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Abstract
A recently proposed simple approximate theory of snow machining is applied to modelling of several basic manoeuvres of 
alpine skiing: fall-line side-slipping, traversing, and hockey stop. The results agree with the skiing practice and explain the 
abnormally high friction reported in previous field studies. They also prepare foundation for future rigorous testing of the 
theory, which will determine its accuracy and limits of applicability.
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1 Introduction

The interaction between skis and snow is one of the most 
important aspects of skiing. For a classical glider, the inter-
action with the surface it glides reduces to the normal to 
the surface reaction force N and the Coulomb friction force 
Ff = −𝜇Nm̂ , where � is the kinetic coefficient of friction, 
and m̂ is the unit vector in the direction of relative motion. 
The physics of friction between snow and ski is interest-
ing and important (e.g. [1–3]). However, it has been long 
recognised that there must be more to the snow-ski interac-
tion. Indeed, neither of the above two forces can change the 
direction of motion and hence explain how skiers manage 
to execute ski turns.

It is also well known to every skier that during turns their 
skis are not flat on the snow but set on their inside edges 
instead. Furthermore, in so-called skidded (or steered) turns, 
edged skis slip sideways and, in the process, remove a layer 
of snow with their edges. In this regard, a ski works like a 
cutting tool in industrial machining of various materials. 
Understandably, the mechanics of industrial machining has 

been a subject of intensive research, both experimental and 
theoretical [4–9, to name few]. Much less attention has been 
attracted to the machining of ice and snow, which has no 
industrial applications. A laboratory study of ice machining 
was carried out by [10], and machining of compacted snow 
was studied in [11–13]. They obtained rather complicated 
empirical expressions for the forces emerging in the process. 
Although these complex expressions are not particularly 
convenient for theoretical analysis, they could still be used 
in numerical integration of the equations of motion. [14] 
proposed to apply the theory of metal machining instead. 
Most importantly, these studies demonstrated the presence 
of the turning force orthogonal to the direction of motion.

Recently, [15] presented a simple approximate analytical 
theory of snow machining and compared it against the data 
of former laboratory experiments. The results were encour-
aging and this approach is developed further by applying 
the theory to the most basic manoeuvres of alpine skiing, 
side-slipping down fall line, hockey stop, and traversing. 
Our aim is to check if the results agree with the practice of 
alpine skiing and to lay foundation for future verification of 
the theory in experiments on real ski slopes. The simplicity 
of these manoeuvres makes setting up of such experiments 
quite straightforward.This article is a part of Topical Collection in Sports Engineering 

on Winter Sports, edited by Dr. Aimee Mears, Dr. David Pearsall, 
Dr. Irving Scher and Dr. Carolyn Steele.

 * Serguei S. Komissarov 
 s.s.komissarov@leeds.ac.uk

1 School of Mathematics, The University of Leeds, 
Leeds LS2 9JT, UK

http://orcid.org/0000-0003-4545-9774
http://crossmark.crossref.org/dialog/?doi=10.1007/s12283-021-00357-y&domain=pdf


 S. S. Komissarov    20  Page 2 of 7

2  Methods and materials

Following [15], it is assumed here that the snow reaction force 
Fr is normal to the ski base. Since the ski is normally put on 
its edge, one can split Fr into components normal and tangent 
to the surface of the ski slope,

The normal component N = Nk̂ ( N > 0 ), where k̂ is a out-
ward unit normal to the slope surface, is known in the theory 
of machining as the feed force. The tangential component, 
Fc is known as the cutting force. If n̂s is a unit vector tan-
gent to slope, normal to the ski edge, and pointing to the 
side opposite to the direction of motion, then Fc = Fc n̂s 
( Fc > 0 ). Obviously,

where �  is the edge angle, the angle between the ski base 
and the slope surface. If ŝ is the unit vector aligned with the 
ski, and m̂ is the unit vector in the direction of ski motion 
relative to the snow, then

In the tangent plane of the slope, Fc splits into the brak-
ing force Fb = −Fb m̂ ( Fb > 0 ) and the turning force 
Ft = Ft n̂m ( Ft > 0 ), where

It is easy to see that

where 0 ≤ |𝛾| < 90◦ is the angle of attack, the angle between 
the ski edge and its direction of motion. Thus, the cutting 
force contributes mostly to braking at large angles of attack 
and mostly to turning at small angles of attack.

In this theory, skis are modelled as straight planks and 
hence their non-trivial shape and ability to bend and twist are 
completely ignored. These complicating factors will have to 
be taken into account in more advanced models.

The other two key forces acting on the skier are the gravity 
force

where M is the skier mass and g is the gravitational accelera-
tion, and the aerodynamic drag force

(1)Fr = N + Fc .

(2)Fc = N tan� ,

(3)n̂s =
(m̂×ŝ) × ŝ

|m̂×ŝ|
.

(4)n̂m =
(m̂×ŝ) × m̂

|m̂×ŝ|
.

(5)Fb = Fc sin � and Ft = Fc cos � ,

Fg = Mg ,

Fd = −
CdA𝜌

2
v2m̂ ,

where Cd is the drag coefficient, A is the cross-section area 
of the skier normal to the direction of motion, � is the mass 
density of the air, and v is the skier speed relative to the air 
[2]. Hence, the motion of the skier centre of mass (CM) is 
governed by the equation

where a is the CM acceleration. The strong dependence of 
Fd on the speed ensures that at sufficiently low speeds it can 
be safely ignored.

3  Results

3.1  Side‑slipping down the fall line

As a first application to skiing, let us consider one of its 
most basic manoeuvres, side-slipping down the fall line 
(the line of steepest descent down the ski slope). Since this 
manoeuvre is executed with skis directed perpendicular 
to the fall line, it corresponds to the case of orthogonal 
machining (see Fig. 1). Normally, this manoeuvre is per-
formed at low speed, which allows to ignore the contribu-
tion of aerodynamic drag in Eq. (6).

Let us consider a ski slope with the slope angle � , the 
angle between the slope plane and the horizontal plane. 
Using Cartesian coordinates with the basis vectors k̂ (out-
ward normal to the surface of the ski slope), î (parallel 
and down to the fall line), and ĵ (perpendicular to the 
other two), one can write a = aî , g = g sin 𝛼î − g cos 𝛼k̂ , 
N = Nk̂ , and Fr = −N tan𝛹 î + Nk̂ . Hence the component 
of Eq. (6) along k̂ reads

This is the usual condition of force balance perpendicular to 
the slope. The component of Eq. (6) along î determines the 
magnitude of the CM acceleration,

This result tells us that the edge angle allows control of side-
slipping. Namely,

This conclusion is fully consistent with skiing practice. 
Moreover, the condition � = � also agrees with the fact that, 
during side-slipping at constant speed, the skier’s shanks are 
aligned with the vertical direction (e.g. Fig. 1).

(6)Ma = Fg + Fr + Fd ,

(7)N = Mg cos � .

(8)a = g cos �(tan � − tan� ) .

(9)
𝛹 < 𝛼 for acceleration ;

𝛹 = 𝛼 for constant speed ;

𝛹 > 𝛼 for deceleration .
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3.2  Hockey stop

In the “hockey stop” manoeuvre, skiers (skaters) quickly 
pivot their skis (skates) to the angle of attack � ≈ 90◦ and 
push them ahead of their CM in the direction of motion. 
The theory of snow machining supports this action as the 
most effective way of braking. Indeed, pushing skis forward 
results in a higher edge angle and hence a higher snow cut-
ting force (see Eq. 2), whereas for a given cutting force, the 
braking force is maximised at � = 90◦ (see Eq. 5). One can 
use Eq. (8) to obtain crude estimates of the braking time and 
distance to a full stop

respectively, where V0 is the initial speed. For � = 15◦ and 
V0 = 10m/s, Eq. (8) predicts a = 7.1m/s2 , Tbr = 1.4 s, and 
Lbr = 7.0 m if � = 45◦ and a = 14m/s2 , Tbr = 0.7 s, and 
Lbr = 3.5 m if � = 60◦ . These values seem quite realistic, 
though the author could not find any experimental study of 
the manoeuvre required for quantitative comparison.

3.3  Skidded traversing

The second basic skiing manoeuvre considered here, is the 
straight line skidded traverse (diagonal side-slipping). For a 
motion along straight line, the total force acting on the body 

Tbr = V0 ∕a and Lbr =
V2
0

2a

must be aligned with the velocity vector. If the skier was expe-
riencing only the gravity force, aerodynamic drag, and Cou-
lomb friction, such motion would be impossible because the 
drag and friction forces are aligned with the velocity, but the 
gravity force is not and pulls the skier towards the fall line.

In contrast, the snow cutting force has a component (the 
turning force) perpendicular to the velocity vector. If this com-
ponent can balance the perpendicular to the velocity compo-
nent of the gravity force, then straight line traversing is pos-
sible. Here, we explore this possibility.

Now a = am̂ and Fr = N tan𝛹 n̂s + Nk̂ . Let us denote 
the angle between the velocity vector and the fall line as 
� (the angle of traverse) and agree that the angle of attack 
−90◦ ≤ � ≤ 90◦ is positive in the rotational direction away 
from the fall-line (see Fig. 2). Hence m̂ = (cos 𝛽, sin 𝛽, 0) and 
ns = sign (�)(− sin(� + �), cos(� + �), 0).

In the direction of k̂ , the equation of motion (6) still yields 
Eq. (7). However, in the slope plane

where fd = Fd ∕Mg = Cd A�v
2∕2Mg is the drag force in the 

units of Mg. In the direction normal to m̂ (and hence parallel 
to the vector n̂m = (− sin 𝛽, cos 𝛽, 0) ), this equation yields

Since 0◦ < 𝛼, 𝛽,𝛹 < 90◦ , this equation can be satisfied only 
if 𝛾 > 0 . This agrees with the fact that, in traversing, skis 
are pivoted away from the fall line (see Fig. 2). Conversely, 

(10)(a∕g)m̂ = sin 𝛼 î + cos 𝛼 tan𝛹 n̂s − fd m̂ ,

(11)tan � sin � = sign (�) tan� cos � .

Fig. 1  Left panel: a skier side-slipping down the fall line. Right 
panel: a skier traversing a ski slope at fixed angle of attack. These are 
frames from the video “Alltracks Ski Tips. Skiing with flow” (https:// 
www. youtu be. com/ watch?v= NoQsL dRD7nE, frame times 1:48 and 
1:56). m̂ is the direction of motion, î  is the direction of the fall line, 
and ŝ is the direction of the ski edge; these are drawn based on the 

“naked-eye” analysis of the video. (The images are used with per-
mission from Alltracks Academy, West Tytherley, Hampshire, SP5 
1LX, UK). The reader may also find useful the following two videos: 
https:// www. youtu be. com/ watch?v= fS1BS apSyos and https:// vimeo. 
com/ user2 580425 (the video titled Ski Improvement: Separation 
through the arc around the play time 1:00)

https://www.youtube.com/watch?v=NoQsLdRD7nE
https://www.youtube.com/watch?v=NoQsLdRD7nE
https://www.youtube.com/watch?v=fS1BSapSyos
https://vimeo.com/user2580425
https://vimeo.com/user2580425
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if skis are pivoted towards the fall line ( 𝛾 < 0 ), the trajec-
tory has to be curved. Indeed, this is how skis are pivoted 
in skidded turns.

For the motion along the fall line ( � = 0 ), Eq. (11) 
implies � = 90◦ . This justifies the assumption � = 90◦ made, 
on the basis of observations, in our analysis of side-slipping 
down the fall line.

In the direction of m̂ , Eq. (10) yields

Normally, skidded traverse is performed at low speed, which 
allows us to ignore the drag force ( fd → 0 ). Moreover, once 
the speed growth has saturated, one can put a = 0 . Under 
these conditions, Eqs. (11) and (12) lead to

Hence, like in the case of side-slipping down to the fall line, 
skidded traversing also involves vertical position of skier’s 
shanks and skis placed perpendicular to the fall line. This 
explains why skier’s postures in orthogonal and traverse side 
slipping look very much the same (compare the images in 
Fig. 1.)

3.4  Rotational balance of skiers

The above results imply that changing the edge angle is the 
main way of controlling the speed of traverse. In industrial 
machining, where the tool is firmly held in its place by fixing 
devices, one can set almost any edge angle for a cutting tool. 
In skiing, the range is more limited because skiers have to 
find a balanced position over their skis, or they will crash. 
For exact balance, the torque acting on the skier has to van-
ish (small deviations from this condition can be utilised for 
control over skier’s orientation.)

(12)a∕g = sin � cos � − | sin �| tan� cos � − fd .

(13)tan� = tan � and � + � = 90◦ .

Since both the gravity and the inertial forces associated 
with skier’s acceleration can be treated as applied at skier’s 
CM, the condition of rotational balance can be formulated 
as vanishing of the torque relative to the CM due to the 
snow reaction force and the aerodynamic drag. Here the 
focus is on the case where the torque due to the drag can be 
neglected1. This is reasonable because the aerodynamic drag 
force grows like v2 , where v is the skier speed relative to air, 
and becomes small at sufficiently low speeds. Moreover, the 
application area of the drag force is spread around the CM 
and hence the effective lever must be significantly shorter 
compared to that of the snow reaction force.

When skier is balancing on one ski, the condition of rota-
tional balance reads

where r is the position vector of the cutting edge of this ski 
relative to the skier’s CM, and Fr is the snow reaction force 
applied to this ski. Thus, Fr must point directly at the CM 
(see the left panel of Fig. 3). Maintaining this alignment 
involves continuous correction of the edge angle via chang-
ing the knee angulation and requires advanced skills.

Normally, skiers balance on both skis. In this case, the 
rotational balance reads

where suffixes ‘u’ and ‘d’ refer to the uphill and downhill 
skis, respectively. For simplicity, let us assume that both the 

(14)r×Fr = 0 ,

(15)rd × Fd

r
+ ru × Fu

r
= 0 ,

Fig. 2  Key unit vectors and angles in the plane of the tangent plane of 
ski slope which emerge in the problem of traverse. î  is the direction 
of fall line, m̂ is the direction of motion, ŝ is the direction of the ski 
edge, vector n̂m is normal to m̂ and n̂s is normal to ŝ . � is the angle of 
traverse and � is the angle of attack

Fig. 3  Left panel: rotational balance in the case of side-slipping on 
one ski. The snow reaction force Fr points directly toward the skier 
centre of mass (CM) and the torque due to the snow reaction force 
about the CM vanishes. Right panel: rotational balance in the case of 
side-slipping on both skis. The CM is located between the lines nor-
mal to the ski bases and originating from cutting edge. The torques 
due to the snow reaction forces originating at the downhill and uphill 
skis point in the opposite directions and balance each other

1 Effectively, this reduces the rotational balance to the plane normal 
to the ski edge.
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skis have exactly the same edge angle and hence Fd

r
∥ Fu

r
 . 

Hence, one can write Fd

r
= �Ft

r
 and Fu

r
= (1 − �)Ft

r
 , where 

Ft

r
= Fu

r
+ Fd

r
 is the total snow reaction force and 0 ≤ � ≤ 1 

is the loading parameter. In this case, the condition of rota-
tional balance reduces to

Obviously, the vector rb = ru + �(rd − ru) connects the CM 
to a point on the slope located between the cutting edges 
of the skis. For the rotational balance, this vector must 
be aligned with Ft

r
 . Such a vector exists provided the CM 

resides between the cutting edges, when projected on the 
plane of the ski base (the plane normal to Ft

r
 , see the right 

panel of Fig. 3). Skiers can maintain this balance via adjust-
ing the load distribution, which does not require any more 
skill than standing on two feet. Moreover, when the skier is 
in translational balance as well, and hence Ft

r
= −mg , their 

CM must be located above their base of support. This is 
exactly the same rotational balance condition as for stand-
ing on a floor.

If only the downhill ski is loaded, then � = 1 and rm = rd . 
Hence, the CM is shifted to the extreme downhill position 
relative to the skis. Similarly, when only the uphill ski is 
loaded, � = 0 , rm = ru , and the CM is shifted to the extreme 
uphill position. Such shifts are normally achieved via angu-
lating of skier’s body (see Fig. 4).

4  Discussion

Straight line traversing has been studied experimentally by 
[16], with the aim of determining the coefficient of kinetic 
friction and the aerodynamic drag area in alpine skiing. They 
set a 30 m long corridor at traverse angle � = 52◦ on a slope 

(16)(ru + �(rd − ru))×Ft

r
= 0 .

with inclination � = 23◦2. The participating skier was asked 
to avoid side-slipping. With zero sidecut skis, this should 
be possible. On shaped skis, however, this is problematic 
because shaped skis tend to carve an arc instead of a straight 
line when run on the edge. Indeed, [16] reported that the 
skier could not perform the task exactly and that some side-
slipping did occur, resulting in increased snow resistance. 
Although this experiment was not focused on side-slipping 
and hence is not well-suited for our purposes, we could not 
find anything better in the literature. Here, the parameters 
of side-slipping are estimated assuming it was a permanent 
feature of the runs.

It is easy to see that Eq. (12) can be written as

where

This equation is identical to Eq. (22) in [16] in all respects 
apart from the coefficient of Coulomb friction � being 
replaced by �eff . This suggests that the values of � reported 
in [16] actually measure �eff . Solving Eq. (18) together with 
the straight-traverse condition (11) for � and �  one obtains

and

(17)a∕g = sin � cos � − �eff cos � − fd ,

(18)�eff = tan� sin � .

(19)tan � =
�eff

tan � sin �

Fig. 4  Posturing of rotationally balanced skier depending on the load 
distribution between skis. Left panel: the skier keeps the entire load 
on the downhill ski and the CM is shifted downhill toward the con-
tinuation of the snow reaction force vector originating at the cutting 

edge of this ski. Right panel: the skier keeps the entire load on the 
uphill ski and the CM is shifted uphill. Middle panel: the skier dis-
tributes the load evenly between the downhill and uphill skis

2 The data used in our calculations were communicated to us by the 
authors of [16], who had realised that their paper had few factual 
inaccuracies.
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Hence, one can convert the measured values of �eff into the 
geometrical parameters of side-slipping and quickly check 
if they are reasonable or not.

Unfortunately, the values of the friction coefficient 
reported in [16] are calculated under the assumption of 
negligible aerodynamic drag. Denoting them as �∗ , one has

To extract �eff from the data, one needs to estimate the aero-
dynamic drag force fd . The values of �eff shown in Table 1 
are calculated assuming the skier weight M = 88kg, the rea-
sonable for an upright skier Cd A = 0.6m2 , the air density at 
one kilometre above the sea level � = 1.08 kg m−3 , and the 
mean value of the skier speed. One can see that the braking 
due to the aerodynamic drag is comparable to the braking 
associated with the snow reaction force. This is a conse-
quence of the quite high skier speed in these runs.

The estimated value of �eff are significantly lower than �∗ 
but still well above the value of � = 0.0085 for the proper 
snow friction measured by [16] in the experiment involving 
fall-line gliding. This suggests that the snow cutting force 
was dominant over the friction in the traversing runs.

Interestingly, our calculations yield more or less the same 
attack and edge angles for all the three runs (see Table 1). 
This suggests that the skier executed all runs in the more or 
less the same manner. None of the angles were measured in 
[16]. This is rather unfortunate because such measurements 
are needed to test our model. Using modern technology this 
can be done quite accurately [17, e.g.].

Although this paper deals only with motions along 
straight line, side-slipping is an integral part of many ski-
ing turns. Some types of skiing turns, e.g. the wedge turn 
or the classic parallel turn, are skidded from start to finish. 
Modelling of such turns based on the same model of snow 
machining will be presented elsewhere.

Other types of turns combine skidding with carving. 
They start just like skidded turns with pivoting of skis and 
developing a non-vanishing angle of attack, but during 
the turn the angle of attack reduces and the turn finishes 

(20)tan� =
�eff

sin �
.

(21)�∗ = �eff +
fd

cos �
.

without side-slipping [17, e.g.]. The theory of machining 
offers a plausible explanation of the transition. When skis 
are not rotated during skidding, the braking component of 
the cutting force reduces the velocity component normal 
to the skis and hence the angle of attack. Naturally, � → 0 
signifies transition to carving. At this point, the braking 
component of the cutting force vanishes, whereas its turn-
ing component Ft → N tanΦ , which is the same as the 
turning force in balanced carving [18, 19]. This can be the 
reason for the seamless transition between skidding and 
carving phases of a hybrid turn, when executed by a pro-
ficient skier. Hybrid turns are among the most advanced 
tools in the arsenal of expert skiers and ski racers and 
require rather advanced understanding of skiing mechanics 
for successful modelling.

5  Conclusion

In this paper, a simple model of ski-snow interaction based 
on the theory of machining of materials is used to describe 
the most basic manoeuvres of alpine skiing involving skid-
ding along a straight line: side-slipping down the fall line, 
hockey stop, and traversing. The results are found to be 
consistent with the common practice of alpine skiing, e.g. 
with the use of edge angle to control side-slipping, with 
the orthogonal to the fall line orientation of skis and ver-
tical orientation of skier’s shanks during constant-speed 
traverse, and with the efficiency of a hockey stop. The 
model also explains the abnormally high values of the 
kinetic friction coefficient found in previous models based 
on Coulomb friction. On the other hand, the quantitative 
accuracy of the model remains unknown due to the current 
lack of relevant experimental data. We hope that our the-
ory will stimulate experimental research into side-slipping 
and this important question will soon be answered.
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Table 1  Parameters of straight 
traverse runs studied in [16]

The initial speed vs , the final speed vf , and the “friction” coefficient �∗ are the parameters given in [16]. �eff 
is the effective coefficient of kinetic friction as defined by Eq. 18 and estimated using Eq. 21. � is the attack 
angle calculated using Eq. 19, and � is the ski edge angle calculated using Eq. 20

run vs vf �∗ �eff � ( ◦) � ( ◦)

1 0.6 10.6 0.064 0.051 8.6 19
2 11.0 13.4 0.128 0.067 11 19
3 14.7 16.6 0.153 0.053 9.0 19
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