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ABSTRACT 34 

Segmentation of the left and right ventricles in cardiac MRI (Magnetic Resonance Imaging) is a 35 

prerequisite step for evaluating global and regional cardiac function. This work presents a novel and robust 36 

schema for MRI segmentation by combining the advantages of deep learning localisation and 3D-ASM (3D 37 

Active Shape Model) restriction without any user interaction. Three fundamental techniques are exploited: 38 

1) manual 2D contours are used to build distance maps to get 3D ground truth shape, 2) derived right 39 

ventricle points are employed to rotate the coarse initial shape for a refined bi-ventricle initial estimation, 3) 40 

segmentation results from deep learning are utilised to build distance maps for the 3D-ASM matching 41 

process to help image intensity modelling. The datasets used for experimenting the cine MRI data are 1000 42 

cases from UK Biobank, 500 subjects are selected to train CNN (Convolution Neural Network) parameters, 43 

and the remaining 500 cases are adopted for validation. Specifically, cases are used to rebuild point 44 

distribution and image intensity models, and also utilised to train CNN. In addition, the left 500 cases are 45 

used to perform the validation experiments. For the segmentation of the RV (Right Ventricle) endocardial 46 

contour, LV (Left Ventricle) endo- and epicardial contours, overlap, Jaccard similarity index, Point-to-47 

surface errors and cardiac functional parameters are calculated. Experimental results show that the proposed 48 

method has advantages over the previous approaches. 49 

Keywords: Left and right ventricle segmentation; automatic initialisation; deep learning; statistical 50 

shape models. 51 

1. INTRODUCTION 52 

Being one of the top lethal factors [1], cardiovascular disease has received considerable concern in 53 

clinical practice. Thus quantitative analysis of cardiac function is a critical step for the better patient 54 

management, risk evaluation and therapy decision. To evaluate the clinical parameters of the heart, such as 55 

ejection fraction, myocardial mass, the volumes of the heart has to be computed. To calculate such volumes, 56 
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the primary step is to draw the contours of the heart based on MRI due to high discrimination among 57 

endocardium, epicardium, right ventricle and other tissues. In clinical operation, manual delineate task is 58 

not only dull, troublesome and introduces intra and inter- rater variability for a radiologist when facing large-59 

scale cardiac images. For this purpose, cardiac segmentation has aroused extensive attention in medical 60 

image analysis. 61 

In recent years, several challenges has been hold for cardiac segmentation, e.g., MICCAI2009 [2], 62 

MICCAI-STACOM2011[3], MICCAI2012 [4], ACDC[5]. These challenges have greatly promoted the 63 

development of medical image processing, a variety of semi-automatic/automatic cardiac segmentation 64 

methods have been exploited. These algorithms include image feature based method, atlas registration and 65 

learning-based methods, etc. For a detailed review of previous work, the reader can refer to recent topical 66 

literatures [6-9]. 67 

Image feature based methods perform image segmentation based on the attributes of the image itself, 68 

including, for instance, thresholding, region growing, and graph cuts[10-12]. Efficient and straightforward, 69 

segmentation methods based on image features are the most basic and widely used algorithms yet they are 70 

mostly only helpful aided with considerable manual intervention. Since the image feature method only 71 

depends on the shallow features of the image, in the actual process, the surrounding tissues with similar 72 

characteristics to the heart interfere with each other, and the segmentation result is susceptible to noise. 73 

Atlas registration method uses atlas information to convert image segmentation into image registration 74 

and fusion [13]. It mainly includes three steps: atlas selection, registration and fusion. To reduce computation 75 

load and improve robustness, an spatial transformation is adopted to maximise similarity between float and 76 

fixed images. Due to the limited capacity of the atlas, this method is difficult to process complex shapes and 77 

time consuming. 78 

The learning-based method [14-17] mainly uses deep learning algorithms, especially convolutional 79 

neural networks. Mimicking human visual information processing mechanisms, deep learning can 80 



 

4 
 

automatically learn multi-level image features and map images to a high-level feature space [18, 19]. 81 

Because of excellent feature extraction and expression capacity, deep learning is widely used in medical 82 

image segmentation [12]. However, high-level model-based information is not explicit owing to the low-83 

level nature of the inputs and subsequent pooling operations, resulting in occasionally implausible 84 

segmentation results.  85 

Different from the above mentioned algorithms, using a priori shape constraint to segment organs from 86 

medical images, statistical shape models have a widely application for 3D or 4D (3D+t). Methods adopting 87 

a priori knowledge can do a robust and accurate segmentation in medical image analysis. The shape 88 

constraint is called PDM (Point Distribution Model) which is deformed to outline an unknown object within 89 

an unknown image. When the Statistical Shape Models (SSMs) are utilised for cardiac segmentation, two 90 

elements are needed: a starting predict of the bi-ventricular position, and an appearance of the image called 91 

IIM (Image Intensity Model). For each point in the 3D shape belonging to the cardiac images, the 3D-ASM 92 

captures the image intensity information of the corresponding point from all the training shapes, and allows 93 

the image stack slices in the training set to intersect the 3D shape. By sampling at each side of the landmarks, 94 

perpendicularly to the boundary of the intercepted shape, the IIM can be trained by calculating the second 95 

order statistics for the normalised image gradients [18]. Under the joint action of the PDM and the IIM, the 96 

initial shape keeps approaching the target contour. After several iterations, a 3D contour for cardiac images 97 

can be finally produced. 98 

The contributions of this work are three-fold. Firstly, we introduce a fully automatic algorithm to 99 

initialise bi-ventricle for cardiac MRI segmentation, by using deep learning model and complex 100 

transformation techniques to predict an initial position of the heart, hence an initial shape for both left and 101 

right ventricles can be created. Secondly, we invent distance map techniques by constructing a full CNN, 102 

and the distance maps are applied to help IIM in the cardiac segmentation by 3D-ASM. Third, we proposed 103 

a schema to combine CNN and 3D-ASM for left and right ventricles segmentation. 104 
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The rest of this paper is organised as follows. In the next section, we introduce our pipeline for cardiac 105 

image segmentation. Then we describe the data source used in this work. In the experiments section, we 106 

make comparisons to show the advantages of our method. At last, we make discussion and conclusion of 107 

our work. 108 

2. Method 109 

2.1. Overview 110 

In this section, our pipeline exploits PDM, IIM reconstruction and automatic segmentation of left and 111 

right ventricles using 3D-ASM, here the statistical shape model adopted is SPASM (Sparse Active Shape 112 

Model) [19]. As described in Fig. 1, our approach includes several steps, i.e. initial shape optimisation, 113 

construction of PDM and IIM, CNN training and 3D-ASM modelling & cardiac quantification. Firstly, we 114 

organised the raw cardiac MRI subjects with ground truth according to the time frames per case. The position 115 

of the hear is initially guessed based on extracting selected landmarks and then providing an initial LV 116 

approximation. However, we need the bi-ventricular initial shape for both left and RVs segmentation. Right 117 

ventricle points from PDM are fit to the corresponding manual contour points [20]. With complex 118 

transformation and Procrustes analysis [21], a bi-ventricular initial shape can be derived for 3D-ASM 119 

segmentation. Second, we created distance maps for LV and RV by computing Euclidean distance in the 120 

manual contours, and this distance maps are merged into IIM to perform 3D-ASM segmentation. Thirdly, 121 

the results from 3D-ASM are utilised for PDM and IIM training. Fourthly, we applied CNN to train these 122 

organised subjects. Then, the test subjects are sent to the trained CNN for coarse segmentation. The masks 123 

for left and right ventricles can be obtained separately. To get the bi-ventricular initial shape, we use the 124 

same method in the PDM and IIM reconstruction. Instead of using manual contours, the CNN segmentation 125 

contours is utilised to obtain the initial shape for both left and right ventricles. Then we created distance 126 

maps for LV and RV by computing Euclidean distance in the CNN segmented masks, and this distance maps 127 
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are a penalty item of IIM for 3D-ASM segmentation. At last, the segmentations of 3D-ASM are employed 128 

for LV-RV quantification. 129 

 130 

Fig 1. The pipeline of the proposed algorithm. 131 

2.2. Step I: Initialisation of 3D-ASM 132 

The initial shape for LV can be obtained by roughly scaling and locating the mean shape of the model. 133 

Three points are marked by the user, two points (AOTIA, MITRAL) are at the basal level, and a third one 134 

(LVAPEX) in the apical slice. In the mean shape, corresponding anatomical landmarks were defined by a 135 

skilled operator. Similarity transformation is applied to align the mean shape to the landmarks. 136 

To obtain initial shape for 3D-ASM without manual intervene, we adopt the algorithm proposed by Albà 137 

et al. [22] to get the AOTIA, MITRAL and LVAPEX landmarks for LV. First , the location of LV is estimated 138 

by intersection among the 4CH (4 Chambers), 2CH (2 Chambers) views in LAX (Long-axis) and the views 139 
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in SAX (Short-axis). Then in 4CH view image, the intersection points from basal and apex level are utilised 140 

to train a random forest regressor using two feature descriptors (i.e., the Histogram of Oriented Gradients 141 

and Gabor Filters). At last, AOTIA, MITRAL and LVAPEX landmarks can be derived for LV initial shape 142 

(See Fig 2). 143 

 144 

Fig 2. Definition of AOTIA, MITRAL and LVAPEX.  145 

Then an initial shape for LV can be automatic obtained (See Fig. 3(a), (c)), Procrustes analysis [21] is 146 

then employed to get a bi-ventricular model initialisation (See Fig. 3(b), (d)). However, the RV points in the 147 

initial shape deviate too much from RV contour. Consider that shape for RV is more complex than that of 148 

LV, a complex transformation is needed to rotate the bi-ventricular initial shape to a proper location. 149 
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 150 

Fig 3. Bi-ventricular model initialisation. (a) LV initial shape and three points (AOTIA, MITRAL and 151 

LVAPEX), (b) Bi-ventricular initial shape using Procrustes analysis, (c) LV initial shape in short-axis 152 

view, (d) Bi-ventricular initial shape in short-axis view. 153 

2.3. Step II: Complex transformation for Initial shape 154 

To get a good location, point-set registration [23] is employed to align bi-ventricular initial shape to the 155 

manual contours. First, the manual contour points for RV in base slice are fitted to a plane (See Fig. 4(a)). 156 

Second, the manual contour points and points from PDM are rotated to make the fitted plane perpendicular 157 

to Z-axis (See Fig. 4(b)). Third, the RV points in the initial shape is extracted with the RV points from ground 158 

truth (See Fig. 4(c)). Consider shape similarity for the RV points from PDM and ground truth, some points 159 

for RV from PDM should be removed before point-set registration. In Fig. 4(c), supposing minZ is the 160 
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smallest Z coordinate value obtained from the marked points in PDM at the basal level, all points from PDM 161 

with Z coordinate value bigger than minZ  is removed. Also, another fitting plane from apex slice points in 162 

ground truth is built, we remove points from PDM below the fitting plane in apex slice. At last, two point 163 

sets with similar shape are derived for point-set registration (See Fig. 4(d)). 164 

 165 

Fig 4. Initial shape rotation. (a) LV, RV points from PDM and RV points from ground truth at their original 166 

position, (b) Rotated points from PDM and ground truth, (c) RV point sets from PDM and ground truth, (d) 167 

RV point sets with similar shape from PDM and ground truth. GT: ground truth. 168 

In Fig. 4(d), point-set registration is applied to align RV point sets from PDM with that from ground truth, 169 

where a transformed point sets can be obtained (See Fig. 5(a)). Here Procrustes analysis is applied again in 170 
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point sets of PDM from Fig. 4(d) and Fig. 5(a), and a transformed matrix T  is derived to rotate LV points 171 

in the initial shape defined as follows: 172 

cos sin 0
T= -sin cos 0

0 0 1

 
 

 
 
 
  

 (1)

where   represents the rotation angle in short-axis view. We initiallise the SSM to coincide with the 173 

center of the LV point cloud. Then, the LV points are rotated   degrees around Z-axis. We also supplement 174 

the removed points in the RV of the initial shape, and a bi-ventricular initial shape can be obtained (See Fig. 175 

5(b)). Then the bi-ventricular initial shape is rotated to its original position (See Fig. 5(c)), and a better 176 

location for RV can been seen in short-axis view (See Fig. 5(d)).  177 
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 178 

Fig 5. Complex transformation for initial shape rotation. (a) Registered points from PDM and RV contour 179 

points from ground truth, (b) LV and RV points using complex transformation, RV contour points from 180 

ground truth, (c) LV, RV points from PDM and RV points from ground truth at their original position, (d) 181 

Bi-ventricular initial shape in short-axis view. GT: ground truth. 182 

2.4. Step III: Distance-restricted LRV refinement 183 

After the bi-ventricular initial shape is built, 3D ground truth can be derived from the 2D manual contours 184 

by our proposed distance map techniques. 185 
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 186 

Fig 6. Distance maps for ground truth of LV and RV. (a) Original cardiac MR is depicting endocardial 187 

contour, (b) Binary image of endocardial contour, (c) Distance map for endocardial contour, (d) Original 188 

cardiac MR is depicting epicardial contour, (e) Binary image of epicardial contour, (f) Distance map of the 189 

epicardial contour, (g) Original cardiac MR is depicting RV contour, (h) Binary image of RV contour, (i) 190 

Distance map of the RV contour, (Cropped for better view). 191 

Figure 6 shows three distance maps constructed from the RV endocardial, LV endocardial and epicardial 192 

contours derived from 2D ground truth, respectively. For a point iy , the distant value M iD (y )  is defined 193 



 

13 
 

as follows: 194 

M i min iD (y ) = d (y , M)  (2)

where min id (y , M)  is the minimal distance from point iy  to the ground truth contour M . 195 

In the following 3D-ASM segmentation, the above steps are executed for all short-axis cardiac images. 196 

The smaller the value of a pixel in the distance maps, the more likely the pixel belongs to the cardiac contours. 197 

Since the values of the manual contour in the distance maps are purposely made to be zero, so there exists a 198 

driven force that can lead the initial shape to the actual cardiac boundary. The detailed fitting process will 199 

be introduced in the next paragraph. 200 

2.5. Step IV: Three-dimensional Image-driven Adaptation of ASM 201 

Let us assume a training set with M shapes, and three-dimensional points described as i i i
j j j(x , y ,z )i

jx202 

with i =1 M…  and 1j N  . Let i i i i i i T
1 1 1 N N N(x , y , z ,..., x , y , z )

i
s  be the ith  vector representing the 203 

shape of the ith  LRV surface and 1 MS , ,   s s  set all training shapes in matrix form. All nuisance 204 

pose parameters (e.g. translation, rotation and scaling) have been removed Susing Generalised Procrustes 205 

Analysis [24]. Hence, the shape class mean of S , s  can be written as 206 

M

i 1

1
M 

  i
s s  (3)

and the shape class covariance is 207 

M
T

i i
i=1

1 (s - s)(s - s)
M-1

 C  (4)

The shape class covariance is represented in a low-dimensional space or Principal Component Analysis 208 

(PCA). This produces l  eigenvectors 1 2[ ... ]
l l
Φ φ φ φ , and corresponding eigenvalues 209 

1 2diag( , , ),
l

   Λ  of the covariance matrix computed via Singular Value Decomposition (SVD). Under 210 

the constraint of multi-dimensional Gaussian probability distribution, any shape in the shape class can be 211 

represented as 212 
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l
 s s Φ b  (5)

where b  is the PDM parameters and restricted to i ib    fall within 99% of the shape class 213 

distribution if 3  . The parameters that reconstruct a shape s  are estimated from 214 

( )T

l
 b Φ s s  (6)

The components of b  are the projection coefficients of mean-centred shapes ( )s s  along the 215 

columns of l
Φ . 216 

There are two key components for 3D-ASM segmentation, one is the shape constraint called PDM, and 217 

the other one is IIM. In 3D-ASM, the IIMs capture local intensity distribution along cardiac boundaries. In 218 

this research, 1D intensity profiles are sampled with a length size  15m   pixels normal to the myocardial 219 

contours. For the ith  landmark, the mean intensity profile ig , and the corresponding image intensity 220 

covariance 
igS  are estimated. In the process of 3D-ASM matching, the intersections of the 3D PDM with 221 

all imaging planes define a stack of 2D contours oriented in 3D space. For each landmark, the 3D-ASM runs 222 

to seek the best-matching location where the intensity profile is derived along the normal to the boundaries 223 

and over the imaging planes. To obtain the best-matching location or the candidate point, iy  for each 224 

landmark, the Mahalanobis distance is minimised between profile sampled at the candidate position, viz. 225 

( )i ig y , and the mean profile, ig , according to: 226 

 
i

o T -1
i i i g i i

y
y = argmin (g(y ) - g ) S (g(y ) - g )

i
 (7)

Consider the sparse property of CMR images, inevitably, no image slices in the stack can be found to 227 

intersect with the mesh triangles. In such situation, the points containing the triangles are updated by PDM 228 

instead of IIM, the updated mechanism is defined as follows:  229 

2

2

p-q
w(p,q) exp

2

    
  

 (8)

where q represents any image-driven point at a Gaussian kernel centred position and   is the width of 230 

the kernel. p  is a neighbouring point driven by equation (8) under the condition that no IIM can be available. 231 
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During the 3D-ASM segmentation, IIM adopts Eq. (9) to select candidate points. We optimise the 232 

process by employing the generated distance maps. The optimal candidate points can be derived using the 233 

following equation: 234 

 
i

o T -1
i i i i i

y
y = argmin (g(y ) - g ) S (g(y ) - g ) * ( )

ig M i
D y  (9)

where 3   is a penalty factor. 235 

After Step IV, we can obtain the 3D ground truth of bi-ventricles, a surface mesh with the same 236 

topology containing LV endo-/epi- and RV endo-cardiums. Then the derived mesh with the image data are 237 

employed to retrain PDM and IIM. Technical details can be referred in [25]. 238 

2.6. Step V: CNN Distance Maps and 3D-ASM segmentation 239 

In this study, a fully convolutional network (FCN) with 16 layers is adopted for automatically 240 

segmenting the LV myocardium, blood-pool and RV blood-pool for short-axis slices as depicted in Fig 7. In 241 

the architecture, batch normalisation and RELU follows each convolutional layer, max-pool layer is used to 242 

reduce or down sample the dimensionality of the input image. Helped by max-pool layer, feature detection 243 

is independent of noise and small changes like image rotation or tilting. The upscale layers which will up-244 

sample the input image to a higher resolution. The softmax layer applies a softmax function to the input and 245 

converts the output of the last layer into a probability distribution. 246 

 247 
Fig 7. The architecture of the fully neural network. 248 

 249 
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 250 

Fig 8. Distance maps for LV and RV contours. (a) Original cardiac MR is depicting endocardial 251 

contour, (b) Binary image of endocardial contour, (c) Distance map for endocardial contour, (d) Original 252 

cardiac MR is depicting epicardial contour, (e) Binary image of epicardial contour, (f) Distance map of the 253 

epicardial contour, (g) Original cardiac MR is depicting RV contour, (h) Binary image of RV contour, (i) 254 

Distance map of the RV contour. (Cropped for better view). 255 

After the CNN operation, the contours of LV and RV can be obtained separately. Using the same 256 

techniques in Step II, the initial shape for bi-ventricles can be easily obtained. Then the LRV contours are 257 
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adopted to build distance maps for LRV segmentation. Fig. 8 shows three distance maps constructed from 258 

the narrow band for RV endocardial, LV endocardial, and epicardial contours derived from CNN. For a 259 

point iy , the distant value CNN iD (y )  is defined as follows: 260 

CNN i min iD (y ) = d (y , CNN)  (10) 

where min id (y , CNN)  is the minimal distance from point iy to the narrow band CNN . 261 

In the 3D-ASM matching, IIM uses Eq. (7) to select candidate points. We optimise the process by 262 

employing the generated CNN-based distance maps. To minimise the value of the distance map and the 263 

Mahalanobis distance between the sampled intensity profile and the mean intensity profile [26], the optimal 264 

candidate points can be derived via the following equation: 265 

 
i

o T -1
i i i g i i i CNN i

y
y = argmin (g(y ) - g ) S (g(y ) - g ) * D (y )  (11) 

where 3  is a penalty item used for candidate points searching region. CNN iD (y )  denotes the value of the CNN 266 

distance map for the candidate point i
y . The matching algorithm is illustrated in Algorithm 1. 267 
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 268 

3. Dataset 269 

In this paper, the dataset, which consists of 1000 cardiac MRI cases from UK Biobank [27], is used to 270 

test our method's performance. Ground truth for left and RV contours delineated by experts are available for 271 
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CNN training and quantitative analysis of cardiac functions. Cardiac magnetic resonance (CMR) images 272 

(end-diastolic short-axis view) data from UK Biobank (UKB) was accessed under access application #11350 273 

and used to train and validate the proposed method. 274 

CNN parameters are learned from CMR images in SA view of 500 subjects, and the remaining 500 cases 275 

are used for validation. The CNN is trained to distinguish between background, LV blood-pool, myocardium, 276 

and RV blood-pool. 277 

4. Results 278 

In this section, some experiment results demonstrate that our proposed algorithm can get accurate and 279 

robust segmentation for LV and RV. 280 

To show the accuracy of our method, comparisons are carried out between the proposed algorithm and 281 

other approaches. The overlap (Dice) and Jaccard similarity (Jac) indexes evaluate the overlap between the 282 

automated produced segmentation A  and ground truth M . They are defined as below: 283 

2*ice A M
D

A M



  (12)

Jac= A M

A M




 (13)

Dice and Jac are between 0 and 1, and the higher values imply better agreement between the two 284 

segmentations. 285 

We compare the results among three CNNs, Bai [14], U-net [28], and our adopted FCN. The overlap and 286 

Jaccard indexes can be seen in Table 1. In our adopted FCN, overlap and Jaccard index are 0.93 and 0.87 287 

for LRV in ED (end-diastole) phase, respectively, they are 0.90 and 0.83 in ES (end-systole) phase. The 288 

FCN can get more accurate results than other CNNs. 289 

 290 

 291 
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 292 

 293 

Table 1. Overlap and Jaccard indexes for the 3 CNNs. 294 

  ED ES 
 Method Bai [14] U-Net [29] Adopted FCN Bai [14] U-Net [29] Adopted FCN

LVEndo Dice 0.92±0.05 0.91±0.05 0.93±0.05 0.88±0.07 0.88±0.06 0.89±0.07 
Jac 0.88±0.06 0.85±0.05 0.89±0.06 0.81±0.07 0.81±0.06 0.83±0.07 

LVEpi Dice 0.94±0.03 0.94±0.03 0.95±0.03 0.93±0.04 0.93±0.03 0.94±0.04 
Jac 0.90±0.04 0.89±0.04 0.90±0.04 0.88±0.05 0.88±0.03 0.89±0.05 

RVEndo Dice 0.88±0.06 0.88±0.04 0.90±0.06 0.84±0.07 0.84±0.06 0.86±0.07 
Jac 0.81±0.07 0.80±0.05 0.83±0.07 0.75±0.08 0.74±0.07 0.78±0.08 

LRV Dice 0.91±0.05 0.91±0.04 0.93±0.05 0.88±0.06 0.88±0.05 0.90±0.06 
Jac 0.86±0.06 0.85±0.05 0.87±0.06 0.81±0.07 0.81±0.05 0.83±0.07 

In Table 2, it can be seen in the ED phase that the overlap indexes from ours for LVEndo, LVEpi are 4.8% 295 

and 3.5% larger than those from Albà et al [22]. The Jaccard indexes from ours for LVEndo, LVEpi are 8.1% 296 

and 6.5% larger than those from Albà et al. Compared with Albà et al in ES phase, the corresponding values 297 

of overlap indexes for LVEndo, LVEpi from ours are 15.7% and 12.2% larger, they are 22.8% and 17.7% 298 

in the Jaccard indexes. A conclusion can be obtained that our schema can derive more accurate results than 299 

those from 3D-ASM adopted by Albà et al [22]. 300 

Table 2. Overlap and Jaccard indexes for the clinical cases. 301 

  ED ES 

 Method Proposed Albà's 
(2018) Proposed  Albà's (2018) 

LVEndo 
Dice 0.88±0.04 0.84±0.06 0.81±0.04  0.70±0.11 
Jac 0.80±0.05 0.74±0.07 0.70±0.05  0.57±0.13 

LVEpi 
Dice 0.89±0.03 0.86±0.05 0.83±0.05  0.74±0.10 
Jac 0.82±0.04 0.77±0.07 0.73±0.06  0.62±0.12 

RVEndo 
Dice 0.77±0.06 Null 0.69±0.06  Null 
Jac 0.67±0.07 Null 0.57±0.07  Null 

LRV 
Dice 0.85±0.04 Null 0.78±0.05  Null 

Jac 0.76±0.05 Null 0.67±0.06  Null 

The Point-to-surface errors measures the mean distance from automatic points P
A  and manual points 302 

MP  to surfaces of ground truth MS  and automatic AS . Point-to-surface errors (P2S) is defined: 303 

A
p P p P

1 1P2S d(p,S ) d(p,S )
2 | P | 2 | P | 

  
A M

M

A M

 (14) 
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where d(p,S)  denotes the minimal distance from point p  to surface S . The smaller the distance metric, 304 

the better the match. 305 

For Point-to-surface errors, the results can be seen in Figure 9. In Figure 9, Point-to-surface errors for 306 

LVEndo, LVEpi, and myocardial are calculated for our algorithm and 3D-ASM. It can be seen that the 307 

values from ours are smaller than the corresponding indexes from 3D-ASM. Considering that the image 308 

contrast in ES phase is weaker than in the ED phase, the Point-to-surface errors are higher in the ES phase 309 

than those in the ED phase for both the proposed and 3D-ASM results. 310 

 311 

Fig 9. Boxplot of Point-to-surface errors for proposed method and 3D-ASM. (a) ED phase, (b) ES 312 

phase. (For each group: LVEndo, LVEpi and Myocardial, two subfigures are displayed, the left is from the 313 

proposed algorithm, and the right shows results from 3D-ASM adopted in Albà's (2018). 314 

 315 
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 316 

Fig 10. Point-to-surface errors for the proposed method and Albà's in ED and ES phases. 317 

Figure 10 shows Point-to-surface errors for one case between our method and 3D-ASM. Since our 318 

algorithm combines the advantages of CNN and 3D-ASM adopted in [22], our results match better than 319 

those of only using 3D-ASM. 320 

Figure 11 shows the mean and standard deviation values of Point-to-surface errors for the regional 321 

analysis between the proposed method and 3D-ASM adopted by Albà in a bulls-eye display of the AHA 322 

17-segment model [30]. Compared with 3D-ASM, we observe that ours are closer to the ground truth in 323 

most regions in terms of the mean and standard deviation values, which confirmed the high quality of our 324 

proposed algorithm. 325 
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 326 

Fig 11. Point-to-surface errors for the proposed method and 3D-ASM by Albà's (2018) presented as 327 

bulls-eye displays. (SD: standard deviation). 328 

We provide a visual comparison between the manual segmentation and the automatic approaches. Figure 329 

12 displays good and bad segmentations of short-axis slices for two subjects. 330 

Figure 12 shows segmentation of two cases among manual, the proposed method and 3D-ASM adopted 331 

by Albà's (2018) in ED and ES phases. Segmentation results from automatic approaches and clinical experts 332 

are in different styles. The contours from experts are red curves, whereas the outputs from automatic are 333 

green ones. The first and the third rows are results from our proposed algorithm, while the second and the 334 

last rows are from 3D-ASM. It can be seen that our method obtains better segmentation performance than 335 

Albà (2018) which used the 3D-ASM strategy. Since only the LV initial shapes can be obtained in Albà's 336 
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work, no RV segmentation can be seen in Albà's method. 337 

 338 

Fig 12. Short-axis slice segmentation of good and bad cases (Good case: good segmentation by ours 339 

and Albà's (2018); Bad case: ,wrong segmentation by Albà's (2018)) in ED and ES phases. For each case, 340 

the first row comes from the proposed algorithm results, while the second row is from Albà's (2018). The 341 

green curves indicate automatic contours, while the red ones are the ground truth (cropped for better 342 

viewing). 343 

Table 3 shows cardiac functional parameters for both LV and RV between the manual and proposed 344 

methods. The results from ours are close to those from experts. 345 

Table 3. Cardiac functional parameters. 346 

  From experts Proposed  

LVEDV (ml)  143.92±33.77 135.34±31.91  

LVESV (ml)  58.15±18.37 54.60±17.02  

LVSV (ml)  85.77±19.94 80.74±23.79  

LVM (g)  94.79±26.28 100.86±25.57  

LVEF (%)  59.60±6.52  59.66±10.87  

RVEDV (ml)  148.75±35.07 139.94±36.73  

RVESV (ml)  72.98±24.62 66.99±22.26  

RVSV (ml)  75.77±18.19 72.95±20.04  

RVEF (%)  50.93±6.85  52.13±10.89  

 347 
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 348 

 349 

Fig 13 Plots of Bland-Altman and correlation of cardiac functional indexes between the manual and 350 

automated results. In the top row, the black horizontal lines reprent mean difference (i.e. bias), while the 351 

two red dashed lines are limits of agreement (LoA, i.e. ±1.96 standard deviations from the mean). The second 352 

row denotes correlation plots for the coresponding cardiac functional indexes coming from manual and 353 

proposed method. 354 

The Bland-Altman and correlation plots are shown in the top and bottom rows in Figure 13 respectively. 355 

The Bland-Altman plot is an effective tool to measure agreement and bias between two techniques. It can 356 

be seen that strong agreement in the Bland-Altman plots, indicating that slight bias exists in clinical indexes 357 

computed by the proposed approach. The correlation coefficient (corr) is the specific measure that quantifies 358 

the strength of the linear relationship between two variables in a correlation analysis. Correlations of cardiac 359 

indexes range from 0.88 to 0.97, demonstrating a strong relationship between manual and automatic methods. 360 

5. Discussion 361 

We proposed a fully automatic segmentation for left and right ventricles in cardiac MRI. Our approach, 362 

which combines a bi-ventricular model initialisation, deep learning neural network, and a 3D-ASM 363 

segmentation, obtains outstanding performance. Three landmarks are automatically derived to guide the LV 364 

shape initialisation upon which the bi-ventricular model is initialised. Procrustes analysis is employed to get 365 

the coarse bi-ventricle estimate. However, the coarse initial LRV shape is doomed to get failure segmentation 366 
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due to irregular RV shape. 367 

The image planeis rotated to be perpendicular to Z-axis. he coarse initial LRV shape and the RV points 368 

from CNN are rotated with the same transformation. Then the angle is calculated between RV points from 369 

coarse initial LRV shape and CNN points using thepoint-set registration method. At last, the coarse initial 370 

shape is refined by rotating with the obtained angle and transformed to its original position. 371 

In general, 3D ground truth shape cannot be obtained by manual delineation. To build a 3D ground shape, 372 

2D manual contours are used to construct distance maps for 3D-ASM segmentation. The segmented shapes 373 

and the corresponding images are employed to rebuild models of point distribution and image intensity. 374 

In the segmentation process, there are still challenges for 3D-ASM. Firstly, there exists similar shapes 375 

and edge information between the LV endo- and epicardial contours. Secondly, other organs with robust 376 

edge information may divert model fitting owing to limitations in the IIM. Figure 12 shows poor results for 377 

3D-ASM due to strong edges from other organs. 378 

To overcome these difficulties, we invent distance maps by utilising CNN segmentation results. The 379 

distance maps are converted to a penalty item in the IIM to drive the refined initial shapes to the LRV position. 380 

Consequently, a 3D LRV shape is created, representing an accurate segmentation for the cardiac images. 381 

6. Conclusion 382 

This study introduces a hybrid schema that can automatically initialise bi-ventricle for 3D-ASM. 2D 383 

manual contours are employed to build distance maps to get 3D ground truth shapes. In the segmentation 384 

process, deep learning is used to refine the bi-ventricular initial shapes and build distance maps for the IIM. 385 

Results show that our algorithm can cope with technical difficulties and derive robust segmentation of left 386 

and right ventricles for cardiac MRI studies with subvoxel accuracy. Our approach still ssome aspects of 387 

being improved, such as the deep learning schema that can be optimised and how to utilise time constraint 388 

to enhance segmentation in different phases using 3D-ASM. We will test the improved method on the 389 
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complete set of UK Biobank CMR imaging study (>40k subjects) in the future.  390 
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Figure Captions: 469 

Fig 1. The pipeline of the proposed algorithm. 470 

Fig 2. Definition of AOTIA, MITRAL and LVAPEX. 471 

Fig 3. Bi-ventricular model initialisation. (a) LV initial shape and three points (AOTIA, MITRAL and 472 

LVAPEX), (b) Bi-ventricular initial shape using Procrustes analysis, (c) LV initial shape in short-axis 473 

view, (d) Bi-ventricular initial shape in short-axis view. 474 

Fig 4. Initial shape rotation. (a) LV, RV points from PDM and RV points from ground truth at their original 475 

position, (b) Rotated points from PDM and ground truth, (c) RV point sets from PDM and ground truth, (d) 476 

RV point sets with similar shape from PDM and ground truth. GT: ground truth. 477 

Fig 5. Complex transformation for initial shape rotation. (a) Registered points from PDM and RV contour 478 

points from ground truth, (b) LV and RV points using complex transformation, RV contour points from 479 

ground truth, (c) LV, RV points from PDM and RV points from ground truth at their original position, (d) 480 

Bi-ventricular initial shape in short-axis view. GT: ground truth. 481 

Fig 6. Distance maps for ground truth of LV and RV. (a) Original cardiac MR is depicting endocardial 482 

contour, (b) Binary image of endocardial contour, (c) Distance map for endocardial contour, (d) Original 483 

cardiac MR is depicting epicardial contour, (e) Binary image of epicardial contour, (f) Distance map of the 484 

epicardial contour, (g) Original cardiac MR is depicting RV contour, (h) Binary image of RV contour, (i) 485 

Distance map of the RV contour, (Cropped for better view). 486 

Fig 7. The architecture of the fully neural network. 487 

Fig 8. Distance maps for LV and RV contours. (a) Original cardiac MR is depicting endocardial 488 

contour, (b) Binary image of endocardial contour, (c) Distance map for endocardial contour, (d) Original 489 

cardiac MR is depicting epicardial contour, (e) Binary image of epicardial contour, (f) Distance map of the 490 

epicardial contour, (g) Original cardiac MR is depicting RV contour, (h) Binary image of RV contour, (i) 491 

Distance map of the RV contour. (Cropped for better view). 492 
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Fig 9. Boxplot of Point-to-surface errors for proposed method and 3D-ASM. (a) ED phase, (b) ES 493 

phase. (For each group: LVEndo, LVEpi and Myocardial, two subfigures are displayed, the left is from the 494 

proposed algorithm, and the right shows results from 3D-ASM adopted in Albà's (2018). 495 

Fig 10. Point-to-surface errors for the proposed method and Albà's in ED and ES phases. 496 

Fig 11. Point-to-surface errors for the proposed method and 3D-ASM by Albà's (2018) presented as 497 

bulls-eye displays. (SD: standard deviation). 498 

Fig 12. Short-axis slice segmentation of good and bad cases (Good case: good segmentation by ours 499 

and Albà's (2018); Bad case: ,wrong segmentation by Albà's (2018)) in ED and ES phases. For each case, 500 

the first row comes from the proposed algorithm results, while the second row is from Albà's (2018). The 501 

green curves indicate automatic contours, while the red ones are the ground truth (cropped for better 502 

viewing). 503 

Fig 13 Plots of Bland-Altman and correlation of cardiac functional indexes between the manual and 504 

automated results. In the top row, the black horizontal lines reprent mean difference (i.e. bias), while the 505 

two red dashed lines are limits of agreement (LoA, i.e. ±1.96 standard deviations from the mean). The second 506 

row denotes correlation plots for the coresponding cardiac functional indexes coming from manual and 507 

proposed method. 508 

Table Captions: 509 

Table 1. Overlap and Jaccard indexes for the 3 CNNs. 510 

Table 2. Overlap and Jaccard indexes for the clinical cases. 511 

Table 3. Cardiac functional parameters. 512 
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