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Electrically-charged black holes and the Blandford-Znajek
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1School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK

15 September 2021

ABSTRACT

Recently, it was claimed by King & Pringle that accretion of electric charge by a black hole ro-
tating in an aligned external magnetic field results in a “dead” vacuum magnetosphere, where
the electric field is totally screened, no vacuum breakdown is possible, and the Blandford-
Znajek mechanism cannot operate. Here we study in details the properties of the Wald so-
lution for electrically charged black holes discussed in their paper. Our results show that the
claim is erroneous as in the solution with the critical charge q0 = 2aB0 there exists a drop of
electrostatic potential along all magnetic field lines except the one coinciding with the sym-
metry axis. It is also found that while uncharged rotating black holes expel external vacuum
magnetic field from their event horizon (the Meissner effect), electric charging of black holes
pulls the magnetic field lines back on it, resembling what has been observed in some previous
force-free, RMHD and PIC simulations of black hole magnetospheres. This suggests that ac-
cretion of electric charge may indeed be a feature of the black hole electrodynamics. However,
our analysis shows that the value q0 of the BH charge given by Wald is likely to be only an
upper limit, and that the actual value depends of the details of the magnetospheric physics.

Key words: black hole physics, magnetic fields, galaxies: jets, stars: jets

1 INTRODUCTION

In 1974, Robert M. Wald published a paper containing an exact

axisymmetric solution for a magnetosphere of rotating black hole

(Wald 1974). The solution describes asymptotically uniform mag-

netic field of finite strength B0 which is aligned with the symmetry

axis of the black hole (BH). The most important feature of this

solution is the gravitationally induced electric field in the vicinity

of the BH. In particular, Wald (1974) showed that this field can

accelerate charged particles sliding along the magnetic field line

coinciding with symmetry axis. In this regard, the BH magneto-

sphere is similar to the magnetosphere of a pulsar, where the elec-

tric field is induced by the rotation of a neutron star. The exception-

ally high strength of pulsar magnetic field leads to very high ener-

gies of electrically charged particles accelerated by the rotationally

induced electric field and allows vacuum breakdown via copious

pair production. As the result, pulsar magnetosphere is filled with

pair plasma that is magnetically driven away in the form of the

pulsar wind. The wind extracts the rotational energy of the neu-

tron star mostly in the form of Poynting flux. Blandford & Znajek

(1977) drew analogy between BHs and pulsars and looked for ways

to show that the rotational energy of BHs can also be extracted elec-

tromagnetically. In particular, they succeeded in finding an analytic

solution describing an electromagnetic wind from a Kerr black hole

with magnetic charge. For this, they used the force-free approxima-

⋆ Email: S.S.Komissarov@leeds.ac.uk

tion of magnetically-dominated plasma where the particle inertia is

negligibly small and but the electric conductivity is high (perfect).

Since than, the Blandford-Znajek (BZ) mechanism has been ac-

cepted as one of the main channels for powering activity of galactic

nuclei (AGN) and other astrophysical phenomena associated with

astrophysical BHs. In particular, it is believed that this mechanism

is behind the acceleration of relativistic jets from AGN.

One of the main aims of Wald (1974) was the question of how

BHs may acquire net electric charge. This is an important issue

because the electric charge is the only way for BHs to develop

their own electromagnetic field. By analysing his solution along

the symmetry axis, Wald showed that, along the magnetic field line

coinciding with the axis, the gravitationally induced electric field

pulled charged particles of one particular sign into the BH and

ejected particles of the opposite sign. Citing the results by Carter

(1973) (republished as Carter (2010)), Wald claimed that the event

horizon was an equipotential surface and hence the conclusion ap-

plied to any magnetic field line crossing the horizon. By analysing

the modified solution where the BH is allowed to have an electric

charge, Wald (1974) concluded that the charge “accretion” contin-

ues until the net charge of the BH reaches some critical value q0.

At this point, the horizon potential is the same as at infinity. As far

as the BZ mechanism is concerned, this conclusion by Wald means

that the BH magnetosphere dies – it is no longer able to accelerate

charged particles and drive the vacuum breakdown. Even if such

magnetosphere is filled with e−−e+ pairs via the two-photon process

involving high-energy photons emitted by the accretion disk and its
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2 Serguei S. Komissarov

corona, it remains dead because poloidal electric field is needed to

drive the poloidal electric currents of the BZ-mechanism.

Recently, this conclusion was emphasised by King & Pringle

(2021), who also pointed that once the critical charge is reached,

the electromagnetic potential is given by the same 4-vector equa-

tion as in the Wald solution for uncharged non-rotating BH. Since

the BZ mechanism does not operate for such BHs, King & Pringle

(2021) argued that it cannot operate for rotating BHs with the crit-

ical electric charge too. Hence they argued that AGN jets must be

driven by magnetised accretion disks.

The conclusions by Wald (1974) and King & Pringle (2021)

is in conflict with numerous MHD and force-free simulations of

black hole magnetospheres, as well as with the few recent PIC sim-

ulations (Parfrey et al. 2019; Crinquand et al. 2020). It is also in

conflict with the theoretical analysis by Komissarov (2004) which

shows that the gravitationally induced electric field of any steady-

state axisymmetric BH magnetosphere cannot be screened pro-

vided the magnetosphere has no poloidal electric current.

These conclusions also contradict to the membrane paradigm

of BHs, which states that their event horizon is analogous to a ro-

tating conducting sphere (Thorne et al. 1986). The surface of a con-

ductor is indeed equipotential when not threaded by magnetic field.

If, however, it is rotating and threaded by magnetic field, the qpv×B

force causes the electric charge separation that results in variation

of the electrostatic potential over the surface. The classic example

of this process is the Faraday disk. This conclusion applies to con-

ductors with non-vanishing net electric charge too.

Given the importance of the Blandford-Znajek mechanism in

astrophysics of black holes, the conflict needs to be resolved and

this is the main objective of our investigation described in this pa-

per. In Section 2, we describe the Wald solution for electrically

charged rotating BHs and explain the arguments of Wald (1974)

and King & Pringle (2021) in details. The analysis of this solu-

tion, which exposes the flaws of these arguments and shows that

the gravitationally induced electric field does not become screened

in BHs with the critical electric charge is given in Section 3. Sec-

tion 4 describes how this conclusion is geralised to the general case.

Section 5 is a discussion of these results and their implications.

In the equations, we utilise the relativistic units where the

speed of light c = 1, the black hole mass m = 1, and 4π does

not appear in Maxwell’s equations.

2 WALD SOLUTIONS

Wald vacuum solution for the electromagnetic 4-potential is

Uµ =
B0

2
(mµ + 2akµ) , (1)

where −→m = ∂φ (mµ = δ
µ

φ) and
−→
k = ∂t (kµ = δ

µ
t ) are the Killing vec-

tors of the stationary axisymmetric spacetime of BH. The electric

charge of the BH vanishes, and at infinity the magnetic field is uni-

form, has the strength of B0, and is aligned with the BH symmetry

axis.

For a non-rotating BH (a = 0), equation (1) reduces to

Uµ =
B0

2
mµ . (2)

Wald noticed that the solution (1) implies a drop of the electro-

static potential between the horizon and infinity along the symme-

try axis, which is also a magnetic field line. Hence he assumed that

the event horizon was an equipotential surface, citing Carter (1973)

(later republished as Carter (2010)), and therefore the same poten-

tial drop existed along any magnetic field line crossing the horizon.

Based on this understanding, he envisaged an accretion by the BH

of electrically charged particles which terminates when the poten-

tial drop vanishes. Based on the solution at the symmetry axis, this

occurs when the electric charge of the black hole riches the critical

value q0 = 2aB0
1.

When Wald’s black hole accumulates electric charge q, the 4-

potential of its electromagnetic field becomes

Uµ =
B0

2
(mµ + 2akµ) −

q

2
kµ . (3)

For q = q0, this yields

Uµ =
B0

2
mµ , (4)

which is exactly the same as equation (2) describing Wald’s so-

lution for non-rotating black hole. Based on this, King & Pringle

(2021) concluded that the electromagnetic field is the same as in the

case of a non-rotating black hole and hence the Blandford-Znajek

mechanism cannot not operate. However, the validity of this con-

clusion is questionable because the spacetimes of rotating and non-

rotating black holes are different, and so are the properties of their

Killing vectors.

3 PROPERTIES OF THE WALD SOLUTION FOR

ELECTRICALLY CHARGED BLACK HOLE

The fact that in the spacetime of a rotating BH the contravariant

components of the Killing vectors −→m and
−→
k do not depend on the

spin parameter a does not mean that the same applies to their co-

variant components and hence to Uµ. Indeed,

mµ = gµνm
ν = gµφ , (5)

kµ = gµνk
ν = gµt . (6)

For the Boyer-Linquist coordinates {t, φ, r, θ} this yields

mµ =
(

−(2r/ρ2)a sin2 θ , Σ sin2 θ/ρ2 , 0 , 0
)

, (7)

kµ =
(

−1 + (2r/ρ2) , −(2r/ρ2)a sin2 θ , 0 , 0
)

, (8)

(9)

where

ρ2 = r2 + a2 cos2θ ,

Σ = (r2 + a2)2 − a2∆ sin2θ ,

∆ = r2 + a2 − 2r .

In the corresponding 3+1 splitting of Uµ, the electrostatic potential

Φ = −Ut and the magnetic vector potential Ai = Ui, with i = φ, r, θ.

Hence

Φ =
B0

2

(

2r

ρ2
a sin2 θ + 2a

(

1 −
2r

ρ2

))

, (10)

Aφ =
B0

2

(

Σ

ρ2
sin2 θ + 2a

(

−
2r

ρ2
a sin2 θ

))

. (11)

1 This value is too small to modify the BH spacetime. Hence, one may

safely utilise the Kerr metric in the analysis.
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a=0, q=0 a=1, q=0 a=1, q=q
0

Figure 1. Magnetic field lines and electrostatic potential of Wald’s solutions. Left panel: Wald solution for a = 0 and q = 0. According to equation (10), Φ = 0

everywhere. Middle panel: Wald solution for a = 1 and q = 0. Contours of (2/B0)Φ are -1.9, -1.8, -1.6, -1.3 and -1 in the order of decreasing intensity of

colour/shade. Right panel: Wald solution for a = 1 and q = q0. Contours of (2/B0)Φ are 0.01, 0.1, 0.5, 1.0, 1.3, 1.6, and 1.8 in the order of increasing intensity

of colour/shade. In all the images, the magnetic field lines correspond to (2/B0)Aφ = 0.02, 0.1,0.4,1,2,4,7, and 10. The black disk shows the event horizon. In

all cases, we introduce an additive constant to our expressions for the potential so that Φ→ 0 as r → +∞.

for the Wald solution with q = 0, and

Φ =
B0

2

2r

ρ2
a sin2 θ (12)

Aφ =
B0

2

Σ

ρ2
sin2 θ (13)

for the solution with q = q0. The component Aφ is particularly

relevant for our analysis because it is invariant along the magnetic

field lines of axisymmetric solutions. Using these equations, we can

explore the differences in the properties of the Wald solutions for

charged and uncharged black holes.

Figure 1 shows the magnetic field lines and Φ for 1) a = 0,

q = 0, 2) a = 1, q = 0, and 3) a = 1, q = q0. ( The case of maximal

rotation was chosen simply to increase the contrast between the

solutions. Qualitatively, the solutions for 0 < a < 1 are the same.)

One can see that, in contrast to the Wald solution for a non-rotating

BH, the solution for a rotating BH with q = q0 does exhibit a drop

of the electrostatic potential along all the magnetic field lines but

the one coinciding with the symmetry axis.

The relativistic Lagrangian for a particle of rest mass mp, elec-

tric charge qp, and 4-velocity uν is

L =
1

2
mpgνµu

νuµ + epUνu
ν . (14)

For a time-independent space-time and electromagnetic field, the

Euler-Lagrange equation with this Lagrangian yield the integral of

motion e∞p = −mput + qpΦ, the total redshifted energy of the parti-

cle. Hence, the variation of Φ along the magnetic field lines in the

solution with a = 1 and q = q0 implies that charges particles can

be accelerated by its electric field2.

Alternatively, the same conclusion can be made by inspecting

the 4-scalars ∗FµνF
µν and FµνF

µν, where Fµ,ν = Uν,µ − Uµ,ν is the

Maxwell tensor of the electromagnetic field and ∗Fµν = eµναβF
αβ is

its Hodge dual tensor. In any local inertial frame,

∗FµνF
µν = 4Ě· B̌ ,

FµνF
µν = 2(B̌

2
− Ě

2
) ,

where Ě and B̌ are the electric and magnetic fields as measured

in this frame, respectively. Hence, ∗FµνF
µν
, 0 implies accelera-

tion of electrically-charged particles along the magnetic field lines.

If ∗FµνF
µν = 0 but FµνF

µν < 0 the particles will be accelerated

perpendicular to the magnetic field lines.

Figure 2 shows the distributions of ∗FµνF
µν for BHs with q = 0

and q = q0 (a = 1 in both the cases). For q = 0, the value of Ě · B̌

vanishes only in the equatorial plane and at θ ≈ 90◦ ± 29◦ (This

agrees with the analysis by King et al. (1975)). Its magnitude has

broad tall peaks in the polar regions and less pronounced peaks at

about 15◦ from the equator. In contrast, for q = q0, the value of Ě·B̌

vanishes at the equatorial plane and the symmetry axis, and peaks

at mid-latitudes (see also Levin et al. (2018)).

Figure 3 shows the corresponding distributions of FµνF
µν. For

q = 0, B̌
2
> Ě

2
everywhere outside of the event horizon. In con-

trast, for q = q0, B̌
2
< Ě

2
inside the toroidal region symmet-

ric about the equatorial plane. In figure 3, the outer boundary of

this region is indicated by the black contour of the distribution of

2 Wald (1974) used exactly the same analysis, but for some reason applied

it only to the symmetry axis.
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4 Serguei S. Komissarov

Figure 2. Magnetic field lines and the invariant ∗FµνF
µν of the electromagnetic field for a rotating BH. Left panel: BH with a = 1 and q = 0. Contours

of (4/B2
0
) ∗FµνF

µν are -4,-3,-2,-1,0,1,2,3,4 in the order from blue to pink colour. Right panel: BH with a = 1 and q = q0. Contours of (4/B2
0
) ∗FµνF

µν are

-10,-4,-3,-2,-1,1,2,3,4, and 10 in the order from blue to pink colour. In both the images, the magnetic field lines correspond to (2/B0)Aφ = 0.02, 0.1,0.4,1,2,4,7,

and 10. The black disk shows the event horizon.

FµνF
µν. Thus, in the charged case, charged particles can be accel-

erated across the magnetic field lines in an equatorial region close

to the event horizon (This region extends slightly beyond the BH

ergosphere.)

These results demonstrate convincingly that charging of BHs

up to the “critical” electric charge q0 = 2aB0 does not remove

the possibility of particle acceleration, copious pair creation and

vacuum breakdown, and hence the possibility of operation for the

Blandford-Znajek mechanism.

4 GENERAL CASE OF A STATIONARY

AXISYMMETRIC MAGNETOSPHERE

Since the Wald solution is highly specific, it is not clear how gen-

eral the conclusions drawn from its analysis are. The BH electric

charge may differ from q0, the electric charge may be accumulated

in clouds around the BH, and the magnetic field may have a very

different configuration. This issue has been addressed in Komis-

sarov (2004), where it is shown that the Wald solution is just an

example of a general rule. Here, we only outline the arguments and

refer interested readers to the original.

Let us allow not only the black hole to be electrically charged

but also allow electric charge to be distributed around the black

hole. This spatially distributed charge may be associated with an

azimuthal electric current, but the poloidal current is not allowed

because this is a key property of ”live” magnetospheres, where the

rotational energy of black hole is extracted electromagnetically.

In a ”dead” magnetosphere, the electric field is completely

screened in the sense that

∗FµνF
µν = 0, (15)

and

FµνF
µν > 0. (16)

In order to show that this is impossible under the described con-

ditions, let us assume that the first of these conditions is satisfied

everywhere and hence show that this leads to breakdown of the

second condition near the BH.

The condition (15) means that the parallel component of the

electric field is screened, and for an axisymmetric configuration this

implies that

E = −Ω(m×B) , (17)

where Ei = Fit, Bi = (1/2)ei jkF jk and m is the spatial component

of the Killing vector −→m = (0,m) ( The same result holds when the

magnetic field is frozen in plasma rotating with the angular velocity

Ω.). In a stationary case, Ω is constant along the magnetic field

lines and for this reason can be interpreted as the angular velocity

of these lines. For such an electric field,

FµνF
µν = −

2

α2
B2 f (Ω, r, θ), (18)

where

f (Ω, r, θ) = gφφΩ
2 + 2gtφΩ + gtt (19)

is called the light surface function. For f < 0, a point rotating with

the angular velocity Ω has a time-like worldline (subluminal ro-

tation), and for f > 0 its world line is space-like (superluminal

c© 0000 RAS, MNRAS 000, 000–000



Electrically-charged black holes 5

Figure 3. Magnetic field lines and the invariant FµνF
µν of the electromagnetic field for a rotating BH. Left panel: BH with a = 1 and q = 0. Contours of

(4/B2
0
)FµνF

µν are 0,1,2,3,4,5, and 6 in the order of increasing intensity of colour/shade. Right panel: BH with a = 1 and q0. Contours of (4/B2
0
)FµνF

µν are

-7,-5,-3,-2,0,1,2,3,5, and 7 in the order from blue to pink colour. The black contour corresponds to FµνF
µν = 0. In both the images, the magnetic field lines

correspond to (2/B0)Aφ = 0.02, 0.1,0.4,1,2,4,7, and 10. The black disk shows the event horizon.

zone of subluminal
rotation

zones of superluminal
rotation

ergosphere

B

Figure 4. Superluminal and subluminal zones for rotation with Ω = 0.5Ωh,

where Ωh = a/(r2
+ +a2) is the angular velocity of the black hole with a = 1.

rotation). Equation (18) shows that for a point of the magnetic field

line the subluminal rotation implies FµνF
µν > 0 (Ě < B̌), and the

superluminal rotation implies FµνF
µν < 0 (Ě > B̌).

For any 0 < Ω < Ωh, where Ωh = a/(r2
+ + a2) is the angular

velocity of the BH, the space around BH includes an inner region

of superluminal rotation, an outer region of superluminal rotation,

and a region of subluminal rotation in between them (Komissarov

2004). The surfaces separating these regions are called light sur-

faces. For r ≫ r+, the outer light surface has the shape of a cylin-

der with the radius ̟ = 1/Ω. The inner light surface is always

outside of the event horizon, touching it at θ = 0, π, and approaches

the ergosphere as Ω → 0 (see figure 4). For Ω > Ωh the inner

light surface disappears but the outer light surface crosses the event

horizon. Thus, there always exists a region near the event horizon

where condition (16) is not satisfied.

It turns out that both the screening conditions can be satisfied

everywhere if one allows poloidal electric current through the mag-

netosphere (Komissarov 2004). However, this implies live magne-

tosphere with operating BZ mechanism. In order to sustain such

currents charged particles have to be constantly created in-situ, for

example in the potential gaps of the magnetosphere (e.g Beskin

et al. 1992; Crinquand et al. 2020).

5 DISCUSSION

Our study does not answer the key question raised in Wald (1974)

of whether rotating BH can naturally acquire electric charge via

interacting with the surrounding magnetised plasma. However, in

combination with other studies, it suggests that this may be the

case.

c© 0000 RAS, MNRAS 000, 000–000



6 Serguei S. Komissarov

Figure 5. Magnetic field lines and electrostatic potential of Wald’s solu-

tion for an electrically-charged BH with a = 1 and B0 = 0. Contours of

(2/q)Φ are 0.6, 0.9, 1.2, 1.5 and 1.8 in the order of decreasing intensity

of colour/shade. The magnetic field lines correspond to (2/q)Aφ = 0.02,

0.2,0.4,0.6,0.8, and 1.0

5.1 Meissner effect

King et al. (1975) computed the total magnetic flux Ψh threading

the BH event horizon in the Wald solution for a non-charged BH.

They found that Ψh → 0 as a → 1, and thus for a maximally-

rotating BH, the magnetic flux is totally expelled from the black

hole horizon. This expulsion is apparent in figure 1 (left and middle

panels), and immediately follows from equation (11) which yields

Aφ(r+) = 0 for a = 1. Bicak & Janis (1985) showed that this result

held for all axisymmetric steady-state vacuum solutions. By its ap-

pearance, this phenomenon is similar to the expulsion of magnetic

field by superconductors which is known as the Meissner effect

(Meissner & Ochsenfeld 1933), and for this reason is called the

Meissner effect of black holes. Since the power of the Blandford-

Znajek mechanism Lem ∝ (ΩhΨh)2, this suggested strongly reduced

efficiency of this mechanism for rapidly rotating BHs (Bicak & Ja-

nis 1985; Bičák et al. 2007), and even stimulated a search for alter-

native models of powering the relativistic jets from astrophysical

systems involving BHs (Punsly & Coroniti 1990).

However, the Meissner effect failed to reveal itself in the com-

puter simulations of magnetised accretion flows onto BH. Initially,

this could be attributed to the relatively low spin of the simulated

BHs (Bičák et al. 2007) or the effects of plasma inertia. Later, how-

ever, the results were confirmed in the simulations of maximally-

rotating BHs (a = 1) within the approximation of force-free degen-

erate electrodynamics (Komissarov & McKinney 2007). Moreover,

the magnetic field lines were pulled onto the horizon. A similar

effect was observed in the recent PIC simulations (Parfrey et al.

2019).

Komissarov & McKinney (2007) attributed the effect of

pulling the magnetic field lines back onto the BH event horizon in

their force-free simulations to the plasma conductivity, namely to

the pinching of the axial poloidal electric current (see also Komis-

sarov 2004; Nathanail & Contopoulos 2014; Pan & Yu 2016; Pan

2018), but our results show that a finite BH charge may well be an-

other reason. This is easy to understand if one considers the struc-

ture of the electromagnetic field of the BH with B0 = 0 and q , 0.

According to Wald (1974), its potential is simply

Uµ = −
q

2
kµ .

The right panel of figure 5 shows the corresponding field of the

electrostatic potential and the magnetic field lines for the case with

the spin parameter a = 1. One can see that the magnetic field is

dipolar and all its magnetic field lines penetrate the event horizon.

When this solution is added to the one for the uncharged BH, some

magnetic field lines of the resultant total magnetic field become

connected to the event horizon.

The latest PIC simulations for the case with an external mag-

netic field of paraboloidal geometry show that BHs do indeed ac-

quire electric charge of the order of aB0, where B0 is the magnetic

field strength in the vicinity of the BH (Benjamin Crinquand, pri-

vate communication). It would be interesting to rerun (or reanal-

yse) the force-free and PIC simulations for the Wald problem and

to measure the accumulated charge. Hence one can compare the

magnetic configuration observed in the simulations to that of the

vacuum solution with the same BH charge and determine the im-

portance of the BH charge.

On a separate note, it is worth pointing out that the fact that

the magnetic field is completely expelled from the event horizon of

the maximally-rotating BH shows that it is incorrect to interpret the

generated electric field as the result of the electric charge separation

on the stretched horizon of the membrane paradigm. Instead, the

electric field is gravitationally induced and should be attributed to

the extreme differential rotation of the space around the BH, mani-

festing itself in the dragging of local inertial frames.

5.2 Role of inner boundary conditions

With regard to computer simulations, King & Pringle (2021) criti-

cised their setup for not being careful with the inner boundary con-

ditions. In particular, they claimed that the removal of PIC particles

after they have crossed the event horizon (Parfrey et al. 2019; Crin-

quand et al. 2020) could prevent BH from acquisition of electric

charge. However, this argument ignores the basic causal structure

of the BH spacetime. Once the inner boundary is placed inside the

event horizon its conditions cannot influence the solution in the ex-

terior to the horizon. The same applies to the removal of PIC par-

ticles. This may upset the interior solution, but the imprint left by

the removed particle in the exterior solution remains unaffected3. A

similar argument can be made with regard to force-free and RMHD

simulations. There is no reason to expect the total electric current

through the event horizon to be exactly zero, especially in the ini-

tial phase where the solution may be far from a steady-state. Dur-

ing this phase, the BH may accumulate an electric charge which

will be detectable via the structure of the steady-state solution, or

quasi-steady-state solution, exterior to the event horizon. For ex-

ample, Levin et al. (2018) have shown that in the split-monopole

force-free solution by Blandford & Znajek (1977) the BH hole has

a non-vanishing electric charge.

3 The possibility of placing the inner boundary inside the event horizon

is the key benefit of using the Kerr-Schild coordinate system in computer

simulations.
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a=1, q=0 a=1, q=q  /2
0

a=1, q=2q  /3
0

a=1, q=q
0

Figure 6. Dependence of the magnetic field lines and electrostatic potential on the BH electric charge. Top-left panel: Wald’s solution for a = 1 and q = 0.

Contours of (2/B0)Φ are -1.9, -1.8, -1.6, -1.3 and -1 in the order of decreasing intensity of colour/shade. Top-right panel: Wald’s solution for a = 1 and

q = 0. Contours of (2/B0)Φ are -0.9, -0.7, -0.5, -0.3, -0.1 and -0.01 in the order of decreasing intensity of colour/shade. Bottom-left panel: Wald’s solution

for a = 1 and q = q0. Contours of (2/B0)Φ are -0.5,-0.4,-0.3,-0.2,0,0.2,0.3,0.4,0.5 in the order of increasing intensity of colour/shade. Bottom-right panel:

Wald’s solution for a = 1 and q = q0. Contours of (2/B0)Φ are 0.01, 0.1, 0.5, 1.0, 1.3, 1.6, and 1.8 in the order of increasing intensity of colour/shade. In all

the images, the magnetic field lines correspond to (2/B0) Aφ = 0.02, 0.1,0.4,1,2,4,7, and 10. The black disk shows the event horizon. In all cases, we introduce

an additive constant to our expressions for the potential so that Φ→ 0 as r → +∞.

5.3 Value of the equilibrium charge

Since Wald’s conclusion that the event horizon of a BH with the

electric charge q0 = 2aB0 is equipotential is incorrect, one would

not expect the BH charge to saturate exactly at q0. Indeed, the com-

parison of the top-left and bottom-right panels of figure 6 shows

that for q = q0 the polarity of the electric field is opposite to that

for q = 0, and hence the BH attracts only charges of the oppo-

site sign. Hence, if the equilibrium is reached, the corresponding

BH charge must be strictly below the value of q0. Moreover, in this

equilibrium state the BH must attract positive charges along some

magnetic field lines and negative charges along the others, with the

total electric current through the event horizon vanishing.

The possibility of such state is demonstrated by the solutions

corresponding to q = q0/2 and q = 2/3q0 (see the top-right and

bottom-left panels of figure 6 ). Whereas in the case with q = 0

the electric field of BH pulls in positive charges and repels negative

charges along all magnetic field lines penetrating the event horizon,

the case with q = q0/2 is more complicated. Sufficiently high above

the event horizon, everything looks the same as in the case with

q = 0. However near the event horizon, the situation is reversed

for the magnetic field lines entering the horizon near its equator. In
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this region, the BH electric field now repels positive charges and

attracts negative charges. The bifurcation occurs at the point where

the magnetic field line is tangent to the contour of the electrostatic

potential. Around the locus of such points, one may expect to find

a “cloud” of positive charges. The solution for q = 2/3q0 is quali-

tatively the same, but its event horizon is characterised by a smaller

polar region attracting positive charges and a wider equatorial band

attracting negative charges. Along the magnetic field lines passing

by the event horizon, negative charges are pulled towards the equa-

torial plane, where a disk of negative charges may develop.

The electromagnetic field due to the charge clouds could re-

sult in significant deviation from the Wald solution. Moreover, this

is only one of the factors that may influence the value of the equi-

librium charge qeq of astrophysical BHs. Another factor is the way

charged particles are introduced into the magnetosphere. For ex-

ample, if the particles are introduced only near the symmetry axis,

one expects qeq ≈ q0. A much lower value is expected if they are

introduced mainly at the equatorial plane. For an accreting BH, the

external magnetic field may also be quite different from the uni-

form field assumed by Wald, even close to the BH (for example,

see figure 3 in Komissarov & McKinney (2007)). Thus, contrary

to the optimistic conclusion by Wald (1974), the actual value of

the electric charge accumulated by astrophysical BHs is difficult to

predict theoretically. Future studies will clarify this issue.

6 CONCLUSION

Whatever is the value of the electric charge accumulated by a rotat-

ing BH, it cannot not invalidate the BZ-mechanism. It may change

some details of the magnetospheric dynamics but it cannot negate

the gravitationally induced electric field and hence cannot result in

a dead magnetosphere. Our results agree with the Wald’s conclu-

sion that, BHs may acquire electric charge when placed into mag-

netic field of external origin. However, the value q0 = 2aB0 given

by Wald is only an upper limit, and the actual value of the BH

charge cannot be given without specifying the way charged parti-

cles are introduced into the BH magnetosphere and accounting for

their dynamics. For more realistic astrophysical settings, deviation

of the external magnetic field from the uniform configuration of

the Wald problem can also be important. The BH electric charge,

and the corresponding dipolar magnetic field, may still be strong

enough to alter the properties of the BH magnetosphere. In partic-

ular, it may cancel the so-call Meissner effect of vacuum solutions.

This could be the main reason for the cancelling observed in the

previous force-free and RMHD simulations.
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