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Abstract: Objective: To identify dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
parameters predictive of early disease progression in patients with metastatic renal cell cancer (mRCC)
treated with anti-angiogenic tyrosine kinase inhibitors (TKI). Methods: The study was linked to a
phase II/III randomised control trial. Patients underwent DCE-MRI before, at 4- and 10-weeks after
initiation of TKI. DCE-MRI parameters at each time-point were derived from a single-compartment
tracer kinetic model, following semi-automated tumour segmentation by two independent readers.
Primary endpoint was correlation of DCE-MRI parameters with disease progression at 6-months.
Receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) values
were calculated for parameters associated with disease progression at 6 months. Inter-observer
agreement was assessed using the intraclass correlation coefficient (ICC). Results: 23 tumours in
14 patients were measurable. Three patients had disease progression at 6 months. The percentage
(%) change in perfused tumour volume between baseline and 4-week DCE-MRI (p = 0.016), mean
transfer constant Ktrans change (p = 0.038), and % change in extracellular volume (p = 0.009) between
4- and 10-week MRI, correlated with early disease progression (AUC 0.879 for each parameter).
Inter-observer agreement was excellent for perfused tumour volume, Ktrans and extracellular volume
(ICC: 0.928, 0.949, 0.910 respectively). Conclusions: Early measurement of DCE-MRI biomarkers of
tumour perfusion at 4- and 10-weeks predicts disease progression at 6-months following TKI therapy
in mRCC.

Keywords: dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI); tyrosine kinase
inhibitor; anti-angiogenic therapy; metastatic renal cell cancer

1. Introduction

Kidney cancer is the third most common genitourinary malignancy, with over 400,000
new diagnoses per year, over 175,000 deaths worldwide annually and a rising incidence [1–3].
Metastatic renal cell carcinoma (mRCC) is the most lethal form of this disease, with esti-
mated 5-year survival rates of 11.6% [1,3,4]. Vascular endothelial growth factor receptor
(VEGFR)-targeted tyrosine kinase inhibitors (TKIs), including sunitinib and pazopanib,
have been effective in treating patients with mRCC by targeting angiogenic pathways but
at the expense of significant side-effects [5,6]. Furthermore, it is recognised that not all
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patients initially respond to TKIs and eventually develop treatment resistance, with median
progression-free survival in the order of 8–10 months [5].

Determining whether a patient is continuing to derive benefit from treatment with
each cycle can be difficult as traditional imaging assessment criteria, such as Response
Evaluation Criteria in Solid Tumours (RECIST), are limited to evaluating size changes that
may be slow to occur [7]. Changes in physiology, such as tumour blood flow, precede
morphological changes and potentially enables earlier response assessment [8,9]. Currently,
there are no validated imaging biomarkers that predict which patients with mRCC will
benefit from anti-angiogenic therapy [10]. There are increasing treatment options for such
patients and an early indication that they were not responding to treatment would allow
switching to alternative therapies earlier.

The STAR trial is a prospective randomised multi-stage phase II/III study of standard
continuous TKI vs. a drug-free interval strategy (DFIS) with planned treatment breaks
in the first-line treatment of locally advanced/metastatic RCC [11]. As part of the STAR
trial, a translational feasibility substudy of the role of dynamic contrast enhanced magnetic
resonance imaging (DCE-MRI) in early response assessment was designed to identify
predictive biomarkers of response and/or disease progression which would allow early
optimisation of treatment schedules and prevent unnecessary toxicity and costs. In light
of recent evidence, TKI monotherapy is no longer the first-line treatment for RCC [12]
however the assessment of treatment effects remains invaluable.

MRI has advantages for functional imaging including high spatial and contrast res-
olutions. Previous feasibility studies have shown RCC perfusion can be measured with
DCE-MRI before and after targeted intervention and further optimisation of DCE-MRI
techniques enables quantification of perfusion [13,14], a technique with clear implications
for RCC [15–17].

The aim of this study was to investigate if DCE-MRI-based parameters (perfused
tumour volume, the transfer constant Ktrans, extracellular volume (ECV) and extracellular
mean transit time (MTT)) at 4- and 10-weeks could predict progressive disease (PD) at
6-months after initiation of TKI therapy.

2. Materials and Methods
2.1. Patient Recruitment and Intervention

Participants in this DCE-MRI translational functional imaging substudy were identi-
fied following their recruitment to the STAR trial under full ethical approval (Trial protocol
number HTA 09/91/21; Research ethics committee reference number 11/NW/0246 and
integrated Research Application System number 75784). All patients were recruited from
the single tertiary cancer centre. Study entry criteria required all patients to have patholog-
ically proved clear cell histology, either from nephrectomy specimen or diagnostic biopsy
(11). This substudy was an optional part of the STAR trial [11] and participants signed an
additional Institutional Review Board approved consent. Patients were required to have
measurable disease within the abdomen or pelvis to be eligible for the substudy. For bony
metastases, only those with a measurable soft tissue component were included. Participants
were required to undergo a baseline contrast-enhanced computed tomography (CECT) and
DCE-MRI scan prior to commencement of TKI treatment. The full substudy protocol can
be found via the link https://njl-admin.nihr.ac.uk/document/download/2032323 (Last
Accessed 10 July 2021). All patients had routine renal function biochemical testing prior to
MRI to ensure eGFR was > 30 mL/min before administering contrast. No patients with
severe chronic renal impairment were included.

Within the STAR trial, all patients received either pazopanib (800 mg once daily,
continuously) or sunitinib (50 mg once daily, days 1 to 28) based on a standard 42-day
cycle. Dose modifications were permitted, in line with standard clinical practice.

Participants were randomised prior to starting TKI treatment to either the control arm,
continuation of the TKI until evidence of disease progression or toxicity precluded further
treatment, or to the experimental/DFIS arm where patients objectively benefiting from
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treatment temporarily stopped the TKI after a minimum of 4 cycles (a planned treatment
break). Participants in the DFIS arm remained off treatment until radiologically confirmed
evidence of disease progression, at which point treatment was resumed [11]. Participants in
this DCE-MRI sub-study were all taking TKI as per standard practice as the DCE-MRI time
points were all before the time that patients took up their allocated arm within the STAR
trial (i.e., before participants on the DFIS arm had a planned treatment break). Treatment
response at 6-months was assessed by CECT using RECIST version 1.1 criteria [7].

2.2. Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI)

All DCE-MRI examinations were performed on a Siemens (Erlangen, Germany) 1.5 T
system. The examination was performed for up to five target lesions (the largest five) within
the abdomen and pelvis identified at baseline (before initiating TKI therapy), 4 weeks (after
start of TKI therapy) (±4 days) and 10 weeks (±4 days) following randomisation within
the STAR trial.

A dedicated four-element body array coil and integrated spine coil were used for signal
reception. The MRI examination included T1- and T2-weighted sequences in the axial,
sagittal and coronal planes for morphological imaging. The perfusion assessment with
DCE-MRI was performed in an oblique coronal plane to include both kidneys and a section
of the descending aorta [14]. The acquired volume was adapted to ensure the five largest
abdominal or pelvic lesions (identified on baseline imaging) were included. A pre-contrast
T1-weighted 3D fast low angle shot (FLASH) breath-hold sequence (end-expiratory) was
performed to establish a signal baseline (6 repeats at 2 s intervals). The DCE-MRI was then
performed under gentle breathing for 4 min (120 repeats at 2.4 s intervals). The contrast
agent Dotarem (Gd-DOTA Gadoteric acid, Guerbet, France) at a dose of 0.1 mmol/kg
body weight was injected into an antecubital vein followed by a 20 mL saline chaser, both
at a flow rate of 4 mL/s. The acquisition of the data was triggered at the same time as
the contrast agent injection. The scanning range and parameters were copied from the
pre-contrast breath hold T1 weighted sequence. The sequence parameters were repetition
time 2.38 ms, echo time 1.19 ms, flip angle 19 degrees, field of view 400 × 400 mm, matrix
size 128 × 256, slice thickness 10 mm and voxel volume 48.8 mm3.

In addition, pre- and post-contrast T1 weighted volume interpolated breath-hold
examination (VIBE) sequences were performed for morphological treatment assessment in
both axial and coronal planes.

2.3. Post DCE-MRI Acquisition Image Analysis

All DCE-MRI imaging data were anonymised and post-processed using the software
Platform for Research in Medical Imaging Version 0.4 (PMI 0.4) [15]. PMI was used to
draw a region of interest (ROI) in the descending aorta and each of the tumours in order
to obtain the arterial input function (AIF) and the corresponding tumour perfusion curve.
The target tumour lesions identified for each patient within the abdomen and pelvis
were segmented by two independent readers (both radiologists) who were blinded to the
treatment outcomes and to the other reader’s segmentations. This was repeated for each
of the 3 DCE-MRI time points (baseline, 4 weeks and 10 weeks) per patient. To calculate
the AIF, a ROI was drawn over the abdominal aorta at the level of the ostia of the renal
arteries (Figure 1). For consistency the ROIs were drawn in the phase of the peak contrast
enhancement within the abdominal aorta for all patients. The ROI was optimised further to
include only voxels that had a peak relative signal intensity change between the 95th and
100th percentile of the signal change maximum. This reproducible thresholding technique
was used to reduce the likelihood of inflow or partial voluming effects and has been utilised
in previous studies [18].
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Figure 1. The arterial input function (AIF) region of interest (ROI) was manually drawn inside the
aorta at the approximate level of the origin of the vascular pedicles of the kidneys in the dynamic
series. The AIF area was optimised further to include only voxels that had a peak relative signal
intensity change between the 95th and 100th percentile of the signal change maximum.

Contrast-agent concentration-time curves were approximated using relative change
in signal (compared to baseline) against time [15]. Both readers examined all the MRI
datasets (T1 and T2-weighted volumes as well as the post-contrast dynamic data) to help
locate the tumours. To assist in identifying the perfused tumour and drawing the perfused
tumour ROI, a map of maximum contrast agent concentration was generated. Using the
map, tumour ROIs were drawn to encompass the entirety of the perfused tumour, non-
enhancing areas and surrounding peri-tumoural tissue. This was done on each image
slice that the tumour was present in to generate a 3-dimensional ROI. Using a percentage
thresholding technique, the perfused renal tumour volume was more accurately selected
to avoid the most peripheral voxels of the lesion to avoid partial volume effects. Using
this method, only the perfused tumour was analysed rather than surrounding normal
parenchyma or necrotic tissue. This was repeated for every measurable lesion on the
DCE-MRI and for all three time points for each patient (Figure 2).
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Figure 2. Example of a segmented renal metastasis on DCE-MRI within the left lobe of liver (before
and after segmentation with thresholding technique of tumour ROI—the red highlighted area is the
tumour ROI segmented on the PMI software) at baseline (A,B), 4-weeks (C,D) and 10-weeks (E,F).
This is a case of disease progression at 6 months.

For the calculation of tumour perfusion parameters, a single compartment tracer
kinetic model was used [19]. During image quantification and parameter extraction the
readers were blinded to patient outcomes. The perfusion parameters extracted were
perfused tumour volume, Ktrans (min−1), ECV (mL/100 mL tissue) and their ratio, ECV
MTT (s).

2.4. Statistical Analysis

The 2-tailed paired t-tests were used to analyse the change in the DCE-MRI parameters
between the 3 time points (baseline and 4 weeks, 4 weeks and 10 weeks and baseline and
10 weeks). The differences in DCE-MRI parameters between the patients with PD at
6 months and those with no progression were evaluated using an independent samples
t-test for normally distributed data and the Mann-Whitney U test was used for non-
parametric data determined by using a Kolmogorov–Smirnov normality test. For patients
with more than one lesion identified on the DCE-MRI, only the largest lesion was selected
to analyse the changes to tumour perfusion characteristics over the 3 time points in relation
to the primary endpoint as these were least affected by partial volume effect. Receiver
operating characteristic (ROC) curve analysis and area under the curve (AUC) values
were calculated for parameters that were associated with PD at 6 months. The statistical
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significance level was set at p < 0.05. All statistical tests were performed using SPSS (Version
21.0; IBM Corp., Armonk, New York, NY, USA).

Inter-observer agreement was assessed using the intraclass correlation coefficient
(ICC) with ICC values scored as excellent (>0.81), good (0.61–0.80), moderate (0.41–0.60),
fair (0.21–0.40), and poor agreement (<0.2).

3. Results

A total of 19 patients were initially consented and enrolled into this substudy of the
STAR trial however 5 patients were excluded due to inability to tolerate the MRI scan due
to claustrophobia (n = 2) and non-measurable diffuse disease on MRI (n = 3). The study
flow-chart is shown in Figure 3.

Figure 3. DCE-MRI Study Flowchart.

Fourteen patients were included in this substudy. Amongst them, there were 12 male
and two female patients. The median age was 64 years (range 52–77). Median Karnofsky
performance was 90% (range 80–100). Baseline treatments are presented in Table 1. Three
patients had PD at 6 months, 10 had stable disease and one had a partial response.
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Table 1. Patient treatment characteristics with targeted therapy regimen.

Patient Prior Nephrectomy Sites of Disease/Index Lesions Targeted Therapy Progressive Disease at
6 Months

1 Yes Nodal Sunitinib No
2 Yes Spleen/Stomach Sunitinib No
3 Yes Nodal Sunitinib No
4 Yes Liver (2) Sunitinib Yes
5 Yes Nodal Sunitinib Yes
6 No Kidney Sunitinib No
7 No Kidney Pazopanib No
8 No Kidney Sunitinib No
9 No Kidney Pazopanib No

10 Yes Nephrectomy bed/Nodal Sunitinib No
11 Yes Nodal (2) Sunitinib No
12 Yes Kidney (2)/Liver/Pancreas (2) Pazopanib No
13 No Kidney/Pancreas Sunitinib Yes
14 No Kidney Sunitinib No

() = number of tumours if more than one.

A total of 23 separate tumours were measurable. The target lesion sites were: kidney
(n = 8), nodal (n = 6), liver (n = 3), pancreas (n = 3), stomach (n = 1), spleen (n = 1)
and renal bed (n = 1) (Supplementary Materials). The time-intensity curves for each
segmented tumour were produced (Figure 4) to which single compartment model fits
provided estimates of the perfusion parameters. Only the perfusion parameters of the
largest lesion per patient were included in the subsequent analysis below. The perfused
tumour volume (cm3), Ktrans, ECV (mL/100 mL) and ECV MTT (s) estimates per patient for
each tumour at every study time point with percentage changes are shown in Tables S1–S3
in Supplementary Materials.

Figure 4. An example of the enhancement curve produced by a segmented tumour (blue line)
and a model fit (red line) showing a typical initial peak in uptake of contrast with rapid washout.
a.u. = arbitrary units.
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The median perfused baseline tumour volume was 77.5 cm3 (range 2.5–880). The
median perfused tumour volume at 4 weeks was 57.7 cm3 (range 1.6–600.8) (median
percentage change of −48% from baseline, range −92 to +8.6%) (p < 0.001). The median
perfused tumour volume at 10 weeks was 57.2 cm3 (0.2–801.6) (median percentage change
of 13% from the 4-week MRI, range −89 to 706%) (p = 0.115). The median percentage
change from baseline to 10-weeks was −32.8% (range −93 to 83%) (p = 0.01).

The mean Ktrans (min−1) (±SD) decreased significantly from baseline (0.96 ± 0.63) to
4-weeks (0.37 ± 0.24) (p = 0.006) and from baseline to 10-weeks (0.46 ± 0.51) (p = 0.033)
(Figure 4). The mean Ktrans change between the 4-weeks and 10-weeks was not significant
(p = 0.33) (Figure 5). The mean absolute change in Ktrans between 4- and 10-weeks in the
6-month disease progression group compared to the group without disease progression
at 6-months group were +43.9 min−1 and −0.4 min−1 respectively. This was statistically
significant (p = 0.038).

Figure 5. Boxplot of mean Ktrans at baseline, 4-weeks and 10-weeks with markers representing upper
and lower quartiles along with highest and lowest values.

The following parameters were associated with early disease progression at 6 months:
percentage change in perfused tumour volume between baseline and 4-weeks (p = 0.016),
Ktrans change between 4- and 10-weeks (p = 0.038) and percentage change in ECV between
4- and 10-weeks (p = 0.009). ROC curve analysis found the AUC values to be 0.879 for all
three of these parameters individually (ROC curve shown in Figure 6).
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Figure 6. Receiver operating characteristic (ROC) curve analysis and area under the curve (AUC)
values of Ktrans change between 4 and 10-weeks (Blue line), Extracellular volume change (ECV)
between 4 and 10-weeks (Red line) and perfused tumour volume change between baseline and
4-weeks (Green line). AUC 0.879 for all three of these parameters individually.

Interobserver Agreement

The inter-observer agreement was excellent for perfused tumour volume, Ktrans and ECV
across all segmented lesions with semi-automated ROI placement. Perfused tumour volume
(ICC: 0.928; 95% confidence interval [CI]: 0.869, 0.959). Ktrans (ICC: 0.949; 95% confidence
interval [CI]: 0.918, 0.969). ECV (ICC: 0.910; 95% confidence interval [CI]: 0.800, 0.961).

4. Discussion

RCC tumour biology is characterised by angiogenesis and hypervascularity due to
increased expression of VEGF resulting in endothelial proliferation and neo-vessel forma-
tion [17,20,21]. This makes RCC an optimal target for measuring tumour perfusion and
highlights the clinical relevance of evaluating efficacy of anti-angiogenic TKIs, which inhibit
VEGF receptor signalling, resulting in reduced microvascular density [17,20,22]. Changes
in tumour vessel density have been shown to correlate with response and resistance to
anti-angiogenic therapy [23].

The measurement of Ktrans, a DCE-MRI derived quantitative marker of microvascular
function and surrogate for tumour blood flow [19], potentially provides a non-invasive
imaging biomarker to quantify the decrease in microvascular function. The main findings
of this prospective imaging biomarker substudy are that absolute and relative changes in
DCE-MRI derived quantitative biomarkers (perfused tumour volume, Ktrans and ECV) at
the 4- and 10-weeks MRI scan following TKI treatment were correlated with early disease
progression at 6-months.

To date, this is the first clinical study to use longitudinal serial assessments to detect
changes in quantitative DCE-MRI biomarkers following sunitinib or pazopanib treatment in
mRCC. The inclusion of patients treated with either TKI is based on the similar mechanism
of action and efficacy [6,11]. Previous studies investigating the effect of anti-angiogenic
treatment on DCE-MRI biomarkers in mRCC are summarised in Table 2. A lack of stan-
dardised DCE-MRI parameters and measurements taken at different time points precludes
direct comparison between the studies.
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Table 2. Previous published clinical studies using DCE-MRI to assess response to anti-angiogenic
therapy in renal cancer.

Authors [Reference] Year Number of Patients
Included in Analysis Anti-Angiogenic Therapy

Flaherty et al. [17] 2008 15 Sorafenib
Hahn et al. [24] 2008 44 Sorafenib
Sweis et al. [25] 2017 17 Pazopanib

Hudson et al. [26] 2018 34 Sunitinib
Desar et al. [27] 2011 10 Sunitinib

The reduction in Ktrans at 4- and 10-weeks relative to baseline after starting anti-
angiogenic therapy are in line with previous studies [24,25]. The decrease in perfused
tumour volume at 4-weeks may be attributed to early changes in microvasculature induced
by the anti-angiogenic therapy, which occur as early as three days after treatment start-
ing [26,27]. Prior studies have demonstrated a decrease in Ktrans when the tumour responds
to the TKI treatment [28,29]. These findings support the concept that inhibition of angio-
genesis may be a key independent predictor of outcome [17,24,25]. Baseline pre-treatment
Ktrans has previously been shown to be predictive of those responding to anti-angiogenic
treatment and significantly associated with progression free survival [17,24–26,30–32]. Al-
though we did not find baseline Ktrans to be predictive of early disease progression at
6 months, this is likely due to our small sample size with few patients (n = 3) progressing
at the 6-month interval.

The cases where Ktrans increased between 4- and 10-weeks were correlated with disease
progression at 6 months despite all these patients still having stable disease by RECIST
criteria at 10-weeks. This finding is supported by pre-clinical studies which suggest that
changes in blood flow, including rising Ktrans, precedes tumour growth [22,33]. This again
highlights the potential capability of Ktrans to be an early biomarker of treatment efficacy
and importantly before any tumour size change is observed. Between 4- and 10-weeks,
continued anti-angiogenic treatment would be expected to further reduce Ktrans therefore
an increase instead may suggest early signs of treatment resistance and/or disease relapse
as observed in all three patents with early disease progression.

A similar study by Sweis et al. where patients with mRCC were treated with 28-day
cycles of pazopanib, with MRI scans at 8-, 16- and 24-weeks, found the decrease in Ktrans

relative to baseline was observed at all time points [25]. There was an observed trend
towards Ktrans recovery by 24-weeks, which preceded the median progression free survival
by 8-weeks and therefore potentially an earlier marker of disease progression [25].

The varying responses of metastatic tumours within the same patient as reflected by
the different degrees of change in the perfusion parameters between lesions in the same pa-
tient (Supplementary Materials) also highlights the complex inter-tumoural heterogeneity
in mRCC known to contribute to the heterogeneous clinical outcomes observed in clinical
trials [20]. Functional imaging may allow for further quantification of tumour heterogeneity
to help understand tumour progression further in patients undergoing anti-angiogenic
therapy before morphological changes in size occur [34].

The choice of tumour ROI selection was informed by previous research on DCE-MRI
which has shown advantages of using whole-tumour ROIs compared to smaller ROIs
with higher inter-observer correlation for DCE perfusion and permeability parameters [35].
This method has been previously demonstrated in other cancer types [36]. The high ICC
confirms that this semi-automated method of measuring perfused tumour volume on DCE-
MRI images is reproducible. Across institutions, the issue of inter-algorithm variability
when evaluating DCE-MRI results in dramatically different parameters and is a major
obstacle to implementing DCE-MRI into practice [37–39].

The strength of this prospective study is that it is linked to a phase II/III trial where
longitudinal data is still being collected for the survivors. Limitations include the small
sample size and inclusion of multiple lesions from a variety of organs sites, which have
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variable baseline perfusion however to account for these differences we used both absolute
and percentage changes between each DCE-MRI time point. A few tumours were difficult
to delineate due involvement of other well-perfused organs or structures such as the spleen,
liver, or abdominal arteries. Although two different types of targeted therapy (sunitinib or
pazopanib) were used, previous DCE-MRI studies show both anti-angiogenic agents result
in similar trends in reduction of Ktrans with similar efficacy [6,24,25].

5. Conclusions

This study supports further investigation of DCE-MRI derived biomarkers of tumour
perfusion (perfused tumour volume, Ktrans and extracellular volume) as potential surrogate
biomarkers to predict disease progression following TKI therapy in metastatic RCC. We
have demonstrated that this approach is feasible and of interest; further larger studies are
required to test its wider clinical application.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11071302/s1. Supplementary Tables (Table S1 Baseline and follow-up perfused
tumour volume (cm3) estimates per measured tumour target lesion for each patient with percentage
changes, Table S2 Baseline and follow-up Ktrans (/min) estimates per measured tumor target lesion for
each patient with percentage changes, Table S3 Baseline and follow-up extra-cellular volume (ECV)
(mL/100 mL) estimates per measured tumour target lesion for each patient with percentage changes
and Table S4 Baseline and follow-up ECV mean transit time (MTT) (s) estimates per measured tumour
target lesion for each patient with percentage changes.).
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