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Abstract 

Graph convolution networks (GCN) have been successfully applied in disease prediction tasks as they 

capture interactions (i.e., edges and edge weights on the graph) between individual elements. The interactions 

in existing works are constructed by fusing similarity between imaging information and distance between 

non-imaging information, whereas disregarding the disease status of those individuals in the training set. 

Besides, the similarity is being evaluated by computing the correlation distance between feature vectors, 

which limits prediction performance, especially for predicting significant memory concern (SMC) and mild 
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cognitive impairment (MCI). In this paper, we propose three mechanisms to improve GCN, namely simi-

larity-aware adaptive calibrated GCN (SAC-GCN), for predicting SMC and MCI. First, we design a simi-

larity-aware graph using different receptive fields to consider disease status. The labelled subjects on the 

graph are only connected with those labelled subjects with the same status. Second, we propose an adaptive 

mechanism to evaluate similarity. Specifically, we construct initial GCN with evaluating similarity by using 

traditional correlation distance, then pre-train the initial GCN by using training samples and use it to score all 

subjects. Then, the difference between these scores replaces correlation distance to update similarity. Last, 

we devise a calibration mechanism to fuse functional magnetic resonance imaging (fMRI) and diffusion 

tensor imaging (DTI) information into edges. The proposed method is tested on the Alzheimer‟s Disease 

Neuroimaging Initiative (ADNI) dataset. Experimental results demonstrate that our proposed method is 

useful to predict disease-induced deterioration and superior to other related algorithms, with a mean classi-

fication accuracy of 86.83% in our prediction tasks. 

Key words： Disease prediction, Graph convolution network, Similarity awareness, Adaptive mechanism, Calibration 

mechanism, Dual-modal information 

1.  Introduction 2 

Alzheimer‟s disease (AD) is a severe brain disorder, which is yet incurable, and no effective medicine 3 

exists for now (Association, 2018; Wang et al., 2013). The early stage of AD, i.e., mild cognitive impairment 4 

(MCI), has an annual 10%-15% conversion rate and an over 50% conversion rate within 5 years to AD 5 

(Hampel and Lista, 2016). In MCI stages, with specific cognitive training and pharmacological treatment, the 6 

deterioration process can be delayed or stopped (Gauthier et al., 2006). Therefore, it is essential to detect MCI 7 

and its earlier stage, significant memory concerns (SMC). However, the accurate disease prediction of SMC 8 

and MCI is still a challenging task due to their subtle differences in neuroimaging features (Li et al., 2019b; 9 

Wee et al., 2014; Zhang et al., 2018). 10 

To overcome the limitation of subtle differences in neuroimaging features, it is increasingly popular to 11 

use multi-modal data to describe or strengthen features from multiple sources (Lei et al., 2020; Li et al., 12 

2019a, 2020b; Tong et al., 2017; Zhu et al., 2019). For example, Zhu et al. (2019) proposed a multi-modal 13 

rank minimisation method to combine magnetic resonance imaging (MRI), positron emission tomography 14 

(PET), and cerebrospinal fluid (CSF). They then predicted AD with a linear regression classifier. Experi-15 



 3 / 36 

 

mental results showed that the classification accuracy based on the above three modalities increased by 6% 16 

compared to that based on CSF. Li et al. (2019a) proposed a sparse regression algorithm for inference of the 17 

integrated hyper-connectivity networks from BOLD functional MRI (fMRI) and arterial spin labelling (ASL). 18 

Finally, they used a support vector machine (SVM) to predict MCI. Experimental results showed that the 19 

classification accuracy based on the above two modalities increased by 11.5% compared to that based on 20 

BOLD fMRI. Integrating fMRI and diffusion tensor imaging (DTI) is shown to achieve good performance by 21 

integrating their complementary cues (Lei et al., 2020; Li et al., 2020b). Lei et al. (2020) developed a mul-22 

ti-task learning method to select features from fMRI functional and DTI structural brain networks, and then 23 

the selected features were sent into an SVM for final prediction. Experimental results showed that the clas-24 

sification accuracy based on fMRI and DTI data increased by 3.76% compared to that based on fMRI data. Li 25 

et al. (2020b) used the DTI tractography as penalty parameters in an ultra-weighted-lasso algorithm to con-26 

struct more accurate fMRI functional brain networks and finally used SVM for prediction. Experimental 27 

results showed that the classification accuracy based on fMRI and DTI data increased by 5.5% compared to 28 

that based on fMRI data. These works show that the performance of using multi-modal neuroimaging is 29 

better than using single modal neuroimaging for disease prediction. However, these studies were limited to 30 

use traditional machine learning methods for feature learning or as a classifier, which limited their perfor-31 

mance to some extent. 32 

As a deep learning method, graph convolution network (GCN) has witnessed great success in disease 33 

prediction recently (Kazi et al., 2019; Ktena et al., 2018; Parisot et al., 2018; Zhang et al., 2019), which is 34 

based on the graph theory (Bapat et al., 2010). On a graph, a node represents a subject‟s data, and the edges 35 

establish connections between each pair of nodes. Parisot et al. (2018) integrated similarity between imaging 36 

information and distance between phenotypic information (e.g., gender, equipment type, and ages) into edges 37 

for the prediction of Autism Spectrum Disorder (ASD) and conversion to AD. Kazi et al. (2019) designed 38 

different kernel sizes in spectral convolution to learn cluster-specific features for predicting MCI and AD. 39 

Experimental results showed that their method performed better when the classes had large and different 40 

variances. All these studies validate the effectiveness of GCN and show its convolution operation is the key 41 

to prediction performance. 42 

However, there are still limitations in the effectiveness of multi-modal fusion and GCNs. First, existing 43 



 4 / 36 

 

GCN studies (Kazi et al., 2019; Kipf and Welling, 2017; Ktena et al., 2018; Parisot et al., 2018; Zhang et al., 44 

2019) for disease prediction use whole population (including labelled subjects in the training set and unla-45 

beled subjects in the test set) to construct a graph, but fail to consider the difference between disease status in 46 

those labelled subjects. Ignoring disease status on graph affects convolution performance and eventually 47 

deteriorates system training. Second, the existing works estimate edge weights by fusing similarity between 48 

imaging information and distance between non-imaging information. However, the similarity between im-49 

aging information are roughly computed based on the correlation distance between feature vectors, which 50 

affects convolution performance, especially when SMC and MCI have subtle differences among feature 51 

vectors. Third, the existing multi-modal GCN (Zhang et al., 2019), composed of multiple GCN frameworks 52 

for feature learning and then concatenating multi-modal features for disease prediction, ignores the com-53 

plementary relationship between fMRI and DTI data in graph construction. 54 

To overcome the above limitations, we design a similarity-aware adaptive calibrated GCN, which uses 55 

two GCN models corresponding to fMRI and DTI data and balances their outputs via a combined weight 56 

mechanism. Three mechanisms are proposed in this paper. First, similarity-aware receptive fields are de-57 

signed on graphs to consider the difference of disease status. Specifically, every labelled node representing a 58 

training sample is only connected with those labelled nodes with the same disease status. Every unlabeled 59 

node representing a test sample may connect with every node on a graph. Second, we propose an adaptive 60 

mechanism, which uses the difference between pre-scores to replace correlation distance to estimate more 61 

accurate similarity. Specifically, we use the initial similarity calculated based on correlation distance to 62 

construct an initial graph and pre-train GCN using training samples. Then we use the pre-trained GCN to 63 

score all subjects. The difference between these pre-scores is used to form the updated similarity. This is 64 

motivated by pre-trained GCNs leading to similarity metrics better than correlation distance. Third, based on 65 

the relevant and complementary relationship between fMRI functional network and DTI structural network, 66 

we propose a calibration mechanism to fuse functional and structural information into edges. We validate our 67 

method by using the ADNI (https://ida.loni.usc.edu) public database. Experimental results show that our 68 

method achieves promising performance for predicting SMC and MCI. 69 
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2. Methodology 70 

Figure 1 shows an overview of our proposed prediction framework. Our objective is to predict the status 71 

of an individual described as a node binary classification problem, where each node is assigned as a label l   72 

{0, 1}. For n subjects, each subject is represented by fMRI, DTI and phenotypic information (e.g., gender and 73 

equipment type). Based on fMRI and DTI data, we construct a functional connection (FC) brain network and 74 

a structural connection (SC) brain network for every subject. To fuse fMRI and DTI information, we develop 75 

two graphs corresponding to two GCN models, and each GCN model is trained and utilised independently. A 76 

graph is described as          .   represents vertices, and each vertex represents a subject,   represents 77 

edges and each edge models the similarity between the corresponding subjects, and all edges compose ad-78 

jacency matrix  . In this paper, we use feature matrix   to represent features of all subjects on the graph. 79 

Each row of   represents the selected features of its corresponding subject, and the number of matrix rows 80 

matches with the number of total subjects on a graph. 81 

Generally, we divide our framework into four parts. First, we construct FC and SC brain networks for 82 

every subject. Second, we construct functional and structural graphs. Our similarity-aware receptive fields 83 

are proposed in this part. Third, we design an adaptive calibrated GCN to output scores of subjects. We 84 

propose an adaptive mechanism and a calibration mechanism to improve the adjacency matrix in this part. 85 

Last, we employ a combined weight mechanism to balance functional scores and structural scores to ac-86 

complish our classification task. 87 

Table 1:The notation. 88 

Notation Size Description 

n  Number of subjects 

N  Number of brain ROIs 

m  Number of selected features by using recursive feature elimination (RFE)    Polynomial order      Distance of gender     Distance of equipment type     Combined weight coefficient for functional score     Combined weight coefficient for structural score       Calculation of correlation distance  

  Sim     Calculation of similarity          Functional score of subject            Structural score of subject           Functional feature vector of subject           Structural feature vector of subject           Functional feature vector of subject   



 6 / 36 

 

        Structural feature vector of subject          Functional feature matrix        Structural feature matrix         Similarity-aware functional adjacency matrix          Similarity-aware structural adjacency matrix           Similarity-aware adaptive functional adjacency matrix           Similarity-aware adaptive structural adjacency matrix          Similarity-aware adaptive calibrated adjacency matrix              Functional score vector 

 Structural score vector             

 89 
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(a) (b) (c) (d)90 
 91 

Figure 1: General framework of our proposed disease deterioration prediction algorithm. (a) Supposing there are total n subjects in 92 

our classification task. We get n functional networks, and n structural networks, with every subject, has a functional network and a 93 

structural network. (b) There are n nodes on a graph with every node representing a subject, and we construct the functional graph with 94 

every node represented by functional features and construct the structural graph with every node represented by structural features. (c) 95 

After adaptive calibrated GCN, we get a     functional score vector         and a     structural score vector        . Every 96 

functional score represents the predicted result of its corresponding subject based on its functional features, and a structural score 97 

represents the predicted result based on a subject‟s structural features. (d) We use a combined weight mechanism to finally form a     98 

score vector as the final predicted results. 99 

2.1 Dataset description and brain network construction 100 

2.1.1 Dataset 101 

A total of 170 subjects from the ADNI database are used for training and testing, including SMC, early 102 

mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and normal control (NC). The 103 

gender, age and equipment type are used as phenotypic information in this paper, and the detailed infor-104 

mation is shown in Table 2. 105 
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 106 

Table 2: Detailed information about the used dataset. 107 

Group SMC(44) EMCI(44) LMCI(38)      NC(44) 

Male/Female 17M/27F 22M/22F 19M/19F 22M/22

Age (mean SD) 76.3 5.4 76.5 6.1 76.0 7.7 76.5 4

GE/SIEMENS/PHILIPS 21/21/2 9/30/5 26/9/3 14/25/5 

 108 

Our prediction task is a node binary classification problem. Therefore, we carry out our method on the six 109 

tasks, including NC vs. SMC, NC vs. EMCI, NC vs. LMCI, SMC vs. EMCI, SMC vs. LMCI, and EMCI vs. 110 

LMCI. 111 

2.1.2 Functional brain network construction 112 

For fMRI data preprocessing, we apply the standard procedures including using the GRETNA toolbox 113 

(Wang et al., 2015) to preprocess our fMRI time-series signal. We discard the first ten acquired fMRI vol-114 

umes and correct the remaining 170 volumes by applying mean-subtraction. We apply head movement 115 

correction, perform spatial normalisation with DARTEL, and perform smooth filtering by employing the 116 

Gaussian kernel. Finally, we regress the local mean time-series, and use the automated anatomical labelling 117 

(AAL) (Tzourio-mazoyer et al., 2002) to segment brain space into 90 regions of interests (ROIs). After the 118 

above process, we obtain the time-series of 90 ROIs for each individual. 119 

For constructing a functional brain network, Pearson‟s correlation (PC) is used, which captures the rela-120 

tionship between pair ROIs, and sparse representation (SR) method, which establishes multi-ROI relation-121 

ship. Based on SR method, many popular methods have been proposed and applied, such as weighted sparse 122 

representation (WSR) (Yu et al., 2017), strength-weighted sparse group representation (WSGR), Group 123 

sparse representation (GSR)(Zhang et al., 2017), strength and similarity guided GSR (SSGSR)(Zhang et al., 124 

2018), and sparse low-rank (SLR) graph learning (Qiao et al., 2016). The reviewed literature (Qiao et al., 125 

2018) summarises the above methods. In this paper, we do not focus on the methods of brain network con-126 

struction and use the reliable and straightforward PC method to construct our FC network. After brain net-127 

work construction, we finally get a 90×90 brain functional network for every subject. 128 

2.1.3 Structural brain network construction 129 

For DTI structural brain network, we use PANDA Toolbox (Goto et al., 2013) to get the global brain 130 
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deterministic fibre bundle. We obtain the fractional anisotropy (FA) as feature vectors and use the AAL 131 

template on DTI image to divide the brain space into 90 ROIs. For SC network construction from DTI data, 132 

the average FA of links between network nodes is defined as the connection weight in the DTI network, and 133 

then we get a 90×90 SC network for every subject. 134 

2.1.4 Feature selection method 135 

After brain network construction, we finally have a 90×90 FC network and a 90×90 SC network for every 136 

subject. To reduce the dimension of FC and SC brain networks, we extract upper triangular matrix elements 137 

to form a 1×4005 feature vector for every brain network. Then we use recursive feature elimination (RFE) 138 

(Guyon et al., 2002) to select features. Finally, a low-dimensional feature vector is used to represent an FC or 139 

SC brain network. For example, for subject  , we have a low-dimensional functional feature vector     and a 140 

low-dimensional structural feature vector    . 141 

2.2 Graph construction 142 

The above low-dimensional feature vectors and acquired phenotypic information (e.g., gender, age, and 143 

equipment type) are used to construct graphs. We develop two GCN models with a functional graph and a 144 

structural graph, respectively. Graphs include nodes and edges, where nodes represent subjects and edges 145 

establish their connections. Specifically, every node on the functional graph is represented by its corre-146 

sponding subject‟s functional feature vector. Every node on the structural graph is represented by its corre-147 

sponding subject‟s structural feature vector. Edge connections and edge weights are the keys in graph theory 148 

as they decide which nodes are used to perform convolutions and corresponding convolutions coefficients, 149 

therefore they attract much attention (Liu et al., 2019; Xu et al., 2018). The two-layer network with a graph 150 

(Kipf and Welling, 2017) can be described as the equation                              and the 151 

filtering principle of graph theory is illustrated in Figure 2, where   is the adjacency matrix with normali-152 

zation. We can see that a big convolution coefficient means big filtering effect in its corresponding feature..  153 
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   154 

Figure 2. Filtering principle of the graph theory. 155 

In existing methods, edge connections consider gender and equipment type with ignoring the disease 156 

status of those subjects in the training set, and edge weights are evaluated by a computed correlation coef-157 

ficient of feature vectors. In this subsection, we design similarity-aware receptive fields to consider disease 158 

status of those subjects in training set in terms of edge connections. In the next subsection, we design an 159 

adaptive mechanism and calibration mechanism to improve edge weights. For edge weights, we first use an 160 

existing method to initialise them. 161 

2.2.1 Edge connections based on similarity-aware receptive fields 162 

Previous work considers gender and equipment type to establish edge connections by assigning bigger 163 

edge weights between those subjects with the same gender and same equipment type. Still, it fails to consider 164 

disease status of those subjects in the training set. As disease status results in differences on subjects‟ features 165 

and status of most subjects on the graph (a graph includes those subjects in both training set and test set) are 166 

known, it is necessary to consider disease status in edge connections. Hence, we design three receptive fields 167 

that incorporate knowledge on disease status. Two receptive fields are for labelled subjects in the training set, 168 

and one receptive field is for unlabeled subjects in the test set. For a labelled patient, we establish its con-169 

nections with all labelled patients. For a labelled NC, we establish its connections with all labelled NCs. For 170 

every unlabeled subject in the test set, we ignore to consider its disease status and establish its connections 171 

with all other subjects. The detailed description of three receptive fields is shown in Figure 3. 172 



 10 / 36 

 

NCs in 

Training set

Subjects in 

Test set

Patients in 

Training set

1   1       1      0   0  0      0       0

1   1       1      0   0  0      0       0

1   1       1      0   0  0      0       0

0   0       0      1   1  1      0       0

0   0       0      1   1  1      0       0

0   0       0      1   1  1      0       0

1   1       1      1   1  1      1       1

1   1       1      1   1  1      1       1

NodesAdjacency matrix 

Labelled nodes (NCs) 

in training set

Unlabelled nodes  in test set

Labelled nodes (Patients) 

in training set

Edges

Receptive

 field 1 

Receptive 

field 2 

Receptive

 field 3 

 173 

Figure 3: Detailed description of similarity-aware receptive fields. We describe our similarity-aware fields by classifying NC and 174 

Patient. In the adjacency matrix, „1‟ represents connection is established, and „0‟ represents connection is not established. 175 

2.2.2 Edge weights initialisation 176 

Initial edge weights are estimated based on previous works (Kazi et al., 2019; Kipf and Welling, 2017; 177 

Ktena et al., 2018; Parisot et al., 2018; Zhang et al., 2019), which fuse similarity between imaging infor-178 

mation and distance between non-imaging information. We use Sim    to denote similarity between paired 179 

subjects,    represents the distance of gender, and    represents the distance of equipment type. Based on the 180 

edge connections in similarity-aware receptive fields in Figure 3, the initial similarity-aware functional 181 

adjacency matrix     and the initial similarity-aware structural adjacency matrix     are calculated as: 182             (       )  (                   )                                   (1) 183                       (                   )                                   (2) 184 

where     and     are functional feature vectors of subject   and subject  ,     and     are their structural 185 

feature vectors,    and   represent their gender information,   and    represent their equipment type in-186 

formation,    and    are defined as: 187 

          {                    ,           {                                                     (3) 188 

 The initial similarity is estimated by calculating the correlation distance between feature vectors as 189 

(Parisot et al., 2018): 190 

   (       )     ( * (       )+    )                  ( [          ]    )                   (4) 191 

where ρ( ) is the correlation distance function, and σ is the width of the kernel. 192 

The above initial similarity Sim    is used to construct the edge weight, which plays the role as a con-193 

volution coefficient in graph theory as shown in Figure 2. In the work (Parisot et al., 2018), the final classi-194 
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fication performance gets significant improvement by combing Sim    with phenotypic information. The 195 

edge weight is doubled when its corresponding two subjects have the same gender and equipment type, and 196 

the edge weight is set to zero when the corresponding two subjects have different gender and equipment type. 197 

The method of integrating phenotypic information increases the difference between edge weights and the 198 

final classification results validate this effectiveness 199 

After establishing edge connections based on our similarity-aware receptive fields and above initial edge 200 

weights, we get the initial similarity-aware functional adjacency matrix     and the initial similarity-aware 201 

structural adjacency matrix    . 202 

2.3 Adaptive calibrated GCN 203 

In this subsection, we develop two GCN models. One model is used to predict disease status based on 204 

functional data, and the other is used based on structural data. Each model is trained and utilised inde-205 

pendently. Specifically, we use functional data in the training set and their corresponding labels to train a 206 

GCN model, and then use the trained model to predict the status of all subjects. After the process, we get a 207 

functional score vector              to represent the predicted scores. Besides, we use the structural data 208 

in the training set and their corresponding labels to train the other GCN model, and also use the model to 209 

predict the status of all subjects. After the process, we get a structural score vector              to rep-210 

resent the predicted scores. The above two GCN models can accomplish prediction tasks independently. As 211 

integrating fMRI functional data and DTI structural data shows better performance (Lei et al., 2020; Li et al., 212 

2020b), we use a combined weight mechanism method to combine their predicted results to perform the final 213 

prediction. The corresponding two combined weight coefficients are set as 0. 5 in this paper according to the 214 

experimental results. 215 

Using the correlation distance to compute similarity in Eq. (4) is inaccurate enough since SMC and MCI 216 

have subtle differences among feature vectors. We propose an adaptive mechanism to improve the similarity 217 

measure in view that GCN has better capability to extract in-depth features than the correlation distance. We 218 

develop a calibration mechanism to fuse functional and structural data into edges. By using our adaptive 219 

calibrated mechanism, we update our initial GCN models by pre-training and finally use the updated GCN 220 

models to predict disease status. Our model is not trained end-to-end, and there are two steps in our adaptive 221 

calibrated GCN. First, based on initial graphs, we train GCN models and then use them to score every subject. 222 
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Based on these scores, we use our adaptive mechanism and calibration mechanism to construct a new adja-223 

cency matrix and then form new graphs. Second, based on new graphs, we train GCN models again and 224 

finally use them to predict disease status. 225 

2.3.1 Adaptive mechanism 226 

Random forest-derived similarity evaluation methods (Shi et al., 2005; Shi and Horvath, 2006) use ma-227 

chine learning to evaluate similarity in unsupervised clustering tasks, which inspire us to propose an adaptive 228 

mechanism in GCN for our disease prediction. Compared with the initial adjacency matrices, the adaptive 229 

adjacency matrices use score difference to replace correlation distance for constructing more accurate edge 230 

weights. First, we construct dual-modal GCN models with initial graphs and then pre-train GCN models 231 

using training samples. Second, we input all subjects to the pre-trained GCN to get their scores. We use 232         to represent functional score vector and use         to represent structural score vector. Last, we 233 

re-compute edge weights with updated similarity based on scores. The adaptive similarity based on scores are 234 

calculated: 235 

   (       )     ( *               +    )                  ( [               ]    )              (5) 236 

where         and         denote the scores of subject   and subject   on functional data, whereas         237 

and         denote their scores on structural data. Every score is a scalar and ranges from 0 to 1, which is 238 

used to represent the predicted disease status of a subject based on functional or structural features. In labels, 239 

we use 0 or 1 to represent the status of the subject. σ is also the width of the kernel. By Eqs. (1), (2), (3) and 240 

(5), we finally get a more accurate similarity-aware adaptive functional adjacency matrix      and a more 241 

accurate similarity-aware adaptive structural adjacency matrix     . 242 

2.3.2 Calibration mechanism 243 

As functional and structural information is complementary, we propose a calibration mechanism to in-244 

tegrate fMRI functional and DTI structural information. Let the symbol   represent the Hadamard product, 245 

based on the above similarity-aware adaptive functional adjacency matrix      and similarity-aware adaptive 246 

structural adjacency matrix     , the similarity-aware adaptive calibrated adjacency matrix      is defined as: 247                                                                                (6) 248 
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After using the calibration mechanism, we form a similarity-aware adaptive calibrated adjacency matrix     . 249 

It is worth mentioning that the adjacency matrix is further normalized using Eq. (7). After this, in the nor-250 

malized adjacency matrix, the sum of every row of elements is set to 1 251                     ∑              ，                                           (7) 252 

2.3.3 Graph convolutional network architecture 253 

In GCN, spectral theory improves adjacency matrix      by applying the convolution of Fourier trans-254 

form and Taylor‟s expansion formula to achieve an excellent filtering effect and computational efficiency. 255 

The spectral convolution (Defferrard et al., 2016; Shuman et al., 2013) on graphs can be described as the 256 

multiplication of a signal      (a scalar for every node) with a filter            by: 257                ∑         ( ̃)                                               (8) 258 

where   is the matrix of eigenvectors and is computed from formula                      .    259 

and   are, respectively, the identity matrix and the diagonal degree matrix.       is well approximated by a 260 

truncated expansion in terms of Chebyshev polynomials to the    -order.    is a vector of Chebyshev co-261 

efficients,    is Chebyshev polynomials function,  ̃           ⁄ .  262 

After spectral convolution, similarity-aware adaptive calibrated adjacency matrix      is approximated 263 

by ∑           ̃ . By adjusting polynomial order    it can get a different filter effect. For example, the 264 

performance reaches the best with    3 or 4 in prediction tasks (Kipf and Welling, 2017; Parisot et al., 265 

2018). 266 

Our dual-modal GCN structure is illustrated in Figure 1. Every GCN model consists of two graph con-267 

volution layers activated by rectified linear unit (ReLU) function and one softmax output layer. The func-268 

tional and structural GCN models are trained using the whole population graph as input. After dual-modal 269 

adaptive calibrated GCN, we get an updated functional score and structural score for every subject. Namely, 270 

we use a combined weight mechanism to combine the two scores to perform the final prediction. Specifically, 271 

the final predicted score for a subject   is denoted by                      . According to our ex-272 

perimental results in the experimental section, we set        and        for our all prediction tasks. For 273 

example, for NC vs. SMC, the label of an SMC subject is set 1, and the label of an NC is set to zero. The 274 

predicted result of a subject after GCN models is represented by a score which ranges from 0 to 1. A subject 275 
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with a predicted score ranging from 0 to 0.5 is regarded as an NC, and a subject with a predicted score ranging 276 

from 0.5 to 1 is regarded as an SMC. 277 

3. Experiments and results 278 

We evaluate the proposed method on the ADNI database using a 10-fold cross-validation strategy. As our 279 

main contribution is to improve traditional GCN for predicting SMC and MCI, the GCN parameters of all 280 

strategies in this paper are fixed and chosen according to previous work (Parisot et al., 2018). Parameters 281 

details are as below: dropout rate is 0.1, regularisation is 5×10
-4

, the learning rate is 0.005, the number of 282 

epochs is 200, and the default polynomial order is 3. Different from (Parisot et al., 2018), to reduce the 283 

number of parameters in GCN and avoid overfitting, the number of neurons per layer is set as 8 and the 284 

number of the selected features is set as 50. For dual-modal GCN,        and       . In this section, we 285 

refer to the graph constructed from the phenotypic data, including gender and equipment type information. 286 

Given the small size of our dataset and that age reduces the performance (Parisot et al., 2018), we ignore age 287 

information in GCN. Prediction accuracy (ACC), sensitivity (SEN), specificity (SPE) and area under the 288 

curve (AUC) are used as evaluation metrics. Six binary classification experiments including NC vs. SMC, 289 

NC vs. EMCI, NC vs. LMCI, SMC vs. EMCI, SMC vs. LMCI and EMCI vs. LMCI validate our prediction 290 

performance. 291 

We divide this section into three parts. First, we test the performance of our three mechanisms and 292 

compare them with other popular traditional algorithms. Second, we describe the effect of our similari-293 

ty-aware receptive fields and adaptive mechanism on the adjacency matrix. Third, we describe the effect of 294 

our adjacency matrix on feature values. The critical parameters of the proposed method are described in the 295 

discussion section. 296 

3.1 Classification performance of our method 297 

The proposed prediction framework is compared to other four related popular frameworks, including 298 

GCN (Parisot et al., 2018), multiple layer perception (MLP), random forest (RF) (Breiman, 2001) and 299 

SVM(Cortes and Vapnik, 1995). The parameters are set according to work by (Parisot et al., 2018), the 300 

parameters of MLP are the same with GCN implementation, RF and SVM use the scikit-learn library im-301 

plementation (Pedregosa et al., 2011). The parameters of RF are: The number of trees is 500, and the max-302 
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imum depth is three. The parameters of SVM are: The kernel is „sigmoid‟, the kernel coefficient is 0.1, the 303 

regularisation parameter is 0.1, and the maximum number of iterations is 200. 304 

To describe our three mechanisms in detail, similarity-aware receptive fields, adaptive mechanism and 305 

calibration mechanism are named as „S‟, „A‟ and „C‟, respectively. For example, the GCN with similari-306 

ty-aware receptive fields is represented by S-GCN, SA-GCN represents the GCN with similarity-aware 307 

receptive fields and adaptive mechanism, and SAC-GCN represents similarity-aware adaptive calibrated 308 

GCN. The results of the experiment are shown in Table 3. ROC curves comparison is shown in Figure 4. 309 

Table 3: Disease prediction performance of different methods in our six tasks. 310 

Modal Method 
                     NC vs. SMC                             NC vs. EMCI                                     NC vs. LMCI  

ACC

（）

SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 

fMRI 

MLP 59.09 61.36 56.81 63.58 62.50 61.36 62.06 68 65.85 65.78 65.90 72.97 

RF 60.22 65.91 54.54 68.34 65.90 52.27 79.54 70.51 68.29 60.52 75 70.87 

SVM 63.63 68.18 59.09 69.21 64.77 63.63 63.63 68.75 69.51 63.15 75 79.67 

GCN 70.45 84.09 56.81 76.39 68.18 79.54 56.81 73.61 71.95 71.05 72.72 76.67 

S-GCN 72.72 77.27 68.18 81.66 69.31 52.27 86.36 74.12 73.17 71.05 75 78.77 

SA-GCN 76.13 79.54 72.72 84.81 71.59 79.54 65.90 79.44 80.48 76.31 84.09 91.27 

SAC-GCN 77.27 81.81 72.72 80.37 75 84.09 65.91 80.94 84.14 78.94 88.63 92.64 

DTI 

MLP 67.63 68.18 59.09 74.07 70.45 63.63 77.27 84.95 73.17 71.05 75 84.99 

RF 65.63 70.45 56.81 69.32 69.31 70.45 68.18 72.52 73.17 73.68 72.72 71.79 

SVM 71.59 86.36 56.81 84.35 69.31 72.72 65.90 71.82 71.95 71.05 72.72 80.32 

GCN 72.72 75 70.45 83.88 72.72 77.27 68.18 80.94 76.82 78.94 75 87.86 

S-GCN 75 88.63 61.36 84.81 73.86 77.27 70.45 82.90 76.82 78.94 75 90.43 

SA-GCN 79.54 86.36 72.72 90.03 77.27 86.36 68.18 85.80 84.14 84.21 84.09 91.09 

SAC-GCN 81.81 88.63 75 89.36 81.81 86.36 77.27 88.89 87.80 86.84 86.63 91.33 

Dual 

MLP 68.18 81.81 54.54 75.83 71.59 70.45 72.72 77.69 75.60 73.68 77.27 86.42 

RF 67.04 72.72 61.36 71.95 72.72 75 70.45 73.33 76.82 76.31 77.27 84.15 

SVM 73.86 86.36 61.36 76.76 71.59 75 68.18 73.14 73.17 73.68 72.72 80.08 

GCN 76.13 86.36 65.90 88.22 75 77.27 75.55 80.73 79.26 78.94 79.54 89.71 

S-GCN 78.40 88.63 68.18 86.00 76.13 79.54 72.72 83.32 82.92 81.57 84.09 89.83 

SA-GCN 81.81 86.36 77.27 90.29 79.54 88.63 70.45 86.67 85.36 81.57 88.64 89.53 

SAC-GCN 84.09 88.63 79.54 89.67 85.22 90.90 79.54 89.82 89.02 89.47 88.63 92.88 

Modal Method 
 SMC vs. EMCI                           SMC vs. LMCI                            EMCI vs. LMCI  

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 

fMRI 

MLP 60.22 65.90 54.54 63.43 58.83 44.73 70.45 64.35 65.85 71.05 61.36 70.22 

RF 63.63 65.90 61.36 66.99 61.97 57.07 77.27 60.19 62.19 65.78 59.09 66.33 

SVM 64.77 56.81 72.72 67.98 64.63 63.15 65.90 71.11 67.07 55.26 77.27 71.65 

GCN 72.72 77.27 68.18 83.37 71.95 55.26 86.36 82.06 73.17 97.73 54.54 79.67 

S-GCN 75 79.54 70.45 84.64 73.17 55.26 88.63 82.83 76.82 92.10 63.63 89.11 

SA-GCN 77.27 84.09 70.45 86.57 76.82 63.15 88.63 85.89 78.04 94.73 63.63 82.48 

SAC-GCN 80.68 79.54 81.81 89.31 76.82 63.15 88.63 85.89 79.26 84.21 75 90.67 

DTI 

MLP 68.18 68.18 68.18 75 70.73 68.42 72.72 81.16 67.07 60.52 72.72 69.08 

RF 70.45 81.81 59.09 79.60 73.17 65.78 79.54 79.13 68.29 68.42 68.18 70.10 

SVM 70.45 65.90 75.00 75.26 74.39 68.42 79.54 79.01 73.17 68.42 77.27 75.54 

GCN 79.54 79.54 79.54 93.39 81.70 78.94 84.09 84.39 74.39 89.47 61.36 78.95 

S-GCN 80.68 84.09 77.27 89.88 82.92 78.94 86.36 93.90 78.04 94.73 63.63 82.48 
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 311 

 312 

Figure 4: ROC curves comparison of different scenarios. 313 

We use the most common approach to construct a brain network in this paper. As shown in Table 3, the 314 

performance of traditional classifiers (MLP, RF, SVM) based on our brain networks is poor, and there is only 315 

a few variation with less than 2.73% difference in mean ACC of six tasks between the best and the worst 316 

performance. SVM shows the best performance with mean ACC of six tasks based on dual-modal data 317 

reaching to 73.75%. Compared with the above traditional methods, the performance of GCN is much im-318 

proved. Specifically, compared with the best performance in traditional classifiers based on fMRI, DTI and 319 

dual modalities, the mean ACC of six tasks increase by 5.67%, 4.50% and 4.95%, and the mean AUC of six 320 

tasks increase by 7.23%, 7.18% and 9.93%. The performance comparison follows the previous work (Parisot 321 

et al., 2018), and it validates the effectiveness of graph theory on classification. For the above six classifi-322 

cation tasks based on dual-modal GCN, the performance of NC vs. SMC is the worst, and the performance of 323 

SA-GCN 84.09 84.09 84.09 91.58 84.14 81.36 82.66 89.71 80.48 89.47 72.72 88.10 

SAC-GCN 85.22 88.63 81.81 92.05 86.58 84.21 88.63 95.69 82.92 94.73 72.72 94.14 

Dual 

MLP 69.31 70.45 68.18 73.86 71.95 76.31 68.18 83.07 69.51 65.78 72.72 70.57 

RF 71.59 70.45 72.72 79.34 75.60 71.05 79.54 80.74 71.95 73.68 70.45 72.13 

SVM 72.72 77.27 68.18 76.39 75.60 68.42 81.81 80.14 75.60 65.78 84.09 77.57 

GCN 80.09 77.27 81.31 88.79 82.70 84.21 79.54 86.90 79.26 94.73 65.90 89.35 

S-GCN 82.95 86.36 79.54 94.32 84.14 81.57 86.36 88.82 81.70 92.10 72.72 83.55 

SA-GCN 85.22 90.90 79.54 94.73 86.58 84.21 88.63 95.69 82.92 94.73 72.72 94.14 

SAC-GCN 88.63 95.45 81.81 95.56 87.80 84.21 90.90 90.25 86.58 92.10 81.81 94.26 
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NC vs. LMCI is the best.  324 

Because of the effectiveness of GCN and shortcomings of existing researches, we propose three mech-325 

anisms to improve GCN in this paper. First, we propose similarity-aware receptive fields to consider disease 326 

status in edge connections. As Table 3 shows, the performance of S-GCN improves performance compared 327 

with GCN. Specifically, based on fMRI, DTI and dual modalities, the mean ACC of S-GCN of our six tasks 328 

increase by 1.96%, 1.57% and 2.30%, the mean SEN increase by -6.24%, 3.90% and 1.83%, the mean SPE 329 

increase by 9.47%, -0.75% and 2.64%, and the mean AUC increase by 3.22%, 2.49% and 0.35%. The above 330 

comparison results validate that considering disease status is essential in graph construction. By using sim-331 

ilarity-aware receptive fields on dual modalities, the final performance of NC vs. LMCI gets the highest 332 

improvement with ACC increased by 3.66%. In contrast, the ACC of the remaining tasks increased by 2.27%, 333 

1.13%, 2.86%, 1.44%, and 2.44%. 334 

Second, we propose an adaptive mechanism to improve edge weights. As shown in Table 3, based on 335 

similarity-aware receptive fields, adaptive mechanism yields improved results. Specifically, based on fMRI, 336 

DTI and dual modalities, the mean ACC of SA-GCN compared with S-GCN increase by 3.35%, 3.72% and 337 

2.53%, the mean SEN increase by 8.37%, 1.54% and 2.77%, the mean SPE increase by 1.13%, 5.06% and 338 

2.27%, and the mean AUC increase by 3.22%, 1.98% and 4.20%. The above comparison results show that 339 

combined our adaptive mechanism with similarity-aware receptive fields further improves performance. By 340 

using the adaptive mechanism on dual modalities, the final performance of NC vs. SMC and NC vs. EMCI 341 

gets the most significant improvement with ACC increased by 3.42% and 3.41%. The ACC of the other tasks 342 

increases by 2.44%, 2.27%, 2.43% and 1.22%. After using similarity-aware receptive fields and adaptive 343 

mechanism, we can get the mean ACC of 83.57% for our six tasks. 344 

Third, we propose a calibration mechanism to fuse functional and structural information into the adja-345 

cency matrix. As shown in Table 3, SAC-GCN yields improved results compared with SA-GCN. Specifi-346 

cally, based on fMRI, DTI and dual modalities, the mean ACC of SAC-GCN compared with SA-GCN in-347 

crease by 2.14%, 2.74% and 3.31%, the mean SEN increase by -0.93%, 2.92% and 2.39%, the mean SPE 348 

increase by 4.54%, 2.93% and 4.16%, and the mean AUC increase by 1.56%, 2.52% and 0.23%. The above 349 

comparison results show that our calibration mechanism can improve performance when functional adja-350 

cency matrix and structural adjacency matrix have high precision. Eventually, the mean ACC, SEN, SPE and 351 
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AUC of SAC-GCN of our six tasks is 86.89%, 90.12%, 83.70% and 92.07%, respectively. 352 

Compared with the results based on fMRI data, it shows better prediction performance based on DTI data. 353 

Specifically, for the three traditional methods (MLP, RF and SVM), the mean ACC of our six tasks increase 354 

by 7.48%, 6.30% and 6.08%, and the mean AUC of our six tasks increase by 11.11%, 6.53% and 6.32%. For 355 

GCN series methods (GCN, S-GCN, SA-GCN and SAC-GCN), the mean ACC of our six tasks increases by 356 

4.91%, 4.52%, 4.88% and 5.49%, and the mean AUC of our six task increases by 6.27%, 5.54%, 4.30% and 357 

5.27%. We employ a combined weight mechanism to fuse the results of dual-modal data for the final disease 358 

prediction. Compared with the prediction results based on single modal DTI data, the prediction results based 359 

on dual-modal data show improvement. Specifically, for GCN methods (GCN, S-GCN, SA-GCN and 360 

SAC-GCN), the mean ACC of our six tasks increase by 2.42%, 3.15%, 1.96% and 2.53%, respectively. 361 

For our three mechanisms, similarity-aware receptive fields consider disease status in graph construction 362 

and adaptive mechanism uses scores difference to replace correlation distance for constructing a more ac-363 

curate adjacency matrix. The two appealing mechanisms are not limited to our tasks, and they may extend to 364 

other prediction tasks (e.g., AD, ASD and PD). 365 

3.2 Effect of similarity-aware receptive fields and adaptive mechanism on adjacency matrix 366 

The adjacency matrix is the key of graph theory, which is a mathematical description of edges and edge 367 

weights, and plays the role as a filter (Kipf and Welling, 2017; Parisot et al., 2018). Specifically, after ap-368 

plying spectral convolution as Eq. (8), similarity-aware adaptive calibrated adjacency matrix      is further 369 

approximated by ∑           ̃ . A row of elements of the approximated matrix ∑           ̃  can be re-370 

garded as the convolution coefficients of its related subjects. Our three mechanisms play the role to improve 371 

the adjacency matrix and therefor improve the convolution coefficients, and experimental results in the above 372 

subsection validate their effectiveness. In this subsection, we describe how similarity-aware receptive fields 373 

and adaptive mechanism affect the adjacency matrix. 374 

The proposed similarity-aware receptive fields consider the disease status and constrain the receptive 375 

field of labelled nodes to those nodes with the same status, which means we are establishing connections only 376 

between those subjects with the same status. Different from similarity-aware receptive fields focuing on edge 377 

connections, the adaptive mechanism is proposed to improve edge weights. Edge weights represent convo-378 

lution coefficients, where a considerable weight means its corresponding two subjects have better similarity 379 
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and a significant impact on each other. To describe the effect of similarity-aware receptive fields and adap-380 

tive mechanism, we pick up five subjects from the training set randomly for every disease status in every 381 

prediction task. Our prediction task is a node binary classification problem, so there are ten subjects to be 382 

picked up for every prediction task. Figure 5 visualises their corresponding edge weights in an adaptive 383 

functional adjacency matrix and adaptive structural adjacency matrix. The two adaptive adjacency matrices 384 

have been processed by normalisation. 385 

 386 
(a) Effect on edge weights in fMRI functional adjacency matrix. 387 

 388 
(b) Effect on edge weights in DTI structural adjacency matrix. 389 
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Figure 5: Effect of similarity-aware receptive fields and adaptive mechanism on edge weights in our six prediction tasks. In our six tasks, 390 

we pick up ten subjects randomly from the training set (five subjects for each disease status) and show their edge weights with all 391 

subjects on the graph. In every subfigure, the abscissa represents subjects‟ indices on the graph, and the ordinate represents a subject‟s 392 

edge weights. Blue lines represent the edge weights constructed by using the traditional method, and red lines represent the edge weights 393 

constructed by using our similarity-aware receptive fields and adaptive mechanism. 394 

Figure 5 shows that parts of edge weights are zeros, which is the effect of similarity-aware receptive 395 

fields that establish edge connections only between those subjects with the same status. For example, for NC 396 

vs. SMC, in the first subfigure, we describe an NC subject‟ edge weights with all 88 subjects on the graph. As 397 

abscissa represents subject‟s indices where indices 1-44 represent 44 NCs and indices 45-88 represent 44 398 

SMCs, the NC‟s edge weights with subjects 1-44 are mostly non-zeros whereas its edge weights with sub-399 

jects 45-88 are all zeros. Part of subjects are test samples, and edge weights with these test samples are all set 400 

to zero. 401 

Compared with a little difference between edge weights computed by traditional methods (Kazi et al., 402 

2019; Ktena et al., 2018; Parisot et al., 2018; Zhang et al., 2019), our adaptive mechanism increases the 403 

difference seen in every subfigure in Figure 5. Specifically, the red lines, which represent edge weights based 404 

on our adaptive mechanism, show large fluctuations, whereas the blue lines show small fluctuations. The 405 

standard deviations of these fluctuations are described in Table 4. The standard deviations based on our 406 

adaptive mechanism are larger than those based on the traditional method. In the work (Parisot et al., 2018), 407 

by including phenotypic information as Eqs. (1) and (2), the edge weight is doubled when its corresponding 408 

two subjects have the same gender and equipment type, and the edge weight is set to zero when the corre-409 

sponding two subjects have different gender and equipment type. This increases the difference between edge 410 

weights, which is validated to be useful to improve the final classification performance. Similar to the work 411 

(Parisot et al., 2018), our adaptive mechanism also increases the difference and the final performance also 412 

gets improvement as shown in Table 3. This suggests that our adaptive mechanism has a better ability to 413 

explore the similarity relationship between subjects. Comparing edge weights in the DTI structural adjacency 414 

matrix with those edge weights in the fMRI functional adjacency matrix for the same subject, they show 415 

obvious differences. In Table 4, we use “Difference” to represent the differences between edge weights in 416 

fMRI functional adjacency matrix and DTI structural adjacency matrix. Standard deviations show there are 417 

many differences between edge weights in fMRI functional adjacency matrix and DTI structural adjacency 418 
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matrix. Our adaptive mechanism usually increases the differences. The differences support the viewpoint that 419 

fMRI functional information and DTI structural information have good complementarity (Lei et al., 2020; Li 420 

et al., 2020b), and it also agrees with the excellent performance of our calibration mechanism and dual-modal 421 

GCN. 422 

Table 4: The standard deviations of the edge weights with and without our adaptive mechanism across our six tasks. (     ). Cases 423 

1-10 represent ten subjects in the corresponding task, and the ten subjects are the selected subjects in Figure 5. “Difference (i.e., 424      )” represents the difference of edge weights between fMRI functional adjacency matrix and DTI structural adjacency matrix. 425 

 426 

3.3 Effect of our adjacency matrix on feature values 427 

Figure 6 visualises the top 10 most discriminative functional features and the top 10 most discriminative 428 

structural features and visualises feature values after pre-multiplying adjacency matrix. Figure 7 shows 429 

Case Modality 
NC vs. SMC NC vs. EMCI NC vs. LMCI SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI 

None/Adapt None/Adapt None/Adapt None/Adapt None/Adapt None/Adapt 

1 

fMRI 1.83/1.86 1.79/1.81 1.81/1.87 1.66/1.62 1.62/1.70 1.56/1.59 

DTI 3.07/4.13 3.07/4.13 3.16/4.00 2.83/3.15 2.98/3.50 2.90/3.33 

Difference 2.51/3.88 2.61/3.95 2.68/3.69 2.58/2.88 3.03/3.14 2.61/2.96 

2 

fMRI 1.67/1.69 1.69/1.68 1.71/1.72 1.66/1.72 1.66/1.69 1.64/1.67 

DTI 2.97/3.39 3.09/3.37 3.39/3.96 2.95/2.97 3.13/3.71 3.45/3.79 

Difference 3.08/2.32 3.20/2.36 2.94/3.52 2.52/2.59 2.71/3.34 3.06/3.76 

3 

fMRI 1.87/1.98 1.85/1.89 1.85/1.98 1.84/1.88 1.67/1.71 1.82/1.87 

DTI 4.59/4.65 4.59/4.65 3.43/4.93 4.12/4.69 3.04/3.91 3.21/5.07 

Difference 4.01/4.31 4.04/4.32 4.66/4.05 4.53/3.93 2.51/3.65 3.91/4.49 

4 

fMRI 1.92/1.95 1.89/1.90 1.93/1.94 1.59/1.62 1.59/1.67 1.62/1.67 

DTI 3.01/3.44 3.01/3.44 3.25/4.01 2.15/2.88 2.78/3.13 2.90/3.52 

Difference 2.52/2.87 2.46/2.87 2.50/3.47 1.71/2.27 2.32/3.21 2.35/3.06 

5 

fMRI 1.84/1.94 1.85/1.86 1.91/1.92 2.42/2.54 1.60/1.64 2.49/2.53 

DTI 2.71/3.22 2.71/3.22 3.62/3.92 3.76/4.16 2.93/3.76 4.89/5.27 

Difference 2.38/2.86 2.02/2.68 3.22/3.48 2.80/3.43 2.16/3.61 4.45/4.52 

6 

fMRI 1.57/1.62 1.94/1.99 2.06/1.96 2.04/2.07 0.24/0.31 1.96/2.05 

DTI 4.08/4.71 3.27/3.15 3.14/3.73 3.79/3.95 3.14/3.73 3.14/3.73 

Difference 3.65/3.83 2.50/2.54 2.86/3.58 3.45/3.33 3.24/3.73 2.96/3.55 

7 

fMRI 1.71/1.75 2.03/2.09 2.15/2.13 2.07/2.09 0.27/0.55 2.09/2.15 

DTI 3.18/4.51 3.25/3.66 3.54/4.78 3.03/3.84 3.54/4.78 3.54/4.78 

Difference 2.73/4.29 2.65/3.13 3.27/4.48 2.38/3.41 3.71/4.72 3.13/4.63 

8 

fMRI 1.89/1.93 1.63/1.69 1.93/2.00 1.62/1.67 1.93/1.96 1.93/2.06 

DTI 2.92/3.11 2.93/3.49 3.68/3.61 3.15/3.56 3.61/3.68 3.68/4.12 

Difference 2.39/2.68 2.59/3.27 3.14/3.16 2.78/3.32 2.90/3.09 2.91/3.16 

9 

fMRI 1.66/1.68 1.62/1.65 1.17/1.74 1.56/1.63 1.72/1.85 1.78/1.83 

DTI 2.76/3.06 2.80/3.73 3.01/3.67 3.27/3.48 3.01/3.67 3.01/3.67 

Difference 3.11/2.43 2.65/3.39 2.41/3.07 2.91/3.07 2.61/3.16 2.71/3.28 

10 

fMRI 1.94/1.97 1.95/2.11 1.97/2.00 1.89/1.99 1.88/1.96 1.91/1.95 

DTI 3.40/3.44 3.43/3.63 3.72/2.78 3.12/3.66 3.72/3.78 3.72/3.78 

Difference 2.55/2.59 3.06/2.66 3.60/3.42 2.35/2.86 3.20/3.45 3.29/3.34 
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t-SNE visualisation results of feature maps, and the detailed effect on the mean and standard deviation of 430 

feature values is shown in Tables 5-6. As FC and SC brain networks are usually represented by the selected 431 

most discriminative features from 1×4005 feature vectors, we use the indices of selected features in 1×4005 432 

vector to represent them in this subsection. A features‟ index represents the relationship between pair ROIs 433 

whereas corresponding feature value represents the relationship weight. 434 

 435 

(a) fMRI feature values with and without pre-multiplying adjacency matrix. 436 

 437 
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(b) DTI feature values with and without pre-multiplying adjacency matrix. 438 
 439 

Figure 6: The top 10 most discriminative fMRI and DTI features in our six prediction tasks. The abscissae represent subjects‟ indices for 440 

prediction, and ordinates represent feature values. The blue line represents original feature values, and the red line represents feature 441 

values after pre-multiplying adjacency matrix     . 442 

As shown in Figure 6, there are different noise levels among different features. For example, the noise in 443 

the number 3915 fMRI feature for NC vs. SMC is small, whereas the noise in the number 3797 fMRI feature 444 

is big. The noise in the number 3886 fMRI feature for SMC vs. LMCI is small, whereas the noise in the 445 

number 1153 fMRI feature is big. The noise level of the same feature between different disease statuses is 446 

consistent. For example, the noise level in the number 3519 fMRI feature for NC vs. SMC follows its noise 447 

level for NC vs. EMCI. The noise level in the number 251 DTI feature for NC vs. EMCI follows its noise 448 

level for NC vs. LMCI. By pre-multiplying our adjacency matrix     , the noises in all fMRI and DTI fea-449 

tures are suppressed, as shown in Figure 6 that red line has a small fluctuation. 450 

 451 

(a) t-SNE visualisation results based on fMRI data. 452 
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 453 

(b) t-SNE visualisation results based on DTI data. 454 

Figure 7: The t-SNE visualisation results of fMRI and DTI feature maps in different tasks. The effect is shown by pre-multiplying the 455 

adjacency matrices                       .   is a feature matrix, which includes feature values of test subjects. As there are 82 or 88 456 

subjects in our tasks and we use the 10-fold cross-validation strategy, there are usually eight subjects in the test set for every fold, Hence, 457 

the t-SNE visualisation results are based on the eight test samples.    represents the adjacency matrix constructed based on the tradi-458 

tional method,    represents the adjacency matrix constructed based on the traditional method and our similarity-aware receptive fields, 459     represents the adjacency matrix constructed based on our similarity-aware receptive fields and our adaptive adjacency matrix, and 460      represents the adjacency matrix constructed based on our similarity-aware receptive fields, adaptive mechanism and calibration 461 

mechanism. 462 

Figure 7 describes the feature visualisation results of graph theory on the test set, and we have compared 463 

the effect of four kinds of adjacency matrices on feature values. As there are 82 or 88 subjects for every task 464 

and we use a 10-fold cross-validation strategy, there are typically eight subjects in the test set. As shown in 465 

Figure 7, compared with  ,     has a better visualisation result for some tasks. Specifically, for NC vs. 466 

SMC, SMC vs. EMCI, EMCI vs. LMCI based on fMRI data and for NC vs. SMC, NC vs. LMCI, SMC vs. 467 

EMCI, SMC vs. LMCI, EMCI vs. LMCI based on DTI data, it has a better visualisation result. For NC vs. 468 

EMCI, NC vs. LMCI, SMC vs. LMCI based on fMRI data and for NC vs. EMCI based on DTI data, the 469 

improvement is not obvious. Compared with  ,       has a better visualisation result for our six tasks. 470 

Tables 5-6 show the details of the experimental results. In the feature index column, we list the top 10 471 

features‟ indices, which are selected by using RFE method. The feature‟s index represents the feature‟s 472 

position in the 1×4005 feature vector, which are formed by extracting upper triangular matrix elements from 473 



 25 / 36 

 

the 90×90 brain network. We can see there are many differences in the top 10 features‟ indices between 474 

different prediction tasks. Most of fMRI features‟ indices are different from DTI features‟ indices in the same 475 

prediction task. For example, the top 10 fMRI features‟ indices for NC vs. SMC is [82, 170, 1339, 3520, 3768, 476 

3797, 3894, 3908, 3915, 3941], whereas the top 10 DTI features‟ indices for NC vs. SMC is [72, 1141, 1663, 477 

2551, 2582, 2884, 3025, 3497, 3518, 3566]. 478 

Tables 5-6 also describe the mean values and standard deviations of the top 10 feature values. Standard 479 

deviations show the different noise levels of the top 10 features. For example, the number 3915 fMRI feature 480 

in NC vs. SMC has a small standard deviation, which follows its appearance for NC vs. EMCI. This result 481 

also follows in Figure 6. The number 2976 DTI feature for NC vs. EMCI has a big standard deviation, which 482 

also follows its appearance for NC vs. LMCI. This result is also consistent with Figure 6. The consistency of 483 

mean value and standard deviation for the same feature in different prediction tasks shows the stability of our 484 

fMRI and DTI data, but also shows there is a little fluctuation between the same features in different subjects 485 

although they have same disease status. 486 

Tables 5-6 also describe the effect of disease status on feature values. Tables 5-6, show different disease 487 

states have different mean values in all prediction tasks. For example, in Table 5, the mean value of the 488 

number 82 fMRI feature of all NC subjects is 0.69, whereas its mean value of SMC subjects is 0.73. This 489 

difference between different disease statuses provides the foundation to predict disease. Compared with the 490 

effect of disease status on fMRI feature values in Table 5, the effect on DTI feature values in Table 6 appears 491 

much more apparent. For example, for NC vs. SMC, the mean difference of mean values of the top 10 fMRI 492 

features is 0.04, whereas the mean difference of the top 10 DTI features is 0.1. The more obvious discrimi-493 

native DTI features make the prediction tasks easier, and this follows the results in Tables 3, whereas the 494 

performance of our method and traditional methods based on DTI data is much better than the performance 495 

based on fMRI data.  496 

The effectiveness of t-test method (Arbabshirani et al., 2017; Dietterich, 1998) for feature selection and 497 

the work (Huang et al., 2020) suggest that big mean difference and small standard deviation are beneficial for 498 

classification. As shown in Figure 6, Table 5 and Table 6, by pre-multiplying adjacency matrix     , the 499 

standard deviations become smaller, and the results in Figure 7 validate that pre-multiplying adjacency 500 

matrix can improve final classification performance.  501 
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Table 5: Effect of our adjacency matrix      on the top 10 most discriminative fMRI feature values in our six classification tasks. We 502 

compare fMRI features‟ mean values and standard deviations with or without pre-multiplying adjacency matrix     , and compare 503 

fMRI features‟ mean values between different disease status. The mean column is measured on      ,      represents our adaptive 504 

calibrated adjacency matrix, and   represents the top 10 fMRI feature values of all subjects on the graph. 505 

 

 

 

 

NC vs. SMC  NC vs. EMCI  NC vs. LMCI 

Feature 

index 

  

(Mean std) 

       

(Mean std) 

Means 

(NC/SMC) 

Feature 

index 

  

(Mean±std) 

       

(Mean±std) 

Means 

(NC/EMCI) 

 Feature 

index 

  

(Mean±std) 

       

(Mean±std) 

Means 

(NC/LMCI) 

82 0.71±0.11 0.71±0.04 0.69/0.73 161 0.70±0.11 0.70±0.04 0.72/0.67 455 0.85±0.09 0.86±0.03 0.85/0.87 

170 0.70±0.11 0.70±0.04 0.67/0.73 1652 0.69±0.11 0.70±0.04 0.67/0.72 519 0.74±0.09 0.74±0.04 0.77/0.71 

1339 0.70±0.09 0.70±0.04 0.67/0.73 1720 0.67±0.11 0.68±0.04 0.65/0.70 976 0.81±0.08 0.81±0.03 0.79/0.83 

3520 0.72±0.11 0.71±0.03 0.73/0.70 2728 0.78±0.09 0.78±0.04 0.81/0.76 1587 0.63±0.13 0.62±0.05 0.62/0.63 

3768 0.64±0.12 0.64±0.04 0.65/0.64 3499 0.66±0.14 0.65±0.04 0.64/0.66 1659 0.66±0.10 0.67±0.04 0.68/0.64 

3797 0.59±0.14 0.59±0.04 0.56/0.61 3737 0.69±0.10 0.68±0.03 0.67/0.70 1839 0.63±0.11 0.63±0.04 0.62/0.65 

3894 0.65±0.12 0.66±0.03 0.67/0.64 3777 0.59±0.12 0.58±0.04 0.55/0.61 3489 0.79±0.09 0.78±0.05 0.79/0.78 

3908 0.67±0.11 0.67±0.04 0.70/0.64 3915 0.94±0.03 0.94±0.01 0.94/0.95 3498 0.70±0.11 0.70±0.05 0.67/0.73 

3915 0.94±0.03 0.94±0.01 0.94/0.95 3961 0.93±0.04 0.93±0.01 0.94/0.92 3777 0.59±0.13 0.60±0.05 0.56/0.64 

3941 0.89±0.06 0.89±0.02 0.91/0.88 3971 0.86±0.08 0.87±0.03 0.89/0.85 3971 0.87±0.07 0.87±0.03 0.89/0.85 

 

 

 

 

SMC vs. EMCI  SMC vs. LMCI  EMCI vs. LMCI 

Feature 

index 

  

(Mean±std) 

      

(Mean±std) 

Means 

(SMC/EMCI) 

Feature 

index 

  

(Mean±std) 

       

(Mean±std) 

Means 

(SMC/LMCI) 

 Feature 

index 

  

(Mean±std) 

       

(Mean±std) 

Means 

(EMCI/LMCI) 

59 0.74±0.09 0.74±0.03 0.73/0.75 166 0.70±0.09 0.70±0.03 0.68/0.71 737 0.69±0.08 0.69±0.02 0.70/0.68 

499 0.68±0.12 0.68±0.04 0.71/0.66 432 0.74±0.10 0.74±0.03 0.72/0.75 835 0.59±0.10 0.58±0.03 0.56/0.60 

666 0.68±0.08 0.68±0.03 0.70/0.66 1728 0.93±0.03 0.93±0.01 0.94/0.92 976 0.82±0.08 0.82±0.02 0.81/0.83 

737 0.72±0.09 0.72±0.03 0.74/0.71 2052 0.69±0.10 0.69±0.02 0.70/0.67 1153 0.61±0.12 0.61±0.03 0.62/0.61 

1367 0.82±0.11 0.82±0.03 0.81/0.82 2916 0.70±0.08 0.70±0.02 0.71/0.68 1230 0.76±0.09 0.77±0.03 0.78/0.75 

1644 0.57±0.12 0.57±0.04 0.55/0.59 2925 0.89±0.06 0.89±0.01 0.89/0.89 2480 0.57±0.09 0.56±0.02 0.57/0.56 

1877 0.63±0.10 0.63±0.03 0.62/0.65 3399 0.72±0.09 0.72±0.03 0.72/0.73 2779 0.78±0.08 0.78+0.03 0.76/0.80 

2589 0.66±0.10 0.65±0.05 0.71/0.62 3544 0.79±0.09 0.79±0.02 0.80/0.78 3529 0.59±0.10 0.60+0.04 0.57/0.63 

2639 0.63±0.10 0.63±0.05 0.67/0.60 3784 0.69±0.11 0.69±0.03 0.68/0.70 3877 0.74±0.10 0.75+0.03 0.73/0.77 

3686 0.64±0.11 0.64±0.03 0.62/0.66 3984 0.75±0.10 0.75±0.04 0.77/0.72 3886 0.90±0.04 0.91+0.01 0.91/0.90 

 506 

Table 6: Effect of our adjacency matrix      on the top 10 most discriminative DTI feature values in our six classification tasks. We 507 

compare DTI features‟ mean values and standard deviations with or without pre-multiplying adjacency matrix     , and compare DTI 508 

features‟ mean values between different disease status. The mean column is measured on      ,      represents our adaptive calibrated 509 

adjacency matrix, and   represents the top 10 DTI feature values of all subjects on the graph. 510 

 

 

 

 

NC vs. SMC   NC vs. EMCI  NC vs. LMCI 

Feature 

index 

  

(Mean std) 

      

(Mean std) 

Means 

(NC/SMC) 

Feature 

index 

  

(Mean±std) 

      

(Mean±std) 

Means 

(NC/EMCI) 

 Feature 

index 

  

(Mean±std) 

      

(Mean±std) 

Means 

(NC/LMCI) 

72 0.24±0.20 0.24±0.07 0.20/0.29 251 0.18±0.21 0.17±0.07 0.22/0.13 251 0.17±0.21 0.16±0.10 0.22/0.08 

1141 0.08±0.15 0.08±0.06 0.05/0.11 517 0.13±0.18 0.13±0.08 0.21/0.05 279 0.25±0.25 0.25±0.10 0.30/0.19 

1663 0.15±0.17 0.15±0.06 0.11/0.19 1372 0.17±0.20 0.18±0.07 0.14/0.23 1801 0.13±0.20 0.12±0.09 0.07/0.18 

2551 0.11±0.19 0.11±0.07 0.15/0.07 1777 0.21±0.18 0.21±0.06 0.25/0.18 2164 0.10±0.15 0.10±0.07 0.05/0.15 

2582 0.19±0.21 0.19±0.08 0.25/0.13 1801 0.13±0.20 0.13±0.08 0.07/0.18 2225 0.09±0.14 0.09±0.07 0.03/0.16 

2884 0.24±0.26 0.23±0.10 0.30/0.16 2444 0.13±0.20 0.13±0.06 0.09/0.16 2976 0.17±0.19 0.17±0.09 0.11/0.24 

3025 0.10±0.18 0.10±0.06 0.06/0.15 2976 0.17±0.19 0.16±0.08 0.11/0.22 2985 0.08±0.20 0.09±0.08 0.04/0.15 

3497 0.14±0.20 0.13±0.07 0.18/0.08 2984 0.18±0.18 0.19±0.08 0.25/0.12 3247 0.20±0.22 0.19±0.07 0.17/0.21 

3518 0.37±0.22 0.36±0.07 0.32/0.40 3139 0.04±0.14 0.05±0.05 0.01/0.09 3297 0.04±0.15 0.05±0.07 0.01/0.08 
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3566 0.16±0.20 0.16±0.06 0.20/0.13 3495 0.16±0.22 0.16±0.06 0.13/0.19 3486 0.07±0.18 0.07±0.08 0.11/0.02 

 

 

 

 

SMC vs. EMCI  SMC vs. LMCI  EMCI vs. LMCI 

Feature 

index 

  

(Mean±std) 

       

(Mean±std) 

Means 

(SMC/EMCI) 

Feature 

index 

  

(Mean±std) 

       

(Mean±std) 

Means 

(SMC/LMCI) 

 Feature 

index 

  

(Mean±std) 

       

(Mean±std) 

Means 

(EMCI/LMCI) 

1801 0.13±0.20 0.12±0.07 0.06/0.18 76 0.25±0.23 0.24±0.10 0.30/0.16 1841 0.12±0.21 0.12±0.08 0.17/0.06 

2236 0.13±0.18 0.12±0.06 0.08/0.17 187 0.14±0.17 0.14±0.06 0.11/0.18 2197 0.11±0.19 0.11±0.07 0.07/0.16 

2396 0.12±0.19 0.13±0.09 0.06/0.19 503 0.18±0.17 0.18±0.08 0.25/0.11 2213 0.14±0.20 0.15±0.09 0.22/0.09 

2444 0.11±0.19 0.11±0.07 0.06/0.16 1801 0.12±0.20 0.12±0.08 0.06/0.18 2231 0.12±0.19 0.13±0.07 0.08/0.17 

2929 0.42±0.24 0.41±0.09 0.48/0.34 2142 0.13±0.17 0.12±0.07 0.08/0.17 2356 0.08±0.17 0.08±0.06 0.04/0.13 

3148 0.15±0.18 0.15±0.05 0.17/0.13 2164 0.10±0.15 0.10±0.06 0.05/0.16 2590 0.11±0.19 0.11±0.05 0.09/0.14 

3456 0.13±0.18 0.14±0.06 0.18/0.10 2528 0.15±0.21 0.15±0.07 0.11/0.19 2639 0.09±0.17 0.09±0.06 0.13/0.05 

3487 0.19±0.17 0.19±0.06 0.23/0.15 3018 0.48±0.18 0.48±0.08 0.55/0.41 3066 0.04±0.15 0.04±0.06 0.08/0.00 

3879 0.19±0.19 0.19±0.07 0.14/0.24 3105 0.11±0.21 0.12±0.07 0.07/0.17 3101 0.10±0.17 0.11±0.07 0.08/0.14 

3977 0.15±0.20 0.15±0.07 0.10/0.20 3387 0.07±0.16 0.07±0.04 0.09/0.06 3760 0.11±0.19 0.10 0.08 0.16/0.04 

4. Discussion 511 

4.1 Effect of phenotypic information  512 

Non-imaging phenotypic information (e.g., equipment type and gender) is a factor to affect imaging. For 513 

example, different equipment types probably use different imaging parameters, and this finally results in 514 

some differences in the extracted image features. An advantage of GCN algorithms is integrating 515 

non-imaging phenotypic information into edge weights on graphs, as shown in Eqs. (1) and (2). For a subject 516 

on a graph, there is a convolution filter as shown in Figure 2. The convolution filter uses the features from 517 

other subjects to update the features of the subject being analysed, and edge weights are corresponding to the 518 

convolution coefficients. In view the differences resulted by equipment type and gender on image features, 519 

we assign a bigger edge weight between the pair subjects with the same equipment type and gender, as shown 520 

in Eqs. (1) and (2). The non-imaging phenotypic information is not used as a biomarker to supplement ex-521 

tracted features. In contrast, it is used to establish a more adequate and practical graph. As shown by Parisot 522 

et al. (Parisot et al., 2018), the gender and equipment type is vital information for graph construction in AD 523 

and ASD prediction, which result in 3% improvement on the final accuracy. Considering the characteristics 524 

of our tasks, we also investigate the effect of phenotypic information on final prediction accuracy, and the 525 

results in our six prediction tasks are shown in Figure 8. The combination of phenotypic information and a 526 

similarity function is shown in Eqs. (1) and (2). 527 

In this experiment, we observe apparent variations on accuracy. Specifically, the performance based on 528 

the only one similarity is the worst, whereas the performance based on similarity of both phenotypic infor-529 

mation (gender and equipment type) is the best. The difference between the best and the worst performing 530 
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graphs in our six prediction tasks are 12.1%, 8.1%, 4.8%, 8.2%, 8.5% and 4.6%, respectively. Gender appears 531 

to have a more considerable influence on accuracy than the imaging equipment used. This shows that features 532 

with different gender in our tasks have many differences. These findings are consistent with the previous 533 

study by (Parisot et al., 2018).  534 

 535 

Figure 8: Influence of phenotypic information on the prediction accuracy in our six prediction tasks. 536 

4.2 Effect of the number of the selected features 537 

RFE is adopted to select features in the paper due to its promising performance. As it recursively removes 538 

attributes and builds the model using the remaining attributes, the number of features needs to be set to a 539 

reasonable value. We test the influence of the selected features‟ number through experiment, and its influ-540 

ence in all classification tasks on ACC is shown in Figure 9. In Figure 9, the number of the selected features 541 

varies from 0 to 300 with a step 10. The ACC values in all classification tasks increase as the number in-542 

creases starting from zero, then the performance maintains a little fluctuation with the number further in-543 

creasing. Eventually, after exceeding a specific value, the further increase in the number results in perfor-544 

mance deterioration. In our six prediction tasks, the ACC values reach the best with the number varying about 545 

from 40 to 80. For NC vs. SMC, the performance deteriorates rapidly with the number increasing over about 546 

80. For EMCI vs. LMCI, the performance deteriorates rapidly with the number over 160. These results 547 

validate that the number of the selected features need to be set as a reasonable value. A large number can 548 

increase system burden and cause performance deterioration, while a small number cannot represent the 549 

subject‟s information. Therefore, we set the number of the selected features in all tasks as 50 in this paper. 550 
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 551 

Figure 9: Effect of the number of the selected features on prediction accuracy in our six prediction tasks. 552 

4.3 Parameters of weight mechanism 553 

We have developed two GCN models according to functional data and structural data. After our du-554 

al-modal GCN, we get a functional score and structural score for every subject. Namely, we use a combined 555 

weight mechanism to combine the two scores to perform the final prediction. For example, the final predicted 556 

score for a subject   is denoted as                      . The parameters    and    are selected 557 

according to our experimental results. In this subsection, we show the effect of different weight parameters 558 

on performance in Table 7. 559 

Table 7: Effect of different weight parameters on accuracy in our six classification tasks. 560 

 561 

As Table 7 shows, different combined weight coefficients have an obvious influence on the final pre-562 

diction accuracy. According to the above results, we set   =0.5 and   =0.5 in our six tasks. 563 

Parameters NC vs. SMC NC vs. EMCI NC vs. LMCI SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI   =0.1,   =0.9 81.82±5.97 82.95±6.52 87.80±3.88 86.39±4.38 86.58±6.11 82.92±3.51   =0.2,   =0.8 82.95±6.44 84.09±6.44 87.80±5.39 87.51±4.09 86.58±6.11 84.14±3.51   =0.3,   =0.7 82.95±5.97 82.95±6.52 89.02±6.00 88.63±5.23 87.80±5.23 84.14±4.57   =0.4,   =0.6 84.09±4.57 84.09±6.44 89.02±7.02 89.75±4.38 89.02±4.38 85.36±4.57   =0.5,   =0.5 84.09±4.57 85.22±6.65 89.02±6.44 88.63±4.86 87.80±3.74 86.58±4.86   =0.6,   =0.4 82.97±4.72 85.22±6.65 86.58±7.05 88.63±3.74 86.58±3.92 84.14±5.36   =0.7,   =0.3 79.54±6.92 84.09±7.43 85.36±6.52 87.51±6.41 84.14±4.38 81.70±6.95   =0.8,   =0.2 79.54±6.95 79.54±6.65 84.14±5.52 84.09±7.76 81.70±5.52 80.48±8.46   =0.9,   =0.1 77.27±7.52 76.12±6.30 84.14±6.11 82.97±7.05 79.26±5.8 79.26±7.76 
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4.4 Visualisation of the adjacency matrix 564 

The proposed similarity-aware receptive fields, adaptive mechanism and calibration mechanism play the 565 

role to improve adjacency matrix and eventually result in better performance. To describe the effect of the 566 

above methods on the adjacency matrix, we use imagesc() function in MATLAB to show four kinds of 567 

adjacency matrices. In Figure 10, there are four functional adjacency matrices and four structural adjacency 568 

matrices, where    represents the adjacency matrix constructed based on the traditional method,    repre-569 

sents the adjacency matrix constructed based on the traditional method and our similarity-aware receptive 570 

fields,     represents the adjacency matrix constructed based on our similarity-aware receptive fields and our 571 

adaptive adjacency matrix, and      represents the adjacency matrix constructed based on our similari-572 

ty-aware receptive fields, adaptive mechanism and calibration mechanism. 573 

 574 

Figure 10: Visualisation results of kinds of adjacency matrices. 575 

As shown in Figure 10, the adjacency matrix    constructed by using the traditional method is a dense 576 

matrix. After using our similarity-aware receptive fields, it becomes much sparse as the similarity-aware 577 

receptive fields ignore a part of connections. For the adjacency matrix    constructed by using the traditional 578 

method, there are many differences between functional and structural adjacency matrices. After using our 579 

three mechanisms, we finally get a stable and united adjacency matrix     . 580 

4.5 Most discriminative connectivity features 581 

Tables 8-9 list the top 10 most discriminative connectivity features and related ROI brain regions in six 582 

classification tasks. For fMRI data, we can see that many of these selected brain regions follow the obser-583 

vations reported in the previous studies. For example, the right olfactory cortex (OLF.R) (Li et al., 2020a; 584 

Sun et al., 2012; Tekin and Cummings, 2002; Vasavada et al., 2015; Yu et al., 2019; Zhang et al., 2018), left 585 



 31 / 36 

 

hippocampus (HIP.L) (Salvatore et al., 2015; Zhang et al., 2018), left calcarine cortex(CAL.L) (Li et al., 586 

2020a; Xu et al., 2016) are usually reported as highly associated with AD/MCI pathology. However, there are 587 

many differences in the top 10 most discriminative connectivity features between our six prediction tasks and 588 

two modalities. As shown in Figure 9, the performance of our six prediction tasks is saturated when the 589 

number of the selected features is set as 30. Therefore, we show the top 30 discriminative connectivity fea-590 

tures for the FC network and SC network in Figure 11. As shown in Figure 11, there are many differences in 591 

the top 30 most discriminative connectivity features between different prediction tasks and different modal-592 

ities. In the literature (Li et al., 2019b, 2020a; Wee et al., 2014; Yu et al., 2019; Zhang et al., 2018), there are 593 

also many differences in the top 10 most discriminative connectivity features and the top 10 most discrimi-594 

native ROIs for SMC vs. NC. Based on above differences in our paper and literature, the different noise 595 

levels of the top 10 feature values in Tables 5-6, and the influence of selected features‟ number in Figure 9, 596 

we conclude there are several hundred connectivity features are associated with prediction tasks. This con-597 

clusion follows the results in the literature (Parisot et al., 2018), where GCN obtains the best performance 598 

when using RFE to select 2000 features, or using MLP to select 250 features, or using Autoencoder (AE) to 599 

select 500 features. The above results also show that different construction methods of brain network and 600 

feature selection methods can cause obvious difference in most discriminative connectivity features. 601 

Table 8: The top 10 most discriminative fMRI features and their corresponding ROIs in our six classification tasks. 602 

 

 

 

 

            NC vs. SMC            NC vs. EMCI                     NC vs. LMCI 

Feature    ROI index       ROI name Feature    ROI index        ROI name  Feature    ROI index        ROI name 

82 1,83 PreCG.L, TPOsup.L 161 2,74 PreCG.R, PUT.R 455 6,26 ORBsup.R, ORBsupmed.R 

170 2,83 PreCG.R, TPOsup.L 1652 21,83 OLF.L, TPOsup.L 519 6,90 ORBsup.R, ITG.R 

1339 17,52 ROL.L, MOG.R 1720 22,83 OLF.R, TPOsup.L 976 12,64 IFGoperc.R, SMG.R 

3520 59,70 SPG.L, PCL.R 2728 39,88 PHG.L, TPOmid.R 1587 20,87 SMA.R, TPOmid.L 

3768 68,84 PCUN.R, TPOsup.R 3737 67,75 PCUN.L, PAL.L 1659 21,90 OLF.L, ITG.R 

3797 70,72 PCL.R, CAU.R 3777 69,72 PCL.L, CAU.R 1839 24,69 SFGmed.R, PCL.L 

3894 75,84 PAL.L, TPOsup.R 3915 77,78 THA.L, THA.R 3489 58,70 PoCG.R, PCL.R 

3908 76,84 PAL.R, TPOsup.R 3499 58,80 PoCG.R, HES.R 3498 58,79 PoCG.R, HES.L 

3915 77,78 THA.L, THA.R 3961 81,82 STG.L, STG.R 3777 69,72 PCL.L, CAU.R 

3941 79,81 HES.L, STG.L 3971 82,84 STG.R, TPOsup.R 3971 82,84 STG.R, TPOsup.R 

 

 

 

 

          SMC vs. EMCI              SMC vs. LMCI             EMCI vs. LMCI 

Feature    ROI index      ROI name Feature     ROI index       ROI name  Feature     ROI index        ROI name 

59 1, 60 PreCG.L, SPG.R 737 9, 62 ORBmid.L, IPL.R 166 2, 79 PreCG.R, HES.L 

499 6, 70 ORBsup.R, PCL.R 835 10, 88 ORBmid.R,TPOmid.R 432 5, 87 ORBsup.L, TPOmid.L 

666 8, 72 MFG.R, CAU.R 976 12, 64 IFGoperc.R, SMG.R 1728 23, 24 SFGmed.L, SFGmed.R 

737 9, 62 ORBmid.L, IPL.R 1153 14, 88 IFGtriang.R,TPOmid.R 2052 27, 90 REC.L, ITG.R 

1367 17, 80 ROL.L, HES.R 1230 15, 90 ORBinf.L, ITG.R 29 43, 82 CAL.L, STG.R 

1644 21, 75 OLF.L, PAL.L 2480 35, 50 PCG.L, SOG.R 2925 44, 45 CAL.R, CUN.L 

1877 25, 42 ORBsupmed.L,AMYG.R 2779 40, 89 PHG.R, ITG.L 3399 55, 79 FFG.L, HES.L 
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2589 37, 52 HIP.L, MOG.R 3529 59, 79 SPG.L, HES.L 3544 60, 64 SPG.R, SMG.R 

2639 38, 50 HIP.R, SOG.R 3877 74, 82 PUT.R, STG.R 3784 69, 79 PCL.L, HES.L 

3686 65, 71 ANG.L, CAU.L 3886 75, 76 PAL.L, PAL.R 3984 83, 90 TPOsup.L, ITG.R 

 603 
Table 9: The top 10 most discriminative DTI features and their corresponding ROIs in our six classification tasks. 604 

 

 

 

 

            NC vs. SMC            NC vs. EMCI        NC vs. LMCI 

Feature    ROI index      ROI name Feature    ROI index       ROI name  Feature    ROI index      ROI name 

72 1,73 PreCG.L, PUT.L 251 3,77 SFGdor.L, THA.L 251 3,77 SFGdor.L, THA.L 

1141 14,76 IFGtriang.R, PAL.R 517 6,88 ORBsup.R, TPOmid.R 279 4,19 SFGdor.R, SMA.L 

1663 22,26 OLF.R, ORBsupmed.R 1372 17,85 ROL.L, MTG.L 1801 24,31 SFGmed.R, ACG.L 

2551 36,67 PCG.R, PCUN.L 1777 23,73 SFGmed.L, PUT.L 2164 29,79 INS.L, HES.L 

2582 37,45 HIP.L, CUN.L 1801 24,31 SFGmed.R, ACG.L 2225 30,80 INS.R, HES.R 

2884 43,50 CAL.L, SOG.R 2444 34,69 DCG.R, PCL.L 2976 45,51 CUN.L+R, MOG.L 

3025 46,56 CUN.R, FFG.R 2976 45,51 CUN.L+R, MOG.L 2985 45,60 CUN.L+R, SPG.R 

3497 58,78 PoCG.R, THA.R 2984 45,59 CUN.L+R, SPG.L 3247 51,73 MOG.L, PUT.L 

3518 59,68 SPG.L, PCUN.R 3139 48,85 LING.R, MTG.L 3297 52,85 MOG.R, MTG.L 

3566 60,86 SPG.R, MTG.R 3495 58,76 PoCG.R, PAL.R 3486 58,67 PoCG.R, PCUN.L 

 

 

 

 

            SMC vs. EMCI              SMC vs. LMCI             EMCI vs.LMCI 

Feature    ROI index       ROI name Feature   ROI index        ROI name  Feature   ROI index        ROI name 

1801 24,31 SFGmed.R, ACG.L 76 1,77 PreCG.L, THA.L 1841 24,71 SFGmed.R, CAU.L 

2236 31,32 ACG.L, ACG.R 187 3,13 SFGdor.L, IFGtriang.L 2197 30,52 INS.R, MOG.R 

2396 33,77 DCG.L, THA.L 503 6,74 ORBsup.R, PUT.R 2213 30,68 INS.R, PCUN.R 

2444 34,69 DCG.R, PCL.L 1801 24,31 SFGmed.R, ACG.L 2231 30,86 INS.R, MTG.R 

2929 44,49 CAL.R, SOG.L 2142 29,57 INS.L, PoCG.L 2356 33,37 DCG.L, HIP.L 

3148 49,53 SOG.L, IOG.L 2164 29,79 INS.L, HES.L 2590 37,53 HIP.L, IOG.L 

3456 57,69 PoCG.L, PCL.L 2528 36,44 PCG.R, CAL.R 2639 38,50 HIP.R, SOG.R 

3487 58,68 PoCG.R, PCUN.R 3018 46,49 CUN.R, SOG.L 3066 47,54 LING.L, IOG.R 

3879 74,84 PUT.R, TPOsup.R 3105 48,51 LING.R, MOG.L 3101 47,89 LING.L, ITG.L 

3977 82,90 STG.R, ITG.R 3387 55,67 FFG.L, PCUN.L 3760 68,76 PCUN.R, PAL.R 

 605 

NC vs. SMC NC vs. EMCI NC vs. LMCI SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI

NC vs. SMC NC vs. EMCI NC vs. LMCI SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI

(a)  Discriminative connectivity features in fMRI functional network

(b)  Discriminative connectivity features in DTI structual network606 
Figure 11: Top 30 discriminative connectivity features in fMRI and DTI brain connection networks in our six prediction tasks. 607 

Table 10: Algorithm comparison with the related works. 608 

References Modality Subject Method Task ACC    SEN     SPE 

(Wee et al., 

2016) 
fMRI 29 EMCI, 30 NC Fused multiple graphical lasso EMCI vs. NC 79.6 75.8 70.0 
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(Yu et al., 

2017) 
fMRI 50 MCI, 49 NC 

Weighted Sparse Group Represen-

tation 
MCI vs. NC 84.8 91.2 78.5 

(Guo et al., 

2017)  
fMRI 

33 EMCI, 32 LMCI, 

28 NC 

Multiple Features of Hy-

per-Network 

EMCI vs. NC 72.8 78.2 67.1 

LMCI vs. NC 78.6 82.5 72.1 

(Li et al., 

2020b) 
fMRI+DTI 36MCI, 37NC 

Adaptive dynamic functional con-

nectivity 
MCI vs. NC 87.7  88.9  86.5 

(Zhu et al., 

2019)  

MRI+PET+ 

CSF 
99MCI, 53NC SPMRM model MCI vs. NC 83.5 95.0 62.8 

(Lei et al., 

2020)  
fMRI+DTI 

40 LMCI, 77 EMCI, 

67 NC 

 

Low-Rank Self-calibrated Brain 

Network, Joint Non-Convex Mul-

ti-Task Learning 

NC vs. SMC 82.9 88.6 77.2 

NC vs. EMCI 85.2 86.3 84.1 

NC vs. LMCI 87.8 84.2 90.9 

SMC vs. EMCI 84.0 81.8 86.3 

SMC vs. LMCI 90.2 89.4 90.9 

EMCI vs. LMCI 81.7 78.9 84.0 

Ours fMRI+DTI 
40 LMCI, 77 EMCI, 

67 NC 

Similarity-aware adaptive cali-

brated GCN 

NC vs. SMC 84.9 88.6 79.5 

NC vs. EMCI 85.2 90.9 79.5 

NC vs. LMCI 89.0 89.4 88.6 

SMC vs. EMCI 88.6 95.4 81.8 

SMC vs. LMCI 87.8 84.2 90.9 

EMCI vs. LMCI 85.5 92.1 81.8 

4.6 Comparison to the related prior works 609 

Besides investigating our three mechanisms and parameters of GCN impact prediction performance, we 610 

further compare our SAC-GCN method with other different competing methods in the corresponding papers. 611 

Table 10 shows the comparison results. We can observe that our proposed method has achieved promising 612 

performance. Apart from good prediction performance, our proposed method does not need to construct 613 

complex brain connection networks. Hence, it has a good application prospect in other prediction tasks. 614 

In our earlier work (Lei et al., 2020), we proposed to use self-calibrated low-rank regularisation to con-615 

struct fMRI functional network, concatenated fMRI and DTI features. We used a multi-task learning 616 

framework to select the most discriminative features for final prediction. Although the work archived good 617 

performance, it ignores to integrate phenotypic information and the interactions between subjects. Compared 618 

to it, our SAC-GCN has good performance without constructing complicated brain connection networks. The 619 

proposed method is not limited to the tasks in this paper, and can flexibly be adapted to other multi-modal 620 

tasks. 621 

5. Conclusion 622 

In this paper, we propose three mechanisms to improve GCNs for SMC and MCI prediction. These 623 

mechanisms improve prediction performance significantly by establishing a more accurate adjacency matrix. 624 
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In the adjacency matrix, the similarity-aware receptive fields consider the disease status of those subjects in 625 

the training set and constrain the receptive field of labelled subjects to those subjects with the same status. 626 

The adaptive mechanism uses pre-trained GCNs to score all subjects and then uses score difference to replace 627 

correlation distance to update similarity. Besides, the calibration mechanism fuses dual-modal information 628 

into the adjacency matrix. Our experimental results on SAC-GCNs show significant improvement over 629 

traditional GCNs. To reveal the reason for good performance, we describe how our mechanisms improve the 630 

adjacency matrix and then describe its filtering effect by analysing feature values. Despite the superior 631 

performance, our SAC-GCN has a more straightforward structure and practical application prospect in other 632 

prediction tasks. In our future work, we will improve our calibration mechanism and extend this work to 633 

multi-task classification. 634 
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