmd is a command in PRISM encoding the choice

made at n probabilistically. Its guard ensures that the

counter variables indicate that the current state is that

identified by the node n. We have a conjunction of two

terms. The first, andExprs(pcconstrs), is itself a con-

junction of the boolean expressions in the argument

pcconstrs, which are equalities regarding the counter

variables for all states and machine containing n. The

second conjunct requires that the counter variable for the

state or machine containing n, whose name is given by

the argument scpcname, has the value id(n) for the prob-

abilistic junction identified by n. The updates of cmd are

those in the set tsupdates.

Rule 8 defines [[–]]T, which is concerned with the trans-

lation of a transition t, when its source n is a probabilistic

junction. Since t has no trigger or guard, its translation is the

result (astnumber, aconsts, aassigns, acmds) of encoding

its action t.action and the entering in its target t.target.

Precisely, the result of [[–]]T is a quintuple, whose first

element is the next available state number after the translation

of t as recorded in astnumber. The second element is the next

available transition number: the argument trnumber. The

third and fifth elements are sets of constants and commands

resulting from the translation of t.action. The fourth element

is a set containing only one update whose probability is the

translation of the probability t.probability of t by [[–]]e, and

whose assignments are the set of assignments resulting from

the translation of t.action that updates the counter to the start

state for the encoding of the action.

The quadruple (astnumber, aconsts, aassigns, acmds)

is defined in the where clause described below.

◮ target is the name of the constant represent-

ing the final state in PRISM for the encoding of the

action t.action. If the target t.target of t is a state

with an entry action, the encoding of t.action leads

to the start state of that entry action, represented by

the constant named id(t.target)_entering, such as

Move_s2_entering in Fig. 27. Otherwise, target is

just the identifier id(t.target) of t.target in PRISM.

◮ targetassigns is a set of assignments to encode enter-

ing the target of t when it is a state without entry action.

If it is a composite state, we need to update the counter

variable id(t.target)_scpc of that state to the constant

representing its initial junction getInitial(t.target). If the

target is a simple state, t is completed by entering its tar-

get, and so the lock variable id(stm)_lock is set to be

free id(stm)_LOCK_FREE.

◮ (astnumber, aconsts, aassigns, acmds) is a quadru-

ple defined by application of [[–]]A to the action t.action

of t. The fifth argument null of this function application

means the start state of the encoding of t.action is not

specified, and so its translation generates a fresh name

for the constant for that state. For the action of the tran-

sition from p1 to s2 in Fig. 26, the constant to encode

its start state in PRISM is Move_p1_1. The sixth argu-

ment is a set of PRISM assignments containing an update

of the counter scpcname for the state or machine of the

action to target and targetassigns.

Next, we discuss how to translate actions in RoboChart to

PRISM and the definition of [[–]]A.

5.4.4 Actions

Previously in Fig. 20, we show that the action of t2 in Fig. 21

is modelled by five commands shown on lines#37-#41, and

the action of t3 is modelled by two commands shown on lines

#44-#45. Generally, an action in RoboChart is modelled by

a set of commands with a set of corresponding constants

123

Probabilistic modelling and verification using RoboChart and PRISM

to represent extra states required to encode state change in

PRISM.

We define [[–]]A to translate a RoboChart action to PRISM.

An action act contains a single statement act.action, and so

[[–]]A is defined by its translation by [[–]]ST. We define [[–]]ST

for synchronisation and input or output events in Rule 15 in

“Appendix A”.

The complete set of translation rules, covering all forms of

action, is available in [1]. Next, we present RoboTool, which

implements our translation.

6 Automatic model generation

RoboTool5 supports modelling, validation, and automatic

generation of mathematical definitions of RoboChart mod-

els written in CSP for use of FDR. We describe here our

work extending RoboTool to generate PRISM models auto-

matically: a set of Eclipse plugins6 that provide textual and

graphical modelling tools using the Eclipse Modeling frame-

work (EMF).7

We have extended RoboTool’s validation facilities with

checks of the well-formedness conditions in Sect. 3.3. Fig. 29

shows as an example the implementation for the condition

PJ3. The code uses Xtend,8 a dialect of Java. The method

junctionWFC_PJ3 has a probabilistic junction j as param-

eter. It iterates over all transitions in the parent (machine

or composite state) of j, whose source node is j. These are

all outgoing transitions of j. The loop adds the probabili-

ties of these transitions into an array. Afterwards, the method

sumExprEq1 is called to evaluate whether the sum is 1. If

not (sumExprEq1 returns false), RoboTool displays a warn-

ing. This check works for probabilities defined by a number,

but not more general expressions. In general, checking PJ3

requires theorem proving.

The RoboChart PRISM Generator plugin implements

the rules from Sect. 5. The implementation of the rules is

the way in which models are generated automatically. The

implementation uses Epsilon,9 which provides a collection

of languages and tools to support tool development. The

first stage of the translation, normalisation, uses the Epsilon

Object Language (EOL)10 for an in-place modification of

the RoboChart model. The second stage, transformation, is

5 www.cs.york.ac.uk/robostar/robotool/.

6 robo-star.github.io/robotool-info/.

7 www.eclipse.org/modeling/emf/.

8 www.eclipse.org/xtend.

9 www.eclipse.org/epsilon/.

10 www.eclipse.org/epsilon/doc/eol/.

Fig. 29 Example: validation of well-formedness conditions

based on the Epsilon Transformation Language (ETL),11 a

rule-based model-to-model transformation notation.

The transformation of a RoboChart model produces a

model in the PRISM metamodel. To generate the textual

model accepted by PRISM from the metamodel, we use

the Epsilon Generation Language (EGL),12 a template-based

language tailored for model-to-text transformation. In the

next section, we describe RoboTool facilities for verification

using the PRISM model generated automatically.

7 Verification support

PRISM verifies properties defined in probabilistic tempo-

ral logics. To improve usability, especially for those without

experience with PRISM, we have defined and implemented

a property language, called RoboCert. We can specify both

properties in CSP (then verify these properties against the

standard RoboChart model using FDR) and probabilis-

tic properties in temporal logics (LTL, CTL and PCTL),

then verify them against the generated PRISM model using

PRISM. In Sect. 7.1, we present examples for the mail deliv-

ery robot. The syntax of constructs for the probabilistic

properties is summarised in Sect. 7.2. The RoboTool imple-

mentation is described in Sect. 7.3.

11 www.eclipse.org/epsilon/doc/etl/.

12 www.eclipse.org/epsilon/doc/egl/.

123

www.cs.york.ac.uk/robostar/robotool/
http://robo-star.github.io/robotool-info/
www.eclipse.org/modeling/emf/
www.eclipse.org/xtend
www.eclipse.org/epsilon/
www.eclipse.org/epsilon/doc/eol/
www.eclipse.org/epsilon/doc/etl/
www.eclipse.org/epsilon/doc/egl/

K. Ye et al.

7.1 Constructs and examples

We present below examples of RoboCert statements, in the

context of the module deliverMOD in Fig. 2.

A probabilistic property contains a probabilistic formula

with an optional constant configuration to assign the con-

stants that are either declared in the property file or from the

RoboChart model with specific values.

Example 2 (Deadlock)

✞ ☎

1 constants C1:
2 deliverMOD::rp_ref0::batteryCapacity set

to 20,
3 and deliverMOD::rp_ref0::chargeStep set

to 4
4 prob property P_deadlock:
5 Not Exists [Finally "deadlock"]
6 with constants C1

✝ ✆

Example 2 defines a constants configuration C1 that sets

the constants batteryCapacity and chargeStep of the

robotic platform (reference) rp_ref0 in deliverMOD to 20

and 4. Qualified names uniquely identify an element in the

RoboChart model. The property P_deadlock specifies that

there does not exist a path along which the system deadlocks

if the constants are set using C1.

We can also define multiple constant configurations for

a property, illustrated by Example 3. This feature is useful

for design-space exploration (DSE) by analysing multiple

designs simultaneously.

Example 3 (Stuck)

✞ ☎

1 const x: core::int
2 constants C2:
3 deliverMOD::rp_ref0::batteryCapacity set

to 20,
4 deliverMOD::rp_ref0::chargeStep set to 4,
5 and x from set 1:8:1
6 prob property P_stuck_loc:
7 Prob=? [Finally deliverMOD::rp_ref0::p=x&

deliverMOD::rp_ref0::c=0]
8 with constants C2

✝ ✆

In Example 3, we declare an integer constant x and then

use it in the property P_stuck_loc, which quantitatively

measures the probability (Prob=?) for the robot to run out of

power (c=0) in p identified by x, when batteryCapacity

and chargeStep are set to 20 and 4, and x ranges from 1 to

8 (where 1:8:1 denotes a set of integers that is between 1 to

8 inclusive).

RoboCert also supports labels and formulas. A label is a

boolean expression, while a formula can be any expression.

Example 4 illustrates the usage of labels.

Example 4 (Always get stuck?)
✞ ☎

1 label l_stuck =
2 deliverMOD::ctrl_ref0::stm_ref0 is in

deliverMOD::ctrl_ref0::stm_ref0::Stuck
3 prob property A_stuck:
4 Forall [Finally "l_stuck"]
5 with constant C1

✝ ✆

This property states that the robot always finally gets

stuck. Here we define a label named l_stuck, which is a

boolean expression that asserts that movingSTM referenced

by stm_ref0 is at the Stuck state.

Probabilistic properties can also use a reward operator

(Reward=?). Example 5 demonstrates its usage.

Example 5 (Average number of moves before running out of

power)
✞ ☎

1 label l_batterystate =
2 deliverMOD::ctrl_ref0::stm_ref1 is in
3 deliverMOD::ctrl_ref0::stm_ref1::

batteryState
4 rewards nbmove =
5 [deliverMOD::ctrl_ref0::stm_ref0::move]

true:1;
6 endrewards
7 prob property R_stuck_move:
8 Reward {nbmove}=? [
9 Reachable {deliverMOD::rp_ref0::c=0}

10 &"l_batterystate"]
11 with constant C1

✝ ✆

The reward nbmove assigns 1 to each synchronisation over

the move event from the machine referenced by stm_ref0

. In the property, the reward operator uses nbmove to state

the average number of synchronisations over move when the

robot runs out of power.

Both probability and reward properties support statistical

model checking in addition to probabilistic model checking.

Statistical model checking uses sample-based discrete-event

simulation as in Example 6.

Example 6 (Simulation)
✞ ☎

1 prob property P_stuck_loc:
2 Prob=? [Finally deliverMOD::rp_ref0::p=x

& deliverMOD::rp_ref0::c=0]
3 using sim with CI at alpha=0.01, n=2000,

and pathlen=1000
4 with constant C1

✝ ✆

This example applies statistic model checking (sim) to

verify the property using the CI (Confidence Interval)

method with supplied parameters. Other methods are ACI

(Asymptotic Confidence Interval), APMC (Approximate Prob-

abilistic Model Checking), and SPRT (Sequential Probability

123

Probabilistic modelling and verification using RoboChart and PRISM

Fig. 30 BNF syntax of the probabilistic constructs in the property

language (::= - a metasymbol and interpreted as ‘is defined as’; |
- separation of alternatives; Name - a terminal or non-terminal symbol

‘Name’; ? - appear zero or one time; + - repeat one or more times; * -

repeat any number of times; ’const’ - keyword ‘const’; () - group

one or more symbols; N - a special terminal ID for identifiers;)

Ratio Test). Information about these methods can be found

online.13

7.2 Syntax

The BNF syntax of the probabilistic constructs of RoboCert

is sketched in Fig. 30.

There are six types of statements (ProbStatement)

to specify probabilistic properties: constant declarations

(ConstDecl), and configurations (Constants), label (Label

), formula (Formula), and reward definitions (Rewards), and

probabilistic properties (ProbProperty).

13 www.prismmodelchecker.org/manual/RunningPRISM/

StatisticalModelChecking.

AConstDecl associates a constant name (N) to a RoboChart

type (Type). We reuse Type in RoboChart and omit its

rule here. The constants that are either declared in the

property file or from the RoboChart model are configured

via constructs defined on lines #4-#9 in Fig. 30. A con-

figuration name is given and various constants (identified

by QualifiedNameToElement) are set to specified values

(Expr). QualifiedNameToElement on line #40 uniquely

identifies a RoboChart model element through fully quali-

fied names. In the configuration rule on line #8, the value of

a constant can be chosen from a set (ConstSetExpr) that are

defined by either an extension such as {1,2} or an integer

interval such as a:b:c for integers ranging from a to b by

step c.

123

www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking
www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking

K. Ye et al.

The production rules for labels, formulas, and rewards as

shown on lines #10-#13 are straightforward.

A probabilistic property has a name (N), and a probability

formula (ProbFormula) under specific constant configura-

tions (defined by a ConstConfigs or a reference to an

existing configuration by N). A property may also have asso-

ciated command options (STRING), which are passed to the

PRISM tool directly.

A probability formula can be a boolean expression

(BoolExpr), or a state formula (StateFormula), or a compo-

sition of two state formulas by logic conjunction, disjunction,

implication, or biconditional. A state formula can refer to a

defined label name enclosed within a string (at line #22), or

could be a negation of another state formula, or a probabil-

ity measure with a bound (Bound) or a quantitative measure

(Query), or a reward measure, or a CTL universal or existen-

tial quantifier over paths. A probability measure is over a path

formula (PathFormula), while a reward measure is over a

reward path formula (RPathFormula). Path formulas include

general LTL operators, but with optional bounded variants,

where an additional time bound is imposed on the prop-

erty being satisfied. Reward path formulas specify different

types of reward properties: reachability rewards, cumulative

rewards, total rewards, or instantaneous rewards.

Both probability and reward measures support statistical

as well as probabilistic model checking. Statistical model

checking uses sample-based discrete-event simulation. A

state formula can specify the simulation methods to be used

(UseMethod), and a simulation method is configured using

SimMethod.

7.3 A RoboCert plugin in RoboTool

A plugin is available in RoboTool to generate PRISM proper-

ties from RoboCert properties. The plugin accepts a property

file, parses it, translates constructors in the file to their coun-

terparts in the PRISM property specification language or the

PRISM model language, and finally generates a PRISM prop-

erty file. The plugin provides a modelling environment to edit

properties with syntax and error highlighting. It also has con-

tent assist through scoping for qualified names.

Translated formulas and rewards are part of PRISM mod-

els, instead of property files. Therefore, we need to update

the translated PRISM model. The plugin adds the formula

and reward definitions from the properties to the PRISM

model, and generates the corresponding PRISM properties.

RoboTool then runs multiple instances of the PRISM com-

mand line tool to verify the generated properties in parallel.

Upon a successful verification, results are shown in a

report. Otherwise, error messages indicate problems in the

model or properties. The plugin translates the elements

in error messages from PRISM back to RoboChart. This

improves traceability of errors and results. Counterexam-

ples found by PRISM can be linked back to the original

RoboChart model.

RoboTool has been used in the verification of several

examples14 using both probabilistic and statistical model

checking. They show that the translation time does not add

burden to the verification: a couple of seconds, for verifica-

tions that take minutes.

8 Conclusions and future work

Previous work [2] has shown modelling and verification of

functional behaviour using RoboChart and RoboTool. This

work covers its extension for probabilistic modelling and ver-

ification. We have introduced a new construct, probabilistic

junctions, for modelling of probabilistic software systems.

This new construct impose extra well-formedness conditions.

We have extended RoboTool to support modelling of proba-

bilistic systems, including checking of these conditions.

We have derived a metamodel for PRISM and devel-

oped and formalised a probabilistic semantics of RoboChart

in PRISM. It covers the most challenging constructs of

hierarchical state machines and the component model of

RoboChart covering parallel controllers.

We have developed support for automatic verification of

probabilistic RoboChart models by translating them to the

PRISM notation, and then using the PRISM model checker.

The translation is in two steps, normalisation of RoboChart

models and transformation of normalised models to PRISM.

We have formalised and presented here both steps. The trans-

lation is automated in RoboTool, and so PRISM models can

be generated from RoboChart models automatically.

We have also extended the standard property language [1,

Section 5.1] in RoboTool and developed probabilistic prop-

erty constructs. We have based this on the PRISM property

language, but favour a controlled natural language syntax.

We use qualified names for references to RoboChart ele-

ments. These names are also used in error logs from model

checking. This makes model checking tools transparent to

RoboTool users. The property language allows RoboTool

to verify each property using one instance of PRISM. For

instance, RoboTool uses 10 PRISM instances to verify 10

properties in parallel. This reduces model checking time (to

the longest checking time of a property).

The translation presented in this paper cannot deal with

all features in RoboChart, and our immediate future work

is to extend it in order to overcome current limitations.

The extension includes support of time primitives, asyn-

chronous connections, operations defined in controllers,

during actions, and richer abstract data types to relax TR-TY1

and corresponding expressions. The most significant restric-

14 www.cs.york.ac.uk/robostar/case_studies/.

123

www.cs.york.ac.uk/robostar/case_studies/

Probabilistic modelling and verification using RoboChart and PRISM

tion is the handling of time primitives. The other restrictions

just require an additional encoding. Regarding time, our

translation is restricted to models that correspond to the

Markov models we use (DTMCs and MDPs). RoboChart

has a more sophisticated model of time that complements

this basic model, and translation of this richer time model

is our future work. Many robotic models, however, do not

require the super-dense model of time that results from com-

bining the two time-models. So our work caters for many

robotic applications.

For the examples we have considered so far, the transfor-

mations take a couple of seconds. We do not expect that it

raises issues of scalability. Larger case studies and physical

modelling are our future work.

The translation defined in this paper is unidirectional from

RoboChart to PRISM. It is also feasible to define a transla-

tion from PRISM to RoboChart; this is actually not very

challenging when compared to the translation defined here.

This is also part of our future work to form a bidirectional

translation.

It is possible to verify generated PRISM models using

other model checkers that accept the same notation, such as

Storm and MRMC. Use of other tools that accept different

languages, such as the MODEST Toolset, requires different

translations. They can, however, capitalise on the normalisa-

tion defined here, since it simplifies the structure of models.

RoboChart supports verification of robotic systems by

model checking, but the long-term plan is combined use of

model checking and theorem proving to deal with larger mod-

els and collections. Our immediate future work is to establish

a link between model checking and theorem proving in order

to verify probabilistic systems in RoboChart complemen-

tary. One scenario is to verify a RoboChart model using

both model checking and theorem proving, and then com-

pare their results. Another scenario is to use theorem proving

as a guaranteed simplifier to simplify part of a RoboChart

model (such as state machines, transitions, and states) in

order to reduce the complexity for model checking. This

could improve model checking performance dramatically.

To support theorem proving, and to connect RoboChart’s

CSP and PRISM semantics, we are pursuing a unifying the-

ory of CSP and PRISM. This is based on Hoare and He’s

Unifying Theories of Programming [4]. In [14], we define

the probabilistic semantics of the RoboChart action language

in a new theory, and use the weakest completion technique

[15] to embed the theory of designs [4,73] (for total correct-

ness) in the probabilistic semantic domain. We call this new

theory this theory of probabilistic designs. We are mecha-

nising the theory in Isabelle/UTP. This allows us to analyse

non-reactive RoboChart models. Our next step is to develop a

reactive probabilistic design semantics. Our proof technique

is to use reactive relations and Kleene algebra-based veri-

fication of reactive programs [74] to calculate contracts for

RoboChart models.

With mechanised reactive probabilistic designs semantics,

we have a UTP semantics for DTMCs and MDPs (then for

PRISM). With that, given that CSP also has a theory of reac-

tive designs, RoboChart and PRISM will then have the same

semantic foundation, and we can establish soundness of our

transformation with respect to the CSP work.

Using reactive probabilistic designs, we can calculate con-

tracts for RoboChart. Those cut unnecessary internal states

and variables generated during transformation. This reduces

the state space size of transformed models and will improve

model checking performance.

In addition to RoboChart, we are also developing tools and

techniques that make use of RoboChart to generate robotic

simulations and tests automatically. After these lines of future

work are complete, formal studies on usability of these tools

and techniques in the robotics domain can be conducted.

Acknowledgements This work is funded by the EPSRC grants EP/M-

025756/1 and EP/R025479/1, and by the Royal Academy of Engineer-

ing grant CiET1718/45. The icons used in RoboChart have been made

by Sarfraz Shoukat, Freepik, Google, Icomoon and Madebyoliver from

www.flaticon.com, and are licensed under CC 3.0 BY.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

123

www.flaticon.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

K. Ye et al.

A Translation rules

A.1 Normalisation

The function addLoopStateTrans defined in Rule 9 deals

with a machine in which there are states having no outgo-

ing transitions. So that the model does not satisfy NFM-1.

This function specifies a new loop state and corresponding

transitions from the original states to the loop state.

The first parameter of the function is a NodeContainer,

the parent class of both StateMachineDef and State. So this

function is applicable to both state machine definitions such

as stm in Rule 1, and composite states. If theNodeContainer

has one or more nodes n that have no outgoing transitions

(∀t : stm.transitions • t.source �= n) , then the result is a

pair formed by the set {loopstate} containing a new state

loopstate, and a set of transitions ({looptran} ∪ newtrans)

including a self-transition looptrans for loopstate and transi-

tions innewtrans from the states without outgoing transitions

to loopstate. Otherwise, there is no need to introduce loop,

and the result is a pair of empty sets. The where clause of

the rule has three definitions explained below.

◮ loopstate is a new state specified by a function

newState with a fresh name specified by uname(stm,

“loop”). The function newState(name) characterises a

State whose name takes the value name, but whose

nodes, transitions, and actions are empty. So, it is a sim-

ple state without transitions or actions. We note that

it is possible to directly define what newState spec-

ifies using a class instantiation �name� · · ·�State. We

define newState, however, to facilitate reuse and hide

other fields of the class State that are set to empty

or null for simplicity. The introduction of the function

newTransition is similar.

◮ looptran is a new self-transition for loopstate, defined

by a function newTransition with three parameters: the

name, the source, and the target of the new transition.

Other components of the transitions are null: it has no

label.

◮ newtrans is a set of new transitions. For each state

n without any outgoing transitions, this set includes one

transition from n to the new state loopstate.

If a transition from a state or a normal junction to a

normal junction has no action, the model does not satisfy

NFM-2. Such a transition, however, can be combined with

outgoing transitions from its target normal junction. We iden-

tify these transitions as combinable transitions through a

function isCombinableTran defined by Rule 11. In a state

machine, all normal junctions that have at least one com-

binable incoming transition are identified by a function

inTransCombinableJuncs defined in Rule 10. Such a nor-

mal junction and its incoming and outgoing transitions are

then combined by a function combTransJunctions defined

in Rule 12. Details of these rules are explained next.

123

Probabilistic modelling and verification using RoboChart and PRISM

The function inTransCombinableJuncs takes a state

machine as argument, and identifies a subset of its nodes n.

They are normal junctions, that is, junctions (n ∈ Junction),

but not initial (n /∈ Initial) and not probabilistic (n /∈ ProbJunc),

and at least one transition t among their incoming transitions

(t.target = n) needs to be combined.

As already mentioned, the need to combine a transition t

is characterised by isCombinableTran defined by Rule 11.

Such transition has no action (t.action = null) and its source

node t.source is not an initial or probabilistic junction.

The function combTransJunctions has two parame-

ters: juncs is a set of normal junctions whose incoming

transitions can be combined with outgoing transitions, and

trans is a set of incoming and outgoing transitions of these

normal junctions. If juncs is empty, then the result is just

a triple of empty sets, because there are no transitions

to be combined, and so no junctions or transitions to be

removed, and no new transitions. Otherwise, the result is

basically the cumulative result of applying the function

combTransJunction to each junction. We omit the defini-

tion of combTransJunctions here, but the complete set of

rules can be found in [1].

The function combTransJunction defined in Rule 12 has

two parameters: a normal junction j and the set of its incom-

ing and outgoing transitions trans. If the set intransother

of incoming transitions of j that cannot be combined is

not empty, then the result is a triple containing the empty

set, because j is not removed, the set intranscomb of the

incoming transitions that can be combined, and do need to

be removed, and the set newtrans of the transitions result-

ing from the combination. Otherwise, the resulting triple

includes {j}, so that j is removed, the set trans, so that all

transitions to and from j are removed, and the set of new

transitions newtrans. All the sets are defined in the where

clause.

◮ intranscomb is a set of incoming transitions t of j that

can be combined (and so removed). This is characterised

by isCombinableTran(t).

◮ intransother has all other incoming transitions of j.

◮ outtrans is the set of outgoing transitions from j.

◮ newtrans is a set of new transitions that combine

each incoming transition ti from intranscomb and each

outgoing transition tj from outtrans. The new transition

has a unique name uname(ti, tj.name), the same source

as ti, the same target of tj, the trigger of ti, and the action

of tj. The condition is the conjunction of that of ti and

that of tj.

123

K. Ye et al.

If a transition has a trigger and an action, the model does

not satisfy NFM-3. We, therefore, define splitTran in Rule 13

to define the result of splitting such a transition into two

transitions connected via a new probabilistic junction.

The function splitTran defines the normalisation of a tran-

sition twith a trigger and an action. In this case, the transition

is split into two transitions connected via a new probabilis-

tic junction pj, defined in the where clause to have a unique

name uname(t, “sp_pj”). The result of splitTran(t) is a pair

including the two new transitions, and the new junction {pj}.

In the set of transitions, we have a transition to pj, and a

transition from pj. The transition to pj has the trigger and the

condition of t, and the outgoing transition has the action of

t and a probability value 1. If t does not have both a trigger

and an action, the result is the set containing t itself, and the

empty set, since no new junction is needed.

A.2 Transformation to PRISM

Rule 14 defines the function op2ActionMaps used in Rule 4.

It has one parameter: stm of type StateMachineDef, and

characterises a relation from operations to PRISM actions.

This relation establishes a mapping from each operation

op in the operations getRequiredOperations(stm) required

by stm to a PRISM action with a fresh name specified by

123

Probabilistic modelling and verification using RoboChart and PRISM

uname(stm, op.name). (We recall that this is used to collect

information about how operations are used in each machine,

so that they can be encoded in the platform module.) For the

previously discussed operationmoveSteps in Sect. 5.4.1, the

result is {moveSteps
→ stm_moveSteps_act}.

Rule 15 defines the function [[–]]ST that translates a state-

ment. The parameter stmt is a CommunicationStmt, which

contains aCommunication encapsulating a synchronisation,

an input or an output event. The function [[–]]ST also has the

following parameters: pcconstrs records constraints on the

counters that identify the state in which stmt is executed;

stnumber is the next available number for states; scpcname

is the name of the current counter; curstate is the optional

declaration of a PRISM constant representing the state at the

start of stmt; and assigns is a set of PRISM assignments that

encode the change to the state after the execution of stmt. The

constant curstate, if present (not null), indicates that stmt is

an entry action. In this case, it is used by all transitions to the

state with that entry action.

The result of [[–]]ST is a quadruple. The first element is

the new available state number. The second is a set of new

constants to identify extra states, of which there may be sev-

eral if the action is compound. The third element stm is a set

curassgns of assignments to update the state of the module

to the start state for the encoding of stmt. Finally, the fourth

element is a set containing one command cmd to encode

stmt. If curstate is not null, the supplied curstate encodes

the start of stmt, and so no new constant is needed: the new

available state number is still stnumber and the result has an

empty set of constants. Otherwise, a fresh constant, such as

taskState_3, is declared and associated with stnumber

as shown by the definition of const in the where clause. In this

case, the new available state number is stnumber + 1, and

the set of constants includes a single element const. For the

application of [[–]]ST to translate the statement in the action

of t1 in Fig. 21, the first element of the result is 7 because

6 identifies taskState_3 on line #17 in Fig. 20, the sec-

ond is the declaration of taskState_3 on line #17, the

third is the set containing scpc’=taskState_3 on line

#33, and the fourth element is the command on line #34.

The variables used in Rule 15 are defined in the where clause

explained below.

◮ const is the constant encoding the start of the state-

ment stmt. If the argument curstate is not null, the

constant is just curstate. Otherwise, it is a constant with a

fresh name given by uname(stmt, stnumber) and asso-

ciated with stnumber.

◮ assgnchvar is a set of assignments. If stmt is an

output event (its communication is of type OUTPUT)

or a synchronisation (its communication is of type

SYNC), it contains an assignment to update the event

related variable EVT__id(stmt.communication.event)

from the value [[stmt.communication.value]]e carried

by the event, to encode communication. Otherwise, it is

empty.

◮ curassgns contains an assignment to update the

counter variable to the start state for the encoding of stmt

and assignments in assgnchvar explained above.

◮ assgninvar is also a set of assignments. If stmt is an

input event (that is, its communication is of type INPUT),

this set contains an assignment to update the input vari-

able id(stmt.communication.parameter) to the value of

the variable used for output, to encode the input commu-

nication. Otherwise, assgninvar is empty since there is

no data exchange.

◮ cmd is a command. Its action is the name of the

event of stmt given by id(stmt.communication.event).

Its guard ensures that the counter variables indicate that

the current state is that identified by const. We have a con-

junction of two terms. The first, andExprs(pcconstrs),

is itself a conjunction of the boolean expressions in the

argument pcconstrs, which are equalities regarding the

counter variables for all states and state machine contain-

ing stmt. The second conjunct requires that the counter

variable for the state or machine containing stmt, whose

name is given by the argument scpcname, has the value

const.name for the encoding of stmt. The update of cmd

has probability 1 and assignments containing the argu-

ment assigns to update the counters to the final state of

the encoding of stmt and assgninvar explained above.

References

1. Miyazawa, A., Cavalcanti, A., Ribeiro, P., Li, W., Woodcock,

J., Timmis, J.: RoboChart Reference Manual. University of

York, Tech. rep. (2018) www.cs.york.ac.uk/circus/publications/

techreports/reports/robochart-reference.pdf

2. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J.,

Woodcock, J.: RoboChart: modelling and verification of the func-

tional behaviour of robotic applications. Softw. Syst. Model.

(2019). https://doi.org/10.1007/s10270-018-00710-z

3. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Ver-

ification of probabilistic real-time systems. In: Gopalakrish-

nan, G., Qadeer, S. (eds.) CAV, Lecture Notes in Computer

Science, vol. 6806, pp. 585–591. Springer (2011) dblp.uni-

trier.de/db/conf/cav/cav2011.html#KwiatkowskaNP11

4. Hoare, C.A.R., He, J.: Unifying Theories of Programming.

Prentice-Hall (1998)

5. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-

Hall Int. (1985)

6. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Com-

puter Science. Springer (2011)

7. Cavalcanti, A.L.C., Woodcock, J.C.P.: A Tutorial Introduction

to CSP in Unifying Theories of Programming. In: Refine-

ment Techniques in Software Engineering. Lecture Notes in

Computer Science, vol. 3167, pp. 220–268. Springer-Verlag

(2006). https://doi.org/10.1007/11889229_6www-users.cs.york.

ac.uk/~alcc/publications/papers/CW06.pdf

123

www.cs.york.ac.uk/circus/publications/techreports/reports/robochart-reference.pdf
www.cs.york.ac.uk/circus/publications/techreports/reports/robochart-reference.pdf
https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1007/11889229_6
www-users.cs.york.ac.uk/~alcc/publications/papers/CW06.pdf
www-users.cs.york.ac.uk/~alcc/publications/papers/CW06.pdf

K. Ye et al.

8. Baxter, J., Ribeiro, P., Cavalcanti, A.: Sound reasoning in tock-csp.

Acta Informatica (in press)

9. FDR: Failures-Divergences Refinement https://www.cs.ox.ac.uk/

projects/fdr/

10. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.:

FDR3: A modern refinement checker for CSP. In: Tools and Algo-

rithms for the Construction and Analysis of Systems, pp. 187–201

(2014)

11. Goldsmith, M., East, I., Duce, D., Green, M., Martin, J., Welch,

P.: CSP: The best concurrent-system description language in

the world—probably! Communicating Process Architectures, pp.

227–232 (2004)

12. Foster, S., Zeyda, F., Woodcock, J.C.P.: Isabelle/UTP: A mecha-

nised theory engineering framework. In: UTP 2015, LNCS, vol.

8963, pp. 21–41. Springer (2015)

13. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof

Assistant for Higher-Order Logic. Springer (2002)

14. Woodcock, J.C.P., Cavalcanti, A.L.C., Foster, S., Mota, A., Ye,

K.: Probabilistic semantics for RoboChart: A weakest completion

approach. In: Unifying Theories of Programming. Lecture Notes

in Computer Science, p. to appear, Springer (2019)

15. He, J., Morgan, C., McIver, A.: Deriving probabilistic semantics

via the ‘weakest completion’. In: Davies, J., Schulte, W., Barnett,

M. (eds.) Formal Methods and Software Engineering, pp. 131–145.

Springer, Berlin Heidelberg, Berlin, Heidelberg (2004)

16. Conserva Filho, M.S., Marinho, R., Mota, A., Woodcock, J.:

Analysing RoboChart with probabilities. Formal Methods: Foun-

dations and Applications (2018). https://doi.org/10.1007/978-3-

030-03044-5_13

17. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic

processes. Nord. J. Comput. 2(2), 250–273 (1995)

18. Hansson, H.: Time and probabilities in formal design of distributed

systems. Department of Computer Systems, Uppsala University,

Phd thesis (1991)

19. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing.

Inf. Comput. 94(1), 1–28 (1991). https://doi.org/10.1016/0890-

5401(91)90030-6

20. Stoelinga, M.: An introduction to probabilistic automata. Bull.

EATCS 78, 176–198 (2002)

21. van Glabbeek, R.J., Smolka, S.A., Steffen, B., Tofts, C.M.N.: Reac-

tive, generative, and stratified models of probabilistic processes. In:

Proceedings of the Fifth Annual Symposium on Logic in Computer

Science (LICS ’90), Philadelphia, Pennsylvania, USA, June 4–7,

1990, pp. 130–141. IEEE Computer Society (1990). https://doi.

org/10.1109/LICS.1990.113740

22. Kemeny, J.G., Snell, J.L.: Finite Markov Chains: With a New

Appendix “Generalization of a Fundamental Matrix” (Undergrad-

uate Texts in Mathematics). Springer (1983)

23. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov

Chains (1976). https://doi.org/10.1007/978-1-4684-9455-6

24. Howard, R.: Dynamic Probabilistic Systems: Semi-Markov and

decision processes. Series in Decision and Control. Wiley (1971)

https://books.google.co.uk/books?id=vuZQAAAAMAAJ

25. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic

Dynamic Programming, 1st edn. Wiley (1994)

26. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: A

modern probabilistic model checker. In: Majumdar, R., Kunčak, V.

(eds.) Computer Aided Verification, pp. 592–600. Springer, Cham

(2017)

27. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst.

Design 15(1), 7–48 (1999)

28. Bohnenkamp, H., d’Argenio, P.R., Hermanns, H., Katoen, J.P.:

Modest: A compositional modeling formalism for hard and softly

timed systems. IEEE Trans. Softw. Eng. 32(10), 812–830 (2006)

29. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A com-

positional modelling and analysis framework for stochastic hybrid

systems. Formal Methods Syst. Design 43(2), 191–232 (2013)

30. Park, H.W., Ramezani, A., Grizzle, J.W.: A finite-state machine

for accommodating unexpected large ground-height variations in

bipedal robot walking. IEEE Trans. Robot. 29(2), 331–345 (2013)

31. Rabbath, C.A.: A finite-state machine for collaborative airlift with

a formation of unmanned air vehicles. J. Intell. Robot. Syst. 70(1),

233–253 (2013)

32. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair,

E., Grixa, I.L., Ruess, F., Suppa, M., Burschka, D.: Toward a fully

autonomous UAV: research platform for indoor and outdoor urban

search and rescue. IEEE Robot. Autom. Mag. 19(3), 46–56 (2012)

33. Liu, W., Winfield, A.F., Sa, J.: Modelling swarm robotic systems:

a case study in collective foraging. Towards Auton. Robot. Syst.

25–32 (2007)

34. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour

via probabilistic model checking. Robot. Auton. Syst. 60(2), 199–

213 (2012)

35. Colvin, R., Grunske, L., Winter, K.: Probabilistic timed behavior

trees. In: International Conference on Integrated Formal Methods,

pp. 156–175. Springer (2007)

36. Dromey, R.G.: From requirements to design: Formalizing the key

steps. In: First International Conference onSoftware Engineering

and Formal Methods, 2003. Proceedings., pp. 2–11. IEEE (2003)

37. Beauquier, D.: On probabilistic timed automata. Theor. Comput.

Sci. 292(1), 65–84 (2003)

38. Object Management Group: OMG Unified Modeling Language

(OMG UML), Superstructure, Version 2.4.1 (2011) www.omg.org/

spec/UML/2.4.1

39. Addouche, N., Antoine, C., Montmain, J.: Uml models for depend-

ability analysis of real-time systems. In: 2004 IEEE International

Conference on Systems, Man and Cybernetics (IEEE Cat. No.

04CH37583), vol. 6, pp. 5209–5214. IEEE (2004)

40. Addouche, N., Antoine, C., Montmain, J.: Combining extended

UML models and formal methods to analyze real-time systems.

In: International Conference on Computer Safety, Reliability, and

Security, pp. 24–36. Springer (2005)

41. Jansen, D.N., Hermanns, H., Katoen, J.: A probabilistic extension

of UML statecharts. In: Damm, W., Olderog, E. (eds.) FTRTFT

2002: 7th International Symposium on Formal Techniques in Real-

Time and Fault-Tolerant Systems, Co-sponsored by IFIP WG 2.2,

Oldenburg, 9–12 September 2002, Lecture Notes in Computer Sci-

ence, vol. 2469, pp. 355–374. Springer (2002)

42. Hansson, H., Jonsson, B.: A logic for reasoning about time and

reliability. Formal Asp. Comput. 6(5), 512–535 (1994). https://doi.

org/10.1007/BF01211866

43. Schlegel, C., Hassler, T., Lotz, A., Steck, A.: Robotic soft. systems:

from code-driven to model-driven designs. In: ICAR 2009, pp. 1–8.

IEEE (2009)

44. Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A

survey on domain-specific modeling and languages in robotics.

In: FTRTFT 2002: 7th International Symposium on Formal Tech-

niques in Real-Time and Fault-Tolerant Systems, Co-sponsored by

IFIP WG 2.2, Oldenburg, 9–12 September 2002, vol. 7, pp. 75–99

(2016)

45. Schlegel, C., Worz, R.: The software framework smartsoft

for implementing sensorimotor systems. In: Proceedings 1999

IEEE/RSJ International Conference on Intelligent Robots and

Systems. Human and Environment Friendly Robots with High

Intelligence and Emotional Quotients (Cat. No. 99CH36289),

vol. 3, pp. 1610–1616. IEEE (1999)

46. Alonso, D., Vicente-Chicote, C., Ortiz, F., Pastorfranco, J.:

V3cmm: a 3-view component meta-model for model-driven robotic

software development. J. Softw. Eng. Robot. 1, 3–17 (2010)

123

https://www.cs.ox.ac.uk/projects/fdr/
https://www.cs.ox.ac.uk/projects/fdr/
https://doi.org/10.1007/978-3-030-03044-5_13
https://doi.org/10.1007/978-3-030-03044-5_13
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1109/LICS.1990.113740
https://doi.org/10.1109/LICS.1990.113740
https://doi.org/10.1007/978-1-4684-9455-6
https://books.google.co.uk/books?id=vuZQAAAAMAAJ
www.omg.org/spec/UML/2.4.1
www.omg.org/spec/UML/2.4.1
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/BF01211866

Probabilistic modelling and verification using RoboChart and PRISM

47. Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N., Kraet-

zschmar, G., Gherardi, L., Brugali, D.: The brics component

model: a model-based development paradigm for complex robotics

software systems. In: Proceedings of the 28th Annual ACM Sym-

posium on Applied Computing, pp. 1758–1764 (2013)

48. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.:

RobotML, a Domain-Specific Language to Design, Simulate and

Deploy Robotic Applications. In: SIMPAR 2012, pp. 149–160.

Springer (2012)

49. Ramaswamy, A., Monsuez, B., Tapus, A.: Saferobots: A model-

driven framework for developing robotic systems. In: Proc.

IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1517–

1524 (2014). https://doi.org/10.1109/IROS.2014.6942757

50. Hochgeschwender, N., Gherardi, L., Shakhirmardanov, A., Kraet-

zschmar, G.K., Brugali, D., Bruyninckx, H.: A model-based

approach to software deployment in robotics. In: IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, pp. 3907–3914 (2013)

51. Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., Ingrand, F.:

Genom3: Building middleware-independent robotic components.

IEEE Int. Conf. Robot. Automat. , 4627–4632 (2010)

52. Foughali, M., Berthomieu, B., Zilio, S.D., Ingrand, F., Mallet, A.:

Model Checking Real-Time Properties on the Functional Layer

of Autonomous Robots. In: Formal Methods and Soft. Eng., pp.

383–399. Springer (2016)

53. Berthomieu, B., Vernadat, F.: Time petri nets analysis with TINA.

In: Third International Conference on the Quantitative Evaluation

of Systems, pp. 123–124. IEEE Computer Society, Riverside, Cal-

ifornia, USA (2006). https://doi.org/10.1109/QEST.2006.56

54. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time

components in BIP. In: Fourth IEEE International Conference on

Software Engineering and Formal Methods (SEFM 2006), 11-15

September 2006, Pune, India, pp. 3–12. IEEE Computer Society

(2006). https://doi.org/10.1109/SEFM.2006.27

55. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent

Robotics and Autonomous Agents). The MIT Press (2005)

56. PRISM Lab Session, Part B: Mail Delivery Robot http://www.

prismmodelchecker.org/courses/aims1617/deliveryRobot.php

57. Cavalcanti, A., Barnett, W., Baxter, J., Carvalho, G., Conserva

Filho, M., Miyazawa, A., Ribeiro, P., Sampaio, A.: In: Caval-

canti, A., Dongol, B., Hierons, R., Timmis, J., Woodcock, J.

(eds.) RoboStar technology: a roboticist’s toolbox for combined

proof, simulation, and testing. Software Engineering for Robotics.

Springer International Publishing (2021)

58. Jansen, D.N., Hermanns, H., Katoen, J.P.: A Probabilistic Exten-

sion of UML Statecharts. In: Formal Tec. in Real-Time and

Fault-Tolerant Syst., LNCS, vol. 2469, pp. 355–374. Springer

(2002)

59. Nokovic, B., Sekerinski, E.: Verification and code generation

for timed transitions in pcharts. In: Proceedings of the 2014

International C* Conference on Computer Science & Software

Engineering, p. 3. ACM (2014)

60. Katoen, J.P., Khattri, M., Zapreevt, I.: A Markov reward model

checker. In: Second International Conference on the Quantitative

Evaluation of Systems (QEST’05), pp. 243–244. IEEE (2005)

61. PRISM Team: The PRISM Language: Semantics (2008) www.

prismmodelchecker.org/doc/semantics.pdf

62. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.:

Numerical vs. statistical probabilistic model checking. STTT 8(3),

216–228 (2006). https://doi.org/10.1007/s10009-005-0187-8

63. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing

engine for C. In: 10th Joint Meeting of the European Soft. Eng.

Conf. and the ACM SIGSOFT Symp. on the Foundations of Soft.

Eng., pp. 263–272. ACM (2005)

64. PRISM Team: The PRISM Language: Reward-based Proper-

ties www.prismmodelchecker.org/manual/PropertySpecification/

Reward-basedProperties

65. Jensen, H.: Model checking probabilistic real time systems. In:

Proc. 7th Nordic Workshop on Programming Theory, pp. 247–261.

Citeseer (1996)

66. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic

verification of real-time systems with discrete probability distribu-

tions. Theor. Comput. Sci. 282(1), 101–150 (2002)

67. Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 4.0:

Verification of probabilistic real-time systems. In: Gopalakr-

ishnan, G., Qadeer, S. (eds.) CAV. Lecture Notes in

Computer Science, vol. 6806, pp. 585–591. Springer (2011).

https://doi.org/10.1007/978-3-642-22110-1_47 dblp.uni-

trier.de/db/conf/cav/cav2011.html#KwiatkowskaNP11

68. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A

game-based abstraction-refinement framework for markov deci-

sion processes. Formal Methods Syst. Design 36(3), 246–280

(2010)

69. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Perfor-

mance analysis of probabilistic timed automata using digital clocks.

Formal Methods Syst. Design 29(1), 33–78 (2006)

70. Woodcock, J.C.P., Davies, J.: Using Z-Specification, Refinement,

and Proof. Prentice-Hall (1996)

71. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A Refine-

ment Strategy for Circus. Formal Aspects Comput. 15(2–3),

146–181 (2003)

72. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd. Prentice-

Hall (1992)

73. Woodcock, J.C.P., Cavalcanti, A.L.C.: A tutorial introduction to

designs in Unifying Theories of Programming. In: Boiten, E.A.,

Derrick, J., Smith, G. (eds.) IFM 2004: Integrated Formal Meth-

ods, LNCS, vol. 2999, pp. 40–66. Springer-Verlag (2004). Invited

tutorial

74. Foster, S., Ye, K., Cavalcanti, A., Woodcock, J.: Calculational ver-

ification of reactive programs with reactive relations and Kleene

Algebra. In: International Conference on Relational and Algebraic

Methods in Computer Science, pp. 205–224. Springer (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

Kangfeng Ye is a research asso-

ciate at the University of York,

UK. With an industrial background

in embedded systems for com-

munication and semiconductor, he

developed his research interests in

formal modelling and verification

of Robotics and Cyber-Physical

Systems, the areas he is working

on now. In his research, he has

developed a new theory to verify

Simulink diagrams based on the-

orem proving, and is developing

tools to verify probabilistic sys-

tems using both theorem proving

and model checking. He gained a Ph.D. in Computer Science at the

University of York in 2017, and his thesis addresses model checking

of state-rich formalisms.

123

https://doi.org/10.1109/IROS.2014.6942757
https://doi.org/10.1109/QEST.2006.56
https://doi.org/10.1109/SEFM.2006.27
http://www.prismmodelchecker.org/courses/aims1617/deliveryRobot.php
http://www.prismmodelchecker.org/courses/aims1617/deliveryRobot.php
www.prismmodelchecker.org/doc/semantics.pdf
www.prismmodelchecker.org/doc/semantics.pdf
https://doi.org/10.1007/s10009-005-0187-8
www.prismmodelchecker.org/manual/PropertySpecification/Reward-basedProperties
www.prismmodelchecker.org/manual/PropertySpecification/Reward-basedProperties
https://doi.org/10.1007/978-3-642-22110-1_47

K. Ye et al.

Ana Cavalcanti (University of

York) is Professor of Software

Verification and Royal Academy

of Engineering Chair in Emerging

Technologies working on Software

Engineering for Robotics: mod-

elling, validation, simulation, and

testing. She currently leads the

RoboStar research group at the

University of York. She held a

Royal Society-Wolfson Research

Merit Award and a Royal Soci-

ety Industry Fellowship to work

with QinetiQ in avionics. She has

chaired the Programme Commit-

tee of various well-established international conferences, is on the edi-

torial board of four international journals, and is Chair of the board of

the Formal Methods Europe Association. Her current research is on

theory and practice of verification and testing for robotics.

Simon Foster is a UKRI Innova-

tion Fellow leading the CyPhyAs-

sure project at the University of

York, which explores assurance

techniques for cyber-physical sys-

tems. His research applies theo-

rem proving to formal verifica-

tion, and he leads the develop-

ment of Isabelle/UTP, a practi-

cal theorem prover for heteroge-

neous systems. He has applied

Isabelle/UTP to verification tools

for process algebras, reactive pro-

grams, and hybrid systems. He

has also developed Isabelle/SACM,

an interactive tool for assurance cases with evidence coming from

multiple formal verification tools in Isabelle. As part of CyPhyAs-

sure, he is collaborating with industry to bring these techniques to the

real world. He gained his Ph.D. at the University of Sheffield in 2010,

which developed a timed process algebra for Web service composition

semantics.

Alvaro Miyazawa is a research

associate at the University of York.

Having completed B.Sc. in Com-

puter Science at the University of

Sao Paulo and doctoral research at

the University of York, his main

research interests are in formal

semantics and refinement for dom-

ain specific languages and graph-

ical notations, and the develop-

ment of refinement strategies to

support high levels of automation

in program verification. Currently,

his research focuses on modelling,

testing, simulation and verifica-

tion for robotics.

Jim Woodcock is Professor of

Software Engineering at the Uni-

versity of York and Professor of

Digital Twins at Aarhus Univer-

sity. His research interests are in

the unification of mathematical the-

ories for the cost-effective design

of hardware and software com-

ponents in innovative, safe, and

secure cyber-physical systems,

including robotics. His scientific

work has enabled him to make

significant contributions to the appli-

cation of mathematical techniques

in industry in domains of strate-

gic importance to society. He is one of the leaders of the Verifiability

research node for the UK Trusted Autonomous Systems Programme.

He is a Fellow of the Royal Academy of Engineering.

123

	Probabilistic modelling and verification using RoboChart and PRISM
	Abstract
	1 Introduction
	2 Related work
	2.1 Fundamental probabilistic frameworks
	2.2 Improved modelling languages
	2.3 Domain-specific languages for robotics

	3 RoboChart
	3.1 Notation
	3.2 Metamodel
	3.3 Well-formedness conditions
	3.3.1 Transitions
	3.3.2 Probabilistic Junctions

	4 The PRISM notation
	4.1 PRISM
	4.2 PRISM metamodel

	5 Model transformation
	5.1 Translation requirements
	5.2 Overview
	5.2.1 Normalisation
	5.2.2 Transformation to PRISM

	5.3 Normalisation rules
	5.4 Transformation to PRISM
	5.4.1 Module, robotic platform, and controllers
	5.4.2 State machines and composite states
	5.4.3 Transitions
	5.4.4 Actions

	6 Automatic model generation
	7 Verification support
	7.1 Constructs and examples
	7.2 Syntax
	7.3 A RoboCert plugin in RoboTool

	8 Conclusions and future work
	Acknowledgements
	A Translation rules
	A.1 Normalisation
	A.2 Transformation to PRISM

	References

