
This is a repository copy of Vapnik–Chervonenkis dimension and density on Johnson and 
Hamming graphs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/178584/

Version: Accepted Version

Article:

Adler, I orcid.org/0000-0002-9667-9841, Benediktsson, BG and Macpherson, D (2022) 
Vapnik–Chervonenkis dimension and density on Johnson and Hamming graphs. Discrete 
Applied Mathematics, 312. pp. 29-44. ISSN 0166-218X 

https://doi.org/10.1016/j.dam.2021.09.017

© 2021 Published by Elsevier B.V. This is an author produced version of an article 
published in Discrete Applied Mathematics. Uploaded in accordance with the publisher's 
self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Vapnik-Chervonenkis Dimension and Density on Johnson

and Hamming Graphs

Isolde Adlerb, Bjarki Geir Benediktssona,b, Dugald Macphersona

aSchool of Mathematics, University of Leeds
bSchool of Computing, University of Leeds

Abstract

VC-dimension and VC-density are measures of combinatorial complexity of set
systems. VC-dimension was first introduced in the context of statistical learning
theory, and is tightly related to the sample complexity in PAC learning. VC-
density is a refinement of VC-dimension. Both notions are also studied in model
theory, in the context of dependent theories. A set system that is definable by a
formula of first-order logic with parameters has finite VC-dimension if and only
if the formula is a dependent formula.

In this paper we study the VC-dimension and the VC-density of the edge
relation Exy on Johnson graphs and on Hamming graphs. On a graph G, the
set system defined by the formula Exy is the vertex set of G along with the
collection of all open neighbourhoods of G. We show that the edge relation has
VC-dimension at most 4 on Johnson graphs and at most 3 on Hamming graphs
and these bounds are optimal. We furthermore show that the VC-density of
the edge relation on the class of all Johnson graphs is 2, and on the class of
all Hamming graphs the VC-density is 2 as well. Moreover, we show that our
bounds on the VC-dimension carry over to the class of all induced subgraphs of
Johnson graphs, and to the class of all induced subgraphs of Hamming graphs,
respectively. It also follows that the VC-dimension of the set systems of closed
neighbourhoods in Johnson graphs and Hamming graphs is bounded.

Johnson graphs and Hamming graphs are well known examples of distance
transitive graphs. Neither of these graph classes is nowhere dense nor is there a
bound on their (local) clique-width. Our results contrast this by giving evidence
of structural tameness of the graph classes.
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1. Introduction

Vapnik-Chervonenkis dimension (VC-dimension) is a complexity measure
of set systems. The related parameter VC-density provides a more refined
picture of set systems that have bounded VC-dimension. First introduced in
the context of statistical learning theory [25], VC-dimension also plays a key
role in computational learning [24, 17, 14] as well as in model theory [4], and it
has applications in numerous areas, including graph theory [6], computational
geometry [8], database theory [22], and graph algorithms and complexity [7, 12].
For the definition of VC-dimension and VC-density see Section 2.

For fixed k,m ∈ N with k ≤ m, the Johnson graph J(m, k) has vertices
that correspond to k-element subsets, of an underlying universe set of car-
dinality m, where two vertices are adjacent if their corresponding sets inter-
sect in k − 1 elements. Figure 1 shows the Johnson graph J(4, 2). We let
J := {J(m, k) : k,m ∈ N, k ≤ m} denote the class of all Johnson graphs, and
we let J denote the closure of J under the induced subgraph relation. A first
study of induced subgraphs of Johnson graphs has been done in [20].

Hamming graphs arise from Hamming schemes and they naturally model
Hamming distance. For fixed d, q ∈ N, let S be a set with |S| = q. The
Hamming graph H(d, q) has vertex set Sd, where two vertices are adjacent if
they differ in precisely one coordinate. Figure 2 shows the Hamming graph
H(3, 2). We let H := {H(d, q) : d, q ∈ N} denote the class of all Hamming
graphs, and we let H denote the closure of H under induced subgraphs. The
class H has been characterized in [19] via certain edge labellings. The classes
J ,J ,H, and H admit arbitrarily large cliques as subgraphs, but nevertheless
come with a highly regular structure.

Johnson graphs and Hamming graphs are graphs of high regularity. They
feature in different areas of computer science and mathematics, including cod-
ing theory, algebraic graph theory and model theory. Johnson graphs also ap-
pear in László Babai’s algorithm for solving the graph isomorphism problem in
quasipolynomial time [5], where they constitute the ‘hard case’.

Our motivation for this work is multifaceted largely stemming from algorith-
mic graph theory, permutation group theory, and model theory as mentioned
below. In algorithmic graph theory structural tameness is often linked to good
algorithmic properties. Many problems on graphs, that are algorithmically hard
(e.g. NP-hard) in general, can be solved efficiently on classes of graphs having a
tame structure, such as graphs of bounded tree-width [10], planar graphs, graphs
excluding a fixed minor, and nowhere dense classes of graphs [21]. Nowhere
dense classes of graphs generalise the previously mentioned classes, and in [16]
it was shown that on nowhere dense classes of graphs, every problem expressible
in first-order logic is fixed-parameter tractable. All of these classes are sparse.
In particular, they cannot contain arbitrarily large cliques. However, intuitively,
cliques contain about as much information as independent sets. In [11], clique-
width was introduced to address this (the class of all cliques has clique-width 2),
and this was further generalised to graph classes of bounded local clique-width.
That allowed fixed-parameter tractability for first-order logic [13]. Nowhere
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Figure 1: The Johnson graph J(4, 2).
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Figure 2: The Hamming
graph H(3, 2).

Figure 3: The rook’s
graph R(5.4).

dense classes of graphs are closed under taking subgraphs, i. e. if C is a nowhere
dense class of graphs, then the class obtained by closing C under subgraphs is
also nowhere dense. Graph classes of bounded (local) clique-width are closed
under taking induced subgraphs.

So-called dependent graph classes, i.e. graph classes where every first-order
formula has bounded VC-dimension, are a common generalisation of both nowhere
dense classes of graphs [1] and classes of bounded local clique-width [15]. We
will discuss dependent classes below and we view dependence as an interesting
notion of tameness. The classes J ,J ,H, and H are somewhere dense, as arbi-
trarily large cliques occur as subgraphs, and they have unbounded local clique
width. Indeed, the open neighbourhood of any vertex of J(m, k) induces a rook’s
graph R(m−k, k), cf. Figure 3, and the class of all rook’s graphs has unbounded
clique-width. Moreover, the open 2-neighbourhood in a Hamming graph H(d, 2)
induces the 1-subdivision of the complete graph on d vertices, see Corollary 4.4,
and it is known that the class of 1-subdivisions of complete graphs has un-
bounded clique-width (cf. e. g. [2]). While we do not give new algorithms in this
paper, our results (see Theorem 1.1) provide evidence of structural tameness,
despite unbounded local clique-width.

Hamming graphs and Johnson graphs are regular and have large vertex tran-
sitive automorphism groups making them of particular interest in permutation
group theory. The symmetric group Sm is the full automorphism group of the
Johnson graph J(m, k) whenever m 6= 2k, and the wreath product SqwrSd is
the full automorphism group of the Hamming graph H(d, q). In both cases
these groups act distance-transitively: if (u, v) and (u′, v′) are pairs of vertices
with d(u, v) = d(u′, v′) then there is an element g in the group with g(u) = u′

and g(v) = v′. This symmetry is exploited in some of our proofs to reduce the
number of cases that need to be checked.

A major theme in recent model theory has been the study of structures
which are dependent, that is, in which all formulas are dependent as described
below. Suppose that M is a first-order structure over a language L, and φ(x̄, ȳ)
is an L-formula with x̄ = (xi)

n
i=1 and ȳ = (yi)

m
i=1 (we write |x̄| = n and |ȳ| =

m). For any ā ∈ Mm, put φ(M, ā) := {x̄ ∈ Mn : M |= φ(x̄, ā)}. Then
{φ(M, ā) : ā ∈ Mm} is a set system in Mn. This set system has finite VC-
dimension if and only if the formula φ(x̄, ȳ) is dependent, or NIP (does not
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have the independence property). Dependent structures include structures with
stable first-order theory, such as abelian groups, separably closed fields, and
free groups, o-minimal structures (such as the real field, or even the real field
equipped with the exponential function), and many Henselian valued fields such
as Qp. From the viewpoint of model theory, VC-density seems to be both a
more refined invariant than VC-dimension, and to be easier to compute. This is
the viewpoint developed in the papers [4] and [3]. For background on dependent
theories see [23].

If C is a class of structures in a fixed first-order language, then we say the
formula φ(x̄, ȳ) is dependent in C if there is d = dφ ∈ N such that for every
M ∈ C, the set system {φ(M, ā) : ā ∈ Mm} has VC-dimension at most d, and
the VC-dimension of φ on the class is the maximum VC-dimension, if it exists
and ∞ otherwise, taken as M ranges through C. The class C is dependent if
all formulas are dependent in C. It is known that for fixed integer k, the class
{J(m, k) : m ∈ N} is dependent, because it is first-order definable in the class
of all finite sets. Similarly it is also known that for a fixed integer d, the class
{H(d, q) : q ∈ N} is dependent. The main results of this paper give tight
bounds in the case that φ is the edge relation, i.e. φ(x, y) = Exy, for the classes
where both parameters vary.

Theorem 1.1. The edge relation has:

• VC-dimension 4 on J , the class of all Johnson graphs.

• VC-dimension 3 on H, the class of all Hamming graphs.

• VC-density 2 on J , the class of all Johnson graphs.

• VC-density 2 on H, the class of all Hamming graphs.

We show that the VC-dimension of the edge relation does not increase under
vertex deletion, see Lemma 2.3 and hence it follows that the VC-dimension of
the edge relation on J is 4 and the VC-dimension of the edge relation on H is 3.

It is known that boolean combinations of dependent formulas are dependent
and since equality has VC-dimension at most 1 in any model it follows that any
property expressible in the language of graphs without quantifiers is dependent
in J and H.

Using the well-known connection between VC-dimension and sample com-
plexity in the probably approximately correct (PAC) model of computational
learning theory, our results imply that if C is a subset of J (or of H), then every
concept class definable by a quantifier-free first-order formula on C is learnable
with polynomial sample complexity in the PAC model, see e. g. [15, 18].

The techniques we use for the proofs include identifying structural graph
properties and symmetries that allow breaking up the problem into a feasible
number of cases.

In Section 2 we will cover the basic concepts and notations used throughout
the paper. Section 3 contains the results related to Johnson graphs and Section
4 contains results on Hamming graphs.
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2. Preliminaries

We let N denote the set of natural numbers including 0. For two sets X and
Y we use X△Y to denote the symmetric difference of X and Y i.e. X△Y =
(X ∪Y ) \ (X ∩Y ). We use P(X) to denote the power set of X. We call |X| the
size of X. For k ∈ N we let

(

X
k

)

denote the set of all k-element subsets of X,

i. e.
(

X
k

)

= {u ⊆ X : |u| = k}.

VC-dimension and VC-density.

Definition 2.1. A set system is a pair (X,S) consisting of a universe set X
and a family S ⊆ P(X) of subsets of X.

Set systems are sometimes also referred to as hypergraphs or range spaces.

Definition 2.2. Let (X,S) be a set system and A ⊆ X be a set. We say that
A is shattered by S if the class of intersections of sets in S with A is the full
powerset of A, i.e. if {A ∩W : W ∈ S} = P(A).

Definition 2.3. We define the shatter function πS : N → N as

πS(n) := max
{

|{S ∩A : S ∈ S}| : A ⊆ X, |A| = n
}

.

We use a slight abuse of notation and say that a set A is maximally shattered
for size n if |A| = n and πS(n) = |{S ∩A : S ∈ S}|.

Definition 2.4. The VC-dimension of a set system (X,S) is

VC((X,S)) =

{

sup{n ∈ N ∪ {∞} : X has a subset of size
n shattered by S } if S 6= ∅

−∞ if S = ∅.

In our work we expand the above concepts to apply to classes of finite graphs
in the following way. For a class C of set systems the VC-dimension of the class
is VC(C) = sup{VC(X,S) : (X,S) ∈ C} if it exists and ∞ otherwise, and the
shatter function of C is πC(n) = max{πS(n) : (X,S) ∈ C}.

We observe that the shatter function is 2n for n smaller than the VC-
dimension of the set system but for any n greater than the VC-dimension it is
bounded above by a polynomial in n. This is due to the Sauer-Shelah Lemma.

Lemma 2.1 (Sauer-Shelah [4]). If (X,S) has finite VC-dimension d then πS(n) ≤
∑d

i=0

(

n
i

)

.

The bound on the degree of the polynomial derived from the VC-dimension
need not be tight. Since the degree of the polynomial gives a more precise
measure of the combinatorial complexity of a set system, this gives rise to the
following definition, which here we only give for classes of finite set systems.
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Definition 2.5. For a class of C of set systems, the VC-density of C is

vc(C) =

{

inf{r ∈ R+ : πC(n) ∈ O(nr)}, if VC(C) < ∞

∞ otherwise.

Note that by the Sauer-Shelah Lemma vc(C) ≤ VC(C).

Graphs. We consider simple, undirected graphs, i.e. graphs with no self-loops
or parallel edges. A graph G is a pair G = (V,E) where V is the set of vertices
of G and E ⊆

(

V
2

)

is the set of edges of G. We also use V (G) to denote the
vertex set of G and E(G) to denote the edge set of G. Two vertices u and v
are adjacent, if {u, v} ∈ E. We denote by NG(v) the neighbourhood of v in G
i.e. the set of vertices that are adjacent to v in G and when G is clear from
the context we simply write N(v). Note that v 6∈ N(v). A graph H = (V ′, E′)
is an induced subgraph of a graph G(V,E), written H = G[V ′] if V ′ ⊆ V , and
E′ = E|V ′ , and we say that V ′ induces H as subgraph of G. A complete graph
on n vertices, denoted Kn, is a graph (V,E) such that |V | = n and E =

(

V
2

)

.
For a graph G we say that a set A ⊆ V (G) is a clique if it induces a complete
graph. We say that A is a maximal clique if it is a clique and there is no vertex
v such that A ⊆ N(v). A path is a sequence (vi)

k
i=0 of pairwise distinct vertices

such that vi is adjacent to vi+1, and we say that k is the length of the path.
The distance from vertex v to u, denoted d(v, u), is the minimum length of a
path from v to u. The 1-subdivision of a graph G is the graph obtained from G
by replacing all edges of G by (pairwise internally disjoint) paths of length 2.

Definition 2.6. For m,n ∈ N, the rook’s graph R(m,n) is the graph whose
vertex set is R × C where |R| = m and |C| = n and two distinct vertices
(i, j), (k, l) are adjacent if and only if i = k or j = l. For a fixed i we call
{(i, j) : j ∈ C} the i-th row and {(j, i) : j ∈ R} the i-th column of R(m,n).

Definition 2.7 (Johnson graphs). Let m, k ∈ N with m ≥ k and X be a set
with |X| = m. The Johnson graph J(m, k) is the graph whose vertex set is
(

X
k

)

, where two vertices are adjacent if and only if their intersection has size
k− 1 i.e. if their symmetric difference has size 2. We call X the underlying set
of J(m, k).

We let J := {J(m, k) : k,m ∈ N, k ≤ m} denote the class of all Johnson
graphs and J its closure under taking induced subgraphs..

Examples of Johnson graphs include the octahedral graph J(4, 3) and the
complete graph Kn = J(n, 1). The following lemma is easy to verify.

Lemma 2.2 ([9]). Let u and v be vertices in a Johnson graph. Then d(u, v) =
|u△v|/2.

Definition 2.8 (Hamming graph). Let d, q ∈ N and let S a set with |S| = q.
The Hamming graph H(d, q) is the graph whose vertices correspond to elements
of Sd, where two vertices are adjacent if they agree in all but one coordinate.
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We let H := {H(d, q) : d, q ∈ N} denote the class of all Hamming graphs
and H its closure under taking induced subgraphs. Note that H(2, n) = R(n, n).

First-order logic of graphs. The set of all formulas of first-order logic of
graphs is defined recursively from the atomic formulas ‘Exy’ and ‘x = y’, where
x and y are variables and ‘Exy’ expresses that x and y are joined by an edge, and
it is closed under Boolean connectives ¬,∧ and ∨ and existential quantification
(∃) and universal quantification (∀) over vertices of the graph. A formula is
quantifier free, if it does not contain a quantifier. Since we study undirected
graphs, for us E is a binary relation that is symmetric and irreflexive. We write
G |= φ to say that the graph G satisfies formula φ. In this paper we will focus
on the atomic formula Exy, more precisely we are looking at the set systems
obtained by it. The set system for Exy in a graph G is (V (G),SE) where

SE :=
{

{x : G |= Exy} : y ∈ V (G)
}

= {N(v) : v ∈ V (G)}.

We say a set A is shattered by the edge relation in a graph G if A is a shattered
in (V (G),SE). Moreover we will say the edge relation has any characteristic
(VC-dimension, shatter function, and VC-density) on a graph G that the set
system for the edge relation on G has. We write VCE(G) for the VC-dimension
of the edge relation on a graph G.

Lemma 2.3. Let G be a graph and G′ := G[V (G) \ {u}] be a graph obtained
from G by deleting a single vertex u. Then VCE(G

′) ≤ VCE(G).

Proof. For the edge relation we have S = {N(v) : v ∈ V (G)}. If we delete a
vertex u the edge relation on the resulting subgraph G′ will give us the class
S ′ = {N(v) \ {u} : v ∈ V (G) \ {u}}. Now assume that VCE(G) < VCE(G

′).
Then there exists a set A ⊆ V (G) \ {u} such that |A| > VCE(G) and A is
shattered by S ′. Since u 6∈ A we have that for all S ⊆ V (G) we get A ∩ S =
A ∩ (S \ {u}), so P(A) = {A ∩ S : S ∈ S ′} ⊆ {A ∩ S : S ∈ S}. That means
that S shatters A, in contradiction with |A| > VCE(G).

3. Johnson Graphs

In this section we will present our results on the VC-dimension and VC-
density of the edge relation in Johnson graphs.

Lemma 3.1. Let v be a vertex in the Johnson graph J(m, k). Then N(v)
induces the rook’s graph R(k,m− k) as a subgraph of J(m, k).

Proof. Let v be a vertex in the Johnson graph J(m, k) and without loss of
generality assume v = [1, k]∩N. Every vertex in N(v) has the form (v\{a})∪{x}
where a ∈ v and x ∈ [k + 1,m] ∩ N. The mapping (v \ {a}) ∪ {x} 7→ (a, x− k)
is a graph isomorphism J(m, k)[N(v)] → R(k,m− k).
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Lemma 3.2. Let v and w be vertices in a Johnson graph with d(v, w) = 1.
Write w = (v \ {a}) ∪ {x}. Then we have u ∈ N(v) ∩ N(w) if and only if
u = (v \ {c}) ∪ {z} with exactly one of c = a or z = x.

Proof. Assume u ∈ N(v) ∩ N(w). Then since d(v, u) = 1 we must have u =
(v \ {c}) ∪ {z} for some c and z. Now assume c 6= a and z 6= x. Then we have
u△w = {a, c, x, z} so |u△v| = 4 contradicting that d(u,w) = 1. So we must
have either c = a or z = x.

Conversely assume u = (v \ {a}) ∪ {z} with x 6= z. Then u ∩ v = v \ {a}
which has size k − 1 so u ∈ N(v). Also u ∩ w = v \ {a} which has size k − 1 so
u ∈ N(w). Thus we have u ∈ N(v) ∩N(w).

Assume u = (v \ {c}) ∪ {x}. Then u ∩ v = v \ {c} which has size k − 1 so
u ∈ N(v). Also u ∩ w = (v \ {a, c}) ∪ {x} which has size k − 1 so u ∈ N(w).
Thus we have u ∈ N(v) ∩N(w).

Note that if we have both c = a and z = x then u = w in contradiction with
Euw.

Lemma 3.3. Let v and w be vertices in a Johnson graph with d(v, w) = 2. We
can write w = (v \ {a, b}) ∪ {x, y}. Then we have u ∈ N(v) ∩N(w) if and only
if u = (v \ {c}) ∪ {z} with c ∈ {a, b} and z ∈ {x, y}.

Proof. Assume u ∈ N(v) ∩ N(w). Then since d(v, u) = 1 we must have u =
(v \ {c}) ∪ {z} for some c ∈ v and z 6∈ v.

Now assume c 6∈ {a, b}. Then we have u△w ⊇ {a, b, c} contradicting that
|u△w| = 2.

Similarly z ∈ {x, y} as otherwise we have u△w ⊇ {x, y, z} in contradiction
with |u△w| = 2. So we must have c ∈ {a, b} and z ∈ {x, y}.

Conversely assume u = (v\{c})∪{z} with c ∈ {a, b} and z ∈ {x, y}. Assume
without loss of generality u = (v \ {a}) ∪ {x}. Then u ∩ v = v \ {a} which has
size k − 1 so u ∈ N(v). Also u ∩ w = (v \ {a, b}) ∪ {x} which has size k − 1 so
u ∈ N(w). Thus we have u ∈ N(v) ∩N(w).

Lemma 3.4. Let u and v be vertices in the Johnson graph J(m, k) then

|N(u) ∩N(v)| =



















k(m− k) if d(u, v) = 0

m− 1 if d(u, v) = 1

4 if d(u, v) = 2

0 if d(u, v) ≥ 3

Proof. This follows immediately from Lemmas 3.1, 3.2, and 3.3

Lemma 3.5. Let A be a set of vertices in a Johnson graph shattered by the
edge relation and assume |A| ≥ 4. Then there do not exist three vertices in A
pairwise at distance 2 from each other.

8



Proof. Let v be a vertex such that A ⊆ N(v) and A contains three vertices that
are pairwise of distance 2 from each other. That is to say we have (v\{a})∪{x} ∈
A,(v \ {b}) ∪ {y} ∈ A,(v \ {c}) ∪ {z} ∈ A where a, b, c, x, y, z are all distinct.

Let w be a vertex such that N(w)∩A = {(v \ {a})∪{x}, (v \ {b})∪{y}, (v \
{c}) ∪ {z}}.

If d(v, w) = 1 we can write w = (v \ {a1}) ∪ {x1} by Lemma 3.2. We know
that since (v \ {a}) ∪ {x} ∈ N(w) we have a1 = a or x1 = x.

Assume a1 = a. Then since (v \ {b})∪ {y} ∈ N(w) we must have x1 = y, so
we have w = (v \ {a}) ∪ {y}. However (v \ {c}) ∪ {z} 6∈ N((v \ {a}) ∪ {y}) in
contradiction to N(w) ∩A = {(v \ {a}) ∪ {x}, (v \ {b}) ∪ {y}, (v \ {c}) ∪ {z}}.

Alternatively assume x1 = x. Then since (v \ {b}) ∪ {y} ∈ N(w) we have
a1 = b so we have w = (v\{b})∪{x}. However (v\{c})∪{z} 6∈ N((v\{b})∪{x})
in contradiction to N(w)∩A = {(v \ {a})∪{x}, (v \ {b})∪{y}, (v \ {c})∪{z}}.

So we must have d(v, w) = 2 and write w = (v \ {a1, a2}) ∪ {x1, x2}. By
Lemma 3.3 we know that since (v \{a})∪{x} ∈ N(w) we have a ∈ {a1, a2} and
x ∈ {x1, x2}. Without loss of generality we assume a1 = a and x1 = x.

Similarly, since (v \ {b}) ∪ {y} ∈ N(w), we have b ∈ {a, a2} and y ∈ {x, x2}
so we have w = (v \ {a, b}) ∪ {x, y}. But then (v \ {c}) ∪ {z} 6∈ N(w), a
contradiction.

Theorem 3.6. The VC-dimension of the edge relation in a Johnson graph is
at most 4.

Proof. The proof goes through a series of cases demonstrating that no vertex
set of size 5 in a Johnson graph can be shattered. We rely on the fact that
every set A shattered by the edge relation must have A ⊆ N(v) for some vertex
v and that every subset of a shattered set is also shattered which allows us to
drastically reduce the number of cases we need to check.

Observe that in J(m, k) we can pick an element of the underlying set and
the set of all vertices not containing that element induces J(m − 1, k) as a
subgraph of J(m, k) and the set of all vertices containing that element induces
J(m− 1, k − 1). Thus we can assume m and k to be arbitrarily large and since
by Lemma 2.3 taking induced subgraphs can only decrease the VC-dimension,
our argument then holds for all m and k.

We will start by computing the number of configurations that can be ob-
tained by picking 4 vertices out of N(v). Formally the configurations, which we
label Case I - Case XV I, are the orbits of the group of automorphisms fixing
v in its action on 4 element subsets of N(v). There are 16 and out of those
8 are shattered by the edge relation and 8 are not. We will then go through
them one by one. For those cases that are not shattered by the edge relation we
will give a proof of why they are not shattered, and in the shattered cases, we
will demonstrate that whichever way we choose a fifth vertex to add to those
collections we will always end up with a set that is not shattered by the edge
relation.
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Let A be a set of vertices in a Johnson graph with |A| = 4, and v be a vertex
such that A ⊆ N(v).

Let vi = (v \ {ai}) ∪ {xi} for i ∈ {1, 2, 3, 4} be the four vertices of A .
Let ∼x be the equivalence relation vi ∼x vj if and only if xi = xj and ∼a be
the equivalence relation vi ∼a vj if and only if ai = aj . Note that if we have
vi ∼x vj and vi ∼a vj then vi = vj and by our assumption that the four vertices
are distinct we have i = j.

There are 5 ways, up to permutation, to split a set of size 4 into equivalence
classes. These correspond to the ways of summing up to 4. Not every combina-
tion of equivalence classes for ∼a and ∼x is possible. We will now look at each
of the ways ∼x can split A and give the available ways for ∼a to split A. Note
that the equivalence classes of ∼a and ∼x correspond to the columns and rows
of the rook’s graph induced by N(v). We now look at each of the different ways
of summing up to 4.

4 In this case we have x1 = x2 = x3 = x4 and we therefore must have ai 6= aj
whenever i 6= j. This means ∼a has 4 equivalence classes of size 1. This
gives us Case IX.

3 + 1 Without loss of generality we assume x1 = x2 = x3 6= x4. Then there
are two ways for ∼a to split A into equivalence classes. It can either have
2 + 1 + 1 or 1 + 1 + 1 + 1 as the partition. In the former case we can
assume without loss of generality that a1 = a4 and this yields Case X. In
the latter we have ai 6= aj whenever i 6= j and this gives us Case I.

2 + 2 Without loss of generality we assume x1 = x2 6= x3 = x4. Note that this
implies a1 6= a2 and a3 6= a4. We now have three ways that ∼a can split
A into equivalence classes.

2+ 2 We assume without loss of generality a1 = a3 and a2 = a4, giving
us Case II.

2+ 1+ 1 We assume without loss of generality a1 = a3 6= a2, a1 6= a4
and a2 6= a4. This gives us Case XI.

1+ 1+ 1+ 1 We have ai 6= aj whenever i 6= j, yielding Case XII.

2 + 1 + 1 Without loss of generality we assume x1 = x2 6= x3 6= x4 and addi-
tionally assume x4 6= x1. We can have four ways for ∼a to split A into
equivalence classes.

3+ 1 Without loss of generality we can assume a1 = a3 = a4 6= a2. This
is Case XIII.

2+ 2 Without loss of generality we can assume a1 = a3 and a2 = a4. This
is Case XIV .

2+ 1+ 1 In this instance we have two ways of grouping the vertices with
∼a that are not equivalent with relabeling.

By making a1 = a3 we get Case III.

By making a3 = a4 we get Case IV .
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1+ 1+ 1+ 1 We have ai 6= aj whenever i 6= j, giving us Case V .

1 + 1 + 1 + 1 Here we have x1, x2, x3, x4 all distinct. We can have four ways for
∼a to split A into equivalence classes.

4 Here we have a1 = a2 = a3 = a4 which is Case XV .

3+ 1 Without loss of generality we may assume a1 = a2 = a3 6= a4, giving
us Case V I.

2+ 2 Without loss of generality we can assume a1 = a2 6= a3 = a4 which
yields Case XV I.

2+ 1+ 1 Without loss of generality we can assume a1 = a2 6= a3 6= a4
and a1 6= a4 which gives us Case V II.

1+ 1+ 1+ 1 We have ai 6= aj whenever i 6= j. This gives us Case V III.

We now have 16 cases and will go through them one by one demonstrating
that in each case either A can not be shattered or that adding a fifth vertex
to A will always result in a set that cannot be shattered. This is sufficient to
ensure that no set of size 5 can be shattered. When proving a configuration
does not shatter we have to prove that there exists a subset B ⊆ A such that
there exists no w for which N(w) ∩ A = B. In all cases we will have B 6= A so
we have to check the cases d(v, w) = 1 and d(v, w) = 2.

When we have to add a fifth vertex we will have to check every possible
combination of ∼a and ∼x between the fifth vertex and the previous four ver-
tices, up to a relabeling of the xi and ai. In these subcases we will often simply
observe that the fifth vertex along with 3 of the original 4 vertices is identical
to a case which is separately proved not to shatter.

We will for each case give a diagram showing those vertices of N(v) we are
taking to be in A arranged in rows and columns as they would be in the rook
graph induced by N(v). In those cases where we do not give a proof that the four
vertices selected cannot form a shattered set we will have a choice of how to pick
our fifth vertex to add to A. The fifth vertex we will label with the associated
subcase rather than v5 to avoid confusion and save space on the diagrams. Note
that row permutations just correspond to relabeling of the equivalence classes
of ∼x and column permutations correspond to relabeling of equivalence classes
of ∼a.

There is one more symmetry that we take advantage of which is the isomor-
phism between J(m, k) and J(m,m − k) which takes a vertex v and maps it
to X \ v. In our diagrams this corresponds to swapping the rows and columns,
i.e. transposing the diagram. In those cases where we have already addressed
the transpose we will simply refer to the previous case, unless the case is easily
resolved.
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Case I

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a3}) ∪ {x1}

v4 = (v \ {a4}) ∪ {x2}

v1 v2 v3

v4

Let w be such that N(w) ∩A = {v2, v3, v4}. We have 2 cases.

(a) w = (v \ {a}) ∪ {x}. Since we have to exclude v1 from N(w) we must by
Lemma 3.2 have that a 6= a1 and x 6= x1. So in order to have v2 ∈ N(w)
we must have a = a2 and in order to have v3 ∈ N(w) we must have a = a3.
But then a2 = a3 in contradiction with v1 6= v2.

(b) w = (v \ {a, b}) ∪ {x, y}. From Lemma 3.3 we get that v2 ∈ N(w) yields
a2 ∈ {a, b} and x1 ∈ {x, y}; v3 ∈ N(w) yields a3 ∈ {a, b} and x1 ∈ {x, y};
v4 ∈ N(w) yields a4 ∈ {a, b} and x2 ∈ {x, y}. Thus {a2, a3, a4} ⊆ {a, b},
contradicting that a2, a3, a4 are all distinct.

Case II

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a1}) ∪ {x2}

v4 = (v \ {a2}) ∪ {x2}

v1 v2

v3 v4

Let w be such that N(w) ∩A = {v2, v3, v4}. We have 2 cases.

(a) w = (v \ {a}) ∪ {x}. Since v4 ∈ N(w) we have w 6= v1. Since we have
to exclude v1 from N(w), by Lemma 3.2 we must have that a 6= a1 and
x 6= x1. So in order to have v2 ∈ N(w) we must have a = a2 and in order
to have v3 ∈ N(w) we must have x = x2. But then w = v4 in contradiction
with v4 ∈ N(w).

(b) w = (v \ {a, b}) ∪ {x, y}. From Lemma 3.3 we get that v3 ∈ N(w) yields
a1 ∈ {a, b} and x2 ∈ {x, y}; v2 ∈ N(w) yields a2 ∈ {a, b} and x1 ∈ {x, y};
hence w = (v \ {a1, a2}) ∪ {x1, x2}, contradicting that v1 6∈ N(w).

Case III

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a1}) ∪ {x2}

v4 = (v \ {a3}) ∪ {x3}

v1 v2

v3

v4

The vertices v2, v3, v4 are pairwise at distance 2 from each other so by Lemma
3.5 A is not shattered.
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Case IV

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a3}) ∪ {x2}

v4 = (v \ {a3}) ∪ {x3}

v1 v2

v3

v4

Let w be such that N(w) ∩A = {v2, v3, v4}. We have 2 cases.

(a) w = (v \{a})∪{x}. Since we have to exclude v1 from N(w) by Lemma 3.2
we must have that a 6= a1 and x 6= x1. So in order to have v2 ∈ N(w) we
must have a = a2 and in order to have v3 ∈ N(w) we must have x = x2.
But then w = (v \ {a2}) ∪ {x2} in contradiction with v4 ∈ N(w).

(b) w = (v \ {a, b}) ∪ {x, y}. From Lemma 3.3 we get that v2 ∈ N(w) yields
a2 ∈ {a, b} and x1 ∈ {x, y}; v3 ∈ N(w) yields a3 ∈ {a, b} and x2 ∈ {x, y}.
Thus w = (v \ {a2, a3}) ∪ {x1, x2} in contradiction with v4 ∈ N(w).

Case V

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a3}) ∪ {x2}

v4 = (v \ {a4}) ∪ {x3}

v1 v2

v3

v4

The vertices v2, v3, v4 are at distance 2 from each other so by Lemma 3.5 A is
not shattered.

Case VI

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a1}) ∪ {x2}

v3 = (v \ {a1}) ∪ {x3}

v4 = (v \ {a2}) ∪ {x4}

v1

v2

v3

v4

This case is the transpose of Case I which we have already shown cannot shatter
so this case cannot shatter either.
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Case VII

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a1}) ∪ {x2}

v3 = (v \ {a2}) ∪ {x3}

v4 = (v \ {a3}) ∪ {x4}

v1

v2

v3

v4

The vertices v2, v3, v4 are at distance 2 from each other so by Lemma 3.5 A is
not shattered.

Case VIII

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x2}

v3 = (v \ {a3}) ∪ {x3}

v4 = (v \ {a4}) ∪ {x4}

v1

v2

v3

v4

The vertices v2, v3, v4 are at distance 2 from each other so by Lemma 3.5 A is
not shattered.

The remaining cases shatter, so we look at the different ways a fifth vertex
can be added to the collection and demonstrate that the result cannot be a
shattered set.

Case IX

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a3}) ∪ {x1}

v4 = (v \ {a4}) ∪ {x1}

v1 v2 v3 v4 a

b c

This and each of the remaining cases, are shattered sets so we take a closer look
at what configurations are obtainable by adding a fifth vertex to each of them.

a v5 = (v\{a5})∪{x1}. Let w be such that N(w)∩A = {v1, v2, v3}. Observe
that w 6= v4 since v5 ∈ N(v4) so we will need an alternative w. We have 2
cases: either d(v, w) = 1 or d(v, w) = 2.

Let w = (v \ {a}) ∪ {x}. Since we have to exclude v5 from N(w) then by
Lemma 3.2 we cannot have x = x1. So in order to have v1 ∈ N(w) we must
have a = a1 but then in order to have v2 ∈ N(w) we must have x = x1, a
contradiction.

Let w = (v \ {a, b}) ∪ {x, y}. In order to have v1 ∈ N(w), v2 ∈ N(w) and
v3 ∈ N(w), Lemma 3.3 gives us {a1, a2, a3} ⊆ {a, b}, a contradiction.
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b v5 = (v \ {a1}) ∪ {x2}. Here v2, v3, v4, v5 form case I.

c v5 = (v \ {a5}) ∪ {x2}. Here v1, v2, v3, v5 form case I.

Case X

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a3}) ∪ {x1}

v4 = (v \ {a1}) ∪ {x2}

v1 v2 v3

v4

a

b c

d e f

a v5 = (v \ {a4}) ∪ {x1}. Then v2, v3, v4, v5 forms case I.

b v5 = (v \ {a2}) ∪ {x2}. Then v1, v2, v4, v5 forms case II.

c v5 = (v \ {a4}) ∪ {x2}. Then v1, v2, v3, v5 forms case I.

d v5 = (v \ {a1}) ∪ {x3}. Then v2, v3, v4, v5 forms case IV .

e v5 = (v \ {a2}) ∪ {x3}. Then v1, v3, v4, v5 forms case III.

f v5 = (v \ {a4}) ∪ {x3}. Then v1, v2, v4, v5 forms case III.

Case XI

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a1}) ∪ {x2}

v4 = (v \ {a3}) ∪ {x2}

v1 v2

v3 v4

a b

c d e

a v5 = (v \ {a3}) ∪ {x1}. Here v1, v3, v4, v5 form case II.

b v5 = (v \ {a4}) ∪ {x1}. Here v1, v2, v4, v5 form case I.

c v5 = (v \ {a1}) ∪ {x3}. Here v2, v4, v5 all have distance 2 from each other
and thus by Lemma 3.5 A is not shattered.

d v5 = (v \ {a2}) ∪ {x3}. Here v1, v4, v5 all have distance 2 from each other
and thus by Lemma 3.5 A is not shattered.

e v5 = (v \ {a4}) ∪ {x3} In this case v1, v4, v5 all have distance 2 from each
other and thus by Lemma 3.5 A is not shattered.

Case XII

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a3}) ∪ {x2}

v4 = (v \ {a4}) ∪ {x2}

v1 v2

v3 v4

a b

c d
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a v5 = (v \ {a3}) ∪ {x1}. Then v1, v2, v4, v5 form case I.

b v5 = (v \ {a5}) ∪ {x1}. Then v1, v2, v3, v5 form case I.

c v5 = (v \ {a1}) ∪ {x3}. In this case v1, v3, v4, v5 form case IV .

d v5 = (v \ {a5}) ∪ {x3}. In this case v1, v3, v5 all have distance 2 from each
other and thus by Lemma 3.5 A is not shattered.

Case XIII

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a1}) ∪ {x2}

v4 = (v \ {a1}) ∪ {x3}

v1 v2

v3

v4

This is the transpose of Case X which we have already shown cannot be con-
tained in a 5 vertex shattered set.

Case XIV

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a1}) ∪ {x2}

v4 = (v \ {a2}) ∪ {x3}

v1 v2

v3

v4

This case is the transpose of Case XI which we have already shown cannot be
a part of a shattered set of size 5.

Case XV

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a1}) ∪ {x2}

v3 = (v \ {a1}) ∪ {x3}

v4 = (v \ {a1}) ∪ {x4}

v1

v2

v3

v4

We note that this is the transpose of Case IX which we have already shown is
not a part of a 5 vertex shattered set and thus neither can this configuration.
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Case XVI

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a1}) ∪ {x2}

v3 = (v \ {a2}) ∪ {x3}

v4 = (v \ {a2}) ∪ {x4}

v1

v2

v3

v4

a b

c d

This case is the transpose of Case XII which we have already shown is not a
part of any 5 vertex shattered set.

Theorem 3.7. The VC-dimension of the edge relation in the Johnson graph
J(m, k) is 4 if and only if 1 < k < m− 1 and |V (J(m, k))| =

(

m
k

)

≥ 16.

Proof. If |V (J(m, k))| < 16 = 24 then the set system induced by the edge
relation has fewer than 16 sets. Thus by the pigeonhole principle the VC-
dimension of the edge relation is less than 4.

Assume
(

m
k

)

≥ 16 and 1 < k < m− 1. Here we again rely on J(m− 1, k− 1)
and J(m − 1, k) being induced subgraphs of J(m, k). We also observe that
J(m, k) is isomorphic to J(m,m− k). So since

(

m
k

)

≥ 16 then either J(7, 2) or
J(6, 3) are induced subgraphs of J(m, k).

Since removing vertices from a graph can only decrease VC-dimension it now
suffices to show that the edge relation has VC-dimension 4 in J(7, 2) and J(6, 3).
In Figure 4 we show choices for vertices v1, v2, v3, v4 such that A = {v1, v2, v3, v4}
is shattered by the edge relation, along with how each subset of A can be
obtained.

So the VC-dimension of the edge relation is at least 4 in both J(6, 3) and
J(7, 2). This shows that the VC-dimension of the edge relation is at least 4
in all Johnson graphs J(m, k) where

(

m
k

)

≥ 16 and 1 < k < m − 1. Theorem
3.6 shows us that the edge relation has VC-dimension at most 4 in all Johnson
graphs so this bound is tight whenever

(

m
k

)

≥ 16 and 1 < k < m− 1.

It is known that boolean combinations of formulas with bounded VC-dimension
also have finite VC-dimension (See Lemma 2.9 in [23]). Since the only relations
in the language of graphs are the edge relation and equality, and equality always
has a VC-dimension at most 1 we get.

Corollary 3.8. Every quantifier free formula in the language of graphs has
finite VC-dimension on J .

Theorem 3.9. The VC-density of the edge relation on J is 2.
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J(7, 2).

v1 = {1, 3}

v2 = {1, 4}

v3 = {1, 5}

v4 = {1, 6}

A ∩N({2, 7}) =∅

A ∩N({3, 7}) ={v1}

A ∩N({4, 7}) ={v2}

A ∩N({5, 7}) ={v3}

A ∩N({6, 7}) ={v4}

A ∩N({3, 4}) ={v1, v2}

A ∩N({3, 5}) ={v1, v3}

A ∩N({3, 6}) ={v1, v4}

A ∩N({4, 5}) ={v2, v3}

A ∩N({4, 6}) ={v2, v4}

A ∩N({5, 6}) ={v3, v4}

A ∩N(v4) ={v1, v2, v3}

A ∩N(v3) ={v1, v2, v4}

A ∩N(v2) ={v1, v3, v4}

A ∩N(v1) ={v2, v3, v4}

A ∩N({1, 2}) =A

J(6, 3).

v1 = {2, 3, 4}

v2 = {1, 3, 4}

v3 = {1, 3, 5}

v4 = {1, 2, 5}

A ∩N({4, 5, 6}) =∅

A ∩N({2, 3, 6}) ={v1}

A ∩N({v1}) ={v2}

A ∩N({v4}) ={v3}

A ∩N({1, 2, 6}) ={v4}

A ∩N({3, 4, 6}) ={v1, v2}

A ∩N(v2) ={v1, v3}

A ∩N({2, 4, 5}) ={v1, v4}

A ∩N({1, 3, 6}) ={v2, v3}

A ∩N(v3) ={v2, v4}

A ∩N({1, 5, 6}) ={v3, v4}

A ∩N({3, 4, 5}) ={v1, v2, v3}

A ∩N({1, 2, 4}) ={v1, v2, v4}

A ∩N({2, 3, 5}) ={v1, v3, v4}

A ∩N({1, 4, 5}) ={v2, v3, v4}

A ∩N({1, 2, 3}) =A

Figure 4: Examples of shattered sets of size 4 in J(7, 2) and J(6, 3)
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Proof. First we show that the VC-density is at least 2. Assume without loss of
generality that m > 2k and let X be the underlying set of J(m, k). Fix a vertex
v = {ai : 1 ≤ i ≤ k} in J(m, k), and let (xi)

k
i=1 be distinct elements of X such

that xi 6∈ v for all i. Define A := {(v \ {ai}) ∪ {xi} : 1 ≤ i ≤ k}. Then for
any pair of vertices vi := (v \ {ai}) ∪ {xi} and vj = (v \ {aj}) ∪ {xj} we have

that N((v \ {ai}) ∪ {xj}) ∩ A = {vi, vj}. There are |A|2−|A|
2

such pairs so the
VC-density of the edge relation on J is at least 2.

Now we show that the VC-density of the edge relation on J is at most 2.
Let A be a set of vertices in J(m, k), and π(n) be the shatter function for the
edge relation on J(m, k). Let |A| = n and A be maximally shattered by the
edge relation for sets of size n. Let

S(A) = {N(u) ∩A : u ∈ V (G)},

C1(A) = {N ∈ S(A) : N is a clique}, and

C2(A) = {N ∈ S(A) : N is not a clique}.

By our assumption that A is maximally shattered we have |S(A)| = π(n). Note
also that S(A) = C1(A) ∪ C2(A) so we deal with those two cases separately.

|C1(A)| ≤
5|A|2+3|A|

2
: There are at most |A|2+|A|

2
cliques of size 2 or less in

S(A). There are at most |A| cliques C in S(A) such that C = A ∩ N(v) for
some v ∈ A.

Now assume we have C = A∩N(v) for some v 6∈ A and further assume that
|C| ≥ 3. We want to show that then the clique C is of the form A∩Q for some
maximal clique Q of J(m, k). We then argue that there can be at most 2|A|2

maximal cliques of J(m, k) that intersect A in more than one vertex.
Note that in any graph G a maximal clique Q of G is contained in N(u)∪{u}

for all u ∈ Q so Q \ {u} is a maximal clique in G[N(u)]. It is easy to see that
the maximal cliques of the rook’s graph R(m, k) are the rows and columns. So
by Lemma 3.1 we find that for every vertex u in J(m, k) the maximal cliques of
J(m, k) that u belongs to are of the form Z ∪{u} where Z is a row or a column
of the rook’s graph J(m, k)[N(u)].

Since |C| ≥ 3 we know by Lemma 3.2 the only vertices connected to all
vertices in C are v and those vertices that share that row or column with all of
C, in the rook’s graph induced by N(v), and therefore lie in N(v). It follows
that C = A ∩Q for some maximal clique Q of J(m, k).

For every vertex u ∈ A we have that A intersects at most |A| rows and at
most |A| columns of the rook’s graph induced by N(u). So u can be a member
of at most 2|A| maximal cliques of J(m, k) that intersect A in more than two
vertices. So the number of maximal cliques of J(m, k) that intersect A in more
than two vertices is at most 2|A|2.

|C2(A)| ≤ 4|A|2: This holds since every pair of vertices at distance 2 from
each other can by Lemma 3.4 be contained in the neighbourhood of at most 4
vertices and there are at most |A|2 such pairs.

So we get that |S(A)| ≤ |C1(A)|+|C2(A)| ≤ 5|A|2+3|A|
2

+4|A|2 = 13|A|2+3|A|
2

∈
O(|A|2).
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4. Hamming Graphs

In this section we will give technical lemmas for dealing with Hamming
graphs and prove our main results on the VC-dimension and VC-density of the
edge relation in such graphs.

Lemma 4.1. Let v be a vertex in the Hamming graph H(d, q). Then N(v)
induces a disjoint union of d copies of Kq−1.

Proof. We observe that for each coordinate j the set of neighbours of v that
disagree with v in the j-th coordinate has size q − 1 and since those vertices
all agree in all but the j-th coordinate they form a clique. If two vertices
u,w ∈ N(v) disagree with v in different coordinates, say i and j respectively,
then u and w disagree with each other in the i-th and the j-th coordinate and
thus they are non-adjacent.

Lemma 4.2. Let u and v be vertices in the Hamming Graph H(d, q) with
d(u, v) = 1. Let 1 ≤ i ≤ d be such that u and v agree on all but the i-th
coordinate. Then N(u) ∩ N(v) is a clique of size q − 2 whose members are all
vertices w that agree with u and v in all but the i-th coordinate.

Proof. Since u and v are neighbours we know that they agree in all but one co-
ordinate namely the i-th. All vertices that agree with u and v on all coordinates
except the i-th form a clique. Since each coordinate can have q different values
there are q − 2 such vertices that are neither u nor v.

Take any vertex w neighboring u that agrees with u on all coordinates except
the j-th for a j 6= i. Now we know that w and u agree on the i-th coordinate
but since u and v disagree on this coordinate we get that w and v disagree on
the i-th and the j-th coordinate and therefore do not have an edge between
them.

Lemma 4.3. Let u = (uk)
d
k=1

and v = (vk)
d
k=1

be vertices in the Hamming
Graph H(d, q) with d(u, v) = 2. Let 1 ≤ i < j ≤ d be such that ui 6= vi, uj 6= vj
and uk = vk for every k 6∈ {i, j}. Then N(u) ∩ N(v) has exactly two vertices
and they are not connected, namely x = (xk)

d
k=1

and y = (yk)
d
k=1

where xi = ui

and xk = vk for all k 6= i, and yi = vi and yk = uk for all k 6= i.

Proof. Since u and v disagree on both the j-th and the i-th coordinates any
vertex w ∈ N(u)∩N(v) will have to agree with u on either the i-th or the j-th
coordinate and with v on the other one of those.

Lemma 4.3 implies the following.

Corollary 4.4. The open 2-neighborhood of a vertex in H(d, 2) contains the
1-subdivision of Kd−1 as an induced subgraph.

Since H(d, 2) is an induced subgraph of H(d, q) for q ≥ 2 it follows that H
has unbounded local clique-width as mentioned in the introduction.
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Lemma 4.5. Let u and v be vertices in the Hamming graph H(d, q) then

|N(v) ∩N(w)| =



















d(q − 1) if d(u, v) = 0

q − 2 if d(u, v) = 1

2 if d(u, v) = 2

0 if d(u, v) ≥ 3

Proof. This follows immediately from Lemmas 4.1,4.2, and 4.3.

Theorem 4.6. The VC-dimension of the edge relation in a Hamming graph is
at most 3.

Proof. Assume there is a set A′ with |A′| > 3 which is shattered by the edge
relation. Then there is a set A ⊆ A′ with |A| = 4 which is shattered by the edge
relation. Let A = {v1, v2, v3, v4}, let v be such that N(v) ∩ A = A and w be a
vertex such that N(w) ∩ A = {v1, v2, v3}. Since v 6= w and |N(v) ∩N(w)| > 2
we have that d(v, w) = 1, so the intersection of N(v) and N(w) is a clique. Now
we have two cases: either v4 = w or v4 6= w.

Assume v4 = w so A induces a clique. Let u be such that N(u)∩A = {v1, v2}.
Since A is a clique we know that u 6∈ A. More importantly u cannot belong
to the copy of Kq−1 in N(v) that contains A so by Lemma 4.1 d(u, v) = 2.
But then N(v)∩N(u) by Lemma 4.3 has two vertices that are not adjacent, in
contradiction with A being a clique.

Assume v4 6= w. Then we know that v4 6∈ N(v) ∩ N(v1) since otherwise
it would be in N(w) in contradiction with N(w) ∩ A = {v1, v2, v3}. Then
d(v4, v1) = 2 and similarly d(v4, v2) = 2. Let u be a vertex such that N(u)∩A =
{v1, v2, v4}. Since u 6= v and |N(u) ∩ N(v)| > 2 we have by Lemma 4.2 that
N(u) ∩A ⊆ N(u) ∩N(v) is a clique, in contradiction with d(v4, v1) = 2.

Theorem 4.7. The VC-dimension of the edge relation on the Hamming graph
H(d, q) is 3 if and only if at least one of the following holds.

1. d ≥ 3 and q ≥ 3.

2. d ≥ 2 and q ≥ 4.

3. d ≥ 4 and q ≥ 2.

Proof. It is clear that the VC-dimension is less than 3 whenever qd < 8. Since
H(1, q) = Kq, it follows that the VC-dimension is 1 when d < 2.

Note that if d ≤ d′ and q ≤ q′ then H(d, q) is an induced subgraph of
H(d′, q′). Since removing vertices from a graph can only decrease VC-dimension
it now suffices to show that H(2, 3) and H(3, 2) have no shattered set of size 3,
and that the edge relation has VC-dimension 3 in H(3, 3), H(2, 4), and H(4, 2).

Note that a set A shattered by the edge relation must have A ⊆ N(v) for
some vertex v. Moreover since Hamming graphs are vertex transitive we have
that for any vertex u there is an automorphism f such that u = f(v) and
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A H(2, 4) H(3, 3) H(4, 2)
v1 (0, 1) (0, 0, 1) (0, 0, 0, 1)
v2 (0, 2) (0, 1, 0) (0, 0, 1, 0)
v3 (0, 3) (1, 0, 0) (0, 1, 0, 0)

A ∩N(x) H(2, 4) H(3, 3) H(4, 2)
∅ (1, 0) (1, 1, 1) (1, 1, 1, 1)

{v1} (1, 1) (0, 0, 2) (1, 0, 0, 1)
{v2} (2, 2) (0, 2, 0) (1, 0, 1, 0)
{v3} (3, 3) (2, 0, 0) (1, 1, 0, 0)

{v1, v2} (0, 3) (0, 1, 1) (0, 0, 1, 1)
{v1, v2} (0, 2) (0, 0, 1) (0, 1, 0, 1)
{v1, v2} (0, 1) (1, 1, 0) (0, 1, 1, 0)

{v1, v2, v3} (0, 0) (0, 0, 0) (0, 0, 0, 0)

Table 1: Examples of shattered sets in H(2, 4), H(3, 3) and H(4, 2)

f [A] ⊆ N(u). In other words, if there is a shattered set A of size 3 then for any
vertex u there is some shattered set A′ of size 3 such that A′ ⊆ N(u). To show
that H(2, 3) and H(3, 2) have VC-dimension less than 3, it is therefore sufficient
to show that for a given vertex v, no subset of N(v) of size 3 is shattered.

H(2, 3). The neighbourhood of a vertex v in H(2, 3) has 4 vertices each adjacent
to exactly 1 other vertex in N(v). Thus a 3 element subset A of N(v) contains
two adjacent vertices u,w and one vertex connected to neither of them. By
Lemma 4.3 we get that |N(u) ∩N(w)| = 1 which gives us N(u) ∩N(w) = {v}.
Since N(v) ∩A = A there is no vertex v′ such that N(v′) = {u,w}.

H(3, 2). Since for any vertex v in H(3, 2) we have |N(v)| = 3 then a set A of
size 3 shattered by the edge relation must have the form A = N(v) for some
v. It is therefore sufficient to show that N(v) is not shattered for some v.
Without loss of generality assume v = (a, a, a). Observe that N((a, a, a)) =
{(a, a, b), (a, b, a), (b, a, a)} and any neighbour of (a, a, b) is also a neighbour of
(a, b, a) or (b, a, a). Thus there does not exist a vertex u such that N(u) ∩
N((a, a, a)) = {(a, a, b)} so N((a, a, a)) is not a shattered set, and thus H(3, 2)
has no shattered set of size 3.

In Table 1 we give examples of shattered sets A = {v1, v2, v3} in H(2, 4),
H(3, 3), and H(4, 2). The last 3 columns in the second table show choices of
x, in the different graphs, such that A ∩ N(x) is the subset shown in the first
column.

Theorem 4.8. The VC-density of the edge relation on H is 2.

Proof. First we observe that for d > 1 a set such that any two vertices agree on
all but the first two coordinates has the property that ∀u, v ∈ A∃w(A∩N(w) =
{u, v}) so the VC-density is at least 2.
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We now need to show that πH(n) ∈ O(n2) where πH is the shatter function
for the edge relation on H. We do this by giving a bound on a recursive formula
for π(n) and showing that it has a O(n2) closed form.

Let A be a maximally shattered set of size n in the Hamming graph H(d, q).
Let v ∈ A and S be the class of all neigbourhoods in H(d, q). Let S1 = {A∩S :
S ∈ S ∧ v ∈ S}. Let S2 = {A ∩ S : S ∈ S ∧ v 6∈ S}. Note that |S1 ∪ S2| = π(n)
and |S2| ≤ π(n− 1).

Every member of S1 is an intersection of A with a neighborhood of neighbour
of v. Also, N(v) induces a disjoint union of d copies of Kq−1 with no edges
between the cliques. Let

D0 = {v}, D1 = A ∩N(v),

D2 = {u ∈ A : d(u, v) = 2}, and D3 = {u ∈ A : d(u, v) > 2}

Then D3 intersects no member of S1 by definition of D3. By Lemma 4.3
every element of D2 can be a member of at most 2 sets of S1 thus the total
number of distinct sets containing v and intersecting D2 is at most 2|D2| < 2n.

Since we have counted all members of S1 that intersect D2, and no members
of S1 intersect D3 we only have left to count those members of S1 that are
subsets of D0 ∪D1. By Lemma 4.1, N(v) induces a disjoint union of d copies
of Kq−1. Let (Qi)

d
i=1 be sets such that for each i, Qi is the set of all vertices

u ∈ D1 that disagree with v in the i-th coordinate. Note that D1 =
⋃d

i=1
Qi

and any element of S1 which is a subset of D0 ∪D1 is a subset of D0 ∪ Qi for
some i.

Moreover every subset of D0 ∪ Qi that is an element of S1 is either: (D0 ∪
Qi) \ {u} for some u ∈ Qi, or D0 ∪ Qi, or {v}, thus the number of distinct
elements of S1 contained in D0 ∪D1 is at most

d
∑

i=1

|Qi|+min(d, n) + 1 = |D1|+min(d, n) + 1 ≤ n+min(d, n) + 1.

So we have

π(n) = |S1|+ |S2| ≤ |S1|+ π(n− 1) ≤ 2|D2|+ n+min(d, n) + 1 + π(n− 1)

≤ 2n+ n+ n+ 1 + π(n− 1) ≤ 4n+ 1 + π(n− 1).

By induction we get that π(n) ≤ 4n2 + n for all n and thus π(n) ∈ O(n2).
This tells us that the VC-density is at most 2. We have thus demonstrated
that the VC-density of the edge relation on H is at least 2 and at most 2 and
conclude that it must be 2.
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